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ABSTRACT
The classic utility maximization framework studies the fairness-

e�ciency tradeo� in various resource allocation problems (e.g.,
bandwidth allocation). The weighted alpha-fair utility is a common
utilitarian metric. However, this classic framework cannot tackle
those allocation problems with the online decision-making require-
ment (e.g., caching capacity allocation under unknown requests).
Existing studies on these online allocation problems largely follow
the online learning approaches, thus inevitably overlook the alloca-
tion fairness. In this paper, we propose a novel utility maximization
framework accommodating the online setting. The major challenge
of designing this framework lies in the tight coupling between the
desirable fairness guarantee and the unknown allocation e�ciency.
To tackle this, we integrate the weighted alpha-fair utility with the
learning rationale, by properly devising the merit-based weights
and the increasing fairness levels. Under our proposed framework,
the utility-maximizing allocation in each time slot is weighted
alpha-fair. Our framework also performs asymptotically as well
as the o�ine optimal/e�cient outcome. We demonstrate how this
framework functions in two networking applications. In size-based
scheduling, it enables network switches to prioritize short �ows
and avoid �ow starvation without the prior �ow size information.
In �le caching, our framework outperforms several state-of-the-art
caching policies up to 21% in terms of cache-hit-ratio.
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1 INTRODUCTION
1.1 Background and Motivation
1.1.1 Fairness & E�iciency. Resource allocation is one of the clas-
sic research problems in computer and communication networks.
It has been heavily studied in network bandwidth allocation un-
der the utility maximization framework (e.g., [1–6]). Some studies
on caching capacity allocation (e.g., [7]) and ad space allocation
(e.g., [8]) also take the utility maximization into consideration. The
fairness-e�ciency tradeo� is usually the epitome of these studies.

• Fairness is an abstract metric for equity and has a wide range
of de�nitions. Mo and Walrand in [4] introduce the weighted
alpha-fair utility that generalizes several fairness de�nitions
such as the proportional fairness (introduced by Nash in [9])
and the max-min fairness (e.g., [10]). Recently, Lan et al. in
[5] show what it actually means for a larger alpha value to
be a more fair allocation outcome.
• E�ciency is a rather concrete criteria, which is usually de-
�ned by the system operator to characterize the system per-
formance of its interest. Hence the e�ciency of di�erent
networking systems often has di�erent mathematic forms.
Some may even involve time-varying unknown parameters.

In general, maximizing the system e�ciency and ensuring the
allocation fairness are often inconsistent. Hence most studies (e.g.,
[1]-[8]) investigate how to balance the system e�ciency and the
allocation fairness in the system design.

1.1.2 Online Allocation. In many real-world applications, the re-
source allocation problems often involve unknown parameters due
to the changing environment. The operator cannot accurately an-
ticipate the system performance (i.e., the e�ciency metric) until the
unknown parameters are revealed. This means that the allocation
problems exhibit the need of performing online estimation and
optimization. We will refer to these problems as the “online resource
allocation” (e.g., [11–19]), and brie�y introduce several important
applications within this framework:

• the caching capacity allocation for �les with unknown re-
quest or �le popularity (e.g., [11, 12]),
• the wireless channel allocation for multiple IoT sensors with
unknown sensing data amount (e.g., [13]),
• the display space allocation for multiple advertisers with
unknown click rates (e.g. [14]),
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• and the job dispatching to multiple geo-distributed data-
centers with unknown energy expenditure (e.g., [15]).

The above online allocation problems study how the operator
allocates the resource to multiple competing requesters. Due to
the environment uncertainty, the operator has to dynamically op-
timize its allocation decisions without the prior knowledge. Most
studies above follow the online learning/optimization framework
(e.g., [20–22]). This framework focuses on a metric called regret,
which is de�ned as the system performance gap between the of-
�ine optimal/e�cient allocation and the adopted online allocation
decisions. That is, regret measures the e�ciency loss in an online
allocation problem, and a sub-linear regret implies that the adopted
online allocation decisions are asymptotically e�cient. For example,
[11] uses online gradient decent in caching capacity allocation to
achieve a sub-linear regret.

1.1.3 Fairness in Online Allocation. Despite the achievable asymp-
totic e�ciency, simply following the online learning/optimization
approaches may cause an unfair allocation outcome, which is unac-
ceptable in many real-life applications. This drawback motivates us
to reconsider the classic utility-guided framework (e.g., weighted
alpha-fair utility), leading to the �rst fundamental question:

������� 1. Can one develop a novel utilitymaximization frame-
work (with fairness guarantee) for the online setting?

Ideally, the above framework should achieve asymptotic e�-
ciency by adopting the utility-maximizing allocation (with desired
fairness guarantee) in each time slot. In this case, fairness is no
longer taken as a �xed input parameter, but a variable used to ensure
asymptotic e�ciency.1 Such a framework is desirable but challeng-
ing to design for the online setting with unknown parameters. It
requires us to integrate the utility-guided fairness adoption with
the unknown parameter learning in a proper manner. The major
challenge is to �gure out the underlying connection between the
fairness concept and the learning rationale. If the answer to Ques-
tion 1 is yes, then it is natural for us to further investigate the
second key question:

������� 2. What is the relationship between e�ciency loss (in
the regret form) and fairness level in online allocation?

To address the two key questions, we will extend and gener-
alize the classic weighted alpha-fair utility to the online setting
by devising the merit-based weights and the increasing fairness
levels. The two aspects implicitly integrate the online learning ratio-
nale (i.e., the exploration-exploitation tradeo�) into the weighted
alpha-fairness adoption.

1.2 Main Results and Key Contributions
This paper studies the network resource allocation in the on-

line setting with unknown environment. At the beginning of each
time slot, the network operator allocates the resource to multiple
competing requesters. At the end of this time slot, the uncertain
environment is revealed, and the operator observes the allocation
e�ciency (i.e., objective) and the minimum guarantee requirement
1Similar idea also appears in the studies on recommender systems, where fairness
is framed as “serendipity” in these literatures (e.g., [23][24]). That is, pro-actively
controlling the fairness level actually determines how much serendipity we want.

