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Abstract— Android, the most popular mobile OS, has around
78% of the mobile market share. Due to its popularity, it attracts
many malware attacks. In fact, people have discovered around 1
million new malware samples per quarter, and it was reported
that over 98% of these new malware samples are in fact “deriva-
tives” (or variants) from existing malware families. In this paper,
we first show that runtime behaviors of malware’s core function-
alities are in fact similar within a malware family. Hence, we
propose a framework to combine “runtime behavior” with “static
structures” to detect malware variants. We present the design and
implementation of MONET, which has a client and a backend
server module. The client module is a lightweight, in-device app
for behavior monitoring and signature generation, and we realize
this using two novel interception techniques. The backend server
is responsible for large scale malware detection. We collect 3723
malware samples and top 500 benign apps to carry out extensive
experiments of detecting malware variants and defending against
malware transformation. Our experiments show that MONET can
achieve around 99% accuracy in detecting malware variants.
Furthermore, it can defend against ten different obfuscation
and transformation techniques, while only incurs around 7%
performance overhead and about 3% battery overhead. More
importantly, MONET will automatically alert users with intrusion
details so to prevent further malicious behaviors.

Index Terms— Malware detection, android, runtime behavior,
static structure.

I. INTRODUCTION

ANDROID is a mobile operating system from Google and
it powered mobile devices dominate around 78.7 % of the

smartphone OS market in the first quarter of 2016 [3]. Android
applications (apps for short) can be downloaded not only
from the Google’s official market Google Play, but also from
third-party markets. Although Google Play scans any uploaded
apps to reduce malware [4], other markets/sites usually do
not have sufficient malware screening, and they become main
hotbeds for spreading Android malware. As a result, Android
attracts millions of malware. It is reported that 97 % of mobile
malware is on the Android platform [5].

Broadly speaking, there are two types of in-device mal-
ware detection systems. The first one is to perform static
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malware detection. This type of systems [6]–[9] uses static
information such as API calling information and control flow
graphs to generate signatures for detection. For example, anti-
virus engines will scan files in apps after their installation.
However, studies [10], [11] have shown that these types of
anti-virus engines can be easily bypassed using transformation
attacks (i.e., code obfuscation techniques like package name
substitution and reflection technique). Furthermore, sophisti-
cated signature generation and signature matching techniques
based on control flow analysis incur considerable computation
overhead, and consume energy on mobile devices which have
limited battery resource, preventing them from being adopted
as in-device detection systems.

The second type of in-device detection system is the
dynamic intrusion prevention system, as seen in several prod-
ucts [12], [13] and research studies [14]–[16]. These sys-
tems work in the background and monitor apps at runtime.
Once they discover any suspicious behavior, a notification
will popup to alert the users. Note that suspicious behav-
iors are usually based on sensitive APIs. Many benign apps
(e.g., text message management apps) may also invoke these
APIs (e.g., sending text message API) for legitimate reasons.
Therefore, this type of systems may introduce false alerts and
makes intrusion notifications annoying and less preferable.
Moreover, a study [14] also shows that existing products in
the market can be easily circumvented.

According to a survey [2], it was reported that over 98 % of
new malware samples are in fact derivatives (or variants) from
existing malware families. These malware variants use more
sophisticated techniques like dynamic code loading, manifest
cheating, string and call graph obfuscation to hide themselves
from existing detection systems. Although these techniques
can help malware to hide their malicious logic, we observe
that the “runtime behaviors” of malware’s core functionalities,
such as unauthorized subscription of premium services or priv-
ilege escalation at runtime, remain unchanged. The runtime
behaviors of a new malware variant and its earlier generation
are usually very similar. A detection system based on runtime
behaviors of malware will be able to detect most malware and
their variants more reliably. In addition, the static structures
of the malware are often similar within a malware family.

With this observation, we present the design and imple-
mentation of MONET, an Android malware detection system
that combines “static logic structures” and “dynamic runtime
information”. MONET consists of a client module and a
backend server module. The client module is a lightweight,
in-device app for malware behavior monitoring and signature
generation using two novel interception techniques, while the
backend server module is responsible for malware signature
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detection. Our system can accurately describe the behaviors
of an app to detect and classify malware variants and defend
against obfuscation attacks. We focus on classifying malware
based on their behavior similarity. The MONET’s client mod-
ule can be easily deployed on any Android mobile device.
Moreover, it has low computational overhead and low demand
on battery resources. Specifically, we make the following
contributions:

• We design and implement a runtime behavior signature
which can represent both the logic structures and the run-
time behaviors of an app. Our runtime behavior signature
is effective to detect malware variants and transformed
malware.

• We implement a lightweight, in-device malware detection
system, for Android devices. We propose two novel
interception techniques, and show that it is easy to deploy
and it provides informative alerts to users.

• We implement the solution, and demonstrate its effec-
tiveness and its low overhead, both on CPU and battery
resources.

