
Computer Networks 246 (2024) 110428

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

On incentivizing resource allocation and task offloading for cooperative edge
computing
Weibo Chu a,∗, Xinming Jia a, Zhiwen Yu b,a, John C.S. Lui c, Yi Lin a

a Northwestern Polytechnical University, Xi’an, China
b Harbin Engineering University, Harbin, China
c The Chinese University of Hong Kong, Hong Kong

A R T I C L E I N F O

Keywords:
Cooperative edge computing
Resource allocation
Incentive mechanism
Double auction
Decentralized mechanism

A B S T R A C T

Cooperative edge computing serves as an effective solution to provide reliable and elastic edge computing
services through pooling geographically proximate edge resources and efficiently allocating them to users.
The incentive mechanism is critical for realizing cooperative edge computing. In this paper, we propose a
virtual machine (VM) or container based resource allocation scheme and two market-based mechanisms to
stimulate collaboration among edge servers (ESs). Our first mechanism is a novel two-stage double auction
based approach where edge resources are allocated to services/VMs at the first stage and then distributed
among ESs at the second stage via a two-sided multi-unit auction. To make it more practical, we use markups
to set the ask and bid prices for the participants in the market. Moreover, with the concept of virtual sellers
and virtual buyers, we cast the multi-unit auction as single-unit one so that the auction becomes tractable.
We further propose a price-based decentralized mechanism in case there is no central authority. With an
appropriately constructed objective function, we formulate the resource allocation task as a network utility
maximization (NUM) problem and leverage the dual-based decomposition theory for a distributed solution.
We theoretically prove that both mechanisms guarantee properties such as budget balance and individual
rationality for all ESs. Numerical studies with real-world dataset are presented to demonstrate the superior
performance of our mechanisms over baselines.
1. Introduction

1.1. Background and motivation

Multi-access Edge Computing (MEC) [1], formally known as Mo-
bile Edge Computing [2,3], is an emerging computing paradigm that
enables a variety of new applications such as augmented reality, in-
teractive gaming and autonomous driving. Being resource-hungry and
delay-sensitive, these applications generally cannot be well supported
by today’s cloud-centric paradigm due to the excessively long delay,
unstable network connection, security/privacy concerns, etc. MEC, on
the other hand, brings computation, storage and networking resources
at the edge of the network, so that services can be accessed locally and
with low latency.

MEC has attracted significant attention since the concept was pro-
posed, and numerous effort has been dedicated to the development of
its theory and application. However, despite the fast growth, MEC is
still in its infancy stage. The current practice is that edge resources

∗ Corresponding author.
E-mail addresses: wbchu@nwpu.edu.cn (W. Chu), jxm12f@mail.nwpu.edu.cn (X. Jia), zhiwenyu@nwpu.edu.cn (Z. Yu), cslui@cse.cuhk.edu.hk (J.C.S. Lui),

ly_cs@nwpu.edu.cn (Y. Lin).

are often sporadically deployed in distributed regions, configured in
an ad hoc manner and a set of applications privately make use of
them [4]. For example, civic authorities use edge devices to process
data from sensors on public infrastructure, industrial executives rely
on edge to monitor and analyze energy use in factories, families deploy
edge computing services within the home to ensure real-time response
and enhanced privacy for smart home applications, to name a few.

On one hand, the ad hoc, private and sporadic deployment of edge
resources are far from realizing the vision of MEC — providing the
public with reliable and elastic edge services, just like cloud computing.
On the other hand, given these distributed (and isolated) edge re-
sources, if we can group and efficiently make use of them, i.e., through
intelligently allocating resources to services and scheduling users’ tasks,
the performance of the system and users’ QoE then can be significantly
improved in terms of reliability, scalability, cost, etc. This is essentially
the aim of cooperative edge computing [5–8], which calls for fed-
erating geographically distributed edge resources and providing edge
vailable online 20 April 2024
389-1286/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2024.110428
Received 27 December 2023; Received in revised form 11 March 2024; Accepted 1
5 April 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:wbchu@nwpu.edu.cn
mailto:jxm12f@mail.nwpu.edu.cn
mailto:zhiwenyu@nwpu.edu.cn
mailto:cslui@cse.cuhk.edu.hk
mailto:ly_cs@nwpu.edu.cn
https://doi.org/10.1016/j.comnet.2024.110428
https://doi.org/10.1016/j.comnet.2024.110428
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110428&domain=pdf

Computer Networks 246 (2024) 110428W. Chu et al.
services in a systematical way, i.e., through handling variable requested
workloads in a cooperative manner. Moreover, from the economic
perspective, cooperative edge computing is also a more cost-effective
solution as compared to building the network from scratch. Today, the
academia and industry communities are working together on building
an open edge computing environment/platform and providing services
on a global scale, i.e., the Open Edge Computing [9], Openfog [10],
etc.

There are several challenges in realizing cooperative edge comput-
ing, not only from technical, but also from social, legal and geopolitical
considerations [4]. Among them, we consider two fundamental prob-
lems: (1) How should we incentivize edge computing service providers
(SPs) so that they are willing to share their resources with other SPs?
Indeed, edge resources are owned by self-interested providers who
provision and operate their edge servers (ESs) in a way such that their
revenue/profit is maximized. Without proper incentive mechanisms,
SPs will be unwilling to contribute their resources to other SPs and have
their workload processed. This is also true for the services/applications
as users may be reluctant to offload their tasks to other ESs due to
the reduced quality of experience; (2) Given that SPs have incentive to
collaborate with others, how should each SP allocate its edge resources
among others (including itself), and which edge server should be selected for
remote computation if a task is to be offloaded to the network? Note that
these problems of incentive mechanism design, resource allocation and
task offloading are tightly coupled and each one is nontrivial to answer,
given that SPs may have different preferences towards others, ESs are
heterogeneous in resource capacity, cost, and the workload from SPs
are with diverse characteristics, etc.

1.2. Contribution

In this paper, we seek to answer the aforementioned questions and
our goal is to stimulate collaboration among SPs while at the same
time, to maintain a high resource utilization efficiency and revenue for
each SP. We propose a market-based resource allocation mechanism,
where SPs with diverse characteristics act as buyers and sellers, and
ES resources act as divisible goods in the market. In particular, we
propose a two-stage double-auction based mechanism, where a third-
party platform is introduced into the system for allocating resources
and determining the prices at which resources are traded. Our proposed
mechanism ensures certain desired properties such as individual ratio-
nality, budget balance, computation efficiency, etc. Moreover, we also
propose a price-based allocation mechanism where edge resource allo-
cation is performed by ESs in a fully decentralized manner, i.e., when
there is no third-party platform as a central coordinator for organizing
the market.

More specifically, we make the following contributions:
1. We consider a heterogeneous multi-server and multi-service/

application system, where edge servers may have different amount of re-
sources and services/applications at each server can vary in workload,
cost, QoS requirements, etc. In line with the current technology, we
propose a VM or container based resource allocation scheme, i.e., both
the allocation of server resources and task offloading among edge
servers are performed in terms of individual VMs/containers. This
makes our model more realistic and also different from existing work
that typically adopts a task based resource allocation and workload
distribution scheme [11,12].

2. To incentivize collaboration among edge servers, we propose a
novel two-stage double auction based resource allocation mechanism.
The first stage of the mechanism aims at distributing resources of ESs
to services, i.e., determining the number of VMs to be hosted for each
service at each server, and also figuring out the demand and supply
of the edge resources in the market. Resource allocation among ESs is
performed at the second stage via a two-sided multi-commodity multi-
unit auction, where we use markups [13] to capture the dishonest
behaviors of both the buyers and sellers in the market. Moreover, to
2

Fig. 1. A heterogeneous edge computing network.

efficiently solve the auction, we adopt the concept of virtual buyers
and virtual sellers so that the concerned auction is cast as single-unit
auctions that can be well addressed by existing algorithms. We prove
that the proposed two-stage mechanism achieves the desired economic
properties such as individual rationality, budget balance, etc.

3. In case there is no central coordinator as that required by the
double auction based approach, we propose a price-based decentralized
resource allocation mechanism. The proposed mechanism models the
task with a network utility maximization (NUM) formulation, and
leverages the dual-based decomposition theory for a distributed solu-
tion. Note that since the utility function of ESs are linear, the canonical
NUM framework cannot be readily applied. To this end, we add to the
utility function of each service a concave term that is appropriately
constructed so that: (1) the problem under study becomes convex; and
(2) the gap between the distributed solution and the optimal solution
to the original problem can be well bounded. In addition, we give
pricing strategies for ESs and prove their individual rationality under
the proposed mechanism.

4. We evaluate both mechanisms through numerical studies with
real-world dataset from today’s cloud computing market. Results indi-
cate that our mechanisms outperform the baselines, i.e., both mech-
anisms are able to provide an optimized social welfare, guarantee
individual rationality for all ESs, and improve their revenue through
resource allocation.

The remainder of this paper is organized as follows. In Section 2 we
introduce system model and problem formulation. Section 3 describes
our two-stage double auction based resource allocation mechanism.
Section 4 elaborates on the price-based decentralized mechanism. Sec-
tion 5 presents numerical studies and evaluation results. We give
related work in Section 6 and conclude the paper in Section 7.

2. System model and problem formulation

2.1. System model

We consider a simple yet generic edge computing network as shown
in Fig. 1, which consists of multiple Edge Servers (ES) and User Ap-
plications (Services). Each ES is responsible for serving its local users,
and is connected via external links to other ESs. Note that to cover
as many edge computing scenarios as possible, these ESs could be
micro data centers, edge clouds, computing servers with high ca-
pacities, or even gateways at home and offices that endowed with
computing/storage/networking resources. Furthermore, without loss
of generality, we assume that these ESs are owned and operated by
different edge computing service providers (SPs), and in practice, they
can be geographically distributed and sporadically deployed.

One of the main challenges faced by the edge computing SPs in
their current practice is how to provision ESs so as to maximize their

Computer Networks 246 (2024) 110428W. Chu et al.
profit/revenue while at the same time, to maintain a high resource
utilization efficiency. Given the high dynamics and unpredictability of
user-generated workload, and the fact that edge resources are often
configured in an ad hoc manner, it is almost impossible to meet both
goals simultaneously. For example, putting too much resources into ESs
will certainly bring high payoffs by customers through satisfying all
their requests, however, the resource utilization efficiency in this case
would be low, which results in a waste of investment. On the other
hand, a lack of capacities of ESs ensures a high resource utilization,
while at the cost of a decrease in revenue since only part of customers’
workload can be processed at the network edge.

To address the above issue, one promising solution is to federate
these geographically distributed ESs, i.e., to form a logically centralized
resource pool. In this setting, a computing task from user can be
either performed at its local ES as it was supposed, or be offloaded
to a nearby ES given that the required service happens to be cached
there and no QoS violation is incurred. This brings significant benefits
such as improved system throughput, enhanced service reliability, and
elasticity.

2.2. Problem formulation

For simplicity of notations, we denote the set of ESs and ser-
vices/applications in the network as and , respectively, and the
number of ESs and services are 𝑀 and 𝑁 (see Table 1). Since we
assume different ESs are owned by different SPs, we use ESs and
SPs interchangeably throughout this paper. Moreover, we sometimes
also use VMs and services interchangeably, for the fact that services
are hosted by virtual machines or containers according to the current
technology. Each VM is equipped with certain amount of resources
and each one is able to process a specific amount of requests per time
interval. We regard this workload processed by a VM or container per
time interval as basic workload, and use it to characterize the workload
of each service at each ES. In other words, the workload of each service
is measured as the number of VMs required per time interval. In this
work, we consider four types of edge resources for allocation: (CPU,
memory, bandwidth, disk space), which is in accordance with the current
cloud computing market for configuring and renting VMs [14].