(i.e., constraints). The performance criteria of this problem involve
three aspects: (1) allocation fairness, (2) e�ciency loss in the regret
form, and (3) minimum guarantee violation. Our goal is to develop a
novel utility maximization framework (with the fairness guarantee)
for the general online allocation problem.

The main results and key contributions are as follows:

• ANovel UtilityMaximization Framework:Wepropose a utility-
guided allocation framework for the online allocation prob-
lem. This framework is a non-trivial generalization of the
classic weighted alpha-fair utility to the online setting. It
properly integrates the weighted alpha-fairness with the
online learning rationale. Under this framework, the utility-
maximizing allocation in each time slot satis�es the weighted
alpha-fairness, and can also achieve the desired long-term
performance. To our knowledge, this is the �rst online allo-
cation framework ensuring weighted alpha-fairness.
• Connection between Weighted Alpha-Fairness and Learning
Rationale: We unveil the intrinsic connection between the
classic weighted alpha-fairness and the universal learning
rationale. Speci�cally, the weight vector corresponds to the
exploitation based on previous feedbacks, while the fairness
level (i.e., alpha) controls the magnitude of exploration over
the non-stationary environment. This intuition guides us to
devise the merit-based weights and the increasing fairness
levels, which manipulate the exploitation and exploration in
the online setting, respectively.
• Theoretical Performance: Our proposed framework is adap-
tive in time and has a low computation complexity. It achieves
a sub-linear e�ciency loss in the regret form and a sub-
linear minimum guarantee violation. That is, the weighted
alpha-fair allocations in our framework perform asymptoti-
cally as well as the o�ine optimal/e�cient outcome. More-
over, our framework has a tunable parameter � 2 (0, 1),
which controls the three-way tradeo� among fairness level
with the order O (T � ), the e�ciency loss with the order
O

⇣
T 1��

1�� +
T �

�
⌘
, and the minimum guarantee violation with

the order O
⇣p

T 2�� /(1 � � )
⌘
.

• Experimental Results: We demonstrate how the proposed
framework functions in two networking applications. In
size-based scheduling, our framework enables the network
switches to prioritize short �ows and avoid the �ow starva-
tion without the prior �ow size information. In �le caching,
our framework outperforms several state-of-the-art caching
policies up to 21% in terms of the cache-hit-ratio under the
typical �le request model.

The rest of this paper is as follows. Section 2 reviews related lit-
eratures. Section 3 introduces the system model. Section 4 presents
our proposed framework. Section 5 provides the numerical results.
We conclude this paper in Section 6.

2 LITERATURE REVIEW
There are two streams of studies related to this paper, which are

summarized in Table 1.
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Table 1: Literatures on o�line/online allocation
Literatures Fairness E�ciency (loss) Mini. Guaran.

[1]-[8] O�ine Fairness-e�ciency Tradeo� NA
[11]-[15]

Online
NA Sub-linear NA

[16]-[19] NA Sub-linear Sub-linear
This Paper Achieve sub-linear performance by adjusting fairness

2.1 Utility-Guided Allocation
Previous studies on utility-guided allocation focus on the fairness-

e�ciency tradeo� of various o�ine allocation problems. Typical
applications include medical management (e.g., [25]), supply chain
operation (e.g., [26]), air tra�c control (e.g., [27]), and network
bandwidth allocation (e.g., [1–6]). The weighted alpha-fair utility,
introduced by Mo and Walrand in [4], is a prevalent utilitarian
measurement and generalizes several fairness concepts. More re-
cently, Lan et al. in [5] extend this scheme and demonstrate what it
actually means for a larger alpha value to be more fair. Wong et al.
in [6] extend this scheme to the multi-resource scenario. Further-
more, some studies on caching capacity allocation (e.g., [7]) and
ad space allocation (e.g., [8]) also follow the utility maximization
framework. These studies model the requests based on Poisson
process, and de�ne the utility as a function of the stationary hit
probability. Hence the underlying allocation problem is still an
o�ine one. Di�erent from the studies above, this paper aims to gen-
eralize the weighted alpha-fair utility to the online setting, which is
a non-trivial extension for the utility-guided allocation framework.

2.2 Learning-based Online Allocation
Most studies on online allocation problems follow the online

learning/optimization approaches (e.g., [20–22]). Typical applica-
tions include �le caching (e.g., [11][12]), channel access (e.g., [13]),
ad display space allocation (e.g., [14]), and job dispatching (e.g.,
[15]). These studies focus primarily on improving the system per-
formance (i.e., e�ciency) and overlook the fairness issue. More
recently, Li et al. in [16] propose a combinatorial bandit framework
with fairness constraints. Nevertheless, the fairness constraints es-
sentially represent the minimum guarantee requirement, which is
also captured in [17–19] and our study in this paper. To our knowl-
edge, there is no existing learning-based online allocation approach
incorporating the weighted alpha-fairness concept [4].

2.3 Proposed Framework in This Paper
In this paper, we develop the �rst utility-guided allocation frame-

work under the online setting. Our framework extends the weighted
alpha-fair utility from the perspective of the merit-based weights
and the increasing fairness levels. The two aspects implicitly in-
tegrate the universal learning rationale (i.e., exploitation and ex-
ploration) into the classic weighted alpha-fairness concept. In this
way, our proposed framework is capable of ensuring the allocation
e�ciency and the minimum guarantee in the long-term by adopting
the instantaneous weighted alpha-fair allocations.

3 SYSTEM MODEL
This paper aims to generalize the classic utility maximization

framework to accommodate online allocation problems. Speci�cally,
we will focus on the weighted alpha-fair utility introduced in [4].

We �rst review the online allocation problem in Section 3.1. We
then introduce the utility-guided allocation framework and our
problem formulation in Section 3.2 and Section 3.3, respectively.

