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ABSTRACT
Learning the characteristics of information spreading in networks is
crucial in communication studies, social network sentiment analysis
and epidemic investigation. Previous work on information spreading
has been focused on the information source detection using either a
single observation, or multiple but “independent” observations of
the underlying network while assuming information spreads at a
“uniform spreading rate”. In this paper, we conduct the first theo-
retical and experimental study on information spreading forensics,
and propose a framework for estimating information spreading rates,
information source start time and location of information source
by utilizing “multiple sequential and dependent snapshots” where
information can spread at different rates. We prove that our estima-
tion framework generalizes the rumor centrality [1], and we allow
heterogeneous information spreading rates on different branches
in d-regular tree networks. We further show that our framework
can provide highly accurate estimates for the information spreading
rates on different branches, the source start time, and more accurate
estimate for the location of information source than rumor central-
ity and Jordan center in both synthetic networks and real-world
networks (i.e., Twitter).

1. INTRODUCTION
Understanding information spreading in networks is an important

task in various aspects of human life, i.e., communication advis-
ers would like to know how fast information spreads (information
spreading rates) in different networks or communities to be more
successful in network marketing. Online media reporters would like
to find out when the news or rumors start to spread (source start
time) for better public sentiment analysis. Epidemiologist would
try to locate the virus source to find out the reason for an epidemic.
However, for all of these instances, such a task is very challenging
in a large network because the complete temporal knowledge of in-
formation spreading, i.e., time index of when each individual (node)
receives the information, is usually not available [2], and this makes
forensics for the spreading rates, source start time or the information
source difficult if not impossible. Moreover, a typical scenario of
information spreading is that the source would spread information to
different networks where the spreading rates are usually very differ-
ent. For example, an epidemic usually has different spreading rates
among different age groups and regions [3]. And the news or rumors
have different spread rates among different communities or different
networks [4]. Such a heterogeneity of spreading rates makes it more
difficult to extract the information spreading characteristics. Thus,
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Fig. 1: Snapshot taken at t1 (left with black dots) and snapshot taken at
t2 (right with gray and black dots) (t2 > t1) in (a) and (b) and different
colored triangles represent different branches, respectively . (a): the blue dot
represents the source estimate of rumor centrality. (b): the red dot represents
the true information source.
one has to consider how to estimate the information spreading rates,
the source start time, and the location of the information source from
one or more observations (or snapshots) of information spreading.

In this paper, we present a framework to estimate the information
spreading rates, the source start time and the information source with
“sequential and dependent snapshots”. We consider an unknown
source starts spreading information with different spreading rates
in a network. Specifically, the source first spreads information to
different neighboring nodes with potentially different spreading
rates, and then each of the neighbors spreads to other nodes along
the edges with the spreading rate inherited from the source. We take
sequential snapshots of the network at different times. The goal is
to accurately estimate the spreading rates, source start time, and
identify the information source based on these sequential snapshots.

Previous work mainly focused on the information source detec-
tion with a homogeneous information spreading rate. D. Shah and
T. Zaman [1] first proposed the rumor centrality estimator using a
single snapshot of information spreading. Later on, Wang et al. [5]
presented a union rumor centrality that utilizes multiple indepen-
dent snapshots of information spreading and yet proved that the
sequential dependent snapshots will not improve the accuracy of
source detection. Both are based on the assumption that informa-
tion spreads at a uniform spreading rate which is not realistic for
networks with different communities/groups [3]. Indeed, given the
homogeneous information spreading rate, the rumor centrality and
the union rumor centrality both give a source estimation that bal-
ances the sizes of the branches of the infected graphs [1, 5]. For
example, Fig. 1(a) shows the infection graphs of two sequential
snapshots taken at time t1 and t2 (t2 > t1), and the blue dot rep-
resents the source estimate of rumor centrality. The underlying
network (not drawn) is a 3-regular tree where every node in the
tree is of degree 3. Fig. 1(b) illustrates the same two snapshots of
the ground truth information spreading process at time t1 and t2
(t2>t1) where the red dot represents the true source and different
colored triangles represents different branches. Each snapshot has
three branches drawn with different shades of colors rooted at the
true source node (red dot). The rumor centrality or the union rumor
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centrality on these two snapshots would give wrong estimate for the
source (the blue dot in the left and right of Fig. 1(a), respectively)
that balances the sizes of branches (the pink triangles) as they fail to
capture the different growth of branches in two sequential snapshots,
while assuming that the information spreading has the same rate on
these three branches. In contrast, we propose a general information
spreading forensic model and propose a framework to estimate the
different spreading rates, the source start time, and the information
source using sequential snapshots.

