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Abstract— For NFV systems, the key design space includes
the function chaining for network requests and the resource
scheduling for servers. The problem is challenging since NFV
systems usually require multiple (often conflicting) design objec-
tives and the computational efficiency of real-time decision
making with limited information. Furthermore, the benefits of
predictive scheduling to NFV systems still remain unexplored.
In this article, we propose POSCARS, an efficient predictive
and online service chaining and resource scheduling scheme
that achieves tunable trade-offs among various system metrics
with stability guarantee. Through a careful choice of granularity
in system modeling, we acquire a better understanding of the
trade-offs in our design space. By a non-trivial transformation,
we decouple the complex optimization problem into a series
of online sub-problems to achieve the optimality with only
limited information. By employing randomized load balancing
techniques, we propose three variants of POSCARS to reduce
the overheads of decision making. Theoretical analysis and
simulations show that POSCARS and its variants require only
mild-value of future information to achieve near-optimal system
cost with an ultra-low request response time.
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I. INTRODUCTION

NETWORK function virtualization (NFV) is shifting the
way of network service deployment and delivery by vir-

tualizing and scaling network functions (NFs) on commodity
servers in an on-demand fashion [35]. As a revolutionary
technique, NFV paves the way for operators towards better
manageability and quality-of-service of network services.

In NFV systems, each network service is implemented as
an ordered chain of virtual network functions (VNFs) that are
deployed on commodity servers, a.k.a. a service chain. Along
the chain, every VNF performs some particular treatment on
the received requests, then hands over the output to the next
VNF in a pipeline fashion. To enable a network service,
one needs to place, activate, and chain VNFs deployed on
various servers. Considering the high cost of VNF migration
and instantiation [24], VNF replacement can only be per-
formed infrequently; hence, when it comes to flow-scale or
request-scale operations, function placement can be viewed as
a static operation. Given this fact, a natural practice is to place
multiple VNFs in one server in advance, but due to hardware
resource constraints (e.g., CPU, memory, and storage) [18], a
server must carefully schedule resources among a subset of
such VNFs at a particular time (i.e., only a subset of VNF
instances can be activated on a server at a particular time).
Therefore, with a fixed VNF placement, the activation and
chaining of VNFs refer to: 1) for each server, the resource
allocation to a subset of deployed VNFs subject to resource
constraints; and 2) for each network service, the selection of
the activated instances for its VNFs, so as to determine the
sequence of instances that the requests will be treated through,
a.k.a. service chaining.

Given that VNF placement is considered static at the time
scale of flow or request operations [27], for service chaining
and resource scheduling, a natural question is: should they also
be static, or dynamic? Static schemes have been implemented
in some scenarios [17], but often times request traffic is highly
fluctuating in both temporal and spatial dimensions [25]. In
such cases, static schemes may lead to workload imbalance
among instances, leaving some instances overloaded and oth-
ers under-utilized. Hence, there is a huge demand to design an
efficient and dynamic scheme that performs service chaining
and resource scheduling, which adapts to traffic variations and
achieves load balancing in real time. As for implementability,
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recent advances (e.g., temporal and spatial processor sharing
[26]) have enabled real-time adjustment of resource allocation
among various functions on the same server.

However, such dynamic design is non-trivial, especially in
face of the complex interplay between successive VNFs and
the resource contention among VNF instances on servers.
In particular, we would like to address the following
challenges:

1) Characterization of the Tunable Trade-Offs Among Vari-
ous Performance Metrics: NFV systems often have mul-
tiple optimization objectives, e.g., maximizing resource
utilization, minimizing energy consumption, and reduc-
ing request response time. Different stakeholders may
have different preferences over these objectives which
often times conflict with each other [46]. It is important
to characterize their trade-offs to acquire a comprehen-
sive understanding of our design space and tune the
system towards the particularly desirable state.

2) Efficient Online Decision Making: VNF request process-
ing often requires low latency and high throughput.
Hence, an effective dynamic scheme must also be com-
putationally efficient, and can be adaptive to request
changes. This is challenging not only because of the
nature of the high complexity, but also that service
requests arrive in an online manner, while the under-
lying traffic statistics are often unknown a priori. All
these uncertainties make it more challenging to opti-
mize system objectives through a series of online deci-
sions, not to mention that a distributed design is often
preferred.

3) Understanding Benefits of Predictive Scheduling: A nat-
ural optimization of online decision making is about
how to leverage recently developed machine learning
techniques [5], [49] to predict future traffic information
to reduce response time and improve quality-of-service.
Particularly, in the past few years, predictive analysis
and scheduling have been widely considered to promote
the performance of NFV-based systems [28], [31], [43],
[68]. Despite the rapid development of prediction-based
approaches [14], [22], [23], [38], [65], it still remains
open what are the fundamental benefits of predictive
scheduling to NFV systems, even in the presence of
prediction errors. Answers to the questions are the key to
understanding whether the endeavor is worthy to put on
predictive VNF scheduling, and whether one can tolerate
the worst possible case that may occur.

Despite the recent headway on VNF scheduling [17], [18],
as far as we are aware, there is still no fundamental understand-
ing on the above questions, nor is there any strategy that can
achieve the design objectives simultaneously in a fully online
fashion. One important reason is in the difficulty of problem
formulation and modeling, especially in choosing the granu-
larity. If one models the system state and strategy in flow-level
abstraction [37], it may fall short in accurate characterization
of interplay between successive VNF instances and system
dynamics over time; however, if one applies fine-grained
control to each request [65], then the decision making will
inevitably incur a rather high computational overhead. Such
issue not only prohibits a deep understanding on system
dynamics, but also prevents us from obtaining efficient and
accurate strategy design.