Let 𝑅𝑖 = (𝑅𝑖1, 𝑅𝑖2, 𝑅𝑖3, 𝑅𝑖4) be the amount of the four types of
resources at ES 𝑖, and 𝑟𝑗 = (𝑟𝑗1, 𝑟𝑗2, 𝑟𝑗3, 𝑟𝑗4) be the resources required
by a VM of service 𝑗. Also denote 𝑘𝑖𝑗 be the number of VMs of service
𝑗 that are to be hosted at ES 𝑖. Obviously, to have a valid resource
allocation, we have the following constraint:
∑

𝑗∈
𝑘𝑖𝑗 ⋅ 𝑟𝑗𝑠 ≤ 𝑅𝑖𝑠, ∀𝑖, 𝑠 ∈ {1, 2, 3, 4}. (1)

Let 𝜆𝑖𝑗 be the workload of service 𝑗 at ES 𝑖, and 𝑥𝑖𝑗𝑘 be the number
of VMs of service 𝑗 at ES 𝑖 that are allocated to ES 𝑘. Since we assume
local workload has priorities and each SP will provide services to other
SPs only when they have extra resources, we have:

0 ≤
∑

𝑘∈ (𝑖)
𝑥𝑖𝑗𝑘 ≤ [𝑘𝑖𝑗 − 𝜆𝑖𝑗]+, ∀𝑖, 𝑗 (2)

where [𝑎]+ = max{𝑎, 0}, and (𝑖) is the set of ESs that can offload its
workload to ES 𝑖 without QoS violations, i.e., the offloading delay is
no larger than a threshold pre-set by the service/application. Note that
both 𝑘𝑖𝑗 ’s and 𝑥𝑖𝑗𝑘’s are unknown variables and needs to be figured out
by our proposed resource allocation mechanism. In addition, denote
by 𝑙𝑖𝑗 be the number of VMs of service 𝑗 at ES 𝑖 for processing its local
workload, we have:

𝑙𝑖𝑗 = min{𝜆𝑖𝑗 , 𝑘𝑖𝑗}. (3)

Also denote by 𝑐𝑖𝑗 be the cost of hosting a VM 𝑗 at ES 𝑖. The cost can
be due to hardware (CPU, memory, storage, etc.), software (database,
load balancer, Firewall/IDS/IPS, etc.), management, maintenance, op-
eration expenditure (i.e., energy consumption), etc. The cost of serving
3

Fig. 2. The concept of local edge computing and remote edge computing. At ES 1, the
workload marked as red and blue is locally processed, whereas the workload marked
green is offloaded to ES2 for remote computation; Likewise, at ES 2 the workload
marked yellow is locally processed whereas the workload marked blue is offloaded to
ES 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

local workload at ES 𝑖, denoted as U1
𝑖 , thus can be characterized as

follows:

U1
𝑖 =

∑

𝑗∈
𝑙𝑖𝑗 ⋅ 𝑐𝑖𝑗 (4)

Likewise, the cost of serving workload from other SPs (providing ser-
vices to other ESs) at ES 𝑖, denoted as U2

𝑖 , can be given as:

U2
𝑖 =

∑

𝑗∈

∑

𝑘∈ (𝑖)
𝑥𝑖𝑗𝑘 ⋅ 𝑐𝑖𝑗 (5)

In an edge-computing market, end-users pay their local SPs for
enjoying edge computing services. Normally, users tend to give a higher
payment if SPs can provide them with a better quality of service (QoS).
Let 𝑣𝑖𝑗𝑘 be the payoff received by ES 𝑖, from its users, for having the
(basic) workload of service 𝑗 processed at ES 𝑘. In general, we have
𝑣𝑖𝑗𝑖 ≥ 𝑣𝑖𝑗𝑘,∀𝑘 ≠ 𝑖, i.e, local computation brings the highest payoff due
to its superior QoS.1 The payoffs received by ES 𝑖 from its users thus
can be characterized as:

U3
𝑖 =

∑

𝑗∈
(𝑙𝑖𝑗 ⋅ 𝑣𝑖𝑗𝑖 +

∑

𝑘∈(𝑖)
𝑥𝑘𝑗𝑖 ⋅ 𝑣𝑖𝑗𝑘) (6)

where (𝑖) is the set of ESs to which 𝑖 can offload its tasks without QoS
violations. Note that it is possible we have (𝑖) ≠ (𝑖).

From Eq. (6), we can see that the payoffs of each ES from serv-
ing its end-users comprises of two parts. The first one is from local
computation, i.e., the workload of its users is processed at the ES, and
the other one is from offloading users’ tasks to other ESs and having
them processed there. This, to some extent, gives rise to the concept
of local edge computing and remote edge computing, as illustrated
in Fig. 2. Note that in this work, it is our assumption that users will
offload tasks only to their local ESs, and these local ESs will then
determine whether to perform tasks locally or direct them to nearby
ESs for remote computation. The process of offloading tasks to other ESs
and having them processed there, however, is transparent to end-users
albeit they may be aware of the decreased QoS, i.e., large delay.

Since ESs are self-interested, proper incentive mechanism is needed
to stimulate collaboration. Let 𝑜𝑖𝑗𝑘 be the reward provided by ES 𝑖 to
ES 𝑘 if ES 𝑘 allocates a VM of service 𝑗 to ES 𝑖, and has 𝑖’s workload
processed. The reward received by ES 𝑖 from other ESs thus can be
calculated as:

U4
𝑖 =

∑

𝑗∈

∑

𝑘∈ (𝑖)
𝑥𝑖𝑗𝑘 ⋅ 𝑜𝑘𝑗𝑖 (7)

On the other hand, the reward that ES 𝑖 provides/pays to other ESs is:

U5
𝑖 =

∑

𝑗∈

∑

𝑘∈(𝑖)
𝑥𝑘𝑗𝑖 ⋅ 𝑜𝑖𝑗𝑘 (8)

1 If 𝑣 = 𝑣 , it means that users’ payment is oblivious to QoS.
𝑖𝑗𝑖 𝑖𝑗𝑘

Computer Networks 246 (2024) 110428W. Chu et al.
Summarizing all the above, we have the revenue of ES 𝑖, denoted as U𝑖,
as follows:

U𝑖 = U3
𝑖 + U4

𝑖 − U1
𝑖 − U2

𝑖 − U5
𝑖 (9)

Moreover, as we assume ESs are rational and each one tries to
maximize its profit, we can formulate the following problem for each
ES 𝑖:

Maximize:
{𝑘𝑖𝑗 ,𝑥𝑖𝑗𝑘 ,𝑜𝑖𝑗𝑘}

U𝑖 (10a)

s.t. 0 ≤
∑

𝑘∈ (𝑖)
𝑥𝑖𝑗𝑘 ≤ [𝑘𝑖𝑗 − 𝜆𝑖𝑗]+, ∀𝑗 (10b)

0 ≤
∑

𝑘∈(𝑖)
𝑥𝑘𝑗𝑖 ≤ [𝜆𝑖𝑗 − 𝑘𝑖𝑗]+, ∀𝑗 (10c)

∑

𝑗∈
𝑘𝑖𝑗 ⋅ 𝑟𝑗𝑠 ≤ 𝑅𝑖𝑠, ∀𝑠 ∈ {1, 2, 3, 4} (10d)

𝑘𝑖𝑗 ∈ N, 𝑥𝑖𝑗 ∈ N, 𝑜𝑖𝑗𝑘 ∈ R+, ∀𝑗, 𝑘. (10e)

Note that constraint (10c) gives the upper bound of the workload
of each service that can be offloaded to the network (other ESs).

Our goal is to maximize the overall payoffs/revenue of the net-
work, denoted by U, through optimization of incentive design 𝑜𝑖𝑗𝑘’s,
resource allocation 𝑘𝑖𝑗 ’s and task offloading 𝑥𝑖𝑗𝑘’s. The problem can be
mathematically formulated as follows:

Maximize:
{𝑘𝑖𝑗 ,𝑥𝑖𝑗𝑘 ,𝑜𝑖𝑗𝑘}

U =
∑

𝑖∈
U𝑖 (11a)

s.t. 0 ≤
∑

𝑘∈ (𝑖)
𝑥𝑖𝑗𝑘 ≤ [𝑘𝑖𝑗 − 𝜆𝑖𝑗]+, ∀𝑖, 𝑗 (11b)

0 ≤
∑

𝑘∈(𝑖)
𝑥𝑘𝑗𝑖 ≤ [𝜆𝑖𝑗 − 𝑘𝑖𝑗]+, ∀𝑖, 𝑗 (11c)

∑

𝑗∈
𝑘𝑖𝑗 ⋅ 𝑟𝑗𝑠 ≤ 𝑅𝑖𝑠, ∀𝑖, 𝑠 ∈ {1, 2, 3, 4} (11d)

𝑘𝑖𝑗 ∈ N, 𝑥𝑖𝑗 ∈ N, 𝑜𝑖𝑗𝑘 ∈ R+, ∀𝑖, 𝑗, 𝑘. (11e)

Note that since ∑

𝑖∈
∑

𝑗∈
∑

𝑘∈ (𝑖) 𝑥𝑖𝑗𝑘 ⋅ 𝑜𝑘𝑗𝑖 =
∑

𝑖∈
∑

𝑗∈
∑

𝑘∈(𝑖)
𝑥𝑘𝑗𝑖 ⋅𝑜𝑖𝑗𝑘, i.e., ∑𝑖∈ U4

𝑖 =
∑

𝑖∈ U5
𝑖 , we have U =

∑

𝑖∈ U𝑖 =
∑

𝑖∈(U3
𝑖 −

U1
𝑖 − U2

𝑖). In other words, the overall payoffs of the network does
not depend on 𝑜𝑖𝑗𝑘’s. However, since ESs are selfish, we need 𝑜𝑖𝑗𝑘’s to
stimulate their collaboration. Meanwhile, as we adopt a market-based
mechanism, we also want our solution to have the following properties:

(1) Individual Rationality (IR): A seller is paid more than its ask
(cost), and a buyer pays less than its bid (true valuation). In
other words, both the sellers and buyers can gain profit from
resource allocation/trading.

(2) Budget Balance (BB): The total payment made by the participants
is at least zero and there is no deficit, i.e., the market organizer
does not have to subsidize the market [15].

(3) Computation Efficiency : Given that problem (11) is a Mixed Inte-
ger Linear Program (MILP) with 2𝑀𝑁 + 4𝑀 constraints, which
is NP-hard in nature, we need algorithms to solve it efficiently,
i.e., in polynomial time.

3. A two-stage double-auction based mechanism

In this section, we elaborate on our two-stage double-auction based
mechanism to solve problem (11) with the desired properties. The main
idea is as follows: we decompose problem (11) into two sub-problems,
where the first one is to determine resource allocation to services at
each ES, i.e., to decide the number of VMs hosted for each service (we
call it resource configuration), and the second one is to distribute these
VMs among ESs and also to determine at what prices these resources
are traded. Correspondingly, our proposed mechanism consists of two
stages as depicted in Fig. 3, where each stage is dedicated to solve one
sub-problem.
4

Table 1
Main notations.