The rest of the paper is organized as follows. Section II
introduces the necessary background on Android.
In Section III, we present the design of runtime behavior
signature. In Section IV, we describe the MONET system,
and the implementation details. In Section V, we evaluate
the effectiveness and performance of MONET. Section VI
presents the related work and the conclusion is given
in Section VII.

II. BACKGROUND

In this section, we introduce the essential background
knowledge of Android malware variants and evaluation.
We also discuss the intent interface and binder mechanism,
which are important knowledge needed to design our inter-
ception techniques.

A. Malware Variants and Evolution

To circumvent detection and to quickly deploy malware,
hackers usually do not develop new malware from scratch,
but rather improve existing logic or add new malicious logic
into existing malware. They also repackage malware using
disassembled tools [17], [18] to disassemble a benign app,
and inject it with malicious logic, then repackage it as a new
but malicious app. We call a set of malware with similar
logic as a malware family. Moreover, if anti-virus engines
can successfully detect these malware, malware writers will
update parts of the logic of the original malware using some
obfuscation techniques. These newly generated malware will
have similar behavior as the original one. We call these
malware as a “variant” within this malware family. According
to a report [2], many Android malware samples are variations
of existing malware. For example, the DroidKungfu family
has four variants. They use native code, string obfuscation
and encryption to make the malware more complicated and
difficult for detection. Studies [10], [11] have shown that using
simple transformations, anti-virus engines can be bypassed
easily. We call the static and automatic transformation tech-
niques such as string obfuscation, inserting junk instructions,

Fig. 1. Intent and binder mechanism.

renaming class names, as “transformation attacks”. Therefore,
detecting malware variants and defending against transforma-
tion attacks are challenging problems.

B. Intent & Binder Mechanism

There are four types of components in an Android app. They
are activity, service, content provider and broadcast receiver.
An activity represents a screen on the devices which can
interact with users. A service is a long-running background
component which does not have a user interface, and their
functions are to support tasks running in the background (such
as playing music).

Because each component has individual functionalities and
is isolated from other components, Android provides an inter-
face which is called intent to connect these components.
An intent is a messaging object which facilitates a component
to request action from another component. Normally, one
component can use intents to start an activity, start a service
or deliver a broadcast. There are two types of intents: explicit
intent and implicit intent. Explicit intent can start a component
by specifying a full class name. For instance, knowing the
names of classes, developers can use an explicit intent to start
an activity or service in their own apps. Instead of explicitly
declaring the name, implicit intent does not need the name of
a component. Implicit intent can declare a general action to
perform. Other components which are capable of performing
such actions will handle this intent.

From the operating system’s perspective, one intent call
involves three steps, which we illustrate in Figure 1. For
instance, activity A in an app wants to start the service S
using intent. Firstly, A will request Service Manager to provide
the address of the Activity Manager which is responsible
for the activity related operations (e.g., starting activities and
services). Then, A will request Activity Manager to start the
service S. In the final step, Activity Manager will tell this app
to start the service S.

Because each app runs in a sandbox within an Android
system, components belonging to different apps cannot
directly communicate with each other in user space. But
instead, Android system provides a kernel driver which
is called the binder in kernel space for inter-process
communication. We want to emphasize that intent is a high
level abstraction in the application framework layer, and the
implementation of intent utilizes binder driver in the kernel
layer. Figure 1 illustrates the work flow of the intent call in
the previous example. All the communications in the above
mentioned three steps need to go through the binder driver.
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Fig. 2. Overview of MONET. Runtime behavior signature will be generated through static behavior graph generation, runtime information collection and
runtime behavior graph generation.

We call a binder communication as a binder transaction.
There are several attributes in each binder transaction. Binder
descriptor is a string which represents the target of this
transaction. Transaction code is an integer indicating the action
of this transaction.

III. SYSTEM DESIGN

In this section, we first state our problem, and then we
discuss the system design of MONET, in particular, the design
on the runtime behavior signature generation and the malware
detection algorithm.

A. Problem Statement

One way to quickly mutate an Android malware is to
use obfuscation methods to transform original codes to hide
its malicious logic. Conventional methods for PC cannot be
directly adapted to Android. Existing in-device solutions have
limited capability to recognize malware, especially under the
constraint of CPU resources and battery power. Our aim is to
design a new and novel user-oriented approach for malware
detection to achieve the following goals: (1) resistant to mal-
ware variants and transformation attacks, (2) user-oriented
and easy to deploy, and (3) highly efficient and scalable to
detect large number of malware variants.

B. Overview of Monet

Our system, MONET, determines the runtime behavior
signature of malware, and it combines both the static logic
structure and the runtime information. Runtime behavior is
difficult to change, and this provides additional information
for us to perform effective malware variant detection. Using
this runtime behavior signature, MONET can detect malware
variants and defend against malware transformation attacks.
We design two interception techniques to realize our system
so that users can easily install the MONET’s client module on
Android devices to provide malware protection.

MONET uses the following four steps to extract runtime
information to perform malware detection: (1) static behav-
ior graph generation, (2) runtime information collection,
(3) runtime behavior signature generation, and (4) signature
detection. Figure 2 illustrates the work flow of MONET to
detect malware on Android devices.