3.1 Online Allocation Problem
Consider an online network resource/workload allocation prob-

lem, which has an operation horizon with a set T = {1, 2, ...,T }
of T slots. The network operator will allocate a total of A 2 R+
resource/workload to a set N = {1, 2, ...,N } of N nodes. Due to
the environment uncertainty, the operator cannot anticipate the
allocation performance in advance, thus has to dynamically adjust
its allocation decisions in an online manner. There are two phases
in each time slot:

• At the beginning of each time slot t , the operator allocates a
total of A resource/workload to the N nodes.
• At the end of time slot t , the uncertain environment is re-
vealed, thus the operator perceives the feedbacks regarding
the allocation performance.

Next, we characterize the allocation decision and the allocation
performance for the general online allocation problem.

3.1.1 Allocation Decision. We let xt,n � 0 denote the amount of
allocation to node n 2 N in slot t . Accordingly, the operator’s
allocation decision in slot t is given by

xt ,
�
xt,n : 8n 2 N

�
. (1)

Given the total resource/workload amountA, the allocation decision
xt is chosen from the set X, i.e.,

X , *.
,
x 2 RN+ :

NX

n=1
xn = A+/

-
. (2)

Note that the equality condition in (2) does not reduce the gen-
erality in this problem. Essentially, it can explicitly capture both
network workload allocation and network resource allocation. For
workload allocation (e.g., job dispatching), the front-end job router
will dispatch the jobs to the N server clusters [15]. For resource al-
location (e.g., caching capacity allocation), a larger xn means more
allocated resource, thus will not make node n worse o� [7].

3.1.2 Allocation Performance. We model the system performance
based on the allocation e�ciency and the minimum guarantee. Both
of them are possibly time-varying in the online setting.

AllocationE�ciency:Wemodel the allocation e�ciency based
on the general loss functions. Such a loss functionmay represent the
negative cache-hit-ratio or the energy expenditure. Mathematically,
we let ft (·) denote the loss function in slot t , and make two-fold
elaborations. First, the operator does not know the value of ft (·)
until the end of slot t due to the uncertain environment (e.g., un-
known �le requests or electricity prices). Hence the operator has
to determine xt based only on the estimated information. Second,
the loss functions { ft (·) : 8t 2 T } may vary over time possibly in
a non-i.i.d. manner. In this work, we assume that the loss functions
are convex but time-varying.
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MinimumGuarantee: Besides the allocation e�ciency, the op-
erator needs to ensure some other critical minimum guarantee re-
quirement for practical applications. Such a requirement may repre-
sent the time-average link utilization constraints or the queue stabil-
ity constraints, which could be violated instantaneously but should
be satis�ed in the long-term. In general, the minimum guarantee
requirements or constraints could be time-varying for real-world
applications. To avoid the fundamental impossibility,2 we follow the
previous studies (e.g., [17–19]) and assume these constraints vary
over time in an i.i.d. manner (i.e., stochastic constraints). Speci�cally,
we consider a setM = {1, 2, ...,M } ofM stochastic constraints

{�t,m (x )  0 : 8m 2M}, (3)

where the function �t,m (x ) , �̃m (x ;�t ) is convex in x 2 X and
uniquely determined by the i.i.d. random variable �t . Note that the
random variables {�t : 8t 2 T } capture the environment uncer-
tainty. In practice, the operator does not possess the probability
distribution and cannot predict the realizations.

3.1.3 O�line Benchmark. Based on the above discussions, we de-
�ne the o�ine optimal/e�cient allocation x? as follows.

D��������� 1. Given the revealed loss functions { ft (·) : 8t 2 T }
and the distribution of random variables {�t : 8t 2 T }, the o�ine
optimal/e�cient allocation decision is x?, i.e.,

x? , arg min
x 2X

TX

t=1
ft (x )

s.t. E
⇥
�̃m (x ;�t )

⇤
 0, 8m 2M .

(4)

The total loss incurred by x? is the benchmark that we want to
achieve in the online allocation. Next, we �rst elaborate why the
classic utility maximization framework cannot attain this bench-
mark in Section 3.2. We then present the problem formulation of
developing a novel utility-guided framework in Section 3.3.

3.2 Weighted Alpha-Fair Utility Maximization
The classic utility maximization framework tends to make the

allocation decision in each slot by maximizing the total utility of
all the nodes. Speci�cally, the utility function is usually “prede�ned”
with di�erent fairness criteria. There are di�erent schemes to evalu-
ate the allocation fairness. The weighted alpha-fairness, introduced
by Mo and Walrand in [4], corresponds to a utility function that
is parameterized by a weight vector w = (wn � 0 : 8n 2 N )
and a quantitative fairness level � � 0. Given a feasible allocation
decision x 2 X, the corresponding weighted alpha-fair utility is

U (x ;w,� ) ,

8>>>>>>>><>>>>>>>>:

NX

n=1
wn log(xn ), � = 1,

NX

n=1

wnx1��n
1 � �

, � � 0,� , 1.

(5)

2Mannor et al. in [28] show that it is impossible to achieve the sub-linear regret and
constraint violation if both the loss functions and constraints vary arbitrarily. Hence
many studies (e.g., [17–19]) focus on the case with the non-i.i.d. loss functions and the
i.i.d. constraints.

The feasible allocation that maximizes the weighted alpha-fair util-
ityU (x ;w,� ) satis�es the corresponding (w,� )-fairness [4], which
is de�ned in De�nition 2.

D��������� 2. Given the weightw 2 RN+ and � � 0, the following
allocation outcome x̂ is (w,� )-fair.

x̂ , arg max
x 2X

U (x ;w,� ). (6)

Based on De�nition 2, let us elaborate the generality of the above
fairness de�nition from two aspects:

• It provides a tunable fairness level � � 0, and generalizes the
proportional fairness when � = 1 and the max-min fairness
when � ! 1. Moreover, it is usually believed that a larger
� value corresponds to a more fair allocation outcome [5].
• To a certain extent, the weighted alpha-fair utility can also
capture the allocation e�ciency in some o�ine allocation
problems. For example, in network bandwidth allocation,
U (x ;w,� ) degenerates into the (wighted) network through-
put

P
n2N wnxn when we take � = 0.