Symbol Definition

 Set of ESs in system
 Set of services in system
𝑅𝑖𝑠 The amount of resource of type 𝑠 at ES 𝑖
𝑟𝑗𝑠 The amount of resource of type 𝑠 required by a VM 𝑗
𝜆𝑖𝑗 Local workload of service 𝑗 at ES 𝑖
𝑘𝑖𝑗 Number of VMs of service 𝑗 hosted at ES 𝑖
𝑙𝑖𝑗 Number of VMs of service 𝑗 at

ES 𝑖 for processing
local workload

𝑐𝑖𝑗 Cost of hosting a VM of service 𝑗 at ES 𝑖
𝑣𝑖𝑗𝑘 Payoff received by ES 𝑖 from

having its workload of
service 𝑗 processed at ES 𝑘

𝑜𝑖𝑗𝑘 Reward provided by ES 𝑖 to
ES 𝑘 from having 𝑖’s
workload of service 𝑗
processed at ES 𝑘

𝑥𝑖𝑗𝑘 Number of VMs of service 𝑗 at
ES 𝑖 allocated
to ES 𝑘

𝑈𝑖 Revenue of ES 𝑖
𝐿𝑖𝑗 Supply of VMs of service 𝑗 at ES 𝑖
𝐷𝑖𝑗 Demand of VMs of service 𝑗 at ES 𝑖
Bid𝑖𝑗𝑘 Bid submitted by ES 𝑖 for a VM of service 𝑗 at ES 𝑘
Ask𝑗𝑘 Ask submitted by ES 𝑘 for providing a VM of service 𝑗
𝑗 Set of buyers for VMs of service 𝑗
𝑗 Set of sellers for providing VMs of service 𝑗
𝑖 Set of virtual buyers of ES 𝑖
𝑘 Set of virtual sellers of ES 𝑘
Prc𝑖𝑗𝑘 The price that service 𝑖𝑗 pays to ES 𝑘 for using its resources
Prc𝑖𝑘 The price that ES 𝑖 pays to ES 𝑘 for using its edge resources

Fig. 3. Two-stage double auction for resource allocation among edge computing
servers.

3.1. First stage for resource configuration

At this stage, each ES preferentially dedicates its resources to local
workload, given the fact that: (1) serving local workload brings higher
payoff than offloading it to other ESs, i.e., due to reduced QoS; and
(2) providing computing services to other ESs is also sub-optimal since
it is reasonable to believe that local workload has priority over non-
local workload, even if other ESs can provide a high reward. Let 𝑙Local

𝑖𝑗
be the number of VMs of service 𝑗 that are to be hosted at ES 𝑖 for
processing its local workload, we can formulate the following Knapsack
problem for each ES 𝑖, where the objective is again to maximize 𝑖’s

Computer Networks 246 (2024) 110428W. Chu et al.

w
{
𝑖
t

B

o

M

w
a

A

s

w
b
p
b
t

t
i
v
u
e
d

𝐿

3

d
b
a
w
M
t
s

b
i
t
t
o
w
f
s
s
o

s
a
s

𝐷
o
w
o
F

o

payoff through proper resource allocation:

Maximize:
{𝑙Local
𝑖𝑗 }

∑

𝑗∈
𝑙Local
𝑖𝑗 (𝑣𝑖𝑗𝑖 − 𝑐𝑖𝑗) (12a)

s.t.
∑

𝑗∈
𝑙Local
𝑖𝑗 𝑟𝑗𝑠 ≤ 𝑅𝑖𝑠, ∀𝑠 ∈ {1, 2, 3, 4} (12b)

𝑙Local
𝑖𝑗 ≤ 𝜆𝑖𝑗 , ∀𝑗 (12c)

𝑙Local
𝑖𝑗 ∈ N, ∀𝑗. (12d)

Note that the above problem can be locally addressed by ES 𝑖, since
all the information required, i.e., (𝑣𝑖𝑗𝑖, 𝑐𝑖𝑗 , 𝑅𝑖𝑠, 𝜆𝑖𝑗), are locally available.

Knapsack problems have been well studied and many efficient
heuristic/approximation algorithms [16] have been proposed. Once
problem (12) is solved, each ES is aware of whether it is in short of
resources or can provide resources to other ESs. Let {𝐿Local

𝑖𝑗 } be the
solution to problem (12), and 𝐷𝑖𝑗 be the number of VMs of service 𝑗
that ES 𝑖 demands in order to satisfy all its local workload, we have:

𝐷𝑖𝑗 = [𝜆𝑖𝑗 − 𝐿Local
𝑖𝑗]+, ∀𝑖, 𝑗 (13)

The remaining resources of type 𝑠 at each ES 𝑖, denoted as 𝑅Left
𝑖𝑠 , is:

𝑅Left
𝑖𝑠 = [𝑅𝑖𝑠 −

∑

𝑗∈
𝐿Local
𝑖𝑗 𝑟𝑗𝑠]+, ∀𝑖, 𝑗 (14)

Based on 𝐷𝑖𝑗 ’s and 𝑅Left
𝑖𝑠 ’s, we can partition the set of ESs into two

sub-sets and , where is the set of ESs that demand resources, i.e,
 = {𝑖 ∈ |∃𝑗 ∈ if𝐷𝑖𝑗 > 0}, and = ⧵ . Note that and are
also the set of buyers and sellers in the market.

At this point, although we know the set of buyers and sellers, and
how much resources is available at each seller for potential trading,
we still need to determine how these remaining resources are allocated
to services, as the commodity in the market are individual VMs. This
problem can be addressed by the third-party platform based on the
bids and asks submitted from ESs. Hereafter we first give the bidding
and asking strategies of the buyers and sellers, and then describe the
detailed allocation scheme.

In a real market, it is common that traders submit bids lower than
its true valuation to the commodity or asks higher than its cost to
gain more profit. The markup [13] concept, which is from the field
of economics, can be used to capture this dishonest behaviors. In this
work, we adopt nonlinear markups for both the buyers and sellers.
More specifically, for each buyer 𝑖 ∈ , the true valuation to a VM
of service 𝑗 that provided by seller 𝑘 ∈ is 𝑣𝑖𝑗𝑘. We define the buyer
markup MB𝑖𝑗𝑘 for that VM as:

MB𝑖𝑗𝑘 =
𝑣𝑖𝑗𝑘

max
𝑠∈ (𝑖)

{𝑣𝑖𝑠𝑘}
∈ (0, 1] (15)

here (𝑖) denotes the set of services/VMs that 𝑖 demands, i.e., (𝑖) =
𝑗 ∈ |𝐷𝑖𝑗 > 0}. Obviously, this markup reflects how thirsty the buyer
is for a VM of that service from ES 𝑘. The bid submitted by buyer 𝑖 is
hen defined as:

id𝑖𝑗𝑘 = 𝑣𝑖𝑗𝑘 ×
9

10 − MB𝑖𝑗𝑘
(16)

From (15) and (16), we can see that the higher true valuation to the
VM, the higher bids that each buyer submits.

On the other hand, for each seller 𝑘 ∈ , the cost of providing a VM
f service 𝑗 is 𝑐𝑘𝑗 . We define the seller markup MS𝑘𝑗 as:

S𝑘𝑗 =
𝑐𝑘𝑗

max
𝑠∈

{𝑐𝑘𝑠}
∈ (0, 1] (17)

hich is the ratio of the cost to the largest cost of providing a VM. The
sks submitted by seller 𝑘 is then defined as:

sk𝑘𝑗 = 𝑐𝑘𝑗 ×
10

10 − MS𝑘𝑗
(18)

Obviously, we can see that the higher cost of a VM/service, the higher
markups and also the higher asks. This reflects the fact that each seller
5

s

wants to gain more profit from a commodity with high cost, which is
common in a real market.

With the bids and asks from ESs, the third-party platform determines
how the remaining resources at each seller are allocated to VMs of
services. This task, also refereed to as resource configuration/provision
at sellers, is achieved by solving the following optimization problem
for each 𝑖 ∈ :

Maximize:
{𝑙Offer
𝑖𝑗𝑘 }

∑

𝑘∈

∑

𝑗∈
𝑙Offer
𝑖𝑗𝑘 (Bid𝑘𝑗𝑖 − Ask𝑖𝑗) (19a)

.t.
∑

𝑘∈

∑

𝑗∈
𝑙Offer
𝑖𝑗𝑘 𝑟𝑗𝑠 ≤ 𝑅Left

𝑖𝑠 , ∀𝑠 ∈ {1, 2, 3, 4} (19b)

𝑙Offer
𝑖𝑗𝑘 ≤ 𝐷𝑘𝑗 , ∀𝑘, 𝑗 (19c)

𝑙Offer
𝑖𝑗𝑘 ∈ N, ∀𝑗. (19d)

here 𝑙Offer
𝑖𝑗𝑘 is the number of VMs of service 𝑗 that 𝑖 offers to the

uyer 𝑘 ∈ , and the objective is to maximize 𝑖’s revenue. Note that
roblem (19) is also a Knapsack problem, where (19b) gives the upper
ounds on the amount of resources for allocation, and (19c) states that
he supply should not exceed demand.

Let {𝐿Offer
𝑖𝑗𝑘 } be the solution to (19). We would like to emphasize

hat although this solution gives a system-wide resource allocation, it
s not optimal, i.e., from the social welfare point of view, and may even
iolate certain desired economic properties. In fact, this solution is only
sed to determine the amount of VMs for trading in the market. For
xample, the number of VMs of service 𝑗 provided by seller 𝑖 ∈ ,
enoted as 𝐿𝑖𝑗 , can be given as:

𝑖𝑗 =
∑

𝑘∈
𝐿Offer
𝑖𝑗𝑘 (20)

.2. Second stage for resource allocation

This stage is dedicated to allocating VMs among ESs and also
etermining the prices at which VMs are traded, with a double-auction
ased mechanism. Note that since each seller has multiple VMs for sale,
nd each bidder may require multiple ones as well, the mechanism
e consider obviously belongs to the type of multi-unit auctions.
oreover, as VMs can be of different services, the auction is also for

he market with heterogeneous goods. This is almost the most complex
ituation for designing auction mechanisms.

Our proposed mechanism is based on the following key observation:
oth the seller’s and buyer’s valuations for the VMs are additively separable,
.e., for each buyer the value of obtaining several VMs is the sum of
hese VMs’ valuation. This is also true for the sellers as for each seller
he cost of providing several VMs is the sum of these VMs’ cost. Based
n this observation, we can decompose the auction into multiple ones,
here each one is for the assignment of VMs of one service. Moreover,

or each of these auctions, we can further convert it into the standard
ingle-unit double auction, through leaveraging the concept of virtual
ellers and virtual buyers. Once the auction is finished, the assignment
f VMs between sellers and buyers can be recovered by grouping.

We now elaborate on the details of the mechanism. Note that it
uffices to focus on the auction for assigning VMs of one service. Now
ssume VMs of service 𝑗 is to be allocated, and let 𝑗 and 𝑗 be the
et of sellers and buyers, respectively, i.e., 𝑗 = {𝑖 ∈ |𝐷𝑖𝑗 > 0}, and
𝑗 = {𝑖 ∈ |𝐿𝑖𝑗 > 0}. For each buyer 𝑖 ∈ 𝑗 its demand for the VMs is
𝑖𝑗 , we can virtualize it into 𝐷𝑖𝑗 virtual buyers with each one requiring
ne VM. Likewise, for each seller 𝑘 ∈ 𝑗 , its supply of the VMs is 𝐿𝑘𝑗 ,
e can also virtualize it into 𝐿𝑘𝑗 virtual sellers with each one offering
ne VM. The concept of virtual sellers and virtual buyers is depicted in
ig. 4.