Our estimation framework consists of four components as follows.
For each node in the first snapshot, at the Branch Extraction step, we
extract its branches in the sequential snapshots. Then we examine
the growth of each branches and give estimates for the spreading
rates on different branches at the Spreading Rate Estimation step.
Using the estimates for the rates, we estimate the source start time
at the Source Start Time Estimation step. Finally, we calculate
the likelihood for a node of being the source at the Likelihood
Estimation step. We obtain a likelihood estimation for each node
in the first snapshot and then output the node with the maximum
likelihood as the source and give corresponding estimations for the
spreading rates and source start time.

Our key idea is that a subsequent snapshot can reveal the infor-
mation spreading rates for branches in earlier snapshots when one
examines the “growth size” of the infected branches. The spreading
rate estimates further help us infer the source start time and give
likelihood estimate for the source. We illustrate this idea via Fig-
ure. 1(b). As shown in the two sequential snapshots in Fig. 1(b),
the branch (blue triangles in Fig. 1(b)) with the largest growth size
should have the largest spreading rate estimate. Such spreading rate
estimates indicate that the branch in blue is highly likely the largest
branch in the first snapshot. As such, we can estimate the relative
sizes of branches rooted at the source, and find a node (the red dot
in Fig. 1(b)) in the first snapshot with the maximum likelihood that
generates such branches, where the spreading rate estimates validate
the growth sizes of the branches when the snapshots are taken. More
importantly, we prove that our framework generalizes the rumor cen-
trality [1] to the cases of heterogeneous spreading rates at different
branches in d-regular tree networks, and show that our framework
provides more accurate source estimates than rumor centrality and
Jordan center [6], while giving highly accurate estimates for the
information spreading rates and source start time. We have validated
these claims in our experiments, both for synthetic and real-world
networks (Twitter).

2. MODELS AND FRAMEWORK DESIGN
Information Spreading Model. Consider an information spread-
ing process over a network. The underlying network is modeled as
an undirected graph G(V, E), where V and E denote the vertex set
and the edge set respectively. We use a continuous time Susceptible-
Infected (SI) model to describe the information spreading process.
Specifically, at an unknown time t0, an unknown information source
node v∗∈V starts spreading information in G. Each node in G can
be either susceptible (not getting the info.) or infected (getting the
info.). Once a node is infected, it can infect (spread information
to) a susceptible neighboring node and turn the neighboring node
into an infected node. Consider an edge (i, j)∈E , and suppose that
node i is infected and node j is susceptible. Node i will infect node
j after a random time θij , which follows an exponential distribution
with rate λij (Hereafter we say that node i infects node j with rate
λij). We focus on the case that θij , ∀(i, j) ∈ E are independent
distributed random variables. To construct the source estimator in
a computationally tractable way, we consider the underlying graph
G as an infinite d-regular tree network (each node has the same

degree d and d≥2). The unknown source v∗ infects each of its d
neighbors with unknown rate λ1,λ2, . . . ,λd at t0 respectively. For
the subsequent infections, a node which was infected with rate λi

would go on to infect its neighbors with rate λi for 1≤ i≤d. Let
λ=(λ1,λ2, . . . ,λd). Note that this continuous model was justified
in [7] as a highly accurate probabilistic model to capture the inter-
action behaviors between users in social networks. Our objective
is to give maximum likelihood estimates for the spreading rates λ,
the source start time t0, and the information source v∗ with a finite
number of sequential snapshots on G.
Observation Model. We now describe the observations that we
can have on the information spreading process. We take sequential
snapshots of the network G at different times during the spreading
process. Each snapshot contains all the infected nodes and the edges
between every pair of infected nodes up to the time that snapshot
was taken. More specifically, we consider m sequential snapshots
(m≥2). Let Gj ⊆G for 1≤j≤m denote the j-th snapshot taking
at time tj (where t0 <t1 <. . .< tj <. . .< tm). Clearly, we have
Gj ⊆ Gm as these m snapshots are taken sequentially from the
same spreading process on G.
Framework Design. We now give the high level idea of our frame-
work. We present a framework to estimate the spreading rates (λ) on
each branch, the start time (t0) and information source (v) using the
branches split from the m snapshots for each node v in the first snap-
shot. Our framework consists of four components (described below)
and takes the m snapshots G1, . . . , Gm and the times t1, . . . , tm as
the input.
• Branch Extraction. Upon taking the sequential snapshots, we
further split them into d growing branches. Assume that the source
node is v. Let u1, u2, . . . , ud be the neighbors of v in G. Let T i