However, the second aspect above fails in the online allocation
problems. This is because the allocation e�ciency and the mini-
mum guarantee introduced in Section 3.1 have more complicated
structures (not always the linear sum), more importantly, it involves
unknown information. Therefore, the classic weighted alpha-fair
utility (5) is not able to re�ect the online allocation performance.
This requires us to generalize the weighted alpha-fair utility to
online setting. Next we introduce the problem formulation.

3.3 Problem Formulation
We aim to design a novel utility maximization framework U

for the general online allocation problem. Such a framework is
built upon the classic weighted alpha-fair utility (5), and should be
able to tackle the environment uncertainty. To achieve this goal,
we need to customize the weight vectors {wt : 8t 2 T } and the
fairness levels {�t : 8t 2 T } of the weighted alpha-fair utility. That
is, the sequence {(wt ,�t ) : 8t 2 T } is the “design space” for the
framework U . We need to devise a framework U such that the
instantaneously (wt ,�t )-fair allocations, i.e.,

x̂t = arg max
x 2X

U (x ;wt ,�t ), 8t 2 T , (7)

are capable of achieving the desirable performance in the long-term.
To be more speci�c, we will focus on the following two online
performance metrics.

3.3.1 E�iciency Loss in the Regret Form. Given the utility maxi-
mization framework U , we measure the incurred e�ciency loss
based on the cumulative regret up to the T -th slot:

RegT (U ) ,
TX

t=1
E[ft (x̂t )] �

TX

t=1
ft (x

?), (8)

where x? is the o�ine benchmark according to De�nition 1. More-
over, {x̂t : t 2 T } are the decisions generated according to (7) in
our frameworkU .
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3.3.2 Minimum Guarantee Violation. Given the utility maxi-
mization framework U , we evaluate the cumulative violation of
the minimum guarantee requirement according to

VioT (U ) ,
MX

m=1
E
266664
TX

t=1
�t,m (x̂t )

377775
+

, (9)

where [·]+ = max(·, 0), and the expectation is taken with respect
to the random variables {�t : 8t 2 T }.

Note that if RegT (U ) and VioT (U ) are both sub-linear inT , then
the proposed frameworkU performs asymptotically as well as the
o�ine benchmark in De�nition 1. In this case, the adopted online
allocations {x̂t : 8t 2 T } are instantaneously (wt ,�t )-fair, and can
also ensure the allocation e�ciency and the minimum guarantee
requirement in the long-term. We will investigate how to devise
the sequence {(wt ,�t ) : 8t 2 T } in Section 4. The key challenges
are two-fold:
• The values of the loss function ft (·) and the minimum guar-
antee requirement {�t,m (·)  0,8m 2M} are only disclosed
sequentially at the end of each slot. This requires us to devise
(wt ,�t ) based only on previously revealed information via
a proper learning technique.
• To overcome the above challenge, it is necessary to �g-
ure out the fundamental connection between the weighted
alpha-fairness and the universal learning rationale (i.e., the
exploitation-exploration tradeo�).

We will introduce how to address these challenges and propose a
novel utility maximization framework in Section 4.

4 EW-ALPHA-FAIR FRAMEWORK
In this section, we propose an exponentially weighted alpha-fair

(EW-Alpha-Fair) frameworkU . This framework will appropriately
devise the weight vectors {wt : 8t 2 T } and the fairness levels
{�t : 8t 2 T } such that the e�ciency loss RegT (U ) and the min-
imum guarantee violation VioT (U ) are both sub-linear in T . Our
study in this paper relies on the following assumption regarding
the convexity and the bounded partial derivative, which are the
common conditions made in related works (e.g., [20–22]).

A��������� 1. In each slot t , the loss function ft (x ) and the
constraint functions {�t,m (x ) : 8m 2M} are convex in x 2 X, and
have a bounded partial derivative, i.e.,

�����
@ ft (x )

@xn

�����  G and
�����
@�t,m (x )

@xn

�����  G, 8n,m. (10)

We will introduce the core idea and the major components of
the EW-Alpha-Fair framework U in Section 4.1 and Section 4.2,
respectively. We then present the corresponding theoretical per-
formance in Section 4.3. Due to space limitation, we provide the
proofs in our technical report [29].

4.1 Core Idea
To �gure out the connection between theweighted alpha-fairness

concept and the universal learning rationale, we will investigate
the impact of the weight vectorwt and the fairness level �t on the
corresponding (wt ,�t )-fair allocation decision x̂t in (7). Note that
(7) is a convex optimization problem, and the Karush-Kuhn-Tucker

(KKT) conditions enable us to derive x̂t in a closed-form as shown
in Proposition 1.

P���������� 1. As de�ned in (7), when �t > 0, the (wt ,�t )-fair
allocation x̂t is given by

x̂t,n =
w1/�t
t,n

PN
i=1w

1/�t
t,i

· A, 8n 2 N . (11)

The closed-form expression (11) has two-fold implications. First,
the allocation amount x̂t,n is positively related to the weightwt,n
associated with the noden. Second, the fairness level �t controls the
magnitude of the weight vector’s impact. More speci�cally, in the
case of �t ! 0, all the resource will go to the node with the largest
weight. In the case of �t ! 1, all the nodes tend to equally share
all the resource. These two implications provide us with valuable
hints on how to devise a novel frameworkU and implement the
learning rationale (i.e., the exploitation-exploration tradeo�) by
adjusting the adopted weighted alpha-fairness.3

• Exploitation: It is necessary to adopt themerit-basedweight
vectors in the frameworkU . That is, the weightwt,n should
be positively related to the merit achieved by the allocation
to node n in previous time slots. Such a merit should simulta-
neously cover the incurred loss and the minimum guarantee
violation in a proper manner. Overall, the weight vectors
{wt : 8t 2 T } correspond to the exploitation in the online
allocation problem.
• Exploration: The aforementioned merit-based weights will
gradually accumulate as the time goes by. However, overly
relying on the previous information may result in the sub-
optimal outcome in the future, especially when the unknown
environment varies in a non-i.i.d. manner. Therefore, the
framework U also needs to mitigate the weight vector’s
impact by properly increasing the allocation fairness levels as
time goes by. Intuitively, a larger �t means a higher fairness
level, which reduces the weight vector’s impact and leads to
a stronger exploration in online allocation.