Let 𝑖 be the set of virtual buyers of 𝑖 ∈ 𝑗 , and 𝑘 be the set
f virtual sellers of 𝑘 ∈ 𝑗 . For each 𝑙 ∈ 𝑖, its valuation to a VM of

ervice 𝑗 provided by each 𝑡 ∈ 𝑘, denoted as 𝑣𝑙𝑗𝑡, is the same as 𝑖’s

Computer Networks 246 (2024) 110428W. Chu et al.
Fig. 4. The concept of virtual buyers and virtual sellers in the trade of VMs of service
𝑗: here 𝑖 ∈ 𝑗 and 𝐷𝑖𝑗 = 3, 𝑘 ∈ 𝑗 and 𝐿𝑘𝑗 = 4, 𝑙 is a virtual buyer of ES 𝑖, and 𝑡 is a
virtual seller of ES 𝑘.

valuation to the VM if it is provided by 𝑘, i.e., 𝑣𝑙𝑗𝑡 = 𝑣𝑖𝑗𝑘. As a result,
the markup and bid will also be the same, which is as follows:

MB𝑙𝑗𝑡 = MB𝑖𝑗𝑘 (21)

and

Bid𝑙𝑗𝑡 = Bid𝑖𝑗𝑘 (22)

Likewise, the cost of providing a VM of service 𝑗 by each 𝑡 ∈ 𝑘,
denoted by 𝑐𝑡𝑗 , is the same as the cost that the VM is provided by 𝑘,
i.e., 𝑐𝑡𝑗 = 𝑐𝑘𝑗 . It follows that the markup and ask will also be the same,
i.e., we have:

MS𝑡𝑗 = MS𝑘𝑗 (23)

and

Ask𝑡𝑗 = Ask𝑘𝑗 (24)

Let Pay𝑡𝑙 be the price that 𝑙 ∈ 𝑖 pays to the auctioneer if it wins
out and obtains a VM of service 𝑗 from 𝑡 ∈ 𝑘. The payoff of 𝑙 thus
can be expressed as:

PO𝑙 = 𝑣𝑙𝑗𝑡 − Pay𝑡𝑙 (25)

On the other hand, the payoff of the seller 𝑡, if winning out, is:

PO𝑡 = Rec𝑙𝑡 − 𝑐𝑡𝑗 (26)

where Rec𝑙𝑡 is the price that 𝑡 receives.
As we assume that the third-party platform seeks no profit in the

auction, it can set Pay𝑡𝑙 and Rec𝑙𝑡 as follows [17,18]:

Pay𝑡𝑙 = Rec𝑙𝑡 =
Ask𝑡𝑗 + Bid𝑙𝑗𝑡

2
(27)

Note that if the third-party platform does seek profit, which is typical
in real world, we can set Pay𝑡𝑙 and Rec𝑙𝑡 as:

Pay𝑡𝑙 =
Ask𝑡𝑗 + Bid𝑙𝑗𝑡

2
+ 𝛼

2
× (Bid𝑙𝑗𝑡 − Ask𝑡𝑗) (28)

Rec𝑙𝑡 =
Ask𝑡𝑗 + Bid𝑙𝑗𝑡

2
− 𝛼

2
× (Bid𝑙𝑗𝑡 − Ask𝑡𝑗) (29)

where 𝛼 ∈ [0, 1] is a parameter for regulating the profit. In this case,
the gain for the third-party platform is 𝛼 × (Bid𝑙𝑗𝑡 − Ask𝑡𝑗).

Let 𝑥𝑡𝑙 be a binary variable indicating whether 𝑙 and 𝑡 are successfully
matched in the auction. The social welfare SW from this trade can be
6

expressed as:

SW =
∑

𝑖∈𝑗

∑

𝑘∈𝑗

∑

𝑙∈𝑖

∑

𝑡∈𝑘

(PO𝑡 + PO𝑙) ⋅ 𝑥𝑡𝑙

=
∑

𝑖∈𝑗

∑

𝑘∈𝑗

∑

𝑙∈𝑖

∑

𝑡∈𝑘

(𝑣𝑙𝑗𝑡 − 𝑐𝑡𝑗) ⋅ 𝑥𝑡𝑙
(30)

In this work, we aim to maximize social welfare and thus can formu-
late the following optimization problem for the third-party platform:

Maximize:
{𝑥𝑡𝑙}

SW (31a)

s.t.
∑

𝑡∈𝑘

𝑥𝑡𝑙 ≤ 1, ∀𝑖, 𝑘, 𝑙 (31b)

∑

𝑙∈𝑖

𝑥𝑡𝑙 ≤ 1, ∀𝑖, 𝑘, 𝑡 (31c)

(Bid𝑙𝑗𝑡 − Ask𝑡𝑗) ⋅ 𝑥𝑡𝑙 ≥ 0, ∀𝑙, 𝑡 (31d)

𝑥𝑡𝑙 ∈ {0, 1}, ∀𝑙, 𝑡 (31e)

Note that constraint (31b) states that a virtual buyer can obtain a
VM from at most one virtual seller, and (31c) tells that a virtual seller
can provide a VM to at most one virtual buyer. The two constraints
together implies a one-to-one mapping between virtual sellers and
virtual buyers on the VM allocation. Constraint (31d) ensures that the
transaction between a seller and a buyer will only be concluded if the
bid is higher than the ask, which essentially guarantees the economic
property of individual rationality.

Problem (31) is an ILP problem with many linear constraints. To
solve it efficiently, we convert it as the maximum weighted matching
problem (MWM) over a bipartite graph 𝐺(𝜋, 𝜁, 𝜉, 𝜓), where 𝜋 and 𝜁
denotes the set of virtual buyers and virtual sellers, respectively, and
𝜉 is the set of edges between them, i.e., 𝜉 = {(𝑙, 𝑡)|(Bid𝑙𝑗𝑡 − Ask𝑡𝑗) ≥ 0}.
𝜓 denotes the weight on edges, i.e., 𝜓(𝑙, 𝑡) = 𝑣𝑙𝑗𝑡 − 𝑐𝑡𝑗 ,∀(𝑙, 𝑡) ∈ 𝜉. Note
that this weighting process is done over all the edges and hence the
complexity for the construction of the bipartite graph is 𝑂(𝑛2), where 𝑛
is the number of nodes. Moreover, MWM is a well-known assignment
problem and can be efficiently solved by existing algorithms [19]. In
this work, we adopt the classical Hungarian algorithm whose com-
plexity is 𝑂(𝑛3) [20]. The overall complexity to solve problem (31) is
therefore 𝑂(𝑛3).

Once the auction is finished, we can recover the VM assignment
among ESs by grouping. Let {𝑥𝑡,#𝑙 } be the solution to (31), the number
of VMs of service 𝑗 that ES 𝑘 allocates to ES 𝑖, denoted as 𝑥𝑖𝑗𝑘, can be
calculated as follows:

𝑥𝑖𝑗𝑘 =
∑

𝑙∈𝑖

∑

𝑡∈𝑘

𝑥𝑡,#𝑙 (32)

Correspondingly, the price that ES 𝑖 pays to 𝑘 for these VMs, denoted
as Prc𝑖𝑗𝑘, is:

Prc𝑖𝑗𝑘 =
1
2
(Ask𝑘𝑗 + Bid𝑖𝑗𝑘) ⋅ 𝑥𝑖𝑗𝑘. (33)

3.3. Mechanism analysis

Here we show that our mechanism satisfies the desired properties.

Theorem 3.1. The proposed mechanism is computationally tractable.

Proof. Let 𝑆 = 𝑚𝑎𝑥{𝐿𝑖𝑗 , 𝐷𝑖𝑗}(𝑖,𝑗)∈× . From Section 3.1, we know
that the complexity of the first stage is on solving two Knapsack
problems (12) and (19) for all ESs, which are 𝑂(𝑀𝑁) and 𝑂(𝑀2𝑁),
respectively. On the other hand, the complexity of the second stage
is on constructing a bipartite graph and executing the Hungarian
algorithm for each service. The complexity of this stage is at most
𝑂(𝑆3𝑀3𝑁). It follows that the complexity of our mechanism is at most
𝑂(𝑆3𝑀3𝑁). □

Computer Networks 246 (2024) 110428W. Chu et al.

(
t

s

a

M

b
a

Theorem 3.2. The proposed mechanism guarantees individual rationality
for all ESs.

Proof. From the bidding strategies as described in Eqs. (15) and
16), we know that the bid submitted by a buyer is no larger than its
rue valuation to a VM, i.e., we have 𝑣𝑖𝑗𝑘 ≥ Bid𝑖𝑗𝑘,∀𝑖, 𝑗, 𝑘. Likewise,

according to the asking strategies as described in Eqs. (17) and (18),
the ask submitted by a seller is no less than its true cost of providing
the VM, i.e., Ask𝑘𝑗 ≥ 𝑐𝑘𝑗 ,∀𝑘, 𝑗. Now assuming that a VM of service 𝑗
from ES 𝑘 is successfully assigned to ES 𝑖, from (31d) we know that
Bid𝑖𝑗𝑘 ≥ Ask𝑘𝑗 . These inequalities together with Eq. (27) (or Eq. (28)
and (29)) implies that Pay𝑘𝑖 < Bid𝑖𝑗𝑘 ≤ 𝑣𝑖𝑗𝑘 and Rec𝑖𝑘 > Ask𝑘𝑗 ≥ 𝑐𝑘𝑗 ,
which is exactly the individual rationality for the sellers and buyers by
definition. □

Theorem 3.3. The proposed mechanism is budget balanced.

Proof. The property of budget balance is obvious since from Eq. (27)
(or Eqs. (28) and (29)), we can see that the payment made by each
virtual buyer equals to the price received by the corresponding virtual
seller plus the gain of the third-party platform, i.e., there is no deficit
in the market. □

Remarks. In this work, as our goal is to maximize social welfare, we
do not guarantee truthfulness as most auction mechanisms pursue. In
fact, researchers have shown that there is a conflict between the two
goals of truthfulness and system efficiency maximization [21], i.e., al-
though truthfulness makes the auction mechanism design simpler, it
may degrade system performance considerably at the same time. In
our mechanism, we use markups to capture the dishonest behaviors of
both the buyers and sellers, which makes it more practical. Meanwhile,
from the economic point of view, our mechanism also leads to a faster
growth of the economy as the higher social welfare, the more efficient
of the market as more ESs will participate [22].

4. A price-based decentralized allocation mechanism

In this section, we present a price-based decentralized algorithm to
perform resource allocation for the edge computing network, as the 2-
stage algorithm proposed in the above section requires a third-party
platform as a central coordinator. The third-party platform is assumed
to be trusted and fair, which limits the applicability of the proposed
auction mechanism. On the other hand, decentralized mechanisms are
able to achieve superior performance through nodes collaboration and
local computation, and therefore they are more preferred.

4.1. Decentralized algorithm

Our decentralized mechanism is based on the lagrangian dual-based
decomposition theory. The core idea is to decompose the resource
allocation problem into multiple sub-problems, each one for an indi-
vidual ES or service that can be locally solved. Since there is no central
authority, for an optimal allocation the two parties interact with each
other through exchanging some information that can be locally derived
by each party, but which is also needed by the other party for solving
its sub-problem. This process of local computation and information
exchange iterates until convergence.

More specifically, our decentralized mechanism also comprises of
two stages, where the first one is exactly the same as that of the
double-auction based mechanism, i.e., each ES preferentially dedicates
its resources to local workload by solving problem (12). The remaining
resources are allocated by the price-based decentralized algorithm. Let
𝒙𝒊𝒋 = (𝑥1𝑗𝑖, 𝑥2𝑗𝑖,… , 𝑥𝑀𝑗𝑖) denote the resource allocation of service 𝑖𝑗
(service 𝑗 at ES 𝑖 for short), and 𝒙 = (𝒙𝟏𝟏,𝒙𝟏𝟐,… ,𝒙𝑴𝑵). Also denote
by 𝑖𝑗 = {𝒙𝑖𝑗 |𝟏𝑇 ⋅ 𝒙𝒊𝒋 ≤ 𝐷𝑖𝑗 ,𝒙𝒊𝒋 ≥ 𝟎}, and =

∏

𝑖𝑗 𝑖𝑗 . We assume
7

that the amount of the remaining resources for allocation at each ES o
is much larger than that required by a VM, i.e., 𝑅Left
𝑖𝑠 ≫ 𝑟𝑗𝑠,∀𝑖, 𝑗, 𝑠, so

that 𝑥𝑘𝑗𝑖’s can be regarded as real numbers as the rounding error will
be negligible. The resource allocation task at the second stage then can
be reformulated as the following optimization problem:

Maximize:
𝒙

∑

𝑖

∑

𝑗

∑

𝑘∈(𝑖)
𝑥𝑘𝑗𝑖(𝑣𝑖𝑗𝑘 − 𝑐𝑘𝑗) (34a)

s.t. 𝒙 ∈ (34b)
∑

𝑖

∑

𝑗
𝑥𝑘𝑗𝑖 ⋅ 𝑟𝑗𝑠 ≤ 𝑅Left

𝑘𝑠 , ∀𝑘 ∈ (𝑖), 𝑠 (34c)

Note that problem (34) is a linear program and hence the canonical
dual-based decomposition method for the NUM framework cannot be
applied, i.e., the utility function is not strictly concave [23].