v(t)
denote the branch that is rooted at node v and does not contain u−i

(where u−i = {∪d
1ui} \ ui) up to time t and T i

v(t0)=v. Thus, Gj

is split into d different tree branches T i
v(tj) for 1≤ i≤d, and each

branch has a copy of source v. Let ki
j = |T i

v(tj)|−1≥ 0 denote
the number of infected nodes in T i

v(tj) excluding v and ki
0 = 0 for

1≤ i≤ d. The increment of the branch sizes of two consecutive
times tj−1 and tj of T i

v(t) is denoted by δij , i.e., δij = ki
j−ki

j−1. As
the spreading process has possibly different rates on the d branches,
we denote that the spreading rate on the edges of the i-th branch as
λi for 1≤ i≤d. Moreover, for the branch T i

v(tj), a node u ∈ T i
v(tj)

is a boundary node if u has at least one neighbor in G − T i
v(tj). We

denote Bi
v(tj) as the boundary that consists of the boundary nodes

of the branch T i
v(tj) and let bij = |Bi

v(tj)|. From the boundary
Bi

v(tj−1) to the boundary Bi
v(tj), we can sample bij−1 (bij−1 ≥ 0)

paths that are disjoint with each other as the branches are trees. We
denote lr(0≤ r≤ bij−1) as the length of the bij−1 disjoint path for
2≤j≤m and l0 = 0.
• Spreading Rates Estimation. We seek to derive the maximum
likelihood estimators for the spreading rates on the different branches
with the source being v. Consider the branch T i

v . We have bij−1 dis-
joint paths that connect the boundary Bi

v(tj−1) with the boundary
Bi

v(tj). Thus the spreading process on each of the bij−1 paths is
identical and independent Poisson process with rate λi. The max-
imum likelihood estimator for λi(1≤ i≤ d) can be expressed as:

λ̂i = argmax
λi

m∏

j=2

[λi(tj − tj−1)]
∑bij−1

r=0 lr

eλ
i(tj−tj−1)b

i
j−1

∏bij−1
r=0 lr!

,

where the right hand side is simply the joint probability density
function of observing all the bij−1 disjoint paths in T i

v(t) during
(tj−1, tj ] for 2≤ j ≤m. By letting the derivative of λi be 0, we
obtain the spreading rate estimator λ̂i as follows,
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λ̂i =

∑m
j=2

∑bij−1
r=0 lr

∑m
j=2 b

i
j−1(tj − tj−1)

, (1)

if
∑m

j=2 b
i
j−1(tj − tj−1) ̸= 0. Otherwise, λ̂i = 0. Eq. (1) shows

that the spreading rate estimator λ̂i is in fact the average spreading
rate of information spreading on all disjoint paths in the m − 1
snapshots. Let λ̂=(λ̂1, . . . , λ̂d).
• Source Start Time Estimation. To estimate the source start
time t0, we consider the distribution of time t = t1− t0 for the
information spreading from the source v to the branch T i

v(t1) given
that the spreading rate in the branch is λ̂i, 1≤ i≤d, during (t0, t1].
Note that there are ki

1 infections that occur during (t0, t1] on the
branch T i

v(t1) and each new infection on branch T i
v(t1) would

introduce d− 2 newly infectious edges. Moreover, the time follows
an exponential distribution with rate λ̂i on each edge. Hence, the
total time Ski

1
(t) of infecting ki

1 nodes on the branch T i
v(t1) is the

sum of the ki
1 exponentially distributed random variables with rate

λ̂i, [1 + (d − 2)]λ̂i, . . . , [1 + (d − 2)(ki
1 − 1)]λ̂i. Let t̂0 denote

the estimator for t0 and Pki
1
(t1|t0)=Ski

1
(t)−Ski

1+1(t) denote the
probability that exactly ki

1 infections occur in the branch T i
v(t1)

during (t0, t1] given that the spreading rate is λ̂i, 1≤ i≤d. We give
our derived source start time estimator t̂0 as follows,

t̂0 = argmax
t0

∏d

i=1
Pki

1
(t1|t0)

= t1 −
1∑
λ̂i>0

∑d

i=1,λ̂i>0

ln(1 + (d− 2)ki
1)

(d− 2)λ̂i
, (2)

where λ̂i>0 is an indicator function and only the branches with
non-zero spreading rate λ̂i>0 for 1≤ i≤d (d>2) in the summation
term are considered. For d = 2, we have t̂0 = t1 − 1∑

λ̂i>0
ki
1/λ̂

i.