The above discussions unveil the intrinsic connection between
the weighted alpha-fairness and the learning rationale (i.e., the
exploitation-exploration tradeo�). Our proposed EW-Alpha-Fair
frameworkU will appropriately manipulate exploitation and ex-
ploration via the weight vectors {wt : 8t 2 T } and the fairness
levels {�t : 8t 2 T }, respectively. Next let us introduce the details.

4.2 Framework Design
The above discussion indicates that the merit-based weight vec-

tors should simultaneously cover the e�ciency and the minimum
guarantee. Hence we follow the previous studies (e.g., [19][30]),
and consider the following Lagrangian function in each slot t

Lt (xt , µt ) , ft (xt ) +
MX

m=1
µt,m�t,m (xt ) �

�t kµt k22
2

, (12)

where µt = (µt,m : 8m 2M) are the Lagrangian multipliers associ-
ated with the minimum guarantee constraints in slot t . Speci�cally,
3The result in Proposition 1 is also discussed by [7] in the context of caching policy
design. However, [7] does not consider the connection betweenweighted alpha-fairness
and exploration-exploitation tradeo�, which is the key insight in this paper.
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µt,m could be interpreted as the penalty of unit violation for the
m-th minimum guarantee requirement in slot t . Moreover, k · k2
denotes the Euclidean norm, and �t is the regularization parameter
(to be speci�ed later).

Next, we introduce the four major components in our proposed
EW-Alpha-Fair frameworkU .

4.2.1 Weighted Alpha-Fair Allocation. In each slot t , the EW-Alpha-
Fair frameworkU will adopt the (wt ,�t )-fair allocation x̂t de�ned
in (7). Recall that x̂t has a closed-form expression in Proposition
1, thus this step exhibits a low computational complexity. The
subsequent two components will specify the fairness levels {�t :
8t 2 T } and the weight vectors {wt : 8t 2 T }, respectively,

4.2.2 Increasing Fairness Level. The EW-Alpha-Fair frameworkU
will adopt the following fairness levels

�t , t�G

s
1 +M
2 ln(N )

, 8t 2 T . (13)

Note that �t is increasing in t for any � 2 (0, 1). Moreover, � 2 (0, 1)
is a tunable parameter in this framework. As we will see in Sec-
tion 4.3, it determines the three-way tradeo� among fairness level,
e�ciency loss, and minimum guarantee violation. Furthermore,
(13) only requires limited prior knowledge on the derivative bound
G, the number of minimum guarantee requirements M , and the
number of network nodes N .

4.2.3 Merit-Based Weight. The EW-Alpha-Fair frameworkU will
adopt the merit-based weight based on the Lagrangian function (12).
Intuitively, minimizing the Lagrangian function implicitly reduces
the incurred loss and the minimum guarantee violation. Therefore,
at the end of each time slot, we update the weight vector according
to the partial derivative of the Lagrangian function as follows

wt+1,n = wt,n · exp
 
�
@Lt (x̂t ; µt )
@xn

!
, 8n 2 N , (14)

where x̂t is the adopted allocation in slot t . Note that the updating
rule in (14) is based on an exponential function, which is inspired
by the classic Hedge algorithm [31]. Our study in this paper is
not to improve this algorithm or its variants, but to generalize the
weighted alpha-fair utility to the online setting.

4.2.4 Violation Penalty. To ensure the minimum guarantee require-
ment in the long-term, it is necessary to dynamically increase (or
decrease, respectively) the penalty µt if the current violation is
large (or small, respectively). The EW-Alpha-Fair framework U
will update the Lagrangian multipliers µt+1 according to

µt+1,m =

"
µt,m + �t ·

@Lt (x̂t ; µt )
@µm

#+
,

=

µt,m + �t ·

✓
�t,m (x̂t ) � �t µt,m

◆�+
,

(15)

where the second equality follows directly from the de�nition in
(12). Moreover, �t is a step-size parameter, and �t is the regulariza-
tion parameter. The EW-Alpha-Fair frameworkU will determine
the two parameters �t and �t based on the current fairness level

Algorithm 1: EW-Alpha-Fair FrameworkU
Input :A, N ,M , and G
Output :Allocation decisions x̂t for each slot t .

1 Determine � 2 (0, 1)
2 Initializew1 = 1N and µ1 = 0M
3 for t = 1 to T do

/* At the beginning of this slot */
4 Calculate the fairness level �t according to (13).
5 Adopt the (wt ,�t )-fair allocation decision x̂t according

to Proposition 1.

/* At the end of this slot */
6 Observe the revealed loss function ft (·) and the

minimum guarantee requirements {�t,m (·) : 8m 2M}.
7 Update the weight vectorwt+1 according to (14).
8 Update µt+1 according to (15).

�t according to

�t =
3(1 +M )G2A

�t
, (16a)

�t =
1

(t + 1)�t
. (16b)

The above expressions are determined with the goal of reducing the
cumulative regret RegT (U ) and the violation VioT (U ) achieved
by our proposed frameworkU . We refer interesting readers to our
technical report [29].