When users install a new app on their devices, MONET

monitors the installation event in the background, and extracts
the static information including component information from
the app’s manifest file and static logic from the disassem-
bled codes. Then, MONET generates a static behavior graph

based on the static structure of the app before launching
the app. After launching the app, MONET monitors and
collects runtime information including binder transactions as
well as some important system calls (e.g., socket() and
execve()system call). If the system detects an intrusive
action, it will popup a warning dialog to alert the user about the
suspicious actions. If the user cannot determine the malicious-
ness of this action, the system will conduct further malware
detection. MONET generates a runtime behavior graph for this
app using the static behavior graph and the collected binder
call information, and suspicious system calls will also be
recorded for detection. Finally, MONET uses both the runtime
behavior graph and the suspicious system call set as the run-
time behavior signature, which is sent to the backend detection
server for further analysis. The MONET’s backend detection
server, it will match any uploaded signature with existing
malware signatures in the database, and return the result to
the mobile device and notify users about the detection result.

C. Runtime Behavior Signature

MONET uses runtime behavior signature (RBS) for mal-
ware detection. Runtime behavior signature includes both the
runtime behavior graph (RBG) and the suspicious system call
set (SSS). RBG contains not only the high level logic structure
of an app, but also describes the calling actions among these
logic structures at runtime. SSS contains execution information
of sensitive system calls at runtime.

RBG is one of the basic elements for our behavior-based
detection system. An RBG of an app is a directed graph over
a set of app components and system components with two sets
C and B. C represents a set of app components which are all
components used within an app and system components which
are system services used, and B represents a set of binder calls.
The set of vertices corresponds to the components in C. The
set of edges corresponds to the binder calls between two
vertices in B. The label of vertex contains the corresponding
components names and properties. The label of edge consists
of binder transaction code representing the calling purpose
and the binder content containing essential information. For
the implicit intent call in the RBG, because we do not know
which component will handle the action of this intent, we
treat this action as a node in the RBG. The property in
the vertex label of a component indicates whether a node
is an app component or a system component. In summary,
because RBG describes the high-level logic structure within an
app and the runtime interactions with other functional system



1106 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Fig. 3. Example of runtime behavior graph.

components, we can use an RBG for behavior-based malware
detection.

To further explain runtime behavior graph, we use an RBG
of a malware (o5android) as an example to illustrate the
details of RBG. This malware will register itself as a device
administrator to prevent uninstallation, and it also uses the
Google Cloud Messaging services to communicate with its
command-and-control server to avoid detection. Figure 3 illus-
trates a part of the RBG of this malware. The black circles in
the graph represent app components (i.e., the properties of the
nodes) in the malware, and beside the nodes are the names of
the nodes (i.e., the class names of the components). The white
circles, on the other hand, represent system services which
were requested by the malware at runtime, and the names of
nodes are descriptors representing the system services. A link
between two nodes implies a binder call between two nodes.
The label of the link contains the transaction code and content
of a binder call. In the left oval of the graph, there is a binder
call from com.google.elements.AdminActivity to
android.app.action.ADD_DEVICE_ADMIN. The code
3 represents an action to start an activity. Because the mal-
ware uses implicit intent to start the device administration
app, the intent action is treated as a vertex in the RBG,
which is the white node in the left oval. This part of
the RBG describes a malicious behavior of the malware,
which is registering the service as a device administrator.
In the right dotted oval, there are two nodes and a link
calling from com.google.elements.MainActivity
to com.google.android.c2dm.intent_REGISTER.
The behavior represented in this dotted oval is to initiate
the Google Cloud Messaging service. We will illustrate the
generation method of RBG in the following subsections.

RBG utilizes the specific app structure and communication
mechanism for Android to record runtime behaviors. RBG
contains two pieces of important information. The first one is
the calling relation between components inside an app or what
we call the logic structure, e.g., Activity MainActivity
starts the service AdminService. The second compo-
nent is what we call the runtime behaviors, e.g., Activity
MainActivity obtains the device’s unique ID through a
telephony manager. Combining the logic structure and the
runtime behaviors, RBG can accurately describe the charac-
teristics of a malware.

Role of Suspicious System Call Set (SSS): SSS is a set of
potentially dangerous system calls. For example, the system
call includes socket and execve because malware can

use socket to download malicious executable files and use
execve to launch those programs. Firstly, malware may
use socket (i.e., network) to communicate with the command
and control server. MONET will capture the address of the
connected server. Secondly, some trojans will execute root
tools at runtime to gain root access and privilege. For example,
DroidKungfu is a trojan malware which will execute the
secbino binary to exploit system vulnerabilities. Because
we can only obtain the calling process (i.e., app) rather than
calling component of system calls in the kernel layer, we
separate SSS as another element of runtime behavior signature
and record them in SSS at runtime.