To model the resource allocation task with the standard NUM
framework and leverage the existing technique, our solution is to add
a concave term to the objective function of problem (34), so that: (1)
the problem under study becomes convex; and (2) the gap between
the solution of the new problem and that of the original one can be
bounded. Here we choose the term as ∑

𝑖
∑

𝑗
∑

𝑘∈(𝑖)(log(𝑥𝑘𝑗𝑖 + 1) −
𝑥𝑘𝑗𝑖)∕𝑀2, which satisfy the above two requirements (the proof is given
in Section 4.2). Now let us consider the following problem:

Max:
𝒙

∑

𝑖,𝑗

∑

𝑘∈(𝑖)

(

𝑥𝑘𝑗𝑖(𝑣𝑖𝑗𝑘 − 𝑐𝑘𝑗) +
log(𝑥𝑘𝑗𝑖 + 1) − 𝑥𝑘𝑗𝑖

𝑀2

)

(35a)

.t. (34b), (34c) (35b)

Let 𝛼𝑘𝑠 ≥ 0 and 𝜶 = (𝛼11, 𝛼12,… , 𝛼𝑀4), where 𝛼𝑘𝑠 is the Lagrangian
multiplier for the constraint (34c) and can be physically interpreted as
the price of resource 𝑠 at ES 𝑘. Define Lagrangian:

𝐿(𝒙,𝜶) =
∑

𝑖,𝑗,𝑘∈(𝑖)

(

𝑥𝑘𝑗𝑖(𝑣𝑖𝑗𝑘 − 𝑐𝑘𝑗) +
log(𝑥𝑘𝑗𝑖 + 1) − 𝑥𝑘𝑗𝑖

𝑀2

)

+
∑

𝑘,𝑠
𝛼𝑘𝑠(𝑅Left

𝑘𝑠 −
∑

𝑖,𝑗
𝑥𝑘𝑗𝑖 ⋅ 𝑟𝑗𝑠)

=
∑

𝑖,𝑗,𝑘

(

𝑥𝑘𝑗𝑖(𝑣𝑖𝑗𝑘 − 𝑐𝑘𝑗 −
1
𝑀2

−
∑

𝑠
𝛼𝑘𝑠𝑟𝑗𝑠) +

log(𝑥𝑘𝑗𝑖 + 1)

𝑀2

)

+
∑

𝑘,𝑠
𝛼𝑘𝑠𝑅

Left
𝑘𝑠

(36)

The key to the decomposition of problem (35) is to examine its dual.
With Lagrangian, the dual objective can be written as:

𝑔(𝜶) = Maximize:
𝒙∈

𝐿(𝒙,𝜶) (37)

nd the dual problem is to find:

inimize:
𝜶≥𝟎

𝑔(𝜶) (38)

Note that problem (38) is convex even when problem (35) is not.
Let 𝑼 𝑖𝑗 =

∑

𝑘(𝑥𝑘𝑗𝑖(𝑣𝑖𝑗𝑘 − 𝑐𝑘𝑗 −
1
𝑀2 −

∑

𝑠 𝛼𝑘𝑠𝑟𝑗𝑠) +
log(𝑥𝑘𝑗𝑖+1)

𝑀2). As the
first term in the RHS of the last equation in (36) is separable, we have:
Max
𝒙∈

∑

𝑖,𝑗 𝑼 𝑖𝑗 =
∑

𝑖,𝑗 Max
𝒙𝑖𝑗∈𝑖𝑗

𝑼 𝑖𝑗 . According to [24], we can now readily

formulate an optimization problem for each service 𝑖𝑗 as follows:
Service 𝑖𝑗’s problem:

Maximize:
𝒙𝑖𝑗

𝑼 𝑖𝑗 (39a)

s.t. 𝒙𝑖𝑗 ∈ 𝑖𝑗 (39b)

Theorem 4.1. The edge resource allocation problem (39) has a unique
optimal solution.

Proof. Given 𝜶, we can see that 𝑼 𝑖𝑗 is a concave function in 𝒙𝑖𝑗 . Now
y its definition, 𝑖𝑗 is an affine set. It follows that problem (39) is
convex optimization program and hence a unique maximizer, called
ptimal solution, exists. □

Computer Networks 246 (2024) 110428W. Chu et al.

h
o
c

r
a
e
b
r
c

(
p
a

P

C

t
a
w
q
f
a

P
i
l
p
d

l
s

c
t
E
i
r
a
m
i

T
a
t

P
1

𝑓

5

m
r
t
A

5

6
a
1
o
(
1
1
r
A
W
p
M
𝑐

Algorithm 1 Decentralized algorithm for edge resource allocation.
1: # For each service 𝑖𝑗:
2: Start with an initial resource demand 𝒙𝟎𝒊𝒋 .
3: for 𝑡 = 0, 1, 2,… do
4: Collect from ESs the price of resources 𝜶𝒕.
5: Obtain 𝒙𝒕+𝟏𝒊𝒋 through solving problem (39).
6: Broadcast 𝒙𝒕+𝟏𝒊𝒋 to the corresponding ESs.

7: # For each ES 𝑘:
8: Start with an initial price 𝜶𝟎

𝒌.
9: for 𝑡 = 0, 1, 2,… do

10: Collect demand from ESs/services 𝒙𝒕.
11: Update 𝜶𝒕+𝟏

𝒌 according to Eq. (40).
12: Broadcast 𝜶𝒕+𝟏

𝒌 to the corresponding ESs/services.

Once each ES 𝑘 receives resource requirements from services, its
price can be updated through a projected sub-gradient approach, as
follows:

𝛼𝑡+1𝑘𝑠 = [𝛼𝑡𝑘𝑠 + 𝛾(
∑

𝑖,𝑗
𝑥𝑡𝑘𝑗𝑖 ⋅ 𝑟𝑗𝑠 − 𝑅

Left
𝑘𝑠)]+ (40)

where 𝛾 > 0 is a step size and 𝑡 denotes time. Eq. (40) implies that when
the services require too much resources, i.e., ∑𝑖,𝑗 𝑥

𝑡
𝑘𝑗𝑖 ⋅ 𝑟𝑗𝑠 > 𝑅

Left
𝑘𝑠 , each

ES will increase its price of resources so that the demand from services
will fall (recall that 𝑼 𝑖𝑗 is a decreasing function in 𝛼𝑘𝑠). On the other
and, when there are extra resources, i.e., ∑𝑖,𝑗 𝑥

𝑡
𝑘𝑗𝑖 ⋅𝑟𝑗𝑠 < 𝑅

Left
𝑘𝑠 , the price

f resources at each ES will be decreased so that these resources can be
onsumed by services.

In short, in the mechanism each ES locally calculates the price of its
esources based on the amount of resources required by each service,
nd then broadcasts the price to the services. On the other hand,
ach service locally calculates the amount of resources it demands,
ased on the prices published by ESs. Each service then broadcasts its
equirement of resources back to the ESs. This process iterates until
onvergence, as depicted in Alg. 1.

Let {𝑥#𝑘𝑗𝑖} and {𝛼#𝑘𝑠} be the optimal solution to problem (38) and
39) respectively, i.e., when Alg. 1 converges. The price that service 𝑖𝑗
ays to ES 𝑘 for using its resources, denoted as Prc𝑖𝑗→𝑘, can be given
s:

rc𝑖𝑗→𝑘 = 𝑥#𝑘𝑗𝑖 ⋅ (𝑐𝑘𝑗 +
∑

𝑠
𝛼#𝑘𝑠𝑟𝑗𝑠) (41)

orrespondingly, the price that ES 𝑖 pays to ES 𝑘, denoted as Prc𝑖→𝑘, is:

Prc𝑖→𝑘 =
∑

𝑗
Prc𝑖𝑗→𝑘 =

∑

𝑗
𝑥#𝑘𝑗𝑖 ⋅ (𝑐𝑘𝑗 +

∑

𝑠
𝛼#𝑘𝑠𝑟𝑗𝑠) (42)

Remark. (1) From Eq. (42) we can see that the price paid by each ES
consists of two parts. The first one is for the cost of the VMs provided
by other ESs, and the second one is for the resources consumed by
these VMs. This is unlike the traditional price-based dual decomposition
approach where the price paid by each party is exactly for the resources
consumed, i.e., the second part; (2) To solve problem (39), it is required
that each service 𝑖𝑗 is aware of the cost of providing VMs at each ES,
i.e., {𝑐𝑘𝑗}. We argue that this information is publicly available, i.e., in
he cloud-computing market the price of renting a VM at platforms such
s Amazon Web Services (AWS) or Microsoft Azure is posted on their
ebsites. Alternatively, one can also obtain this information through
uerying ESs during resource allocation; (3) Although problem (39) is
or each service, in practice it is solved by the corresponding ES as we
re allocating resources and stimulating collaboration among ESs.
8

4.2. Mechanism analysis

Theorem 4.2. {𝑥#𝑘𝑗𝑖} is the optimal solution to problem (35).

roof. By definition, is a product of the affine sets {𝑖𝑗} and hence
t is convex. Since constraint (34c) is linear, the feasible set of prob-
em (35) is convex. Therefore, problem (35) is a convex optimization
roblem and hence the duality gap between the primal solution and the
ual solution is zero, i.e., {𝑥#𝑘𝑗𝑖} solves problem (35). □

Theorem 4.3. The proposed mechanism guarantees individual rationality
for all ESs and services.