Algorithm 1 summarizes the EW-Alpha-Fair frameworkU . First
of all, we specify the parameter � 2 (0, 1) in Line 1.We then initialize
the weight vectorw1 and the Lagrangian multipliers µ1 as the all-
one vector and all-zero vector, respectively. Each time slot consists
of the following two phases:

• Lines 4-5: At the beginning of slot t , we calculate the fairness
level �t according to (13), and then adopt the (wt ,�t )-fair
allocation x̂t according to Proposition 1.
• Lines 6-8: At the end of slot t , the loss function ft (·) and the
minimum guarantee requirements {�t,m (·) : 8m 2M} are
revealed. Accordingly, we calculate the weight vectorwt+1
and Lagrangian multipliers µt+1 for the next slot according
to (14) and (15), respectively.

Before analyzing the theoretical performance, let us highlight
three advantages of the EW-Alpha-Fair framework. First, Algorithm
1 is adaptive in time and does not require the prior knowledge on
the total number of slots T . Hence the operator does not need to
perform the doubling-trick (e.g., [21]). Second, Algorithm 1 requires
very limited prior knowledge. Speci�cally, (13)-(16) only require
the number of nodes N , the number of constraintsM , the resource
amountA, and the derivative boundG . Third, Algorithm 1 has a low
computational complexity and does not involve high-dimensional
projection operation. The above three aspects correspond to our
�rst remark for the EW-Alpha-Fair frameworkU .
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R����� 1. The EW-Alpha-Fair framework in Algorithm 1
is an adaptive online allocation framework, which requires
limited prior knowledge and has a low computation com-
plexity.

4.3 Performance Analysis
Now we analyze the theoretical performance achieved by the

EW-Alpha-Fair frameworkU . As we will show in Theorem 1, this
framework achieves a sub-linear e�ciency loss and a sub-linear
minimum guarantee violation. The major analysis for this result is
to show that the cumulative regret RegT (U ) and violation VioT (U )
satisfy the following inequality

RegT (U ) +

f
VioT (U )

g2
2M


1
�1
� �1 + �T (� )

� 
"
�T ln(N ) +

(1 +M )G2 �T (� )

2

#
A +MNA2G2 �T (� ),

(17)

where �T (� ), �T (� ), and �T (� ) are given by

�T (� ) ,
TX

t=1

1
�t
, �T (� ) ,

TX

t=1
�t , �T (� ) ,

TX

t=1
�t . (18)

Note that the three formulas in (18) may scale in T . Nevertheless,
the inequality

PT
t=1

1
tz 

T 1�z

1�z ,8z 2 (0, 1) implies that all the three
formulas have sub-linear upper bounds. Based on this observation,
rearranging (17) leads to our main result in Theorem 1.

T������ 1. For any � 2 (0, 1), the EW-Alpha-Fair framework
U in Algorithm 1 achieves the following e�ciency loss in the regret
form and minimum guarantee violation

RegT (U )  AG · �T (� ),

VioT (U )  AG

s
24MCT 2��

1 � �

"
p
2N +

�T (� )

T

#
,

(19)

where �T (� ) ⇠ O (Tmax{�,1�� } ) is given by

�T (� ) ,
 
T � +

T 1��

1 � �

!
·C +

T �

�
·
MN

6C
, (20)

and C ,
p
(1 +M ) ln(N )/2 is a constant.

Theorem 1 shows that the EW-Alpha-Fair framework U can
simultaneously achieve the sub-linear e�ciency loss in the regret
form and the sub-linear minimum guarantee violation. That is, the
adopted weighted alpha-fair allocations {x̂t : 8t 2 T } in our frame-
work perform asymptotically as well as the o�ine optimal/e�cient
benchmark x? in De�nition 1. This is our second remark for the
proposed framework.

R����� 2. The EW-Alpha-Fair framework in Algorithm 1
ensures the asymptotic e�ciency andminimum guarantee by
adopting the weighted alpha-fair allocations instantaneously
in each time slot.

Theorem 1 indicates that the tunable parameter � 2 (0, 1) al-
lows the operator to �exibly control the three-way tradeo� among
the fairness level, the e�ciency loss, and the minimum guarantee
violation. The detailed elaborations are as follows:
• Fairness Level: Recall that the EW-Alpha-Fair framework
U adopts the increasing fairness levels. Speci�cally, (13)
indicates that the adopted fairness level scales in the order
O (T � ). A larger parameter � 2 (0, 1) corresponds to a faster
increasing speed for the fairness levels.
• E�ciency Loss: Theorem 1 indicates that the e�ciency loss (in
the regret form) is upper bounded byAG�T (� ), where�T (� )
scales in T according to the sub-linear order O

⇣
T 1��

1�� +
T �

�
⌘
.

To reduce this sub-linear bound, the parameter � 2 (0, 1)
should not be excessively small or large. When � is decreas-
ing to 0, our frameworkU adopts less fair allocations, which
lead to insu�cient exploration (i.e., excessive exploitation).
When � is increasing to 1, our framework U adopts more
fair allocations, which lead to the excessive exploration (i.e.,
insu�cient exploitation).
• Minimum Guarantee Violation: Theorem 1 indicates that
the violation upper bound scales in T according to the or-
der O

⇣p
T 2�� /(1 � � )

⌘
. Similarly, the parameter � 2 (0, 1)

should not be excessively small or large to reduce this sub-
linear upper bound.

The above discussions lead to our third remark for the EW-Alpha-
Fair frameworkU .

R����� 3. The EW-Alpha-Fair framework has a tunable
parameter � 2 (0, 1), which controls the following three-way
tradeo� among fairness level, e�ciency loss, and minimum
guarantee violation:

O

⇣
T �

⌘
, O

✓
T 1��

1�� +
T �

�

◆
, O

✓q
T 2��
1��

◆
. (21)

5 NUMERICAL RESULTS
In this section, we demonstrate how the EW-Alpha-Fair frame-

work functions in two networking applications, i.e., size-based
scheduling and �le caching.

5.1 Size-Based Scheduling
5.1.1 Background. Congestion control is a critical issue in the mod-
ern data-center network. Most active congestion control schemes
are partly implemented in the network switches. The bandwidth
allocation (or the scheduling policy) installed on the switches plays
a signi�cant role on reducing the �ow completion time (FCT). The
size-based scheduling that prioritizes short �ows is e�ective for
reducing the average FCT (e.g., [32]). However, the �ow size infor-
mation is often prior unknown for the network switches. That is,
the size-based scheduling requires that the switch should allocate
its bandwidth to multiple classes of �ows in an online manner. Next
we introduce the basic formulation of size-based scheduling based
on the online allocation framework.