Together, both RBG and SSS constitute the runtime behav-
ior signature of the app and we use it for malware detection.
There are several reasons that RBG and SSS are suited as a
basis for malware detection. Firstly, every component in an
app has to use the binder mechanism to communicate with
other components. So binder calls can accurately represent
apps’ runtime behavior. Also, for network behavior and binary
execution, SSS can capture these suspicious system calls as
supplementary runtime behaviors. Secondly, logic structures of
a malware family are usually very similar. Although malware
may use static obfuscation methods to avoid detection by static
analysis, malware variants have similar run-time behavior with
the original malware. Therefore, with an accurate representa-
tion of static structure and runtime behaviors, RBG and SSS
can be used as a runtime behavior signature to detect malware
variants and transformation attacks.

To generate an app’s RBG, we need to extract the logic
structure and the runtime behaviors. One can extract the
app component information from the disassembled resources.
However, we also need to execute the app to obtain the calling
relation between components. Moreover, the calling relations
rely on the execution routines of an app. To accomplish this,
we propose to first use the static behavior graph (SBG),
which can represent the static logic structure before launching
the apps. In essence, SBG is a simplified RBG which only
includes the app components and their static calling relation.
In summary, SBG describes the skeleton (i.e., logic structure)
of an app, and connections within the skeleton are provided
by the runtime information, which we obtain from RBG.
Specifically, there are two phases to generate an app’s RBG.
They are: (1) static behavior graph generation and (2) runtime
behavior completion, which we explain as follows.

1) Static Behavior Graph Generation: To generate an RBG,
we first use the static information to generate the static
behavior graph (SBG). SBG is a subgraph of RBG, but it
does not contain runtime information. There are two steps to
generate SBG. The first step is to extract app components from
the app’s manifest file (i.e., AndroidManifest.xml file).
The second step is to find intent calls between components,
i.e., one app component which starts another app component.

Note that for the second step, due to the limitation of
static data-flow analysis, it is impossible to find all intent
calls. For example, a malware can hide an intent call within
a native code or obfuscate action string in the implicit intent
call. Moreover, traditional static analysis methods impose high
computation complexity. MONET uses an alternative method
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Fig. 4. Data-flow analysis for generating the static behavior graph (SBG).

to statically extract all intent calls. Firstly, MONET will use the
disassembled code to generate the control flow graph (CFG)
for each class. Secondly, it searches all intent call methods
(i.e., startActivity and startService APIs) in the
CFG. Because there are several attributes in these intent call
methods to indicate the caller and target, we can then keep
track of these variables. Here, we use the reaching definition
algorithm [19] to locate the caller and target. Lastly, we can
determine an intent call and add a link in the SBG.

We want to point out that a full CFG and reaching definition
analysis for an app will cost a lot computation resource. This is
not feasible for battery constrained mobile devices. Therefore,
we build a CFG and use the reaching definition algorithm only
within a component class. For other binder calls which cannot
be found by the SBG generation process, we can obtain them
at runtime.

Figure 4 depicts an example of statically finding an intent
call, which initiates from the activity A to the activity B .
We first locate the startActivity API call. The parame-
ter i is the intent object. Then, by using the reaching definition
algorithm, we can find the definition of i. Note that i is
defined by the intent constructor. The parameters of the intent
constructor are the caller class and the target class of an intent
call. Therefore, we locate the caller variable (i.e., v1) and
target variable (i.e., v2) of this intent call from the constructor
method of intent. Then, we find the definitions of v1 and v2.
Lastly, the system determines an intent call from the activity
A (i.e., this) to activity B , and this edge will be added
into the SBG of this app. Using the above algorithm, most
of the intent calls can be found and added to the SBG, which
represents the skeleton of the app. Because we only perform
reaching definition algorithm within each component logic,
if definitions reside in other classes, we cannot locate this
binder call. Moreover, some binder calls may be hidden inside
native code. Therefore, the remaining calls will be recorded
at runtime.

2) Runtime Behavior Completion: Because SBG is based
on static resources, it only possesses limited logic structure
information. For example, malware samples may hide mali-
cious logic by obfuscation and reflection techniques. To gain
these hidden logic, we should capture runtime information.
After executing the app at runtime, MONET can collect
runtime binder calls. Then MONET will use these calls to
complete the SBG and generate an RBG. After generating
the RBG, which is a part of the signature of the suspicious
app. MONET will send it and SSS to the backend detection
server for malware detection. In Section IV, we will discuss

Fig. 5. The graph decoupling process.

in detail how we implement the runtime behavior collection
process in MONET.

D. Malware Detection
When the MONET’s backend detection server receives the

uploaded runtime behavior signature of a suspicious app, it
will execute the signature matching algorithm to determine
if this suspicious app is a malware. The detection algorithm
involves three parts: (1) graph decoupling, (2) malware sig-
nature generation and (3) signature matching.