Proof. When 𝑥 > 0, we have log(𝑥 + 1) − 𝑥 < 0, and when 𝑥 = 0,
og(𝑥 + 1) − 𝑥 = 0. Now from problem (39) we can see that for each
ervice 𝑖𝑗 with 𝑥#𝑘𝑗𝑖 > 0, we have 𝑥#𝑘𝑗𝑖(𝑣𝑖𝑗𝑘− 𝑐𝑘𝑗) > 0, since (log(𝑥#𝑘𝑗𝑖+1)−
𝑥#𝑘𝑗𝑖)∕𝑀

2 −
∑

𝑠 𝑥
#
𝑘𝑗𝑖𝛼𝑘𝑠𝑟𝑗𝑠 < 0. Otherwise, if 𝑥#𝑘𝑗𝑖(𝑣𝑖𝑗𝑘 − 𝑐𝑘𝑗) < 0, then we

an set 𝑥#𝑘𝑗𝑖 = 0 to improve the utility, which tells that 𝑥#𝑘𝑗𝑖 > 0 is not
he optimal solution. This means service 𝑖𝑗 will request resources from
S 𝑘 only when 𝑣𝑖𝑗𝑘 > 𝑐𝑘𝑗 , i.e., when the payoff from task offloading
s greater than the cost for the resource, which implies individual
ationality for the service. Likewise, for each ES 𝑘 with 𝑥#𝑘𝑗𝑖 > 0,
ccording to Eq. (42) we have Prc𝑖→𝑘 >

∑

𝑗 𝑥
#
𝑘𝑗𝑖 ⋅ 𝑐𝑘𝑗 , i.e., ES 𝑘 is paid

ore than the cost of the resources it provides, which, by definition,
mplies individual rationality for 𝑘. □

heorem 4.4. Let 𝑓 and be the objective function of problem (34)
nd problem (35), respectively. Also denote by 𝒙∗ be the optimal solution
o (34), and 𝐷𝑚𝑎𝑥 = max{𝐷𝑖𝑗}. Then we have 𝑓 (𝒙∗) − 𝑓 (𝒙#) ≤ 𝑁𝐷𝑚𝑎𝑥.

roof. It is clear that for all 𝑥𝑘𝑗𝑖 ∈ [0, 𝐷𝑖𝑗], we have 0 ≥
∑

𝑖𝑗𝑘(log(𝑥𝑘𝑗𝑖 +
)−𝑥𝑘𝑗𝑖)∕𝑀2 ≥

∑

𝑖𝑗𝑘(log(𝐷𝑖𝑗+1)−𝐷𝑖𝑗)∕𝑀2 ≥ − 1
𝑀2

∑

𝑖𝑗𝑘𝐷𝑚𝑎𝑥 ≥ −𝑁𝐷𝑚𝑎𝑥,
which implies that 𝑓 (𝒙∗) − (𝒙∗) ≤ 𝑁𝐷𝑚𝑎𝑥. Now since (𝒙#) ≥ (𝒙∗),
(𝒙#) ≥ (𝒙#), it follows that 𝑓 (𝒙∗) − 𝑓 (𝒙#) ≤ 𝑁𝐷𝑚𝑎𝑥. □

. Performance evaluation

In this section, we perform numerical studies to evaluate the perfor-
ance of our proposed mechanisms. To make it more practical, we use

eal-world dataset from today’s cloud-computing market. In particular,
he resource configuration of VMs and their prices are drawn from
libaba Cloud [14].

.1. Evaluation setup

We consider an edge-computing network with 6 services, i.e., 𝑁 =
. The resource configuration of each VM of these services are char-
cterized as follows: General Purpose Instance (2 GHz, 8 GB, 40 GB,
0 Gbps), Computation Type (2 GHz, 4 GB, 20 GB, 10 Gbps), Mem-
ry Instance (2 GHz, 16 GB, 40 GB, 10 Gbps), Computation-Optimized
2 GHz, 2 GB, 20 GB, 1 Gbps), Big Data Instance (24 GHz, 88 GB,
1100 GB, 12 Gbps) and Local SSD Instance (2 GHz, 16 GB, 447 GB,
5 Gbps). Note that these VMs are of different types and have diverse
esource requirements. The price of renting each of these VMs on
libaba Cloud is 𝒄 = (𝑐𝑗) = (251.66, 195.7, 334.19, 120.15, 3300.0, 459.5).
e use these prices to set the cost of hosting a VM at each ES and the

ayoff from having the corresponding workload processed at each ES.
ore specifically, the cost of hosting a VM of service 𝑗 at each ES 𝑘,
𝑘𝑗 , is uniformly and randomly (u.a.r) drawn from [𝑐𝑗 − 𝛿𝑗 , 𝑐𝑗 + 𝛿𝑗],

where 𝜹 = (𝛿𝑗) = (40, 30, 50, 20, 200, 70). Likewise, the payoff from
having workload of each service locally processed, 𝑣𝑖𝑗𝑖, is u.a.r drawn
from [2𝑐𝑗 , 3𝑐𝑗]. The payoff from offloading workload to other ESs, 𝑣𝑖𝑗𝑘,
is set according to the following rule: at probability 0.8 it is u.a.r
drawn from [2𝑐𝑗 , 𝑣𝑖𝑗𝑖], and at probability 0.2 drawn from [0.9𝑐𝑖𝑗 , 1.2𝑐𝑖𝑗].
This models the scenario that it is not always profitable for each ES

Computer Networks 246 (2024) 110428W. Chu et al.

a
o
a

w
s
m
v
r

5

a
a
s
c
i
t
E
f
o
f
d
w
c
a
c

r

providing services to other ESs. Moreover, we configure the resources
at each ES as follows: the CPU frequency (GHz) at each ES is set as
128 + 2randint(1, 6), the memory capacity (GB) as 256 + 2randint(1, 8), the
storage capacity (GB) as 20000+200× randint(1, 100), and the network
bandwidth (Gbps) is u.a.r drawn from [201, 300]. The workload of each
service 𝑗 at each ES 𝑖, 𝜆𝑖𝑗 , is u.a.r drawn from [0, 20] at probability 1/2,
and u.a.r drawn from [0, 2] at probability 1/2. This results in a skewed
workload distribution.

5.2. Benchmarks

We adopt the following five benchmarks for a comprehensive per-
formance comparison:

(1) Random Allocation: This is the mechanism that randomly
allocates the spare resources of each ES to services. The allocation
of VMs among ESs is performed according to the second stage of the
proposed auction-based mechanism.

(2) Without Incentive: This mechanism dedicates resources of each
ES solely to its local workload. In other words, there is no collaboration
among ESs even when some ESs have spare resources.

(3) Optimal SocialWelfare: This mechanism allocates resources of
ESs in a way such that the social welfare is maximized, i.e., through
solving problem (11).

(4) TASC [25]: This is also an auction-based mechanism that origi-
nally proposed for cooperative communications. It was proven to have
individual rationality, budget balance and truthfulness properties, but
may sacrifice system efficiency.

(5) MDA [26]: Proposed for E-Markets, this canonical multi-unit
double auction mechanism has properties of individual rationality,
budget balance and truthfulness, while at the same time guarantees
high efficiency.

Note that for benchmarks (1), (2) and (5), resource allocations are
determined optimally by running our proposed algorithm, i.e., only
when the first stage of the proposed mechanism completes do we
know the remaining resources for allocation at each ES. For benchmark
(3), we adopt the PuLP solver to address problem (11), although it
takes long time to get the solution. Unless otherwise specified, for our
auction-based mechanism we set the parameter for regulating the profit
of the third-party platform as 𝛼 = 0.1.

5.3. Numerical results

5.3.1. Performance of two-stage incentive mechanism
We first investigate the performance of our two-stage double auction

based resource allocation mechanism. Fig. 5(a) gives the social welfare
of different algorithms when the number of ESs is 5, i.e., 𝑀 = 5. From
the figure, we can see that our proposed mechanism is able to achieve
as much as 96% the optimal social welfare, which is much better than
Random Allocation (74%) and Without Incentive (65%). Moreover,
it also outperforms TASC by more than 32% where the third-party
platform seeks no profit in the auction, and MDA by 5.5%. Furthermore,
it is surprising to observe that in this case study the performance of
Random Allocation is even better than Without Incentive and TASC,
which strongly suggests collaboration among ESs for improved social
welfare.

To see how each ES performs under the six mechanisms, we trace
their revenue through resource allocation and the result is illustrated
in Fig. 5(b). Obviously we can see that although Optimal SocialWelfare
attains the maximum system performance, it does lead to negative
revenue for some ESs, i.e., ES 1 and ES 3. This tells us the fact that
in order to obtain an optimal overall system performance, Optimal
SocialWelfare may sacrifice individual interests. On the other hand,
our proposed mechanism guarantees individual rationality for all ESs,
i.e., each ES gains profit from collaboration. Moreover, as compared
with the four counterparts, our mechanism is able to achieve a higher
9

revenue for each ES. c
Fig. 6 depicts the resource utilization efficiency of different mecha-
nisms. Here, we show the usage of all the four types of resources at each
ES. We can see that: (1) for some type of resources, Without Incentive
leads to considerable waste at ESs, i.e., the CPU usage at ES 1 and ES 3,
the memory usage at ES 1 and ES 3; (2) Out of our expectation, Optimal
SocialWelfare does not provide the highest usage at every ES, i.e., the
CPU usage at ES 2 is lower than that of the other mechanisms; and
(3) In average, our proposed two-stage mechanism provides satisfactory
resource utilization efficiency at all ESs.

We also investigate the performance of our mechanism when the
third-party platform seeks more profit in the auction, i.e., 𝛼 = 0.3,
nd the result is depicted in Fig. 7. Again we find that our mechanism
utperforms baselines except Optimal SocialWelfare, and it is able to
chieve a high revenue for all ESs.

Figs. 8 and 9 give the performance of the concerned mechanisms
hen there are more ESs in the network, i.e., 𝑀 = 10. We observe

imilar trends, i.e., as compared with other baselines, our proposed
echanism provides an optimized social welfare, and it ensures indi-

idual rationality for all ESs while at the same time maintains a high
esource utilization efficiency.

.3.2. Performance of price-based decentralized mechanism
To investigate the performance of our price-based decentralized

lgorithm, we compare it with the double-auction based mechanism,
nd the results are shown in Figs. 10 to 13. From these figures, we can
ee that our price-based allocation mechanism achieves comparable so-
ial welfare with the double-auction based mechanism, and it provides
ndividual rationality for all ESs. Meanwhile, it is interesting to observe
hat the price-based mechanism even provides more revenue for some
Ss, i.e., ES 2 as shown in Fig. 10(b) and ES 7 in Fig. 12(b). Moreover,
rom Figs. 11 and 13, it can be seen that for some type of resources,
ur price-based allocation mechanism consumes less resources, which
rom the viewpoint of economy, implies that it is more efficient than the
ouble-auction based mechanism. In fact, according to Theorem 4.4,
e can see that the cost of decentralization, as compared with the

entralized solution, can be made arbitrarily small as long as we adopt
larger constant factor in the added concave term. For example, we

an choose the term as ∑

𝑖
∑

𝑗
∑

𝑘∈(𝑖)
log(𝑥𝑘𝑗𝑖+1)−𝑥𝑘𝑗𝑖

𝐾𝑀2 and let 𝐾 → +∞.
Figs. 14 and 15 show the convergence behavior of the price-based

decentralized mechanism, where Figs. 14(a) and 15(a) give the social
welfare of the system as time elapses (the solution may violate the
resource constraints). We can see that the maximum social welfare
is obtained at the very beginning, i.e., when the price vector 𝜶 is
initialized to be 𝟎 and all the services require resources as much as
possible. According to the price update rule as given in Eq. (40), each
ES then increases its price and the resource demand then decreases.
This results in a decrease of social welfare. The system eventually
fluctuates within a given interval, as shown in Fig. 14(a). Note that
this behavior is in accordance with the sub-gradient based approach
where only the optimal social welfare converges if we keep track of
the best solution found, as shown in Figs. 14(b) and 15(b) where the
optimal valid social welfare of the system is depicted (with no resource
constraints violated). Obviously, we can see that the optimal social
welfare is quickly found and the system converges then.

6. Discussions and related work

In this section, we explore the implications of our mechanisms and
present some future research directions. We end with a brief discussion
of the related work.