Eq. (2) suggests that the source start time estimator t̂0 is the differ-
ence between t1 and the average spreading time from source v to
the boundaries of different branches.
• Likelihood Estimation. We take advantage of the growing branches
in the sequential snapshots and construct “maximum likelihood esti-
mators” for the spreading rates, the source start time and the infor-
mation source. In particular, assume that v is the source, we examine
the infection process by considering the information spreading on
each branch T i

v(t) with the spreading rate estimate λ̂i during the
time intervals (t̂0, t1], (t1, t2], . . . and (tm−1, tm] separately. Note
that the infection process on each branch is independent of each
other and the branch T i

v(tj) is only dependent on its earlier state,
i.e., T i

v(tj−1) (1 ≤ j ≤ m). Therefore, the maximum likelihood
estimation for v̂, λ̂, and t̂0 can be expressed as:

{v̂, λ̂, t̂0} =argmax
v∈G1

∏d

i=1
P[T i

v(tm), . . . , T i
v(t1)|v, λ̂, t̂0]

= argmax
v∈G1

∏d

i=1

∏m

j=1
P[T i

v(tj)|T i
v(tj−1), λ̂, t̂0],

(3)

where P[T i
v(tm), . . . , T i

v(t1)|v, λ̂, t̂0] is the joint probability (like-
lihood) that we observe the branches T i

v(tj) at tj for 1 ≤ j ≤
m given the source v = T i

v(t̂0) and the spreading rates λ̂, and
P[T i

v(tj)|T i
v(tj−1), λ̂, t̂0] is the conditional probability of observ-

ing the branch T i
v(tj) at tj given that the branch T i

v(tj−1) is ob-
served at tj−1 with the source being v and the spreading rates being
λ̂. Note that P[T i

v(tj)|T i
v(tj−1), λ̂, t̂0] is dependent on the size of

T i
v(tj−1), which is dependent on the location of the source v in

G1, the spreading rates λ̂, and the source start time t̂0. Any other
node v′ in G1 would result in different branches T i

v′(tj−1) and give
different conditional probabilities P[T i

v′(tj)|T i
v′(tj−1), λ̂, t̂0] for

1≤j≤m. As such, the dependence of the branch T i
v(t1) in G1 on

v carries over to the branches T i
v(tj) in snapshots Gj for 2≤j≤m.

Thus the branches T i
v(tj) in snapshots Gj for 2≤j≤m will impact

on the estimates for the spreading rates λ̂, the source start time t̂0
and the source v in G1. Therefore, we can give maximum likelihood
estimates for the three information spreading characteristics that
contribute to forming the branches in the first snapshot and branches
in the following snapshots with the maximum probability. We then
calculate the probability in Eq. (3), and give the explicit form of the
maximum likelihood estimates of our framework as follows,

{v̂, λ̂, t̂0} = arg max
v∈G1

R(v,G1) · C(λ̂, t̂0), (4)

where C(λ̂, t̂0) is given by

e
−

d∑

i=1
[(aki

m+1)tm−t̂0]λ̂
i d∏

i=1,λ̂i>0

m∏

j=1

(
eaλ̂

itj − eaλ̂
itj−1

)δij
, (5)

for 1≤ j ≤m, 1≤ i≤ d, a= d−2, and only the branches with
nonzero spreading rates (λ̂i > 0) are considered in the product
terms. R(v,G1) is the rumor centrality [1] of v in the first snap-
shot G1. Note that our source estimator has an additional scaling
factor C(λ̂, t̂0) as compared with the previous work of rumor cen-
trality [1]. This scaling factor characterizes the different spreading
processes of the different branches. Moreover, the scaling factor
is proved to be a constant regardless of where the source v is in
G1 when the spreading rates on the different branches are the same.
Thus the rumor centrality is simply a special case and our frame-
work generalizes it to the cases of heterogeneous spreading rates at
different branches.

3. PRELIMINARY RESULTS
For synthetic networks, we run simulations on d-regular tree net-

works and power-law networks (where information spreads along
the breadth-first-search tree). We take sequential snapshots of each
spreading process at different times and apply our framework (the
degree of each selected node is used as d (d≥ 2) for power-law
networks). Compared with the ground truth, the average estimation
errors for the spreading rates are about 5%, and for the source birth
times are about 9%. In addition, the average estimation errors of
the source are within 1.1 hops of the true source, which is much
lower (up to 50%) than the rumor centrality (1.8 hops) and Jordan
center (2.0 hops). For real-world networks, we extract 274 informa-
tion spreading graphs from the Twitter dataset [8] which includes
the timestamps of the tweets as the ground truth of information
spreading and we could achieve highly accurate estimates.
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