1) Graph Decoupling: Because repackaged malware con-
tains both benign logic and malicious logic, we need to per-
form a graph decoupling for all uploaded RBG to separate this
logic for malware detection. Figure 5 illustrates the process of
graph decoupling. Suppose we have an RBG of a repackaged
malware. There are two steps to achieve graph decoupling.
Firstly, we remove all nodes which are system components
and edges connected to these nodes (e.g., the white nodes in
the figure). Then, we obtain several disconnected subgraphs of
the original RBG. Secondly, for each disconnected subgraph,
we add back the removed system component nodes which
have links with nodes in this subgraph. Then, we re-link the
added nodes to nodes in the subgraph. Lastly, we will obtain
several individual graphs (e.g., the two graphs in the upper
circle and the lower dotted circle showed in the figure) which
contain logic structure and runtime behavior belonging to these
separated graphs. By using graph decoupling, we can easily
separate malicious logic and runtime behaviors from original
mixed RBG.

2) Malware Signature Generation: Because malicious run-
time behaviors are captured at runtime, some behaviors can
only be triggered by certain events. To make the detection
more accurate, malware analyzer should manually trigger the
malicious events at runtime. Therefore, before matching an
uploaded suspicious signature, malware analyzer needs to
launch the captured malware samples in MONET and trig-
gers the malicious behavior manually. MONET will generate
RBG and SSS for this malware. For the RBG, MONET will
then perform the graph decoupling process to obtain a set of
individual RBGs. Malware analyzer then determines which
RBG contains malicious behaviors. These malicious RBGs
will be stored as malware signature in the signature database.
In Section IV, we will elaborate the implementation of our
signature database.

3) Signature Matching: Signature matching is to match
the uploaded suspicious runtime behavior signature (includ-
ing SSS and RBG) with existing malware signatures in the
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database to determine whether an app is malware or not.
The signature matching process consists of SSS matching
and RBG matching. For SSS, suspicious system calls can
be the indicator of a malware. For instance, one suspicious
SSS contains a connection to a well-known remote command
and control server, or it has an execution of a root exploit
binary. For RBG matching, it involves two steps. In the
first step, we use the graph decoupling algorithm to separate
the suspicious RBG into a set of decoupled RBG (D). For
the second step, the backend detection server will execute a
graph similarity algorithm to compare graph in the decoupled
RBG set (D) with graphs in the malware RBG set (M).
We say that there is a match if there exists a d ∈ D
and an m ∈ M such that the similarity between d and
m is smaller than a threshold (T ). In the MONET backend
detection server, we use the graph edit distance algorithm to
measure the similarity between two RBGs. The similarity of
two runtime behavior graph G1 and G2 is: sim(G1, G2) =
1− min(|Vi |+|Vd |+|Ei |+|Ed |)

|V |+|V ′|+|E |+|E ′ | , where |Vi | and |Vd | are the number
of vertex-edit operations of vertex insertion and vertex deletion
from G1 to G2. |Ei | and |Ed | are the number of edge-
edit operations of vertex insertion and vertex deletion from
G1 to G2. We calculate the minimum operation to transform
G1 to G2. Then, |V |+|V ′|+|E |+|E ′| quantifies the maximum
operations from G1 and G2. Therefore, a high similarity
score of two RBGs implies that it needs small number of
transformations from one to another.

IV. IMPLEMENTATION OF MONET

In this section, we present the implementation of MONET.
The system consists of two parts: a client app (which can
be installed in any Android device) to capture the behavior
and generate signatures, and a backend detection server to
determine whether a suspicious app is a malware variant.

A. Client App

The MONET client app can generate SBG for newly
installed apps. At runtime, the MONET client app monitors
intrusive transactions and system calls. Once a suspicious
behavior is detected, the MONET client uses the collected
runtime information to generate the RBG and the SSS for
the executed app, and then sends them as the monitored
behavior of that app to the backend detection server for
malware detection. In our implementation, the client app
consists of three main components, (1) SBG generator,
(2) runtime information collector and (3) RBG and SSS
generator.

1) SBG Generator: The MONET client app monitors the app
installation events (i.e., PACKAGE_INSTALL and PACKAGE_
ADDED action). Once an app is installed, SBG generator
will use the smali/baksmali library [17] as a disassembler
to disassemble newly installed apps. The output is a set
of disassembled codes. In addition, the SBG generator will
also translate the compiled binary AndroidManifest.xml
file into a plain text file. As we discussed in Section III,
to generate an SBG, the SBG generator will first gener-
ate a control flow graph (CFG) for each component class.

Fig. 6. Implementation of the MONET runtime information collector.

TABLE I

BINDER CALL INFORMATION AT RUNTIME

Secondly, it will extract component information from the
AndroidManifest.xml. With the CFG and component
information, it uses a data flow analysis technique and reaching
definition algorithm to generate a static behavior graph based
on compiler theory.

2) Runtime Information Collector: The runtime information
collector runs in the background of an Android device and it
collects all binder transactions to generate an RBG and specific
system calls to generate an SSS. We implement the runtime
information collector using two interception techniques on
binder calls and system calls respectively. Figure 6 illustrates
our implementation. It contains two functional parts: the
binder call interception and the system call interception.