5.1.2 Formulation. We consider a data-center network with a set
N = {1, 2, ...,N } of N classes of �ows. The N classes of �ows are
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(a) E�ciency loss in the regret form (b) Minimum guarantee violation (c) Allocation decisions {x̂t : 8t }

Figure 1: Numerical results in size-based scheduling

generated by di�erent applications (e.g., user request and replica-
tion), thus may have di�erent and possibly time-varying average
�ow sizes. We focus on a generic network switch with the band-
width A. The switch will con�gure the bandwidth allocation to
the N classes of �ows at the beginning of each slot (e.g., every 10
seconds). We let xt 2 X denote the bandwidth allocation in slot t .
Next we introduce the e�ciency measurement and the minimum
guarantee requirement in size-based scheduling.

E�ciency Measurement: The size-based scheduling aims to
prioritize the short �ows and reduce the average FCT. For this goal,
we follow NUMFabric [33] and consider the following loss function

ft (xt ) = �
NX

n=1

xt,n
st,n
, (22)

where st,n denotes the average size of the scheduled class-n �ows
in slot t . The vector st = (st,n : 8n 2 N ) represents the �ow
size information in slot t , which is disclosed at the end of this slot.
Note that minimizing (22) turns out to allocate more bandwidth to
the �ow class of a smaller average �ow size. This intuition coin-
cides with the Shortest-Flow-First scheduling policy, thus the loss
function in (22) is in favor of reducing the average FCT [33].

MinimumGuarantee Requirement: The loss function in (22)
implicitly induces the bandwidth allocation outcome that prioritizes
short �ows. To prevent the starvation of long �ows, we take into
account a total of N minimum guarantee requirements {�n (x ) 
0,8n 2 N}, where �n (x ) is

�n (x ) = �n � xn . (23)

Note that if the size-based scheduling policy ensures the above
minimum guarantee constraints in the long-term, then the time-
average bandwidth allocated to the class-n �ows is no less than �n .
Therefore, the above minimum guarantee requirements implicitly
avoid �ow starvation in size-based scheduling.

5.1.3 Numerical Results. We consider N = 6 classes of �ows and
randomly generate st according to the heavy-tail Pareto distribu-
tion with mean values [60, 50, 50, 50, 50, 50]. That is, the class-1
�ows are longer than other classes on average (which is unknown
in advance). Moreover, we suppose that the total bandwidth is A =
60Gbps, and set the minimum guarantee as � = [7, 7, 7, 7, 12, 14].
That is, the class-5 and class-6 �ows are supposed to obtain a better
performance guarantee than others in the long-term. We apply the

EW-Alpha-Fair framework U to the size-based scheduling prob-
lem under di�erent parameters � = {0.5, 0.6, 0.7}. Fig. 1 shows the
average results of multiple simulation runs.

Fig. 1(a) and Fig. 1(b) plot the e�ciency loss in the regret form
and the minimum guarantee violation, respectively. The three
curves in each sub-�gure correspond to di�erent parameters � =
{0.5, 0.6, 0.7}. Recall that a larger � means a greater fairness increas-
ing speed. As shown in Fig. 1(a) and Fig. 1(b), a greater fairness
increasing speed results in larger e�ciency loss and more violation.
Furthermore, the �uctuation of curves in Fig. 1(b) is due to the
back-and-forth movement of the allocation decisions around the
minimum guarantee thresholds � (as shown in Fig. 1(c)).

Fig. 1(c) plots the allocation decisions {x̂t : 8t 2 T } for cases
� 2 {0.5, 0.6}. In the �rst slot, the N classes of �ows equally share
the bandwidth for both cases. During the remaining slots, the two
cases are slightly di�erent:

• The class-1 �ows are longer than others on average, thus
x̂t,1 is gradually decreasing and converging to �1 = 7 as
shown in Fig. 1(c). The decreasing speed in case � = 0.5 is
faster than that in case � = 0.6. This is because that the case
� = 0.6 adopts more fair allocations, thus prioritizes short
�ows in a weaker strength.
• The class-5 and class-6 �ows have stronger minimum guaran-
tee requirements than others. Hence x̂t,5 and x̂t,6 gradually
increase in t , and eventually converge to �5 = 12 and �6 = 14,
respectively. Case � = 0.5 responses to the minimum guar-
antee requirement faster than the case � = 0.6.

To sum up, the EW-Alpha-Fair framework enables the network
switches to prioritize short �ows and avoid �ow starvation without
prior �ow size information.

5.2 Caching Capacity Allocation
5.2.1 Background. File caching can signi�cantly reduce the user
request delay and the routing cost by hosting the popular �les in
a nearby cache [34]. The cache can typically store only a small
portion of the �le library due to its limited storage capacity. A
caching policy needs to determine which �les should be stored
without the prior knowledge on the requests or the �le popularity.
Hence, it is necessary to allocate the caching capacity in an online
fashion. Moreover, the e�ciency of a caching policy is usually
evaluated based on the cache-hit-ratio, which measures the fraction
of requests met locally by the cache. There are some well-known
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(a) Periodic request (b) Stationary request: uniform (c) Stationary request: Zipf (d) Mixed request

Figure 2: File caching results (The solid curves represent EW-Alpha-Fair framework with � 2 {0.4, 0.5, 0.6})

caching policies, such as Least-Recently-Used (LRU) and Least-
Frequently-Used (LFU). Next we demonstrate how to apply our
EW-Alpha-Fair framework to the �le caching problem.