(1) Performance assurance for offloaded tasks. When offloading
tasks to other edge servers, it is crucial to guarantee that the per-
formance requirements of the offloaded tasks can be satisfied. Recall
that in our model we use two sets (𝑖) and (𝑖) to represent the QoS
equirements of services, which respectively denote the set of ESs that

an offload tasks to ES 𝑖 and the set of ESs to which 𝑖 can offload its

Computer Networks 246 (2024) 110428W. Chu et al.
Fig. 5. Social welfare and revenue of different mechanisms: 𝑀 = 5 and 𝛼 = 0.1.
Fig. 6. Resource efficiency of different mechanisms: 𝑀 = 5 and 𝛼 = 0.1.
tasks, both without QoS constraints. The merit of this abstraction is that
it allows us to incorporate various QoS requirements. For example, if
the transmission delay between ES 𝑖 and ES 𝑘 is too large or the network
bandwidth between them is too small, then in either case ES 𝑘 will
not be a member of (𝑖), i.e., 𝑘 ∉ (𝑖). Another advantage of this
abstraction is that it can be easily extended to handle the fine-grained
QoS requirements of individual applications. For example, for delay-
sensitive applications, since the transmission delay between end-users
and their local ES is much smaller than that between different ESs, the
transmission delay of a task, if offloaded to other ES, is mainly due
to the delay between ESs. This implies that when offloading tasks to
other ESs, we can determine whether the delay requirement can be
satisfied based on the delay between ESs. More specifically, if different
10
applications have diverse delay requirements, then we can define the
sets (𝑖𝑗) and (𝑖𝑗) for each service 𝑗, which respectively denote the set
of ESs that can offload tasks of 𝑗 to ES 𝑖 and the set of ESs to which 𝑖 can
offload tasks of 𝑗, without violating 𝑗’s delay requirement. In this way,
we can guarantee that the delay requirement of individual applications
can be satisfied when their tasks are offloaded to other edge servers.
Of course, in order to achieve this, we need systems that can be
leveraged to monitor and provision resources of the underlying MEC
network [27]. Some virtualization and service-oriented solutions such
as network function virtualization (NFV) [28] by ETSI ISG, IETF service
function chaining [29] (SFC), 3GPP/5G-pp 5G Network Slicing [30],
can be adopted to provide such functions and support.

Computer Networks 246 (2024) 110428W. Chu et al.
Fig. 7. Social welfare and revenue of different mechanisms: 𝑀 = 5 and 𝛼 = 0.3.
Fig. 8. Social welfare and revenue of different mechanisms: 𝑀 = 10 and 𝛼 = 0.1.
(2) Multiple ESs for each SP. We assume in problem formulation
that each SP owns a single ES, which may not always hold in practice.
It is thus interesting to see whether our mechanisms still work when
each SP owns multiple ESs. We argue that this issue can be addressed
by extending our model, i.e., we can regard each ES as a virtual SP, and
each SP then comprises of multiple virtual SPs. The revenue of each
SP is then the sum of the revenue of the corresponding virtual SPs.
The proposed mechanisms, i.e., double-auction based and price-based
resource allocation, remain effective.

Related Work The problem of incentive mechanism design [31–33]
for multi-access edge computing is essentially to devise a mechanism
for system so that profit-driven entities (i.e., mobile devices, edge
servers) are willing to share their resources to improve profit and
resource efficiency. The profit is usually modeled as utilities in the
literature. Accordingly, there are three type of utilities: utility of users,
utility of servers, and social welfare.

Utility of users is often defined as the valuation obtained by offload-
ing tasks minus the cost of offloading. The valuation can be simply
the economic value from users’ perspective [34–36], or modeled as
a function of QoE improvement [37,38] such as delay reduction and
energy savings. The offloading decision is the key design parameter
if we want to optimize this utility. On the other hand, utility of
servers is often characterized as the payment received from all users
for task offloading minus the cost for processing their tasks. In this
context, designing an appropriate pricing scheme is the focus of the
research [39]. Typical pricing strategies include uniform pricing [37],
11
differentiated pricing [40] and bid-based pricing [36,38]. The last type
of utility is social welfare, which is defined as the sum of utilities of
all the participants in system [41]. Since the payment appears in both
the utility of users and that of servers, it equals to the valuation from
users offloading tasks minus the cost of resources consumed for pro-
cessing tasks. To maximize this utility, both the offloading/matching
policy between users and servers and the pricing strategy should be
considered.

Existing incentive mechanisms for multi-access edge computing
can be generally categorized into game-theory-based-mechanisms [37,
40,42,43] and auction-based-mechanisms [34,36,38,41]. The game-
theory-based-mechanisms can be further divided into the categories
of non-cooperative-game-based and cooperative-game-based. For non-
cooperative-game-based mechanisms, [37] models the process of users
competing edge resources as a non-cooperative game, and tries to
maximize the utility of users. [40] establishes a stackelberg game for
the system where the resources of an edge server (leader) is shared
among multiple mobile devices (followers). In this case, the problem is
mainly about how to set the price of resource at the server side, and
whether or not to offload tasks to the server at the user side. Unlike
non-cooperative-game-based mechanisms, the cooperative-game-based
mechanisms [43] usually adopt a coalitional model among users, which
can play the role as collaborators for task relaying, execution, etc.
Here, the key challenge is how to choose the best collaborator and also
determine the task offloading mode.

Computer Networks 246 (2024) 110428W. Chu et al.
Fig. 9. Resource efficiency of different mechanisms: 𝑀 = 10 and 𝛼 = 0.1.
Fig. 10. Social welfare and revenue of the two mechanisms: 𝑀 = 5 and 𝛼 = 0.1.
The auction-based-mechanisms establish an auction model between
edge servers providing resources and user devices with tasks for po-
tential offloading. Different from game-theory-based-mechanisms, a
third-party platform is often needed as an auctioneer for setting the
prices of resources and also determining the matching between users
and servers. Most often, the goal is to maximize social welfare. For ex-
ample, [44] studies the problem of allocating VMs of Edge Cloud Nodes
(ECNs) to nearby mobile users, and proposes a truthful Auction-based
VM Allocation (AVA) mechanism to solve it. [45] considers the scenario
that a Cloud Service Centre (CSC) recruits small edge servers to process
the offloaded tasks and proposes a reverse-auction based mechanism to
solve the task offloading and resource allocation problem. To stimulate
edge servers to provide resources to MDs, [46] proposes a truthful and
12
budget-balanced auction mechanism and takes into account locality
constraints of MEC system. [47] proposes a breakeven-based double
auction (BDA) and a dynamic pricing based double auction (DPDA)
mechanism to determine the matched pairs between MDs and ESs,
which were proven to meet the desired economic properties. He et al.
in [41] develop an auction based online mechanism that stimulates
mobile devices offering computing resources to other MDs, and show
that it achieves near optimal long-term social welfare as compared
to the offline optimum. Among these mechanisms, [34,41] adopt the
regular forward auction framework where the bid is offered by the
buyers, [38] adopts the reverse auction framework where the bid is
offered by the sellers, and [35,36,47] adopt double auction framework
where the buyers offer bids and the sellers offer asks.

Computer Networks 246 (2024) 110428W. Chu et al.
Fig. 11. Resource efficiency of the two mechanisms: 𝑀 = 5 and 𝛼 = 0.1.
Fig. 12. Social welfare and revenue of the two mechanisms: 𝑀 = 10 and 𝛼 = 0.1.
Existing incentive mechanisms for MEC can also be categorized
into offline mechanisms and online mechanisms. The offline mecha-
nisms [48] assume all the information about tasks and resources at
edge servers are available before the decision is made. An optimized
solution thus can be derived using such global knowledge. On the
other hand, in online mechanisms [41,49], tasks from users arrive
dynamically and there is no prior knowledge about the resources at
edge servers. The system has to make decisions in an online fashion.
In general, although offline mechanisms are able to provide much
better performance than online mechanisms, the latter is more flexible
and suitable in dynamic environment such as a real edge computing
network, where the characteristics of tasks and resources can change
over time and are difficult to predict.
13
Our work differs from existing ones in that: (1) we propose to
incentive resource allocation and task offloading between edge servers,
whereas most existing work focuses on allocating edge resources to
MDs (or end-users), or offloading tasks between the edge and cloud. In
other words, there is no cooperation between ESs. In addition, resource
allocation in our mechanism is carried out in terms of VMs/containers,
whereas most existing work typically adopt a task-based resource allo-
cation scheme; (2) We provide a two-stage resource allocation mech-
anism, where at the first stage each ES preferentially allocates its
resources to local workload. This prevent each ES from allocating
its resources fully to other ESs, i.e., when other ESs offer a high
reward, at the cost of sacrificing the revenue of its local users, which is
obviously not reasonable. Meanwhile, it also significantly reduces the
computational complexity of the mechanism. On the contrary, most

Computer Networks 246 (2024) 110428W. Chu et al.
Fig. 13. Resource efficiency of the two mechanisms: 𝑀 = 10 and 𝛼 = 0.1.
Fig. 14. Convergence of the price-based mechanism: 𝑀 = 5 and 𝛼 = 0.1.
14
Fig. 15. Convergence of the price-based mechanism: 𝑀 = 10 and 𝛼 = 0.1.

Computer Networks 246 (2024) 110428W. Chu et al.
existing work does not provide such treatment; and (3) We consider
a general multi-server MEC system, where multiple heterogeneous ser-
vices/applications compete for the multi-server edge resources. Mean-
while, to make our mechanism more practical and computationally cost
efficient, we model resource allocation with a multi-commodity multi-
unit double auction, and adopt the concept of markups and virtual
sellers/buyers. To the best of our knowledge, these ideas have not been
adopted in existing work on cooperative edge computing.

7. Conclusion

We study the problem of stimulating resource sharing among dif-
ferent edge servers in a generic edge computing network, and adopt
a VM/container based resource allocation scheme. A two-stage market
based resource allocation mechanism is proposed, where edge resources
at each ES are first allocated to services according to its local workload,
and then distributed among other ESs through a multi-unit double
auction. We further develop a price-based decentralized mechanism in
which resource allocation is performed fully by ESs through their local
computation and limited information exchange. We give pricing strate-
gies for the two mechanisms and prove their fundamental properties.
The efficacy of our mechanisms are validated via numerical studies.

CRediT authorship contribution statement

Weibo Chu: Writing – original draft, Methodology, Funding acqui-
sition, Formal analysis, Conceptualization. Xinming Jia: Validation,
Software, Methodology. Zhiwen Yu: Supervision, Resources, Project
administration, Funding acquisition. John C.S. Lui: Writing – review &
editing, Supervision, Resources, Methodology. Yi Lin: Writing – review
& editing, Visualization, Validation, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (Grant No. 62172333) and the Natural Science
Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-
073). The work of John C.S. Lui was supported in part by the RGC
SRFS2122-4S02.

References

[1] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi-access
edge computing: A survey of the emerging 5G network edge cloud architecture
and orchestration, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1657–1681.

[2] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. & Tutor. 19
(4) (2017) 2322–2358.

[3] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al., Mobile-
edge computing introductory technical white paper, 29, 2014, pp. 854–864,
White paper, mobile-edge computing (MEC) industry initiative.

[4] A.C. Baktir, C. Sonmez, C. Ersoy, A. Ozgovde, B. Varghese, Addressing the
challenges in federating edge resources, in: Fog and Edge Computing: Principles
and Paradigms, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2019, pp. 25–49.

[5] C. Gong, F. Lin, X. Gong, Y. Lu, Intelligent cooperative edge computing in
internet of things, IEEE Internet Things J. 7 (10) (2020) 9372–9382.

[6] U. Saleem, Y. Liu, S. Jangsher, Y. Li, T. Jiang, Mobility-aware joint task
scheduling and resource allocation for cooperative mobile edge computing, IEEE
Trans. Wireless Commun. 20 (1) (2020) 360–374.
15
[7] S. Zhong, S. Guo, H. Yu, Q. Wang, Cooperative service caching and computation
offloading in multi-access edge computing, Comput. Netw. 189 (2021) 107916.

[8] Z. Jiang, N. Ling, X. Huang, S. Shi, C. Wu, X. Zhao, Z. Yan, G. Xing, CoEdge:
A cooperative edge system for distributed real-time deep learning tasks, in:
Proceedings of the 22nd International Conference on Information Processing in
Sensor Networks, 2023, pp. 53–66.

[9] Open Edge Computing, http://openedgecomputing.org.
[10] Openfog, https://opcfoundation.org/markets-collaboration/openfog/.
[11] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for

mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2015) 2795–2808.
[12] Q. Peng, C. Wu, Y. Xia, Y. Ma, X. Wang, N. Jiang, Dosra: A decentralized

approach to online edge task scheduling and resource allocation, IEEE Internet
Things J. 9 (6) (2021) 4677–4692.