• Binder Call Interception. MONET needs to collect the
binder calls information including the binder transaction
code, the transaction descriptors and various additional
attributes. The MONET client app uses the hooking
technique on binder calls. In essence, the client app
injects libraries into apps and system services to hook
binder transactions. The first hooking place is on the
JNI interface for intercepting upper binder related APIs
between the Java layer and the native layer. Using
this method, we can intercept all binder calls initiated
by this app from the Java layer. The second hooking
place is on the Service Manager. Because all binder
requests need to first go through the Service Manager,
the MONET client app will also intercepts calls to the
Service Manager to avoid any malware using native code
to initiate malicious binder calls Table 1. The technical
details can be seen in our technical report.

• System Call Interception. To intercept system calls,
we implement a loadable kernel module (LKM) for
the Linux kernel. The kernel module will first search
the address of the sys_call_table structure. The
sys_call_table structure stores the pointers of
system call implementations. In the MONET client
app, we get the sys_call_table address from the
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vector_swi handler [20]. Using this method, we
can determine the address of the sys_call_table
for different build versions of the Linux kernel. Then,
to intercept system calls, we change the system call
addresses in the sys_call_table to addresses of our
own functions. Inside our methods, the MONET client
app will write the calling information including caller
process ID and system call parameters into a device
driver (/dev/monet) to pass the information to the
user layer app. At the end of the function, MONET will
call back the original functions to continue the original
logic of the app.

In our current implementation, we intercept two
system calls: socket() (i.e., sys_call_table
[__NR_socket]) and execve() (i.e., sys_call_
table[__NR_execve]). By replacing the system call
entries in the system call table, we redirect these two system
calls to our interception first and then return back to their
original system calls. For execve(), the kernel adds a
wrapper to adjust the parameter r3 before performing the
actual execve task. The wrapper points r3 to a stack
location calculated from the stack pointer sp. Therefore, we
should guarantee that the stack pointer sp is not corrupted
during our interception.

Intercepting these two system calls can expose most of the
malicious behavior in apps. Firstly, malware could use the net-
work to communicate with their remote command and control
servers. Therefore, to intercept this kind of behavior, we should
intercept socket() system call in the kernel layer so that
MONET will get the network connection information either
from the Java APIs or from native codes. Secondly, many
malware (e.g., DroidKungfu) attempt to execute a root
exploit when launching the malware. Therefore, execve()
is another dangerous behavior which we need to keep track.

3) RBG and SSS Generator: With the collected binder call
and system call information, MONET builds an RBG and an
SSS. RBG is based on the SBG which was generated at the
installation time of a new app. From the runtime information
collector, we can gain a vector of binder calls sequence at
runtime with the caller class names, binder call descriptors and
binder call content. With this information, we can complete
the SBG to generate an RBG. For suspicious system calls,
MONET reads the calling information from the kernel space
via the device driver, and puts the system calls which belong
to current app process to SSS.

B. Backend Detection Server

The backend detection server is responsible for storing
malware signatures in the database, and to perform malware
detection using our signature matching algorithm. Because an
SSS is for detecting network address and binary root exploit
in the blacklist, the SSS matching is based on a traditional
hashing matching implementation. Note that usually, we only
need to use the RBG for the logic structure and runtime
information for detection. The matching algorithm of RBG
needs to perform graph similarity computation, but graph
comparison is computationally expensive. Therefore, based
on the properties of the runtime behavior graph, we use a

B+ tree to index malware signature to optimize the detection
process. In the current implementation, we use the number of
app components as a key to the B+ tree, and this information
is easy to derive from RBGs.

Overall, the workflow of detection can be described as
follows: (1) Monet detects suspicious transaction calls by
monitoring IPC; (2) A warning dialog pops out to users and
at the same time the signature is sent to server for evaluation;
(3) Because these two operations are asynchronized processes,
users can wait for detection results then decide whether
to block the malicious events. Considering some detection
may occur without network connection, we pre-loaded widely
detected malware signatures for offline detection.

V. EVALUATION
In this section, we first present our experimental setup and

dataset. Then, we present the evaluation results on the accuracy
and effectiveness of MONET to detect malware variants and
defend against malware transformation. We also present the
battery consumption of the MONET’s client module.

A. Experimental Setup & Dataset
In our experiment, we use an LG Nexus 5 mobile phone to

test our client app. Our test phone runs the Google official
Android firmware, or KitKat 4.4.4 with the build number
KTU84P and kernel version 3.4.0. Our backend detection
server is a Dual-core 3.10GHz PC and 8GB memory.

We collected 3,723 malware samples from the Android
Malware Genome Project [8], DroidAnalytics [21] samples
and contagio minidump forums [22]. In addition, we also
downloaded the top 500 apps from the Google Play market
(i.e., the ranking is based on the download number ranking
list). Note that we need these legitimate apps to evaluate
MONET’s capability on true negative, as well as to explore
the number of nodes within an RBG.

To analyze the characteristics of these apps, we execute
these apps for one minute and generate their corresponding
RBGs. We calculate the distribution of the number of nodes
in an RBG. Most of the apps contain less than 50 nodes in
their RBGs. In Section III, we discussed that many graph
similarity algorithms require high computation. Because
the number of nodes in RBG is small, the computation of
graph comparison is therefore acceptable. We will present
the performance evaluation of the backend detection server
in later experiment results.