5.2.2 Formulation. We consider a �le library with a set N =

{1, 2, ...,N } of N �les, and let bn denote the size (e.g., in MB) of
�le n. Moreover, we consider a cache with the storage capacity
A <

PN
n=1 bn . The caching con�guration will be iteratively ad-

justed during a long operation horizon. We partition the time hori-
zon such that each slot corresponds to a single request. We let
�t = (�t,n 2 {0, 1} : 8n 2 N ) denote the request in slot t , where
�t,n = 1 indicates the request on �le n in slot t . Note that we havePN
n=1 �t,n = 1. Furthermore, we let xt 2 X denote the caching

capacity allocation, thus min(xt,n/bn , 1) represents the fraction of
�le n cached in slot t . To improve the cache-hit-ratio, we consider
the following loss function

ft (xt ) , �
NX

n=1
�t,n�n min

 
xt,n
bn
, 1

!
, (24)

and make two-fold elaborations on it:
• First, �n � 0 represents the perceived valuation if the entire
�le n is hit in the cache (i.e., xt,n = bn ). The vectorv = (�n :
8n 2 N ) is determined by the cache operator and indicates
the preference across the �le library N .
• Second, min(xt,n/bn , 1) implies that there is no additional
bene�t if the allocated caching capacity exceeds the �le size.
Note that this term is not di�erentiable at xt,n = bn , while
zero is a sub-gradient at this point. We will use this sub-
gradient in the merit-based weight updating (14).

Note that minimizing the loss function in (24) is equivalent to
maximize the cache-hit-ratio when we takev = 1N . Later on, we
will compare the cache-hit-ratio achieved by LFU, LRU, and our
framework. To have a reasonable comparison, we will not model
the minimum guarantee, since LFU and LRU do not consider this.

5.2.3 Numerical Results. We compare the EW-Alpha-Fair frame-
work to the typical caching policies LRU and LFU under di�erent
request characteristics. Speci�cally, we consider N = 100 �les with
the equal unit size and the same valuation v = 1N . Fig. 2 plots
the average results of multiple simulation runs under the caching
capacity A = 10. The four sub-�gures correspond to di�erent �le
request characteristics.

Periodic Request: Fig. 2(a) plots the results under the periodic
�le requests, i.e., {1, 2, ..., 30, 1, 2, ..., 30, ...}. Previous studies (e.g.,

Lemma 3.7 in [35]) have shown that LRU and LFU cannot achieve
a sub-linear regret under this type of periodic request. As shown in
Fig. 2(a), the two dash curves increase linearly. Furthermore, the
other three solid curves in Fig. 2(a) correspond to our EW-Alpha-
Fair framework with � 2 {0.4, 0.5, 0.6}, respectively. Overall, the
three curves increases in a sub-linear fashion. Note that the case
� = 0.5 (i.e., the triangle curve) achieves a smaller regret than the
other two cases in the long-term. This observation matches with
the regret upper bound in Theorem 1, where � = 0.5 minimizes the
order of the regret upper bound O

✓
T 1��

1�� +
T �

�

◆
.

Stationary Request: Fig. 2(b) and Fig. 2(c) focus on the station-
ary �le request with the uniform popularity and Zipf popularity,
respectively. In general, LFU performs optimally in response to the
stationary requests, since it estimates the �le popularity based on
the observed request frequency.

• In Fig. 2(b), the �ve curves almost overlap with each other.
This means that both the EW-Alpha-Fair framework and the
LRU caching policy can perform as well as LFU when the
�les are equally popular.
• In Fig. 2(c), LFU (i.e., the star curve) achieves a smaller regret
than other cases under the Zipf popularity. Comparing the
three solid curves shows that a smaller � could reduce the
regret. This observation is di�erent from the regret bound
in Theorem 1. The reason is that Theorem 1 focuses on the
non-stationary environment, and the corresponding regret
bound may not be tight in the stationary case.

MixedRequest: Fig. 2(d) considers the mixed request, where we
randomly insert some periodic request sequence into the stationary
�le request with Zipf popularity. Comparing the three solid curves
to the star curve shows that the EW-Alpha-Fair framework could
outperform LFU in this case.

The above �le request patterns are kind of arti�cial. Now we
evaluate the caching performance based on the shot noise request
model [36], which captures the ephemeral YouTube video requests.
Fig. 3 shows the results, where the vertical axis in the two sub-
�gures represents the time-average hits. Fig. 3(a) plots the results
under the caching capacity A = 10. In this case, the EW-Alpha-Fair
framework with � = 0.4 (i.e., circle curve) and � = 0.5 (i.e., triangle
curve) can outperform the classic caching policies LFU (i.e., star
curve) and LRU (i.e., diamond curve) in the long-term. Fig. 3(b) plots
the results achieved by the EW-Alpha-Fair framework with � = 0.5,
LRU, and LFU under various caching capacities. The percentage
values at the top of green bars (i.e., EW-Alpha-Fair) represent the
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(a) Case of A = 10 (b) Impact of caching capacity

Figure 3: Results of shot noise request model

improvement compared to the orange bars (i.e., LRU). Overall, the
EW-Alpha-Fair framework improves the average hits up to 21%
compared to the state-of-the-art caching policies.

6 CONCLUSION AND FUTUREWORK
In this paper, we develop a novel utility maximization frame-

work with fairness guarantee for online resource allocation. This
framework will ensure the asymptotic e�ciency by adopting the
utility-maximizing allocation. Themajor challenge of designing this
framework lies in the coupling of the desired fairness guarantee and
the unknown allocation e�ciency. We extend the classic weighted
alpha-fair utility from the perspective of merit-based weight and
the increasing fairness level. The two aspects implicitly integrate
the weighted alpha-fairness with the learning rationale. Under this
framework, the utility-maximizing allocation in each time slot is
weighted alpha-fair. Moreover, our framework performs asymp-
totically as well as the o�ine optimal/e�cient outcome. We also
demonstrate the advantages of this framework in the size-based
scheduling and �le caching problems. This paper focuses on the
divisible resource allocation. It would be interesting to consider
how to ensure the asymptotic performance of allocating indivisible
resource via weighted alpha-fairness.
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