[13] Markup, https://en.wikipedia.org/wiki/Markup_(business).
[14] Alibaba Cloud: Cloud Computing Services, http://www.alibabacloud.com.
[15] Budget-balanced mechanism, https://en.wikipedia.org/wiki/Budget-balanced_

mechanism.
[16] Knapsack problem, https://en.wikipedia.org/wiki/Knapsack_problem.
[17] R.B. Myerson, M.A. Satterthwaite, Efficient mechanisms for bilateral trading, J.

Econ. Theory 29 (2) (1983) 265–281.
[18] W. Yong, Y. Li, L. Chao, C. Wang, X. Yang, Double-auction-based optimal

user assignment for multisource–multirelay cellular networks, IEEE Trans. Veh.
Technol. 64 (6) (2015) 2627–2636.

[19] R. Duan, S. Pettie, Linear-time approximation for maximum weight matching, J.
ACM 61 (1) (2014) 1–23.

[20] D.B. West, et al., Introduction to Graph Theory, vol. 2, Prentice hall Upper Saddle
River, 2001.

[21] E. Anshelevich, S. Das, Y. Naamad, Anarchy, stability, and utopia: creating better
matchings, Auton. Agents Multi-Agent Syst. 26 (1) (2013) 120–140.

[22] W.A. Kamakura, B.T. Ratchford, J. Agrawal, Measuring market efficiency and
welfare loss, J. Consum. Res. 15 (3) (1988) 289–302.

[23] J.-W. Lee, R.R. Mazumdar, N.B. Shroff, Non-convex optimization and rate control
for multi-class services in the internet, IEEE/ACM Trans. Netw. 13 (4) (2005)
827–840.

[24] D.P. Palomar, M. Chiang, A tutorial on decomposition methods for network
utility maximization, IEEE J. Sel. Areas Commun. 24 (8) (2006) 1439–1451.

[25] D. Yang, X. Fang, G. Xue, Truthful auction for cooperative communications, in:
Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc
Networking and Computing, 2011, pp. 1–10.

[26] P. Huang, A. Scheller-Wolf, K. Sycara, Design of a multi–unit double auction
e–market, Comput. Intell. 18 (4) (2002) 596–617.

[27] Q. Duan, S. Wang, N. Ansari, Convergence of networking and cloud/edge
computing: Status, challenges, and opportunities, IEEE Netw. 34 (6) (2020)
148–155.

[28] Virtualization, Network Functions, Network function virtualization, 2020,
NFV_White_Paper3. pdf.

[29] J. Halpern, C. Pignataro, Service Function Chaining (SFC) Architecture, Technical
Report, 2015.

[30] S. Zhang, An overview of network slicing for 5G, IEEE Wirel. Commun. 26 (3)
(2019) 111–117.

[31] X. Huang, B. Zhang, C. Li, Incentive mechanisms for mobile edge computing:
Present and future directions, IEEE Netw. 36 (6) (2022) 199–205.

[32] R. Chattopadhyay, C.-K. Tham, Fully and partially distributed incentive mecha-
nism for a mobile edge computing network, IEEE Trans. Mob. Comput. 21 (1)
(2020) 139–153.

[33] X. Pu, T. Lei, W. Wen, W. Feng, Z. Wang, Q. Chen, S. Jin, Incentive mechanism
and resource allocation for collaborative task offloading in energy-efficient
mobile edge computing, IEEE Trans. Veh. Technol. (2023).

[34] G. Li, J. Cai, An online incentive mechanism for collaborative task offloading in
mobile edge computing, IEEE Trans. Wireless Commun. 19 (1) (2019) 624–636.

[35] W. Sun, J. Liu, Y. Yue, P. Wang, Joint resource allocation and incentive design
for blockchain-based mobile edge computing, IEEE Trans. Wirel. Commun. 19
(9) (2020) 6050–6064.

[36] W. Lu, S. Zhang, J. Xu, D. Yang, L. Xu, Truthful multi-resource transaction
mechanism for P2P task offloading based on edge computing, IEEE Trans. Veh.
Technol. 70 (6) (2021) 6122–6135.

[37] L. Li, T.Q. Quek, J. Ren, H.H. Yang, Z. Chen, Y. Zhang, An incentive-aware job
offloading control framework for multi-access edge computing, IEEE Trans. Mob.
Comput. 20 (1) (2019) 63–75.

[38] Q. Wang, S. Guo, J. Liu, C. Pan, L. Yang, Profit maximization incentive
mechanism for resource providers in mobile edge computing, IEEE Trans. Serv.
Comput. 15 (1) (2019) 138–149.

[39] B. Liang, R. Fan, H. Hu, Y. Zhang, N. Zhang, A. Anpalagan, Nonlinear pricing
based distributed offloading in multi-user mobile edge computing, IEEE Trans.
Veh. Technol. 70 (1) (2020) 1077–1082.

[40] Z. Chang, W. Guo, X. Guo, Z. Zhou, T. Ristaniemi, Incentive mechanism for
edge-computing-based blockchain, IEEE Trans. Ind. Inform. 16 (11) (2020)
7105–7114.

[41] J. He, D. Zhang, Y. Zhou, Y. Zhang, A truthful online mechanism for collaborative
computation offloading in mobile edge computing, IEEE Trans. Ind. Inform. 16
(7) (2019) 4832–4841.

http://refhub.elsevier.com/S1389-1286(24)00260-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb2
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb3
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb4
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb6
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb7
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb8
http://openedgecomputing.org
https://opcfoundation.org/markets-collaboration/openfog/
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb11
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb12
https://en.wikipedia.org/wiki/Markup_(business)
http://www.alibabacloud.com
https://en.wikipedia.org/wiki/Budget-balanced_mechanism
https://en.wikipedia.org/wiki/Budget-balanced_mechanism
https://en.wikipedia.org/wiki/Budget-balanced_mechanism
https://en.wikipedia.org/wiki/Knapsack_problem
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb17
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb18
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb19
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb21
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb22
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb23
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb24
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb25
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb26
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb27
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb28
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb29
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb30
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb31
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb32
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb33
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb34
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb35
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb37
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb39
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb40
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb40
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb40
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb40
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb40
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb41
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb41
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb41
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb41
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb41

Computer Networks 246 (2024) 110428W. Chu et al.
[42] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, H. Zhang, Incentive mechanism for
computation offloading using edge computing: A stackelberg game approach,
Comput. Netw. 129 (2017) 399–409.

[43] S. Luo, X. Chen, Z. Zhou, X. Chen, W. Wu, Incentive-aware micro computing
cluster formation for cooperative fog computing, IEEE Trans. Wireless Commun.
19 (4) (2020) 2643–2657.

[44] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, G. Chen, Auction-based VM
allocation for deadline-sensitive tasks in distributed edge cloud, IEEE Trans. Serv.
Comput. (2019).

[45] H. Zhou, T. Wu, X. Chen, S. He, D. Guo, J. Wu, Reverse auction-based
computation offloading and resource allocation in mobile cloud-edge computing,
IEEE Trans. Mob. Comput. (2022).

[46] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi, M. Huang, TCDA: Truthful
combinatorial double auctions for mobile edge computing in industrial internet
of things, IEEE Trans. Mob. Comput. 21 (11) (2021) 4125–4138.

[47] W. Sun, J. Liu, Y. Yue, H. Zhang, Double auction-based resource allocation for
mobile edge computing in industrial internet of things, IEEE Trans. Ind. Inform.
14 (10) (2018) 4692–4701.

[48] D.T. Nguyen, L.B. Le, V.K. Bhargava, A market-based framework for multi-
resource allocation in fog computing, IEEE/ACM Trans. Netw. 27 (3) (2019)
1151–1164.

[49] G. Li, J. Cai, X. Chen, Z. Su, Nonlinear online incentive mechanism design in
edge computing systems with energy budget, IEEE Trans. Mob. Comput. (2022).

Weibo Chu received the B.S. degree in software engineering
in 2005 and the Ph.D. degree in control science and engi-
neering in 2013, both from Xi’an Jiaotong University, Xi’an,
China. He has participated in various research and develop-
ment projects on network testing, performance evaluation
and troubleshooting, and gained extensive experiences in
the development of networked systems for research and
engineering purposes. From 2011–2012 he worked as a
visiting researcher at Microsoft Research Asia, Beijing. From
2013 he was with the School of Computer Science and Tech-
nology, Northwestern Polytechnical University. His research
interests include internet measurement and modeling, traffic
analysis and performance evaluation.

Xinming Jia received the B.E. degree from Northwestern
Polytechnical University, Xi’an, China, in 2021. He is cur-
rently working towards his M.S. degree at the School of
Computer Science and Technology, Northwestern Polytech-
nical University, Xi’an, China. His research interests include
resource management and incentive mechanisms design for
edge computing systems.
16
Zhiwen Yu received the Ph.D. degree in computer science
from Northwestern Polytechnical University, Xi’an, China,
in 2005. He is currently a Professor in the School of
Computer Science, Northwestern Polytechnical University,
Xi’an, China, and a vice-president of Harbin Engineering
University, Harbin, China. He was an Alexander Von Hum-
boldt Fellow with Mannheim University, Germany, and a
Research Fellow with Kyoto University, Kyoto, Japan. His
research interests include ubiquitous computing and mobile
computing.

John C.S. Lui received the Ph.D. degree in computer science
from UCLA. He is currently a professor in the Department of
Computer Science and Engineering at The Chinese Univer-
sity of Hong Kong. His current research interests include
communication networks, network/system security (e.g.,
cloud security, mobile security, etc.), network economics,
network sciences (e.g., online social networks, information
spreading, etc.), cloud computing, large-scale distributed
systems and performance evaluation theory. He serves in the
editorial board of IEEE/ACM Transactions on Networking,
IEEE Transactions on Computers, IEEE Transactions on
Parallel and Distributed Systems, Journal of Performance
Evaluation and International Journal of Network Security.
He was the chairman of the CSE Department from 2005
to 2011. He received various departmental teaching awards
and the CUHK ViceChancellor’s Exemplary Teaching Award.
He is also a corecipient of the IFIP WG 7.3 Performance
2005 and IEEE/IFIP NOMS 2006 Best Student Paper Awards.
He is an elected member of the IFIP WG 7.3, fellow of
the ACM, fellow of the IEEE, and croucher senior research
fellow.

Yi Lin received the Ph.D. degree in computer science
from Northwestern Polytechnical University, Xi’an, China, in
2005. He is currently an Associate Professor of the School of
Computer Science, Northwestern Polytechnical University,
Xi’an, China. His research interests include data storage and
software engineering.

http://refhub.elsevier.com/S1389-1286(24)00260-3/sb42
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb42
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb42
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb42
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb42
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb43
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb43
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb43
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb43
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb43
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb44
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb44
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb44
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb44
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb44
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb45
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb45
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb45
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb45
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb45
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb46
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb46
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb46
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb46
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb46
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb47
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb47
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb47
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb47
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb47
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb48
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb48
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb48
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb48
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb48
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb49
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb49
http://refhub.elsevier.com/S1389-1286(24)00260-3/sb49

	On incentivizing resource allocation and task offloading for cooperative edge computing
	Introduction
	Background and Motivation
	Contribution

	System Model and Problem Formulation
	System Model
	Problem Formulation

	A Two-Stage Double-Auction based Mechanism
	First Stage for Resource Configuration
	Second Stage for Resource Allocation
	Mechanism Analysis

	A Price-Based Decentralized Allocation Mechanism
	Decentralized Algorithm
	Mechanism Analysis

	Performance Evaluation
	Evaluation Setup
	Benchmarks
	Numerical Results
	Performance of two-stage incentive mechanism
	Performance of price-based decentralized mechanism

	Discussions and Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