B. Evaluation on Detection Capability

MONET uses the runtime behavior signature for mal-
ware detection. It can detect exiting malware samples and
their variants, as well as malware which uses transformation
techniques. Let us present our results.

Experiment 1 (Accuracy and Effectiveness on Detecting
Malware Variants): DroidKungfu malware is a popular
repackaged malware. It injects malicious classes into benign
apps including tools and games. There are four variants
(DKF1, DKF2, DKF3 and DKF4) of DroidKungfu malware.
The original malware (DKF1) listens to the battery change and
boot complete actions. If these actions are triggered, DKF1
performs several behaviors including reading/writing data in
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TABLE II

DETECTION RESULTS FOR DroidKungfu MALWARE FAMILY WITH 500
BENIGN APPS FROM GOOGLE PLAY

the XML file, starting another service, installing a new app, or
gaining root privilege, etc. For the following evolved malware
variants, DKF2 uses native code to execute root exploit. DKF3
uses string obfuscation and AES encryption methods to hide
malicious string signature. DKF4 uses the same package name
as the hosted benign app to hide its static signatures.

We performed experiments to see the effectiveness of
MONET in using one malware signature (e.g., DKF1) to
detect other malware variants within the same malware family
(e.g., DKF2 to DKF4). Table II shows the detection results
for each variant of the DroidKungfu malware family.
We measure the true positive (TP), false positive (FP), true
negative (TN), false negative (FN) as well as the accuracy
(ACC = (T P + T N)/(T P + T N + F P + F N)) for each
DroidKungfu variant using SSS, or RBG only, or their
combination as signature respectively. We set the threshold T
to be 0.8 for our detection server. For example, we first use one
sample of DroidKungfu1 to generate a runtime behavior
signature. Then, we install all other samples and 500 benign
apps on our test phone with MONET, and run the apps for one
minute. To simulate user interactions, we use monkey [23]
to generate 500 pseudorandom system/user events such as
clicks, touches and gestures, etc. More sophisticated triggering
methods or real users’ interactions will help our system to
capture runtime behavior thoroughly.

From our experiments, we found that 29 out of 30 are
detected as DKF1 malware, and so our true positive rate
is 29/30. There is one DKF1 sample which is not detected
as malware, so our false negative rate is 1/30. We manu-
ally review the disassembled code of this malware sample.
We found that hackers declare the malicious component
name in the manifest file, but this malware does not contain
any malicious logic. Because current anti-virus engines may
depend on this unique static component name for detection.
MONET is based on runtime behaviors, so this app will not
be detected as malware. All 500 benign apps are detected
correctly and so our true negative rate is 1, and none of the
benign apps are reported as malware, so our false positive rate
is 0. We also found that most malicious logic will be initiated

Fig. 7. Detecting DroidKungfu Malware Variants.

TABLE III

BENCHMARK RESULTS

at the startup time of malware samples. Therefore, one-minute
running time is enough for performing this effectiveness
evaluation. However, longer monitoring frames can help the
system to comprehensively complete the runtime behaviors for
detection.

Let us illustrate the effectiveness of MONET using the
RGB and SSS for detection. From our experiment, we see
that when using the runtime malware signature including
RBG and SSS for detection, the average accuracy of detecting
four DroidKungfu variants is around 99 %. Secondly, if we
only use RBG for detection, the accuracy is 98.5 %, which
drops a little but it is still very effective in malware variant
detection. The reason is that some malicious binder calls and
system calls are not triggered in the automatic triggering
process. The average detection time on our test detection
server is about 0.2 seconds. The data transformation time
through Wi-Fi network is about two seconds. In summary,
the total detection time for each malware sample is less than
three seconds under a stable network status.

Besides detecting existing malware within one variant,
MONET is also effective to detect evolved malware variant.
To illustrate this capability, we use a runtime behavior sig-
nature from one variant of the DroidKungfu family to
detect other variants. Figure 7 illustrates the accuracy of our
detection using different signatures. For example, we first use
DroidKungfu1 (DKF1) signature to detection other variant
samples (DKF2, DKF3, DKF4). The accuracy for the next
generation variant (DKF2) is still high. Because some samples
of DKF3 and DKF4 variants change behavior in interacting
with the command and control server, the detection accuracy
drops a little. In summary, the detection accuracy of two
consecutive variants is above 90 %.

Experiment 2 (Defending Against Malware Transforma-
tion): Transformation attacks use static obfuscation tools
to hide malicious logic. Traditional feature-based anti-virus
engines rely heavily on specific patterns of malware for
detection. But string obfuscation and encryption can change
the pattern and bypass these transitional anti-virus engines.
Moreover, obfuscation also makes the logic complicated such
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that malware researchers cannot easily analyze the malicious
logic. Instead of relying on string patterns, MONET uses
malicious behaviors for detection because malicious behaviors
are difficult to transform. In this experiment, we use a self-
made malware (o5android). This malware will request for
device administrator, or send text messages, or gain device
id, etc. Moreover, hackers generated a set of malware which
have a random configuration file so the MD5 values are
different. We also use two transformation tools (ADAM [10]
and DroidChameleon [11]) to generate 45 obfuscated apps
from three original malware. In addition, we also implement
reflection and dynamic loading techniques to complement
existing methods. We use twelve types of transformation tech-
niques including 45 transformed malware in the experiment.
The details can be seen in our technical report. We install
these transformed malware on the device with the MONET

client module. 40 out of 45 are detected as o5android
malware by our system. Because some techniques used by the
transformation tools may corrupt the logic of malware, five
of them crash after transformation. So we cannot consider
them in the experiment. We also conduct an experiment on
a real world malware family called FakeAV. This malware
family utilizes a simple transformation method to generate
large amount of samples. We successfully detect all collected
nine malware samples with different hash values (e.g., SHA1).

Experiment 3 (Performance and Battery Overhead):
We use Quadrant Standard Edition v2.1.1 [24] to mea-
sure the general purpose benchmark for CPU, memory, I/O,
2D and 3D graphics. Table III shows the benchmark results.
Because MONET will intercept binder calls and system
calls, we have round 8 % overhead in memory and I/O
benchmarks. We also measure the battery overhead intro-
duced by MONET. We first check the battery overhead
in the standby mode. We use a fully-charged test phone
in standby mode for 24 hours. The device with MONET

installed only has 3.2 % battery overhead as compared with
device without MONET. Then, we use the phone for one
hour with heavy usage including 20 minutes game playing,
20 minutes network surfing and 20 minutes telephone call.
We monitor the battery capacity by reading the /sys/
class/power_supply/battery/capacity file. The
battery of MONET for a heavy user is about 5.5 %. In sum-
mary, MONET has a low impact on the battery resource.

VI. RELATED WORK

With the emergence of malware on the Android ecosystem,
researchers have proposed a number of systems to detect
Android malware based on static resources such as
permission information, disassembled codes and other
resources. Zhou and Jiang [25] systematically analyzes
the evolution of Android malware. DroidMOSS [8],
Juxtapp [26], AnDarwin [27], MassVet [28], ViewDroid [29],
ResDroid [30], and DroidEagle [31] aim at detecting
repackaged and clone malware. DroidRanger [9] uses
permission-based footprinting and heuristic schemes to detect
existing malware. RiskRanker [32] can automatically uncover
malicious behaviors of zero-day malware. DREBIN [33],
DroidSIFT [34] and ICCDetector [35] use machine learning

algorithm to detect malware. There are a number of
works [6], [36]–[39] which use static dataflow analysis to
identify malicious logic in Android apps and classify existing
malware. To prevent malware exploiting capability leaks and
content leaks vulnerabilities, systems [7], [8] aim at detecting
such loopholes in apps. All these systems are based on static
features of malware. However, current malware use advanced
obfuscation methods to bypass disassembled tools or hide
the malicious logic in native code. Moreover, learning-based
malware algorithm is not computational efficiency and their
effectiveness strongly depends on the feature selection.

To analyze sophisticated malware, researchers propose
a number of dynamic analysis systems. TaintDroid [40],
TaintART [41], DroidScope [42], VetDroid [43],
CopperDroid [44] and DroidBox [45] detect malicious
behavior using dynamic analysis. Marvin [46] combines
static and dynamic analysis for classifying malicious apps.
However, these systems are designed for malware analysts.
It is difficult for regular mobile device users to install them on
their device to detect and prevent malware. Therefore, several
systems [14]–[16], [47]–[51] are proposed to prevent intrusion
on devices for regular users. However, these systems can only
warn users about the suspicious behaviors at runtime, and
users cannot easily determine whether a suspicious behavior
is from a malware or not.

There are a number of malware detection systems based on
dynamic behavior or runtime information for mobile devices.
Bose et al. [52] propose a behavior-based detection sys-
tem for Symbian OS, which is an outdated mobile system.
At that time, malware in mobile devices were rare and simple.
pBMDS [53] and DroidScribe [54] uses machine learning
methods to classify the behaviors of apps. However, the model
only works on keyboard inputs, while most interactions with
devices are on the touchscreen nowadays. Crowdroid [55] and
MADAM [56] utilize system call sequences as malware behav-
ior for detection. System calls contain less semantic infor-
mation and cannot accurately represent a malicious behavior.
MONET captures binder transactions and system calls, for
they contain more semantic information which can accurately
describe the runtime behavior.

VII. CONCLUSION

In this paper, we present the design and implementation
of MONET to detect malware variants and to defend against
transformation attack. MONET will generate a runtime
behavior signature which consists of RBG and SSS to
accurately represent the runtime behavior of a malware. Our
system includes a backend detection server and a client app
which is easy to deploy on mobile devices. Our experiments
show that MONET can accurately detect malware variants and
defend against transformation attacks with only a minimal
performance and battery overhead.
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