In this article, we overcome such difficulties by applying a
number of novel techniques. Our contributions include:

Modeling and Formulation: We propose a novel model that
separates the granularity of system state characterization and
strategy making. In particular, we develop a queuing model
at the request granularity to characterize system dynamics.
Unlike flow-level abstraction, our model requires no prior
knowledge on underlying flows, but accurately captures the
interplay between successive instances, i.e., real-time dynam-
ics of how requests are received, processed, and forwarded.
As for strategy making, it is conducted at the granularity
of request batch in a per-time-slot fashion to avoid the high
overheads of per-request optimization. Such a careful choice
makes it possible to characterize the system dynamics and
performance in a clear yet accurate way.

Algorithm Design: To enable online and efficient deci-
sion making, we transform our formulated long-term sto-
chastic optimization problem into a series of sub-problems
over time slots. By exploiting their unique structure, we
propose POSCARS, a Predictive Online Service Chaining
And Resource Scheduling scheme. Particularly, POSCARS
includes two coupled parts. One is for the predictive schedul-
ing of requests, while the other is for service chaining
and resource allocation. The former part takes advantage of
predicted information to effectively reduce request delays.
The latter part can incur a near-optimal system cost while
stabilizing all queues in the system. Furthermore, it can also
achieve a tunable control between system cost optimization
and queue stability.

Predictive Scheduling: To the best of our knowledge, this
article is the first to address the dynamic service chaining and
scheduling problem in NFV system by jointly considering
resource utilization, energy efficiency, and request latency.
This article is also the first to study the fundamental benefits of
predictive scheduling with future information in NFV system,
extending a new dimension for NFV system design.

Experiment Verification and Investigation: We conduct
trace-driven simulations and our results show the effectiveness
of POSCARS and its variants under various settings against
baseline schemes, as well as the benefits of predictive schedul-
ing in achieving an ultra-low request response time.

The rest of this article is organized as follows. In Section II,
we show a motivating example of predictive scheduling in
NFV systems. Section III presents our model and formu-
lation, followed by the design and performance analysis of
POSCARS and its variants in Section IV. We show simulation
results and analysis in Section V, then review related work in
Section VI. Finally, Section VII concludes this article.

II. MOTIVATING EXAMPLE

In this section, we first show a motivating example that
exhibits the potential trade-off in the multi-objective optimiza-
tion for different system metrics, including reduction in energy
costs and communication costs, as well as shortening response
times mainly due to queueing delay. Besides, the example
also explores the value of future information and the potential
benefit of predictive scheduling.

We consider a time slotted NFV system, where predictive
scheduling is viable, i.e., the request in time (t + 1) can
be perfectly predicted, pre-generated, and pre-served by the
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Fig. 1. The system evolution in time slot t under different service chaining decisions, with or without pre-service. Basic settings: There is one network
service with two VNFs, i.e., VNF a and VNF b. VNF a has one instance, while VNF b has two instances. Every instance maintains one queue to buffer
untreated requests. All the instances are readily deployed, with VNF a’s instance on server I, while the instances of VNF b on server II and III, respectively.
VNF a’s instance is potentially connected to both instances of VNF b. Initial state: one new request has arrived at time t and another one will arrive at time
(t + 1). Besides, VNF a’s instance has one request that has been processed in time (t − 1) and to be sent to one of VNF b’s instances in time t.

system.1 Figure 1(a) shows the basic settings and initial system
state in time slot t. All VNF instances are readily deployed
on servers with a fixed placement. Each instance maintains
a queue to buffer any untreated request. Every server has a
service capacity of two requests per time slot; processing a
request incurs an energy cost of 1. Note that 1) any requests
processed by VNF a’s instance are not counted in the queues,
but readily to be sent to VNF b’s instances in the next time
slot; 2) requests that have been processed by VNF b’s instances
are considered finished.

In this case, there are two possible service chaining deci-
sions, i.e., forwarding the processed request from the instance
of VNF a to either VNF b’s instance on server II (Decision
#1) or server III (Decision #2). It takes a communication cost
of 1 to forward the request to VNF b’s instance on server II.
The communication cost is 2 to the other instance of VNF b
on server III.

Our goal is to choose a service chaining decision in time t
that jointly minimizes the total energy cost, the total commu-
nication cost, and the total residual backlog size at the end of
time t. 2 Figures 1(b) - 1(d) compare the scheduling processes
under different service chaining decisions.

In Figure 1(b), the new request in time t is admitted, while
the processed request is forwarded to the instance of VNF b on
server II. Although incurring a low communication cost of 1,
such a decision also leads to imbalanced queue loads among
VNF b’s instances. Note that every server can serve at most
two requests per time slot. Hence, servers will then process
four requests in total, including the new request on server I,

1As a leading streaming service provider, Netflix has been actively migrating
its streaming services onto NFV-based platforms (e.g., by Red Hat Inc.)
to deliver high-quality streaming services. In such a scenario, the packets
(deemed as requests for network services) are sent through particular chains
of VNFs such as load balancing, encoding/decoding, encryption/decryption,
etc., before their deliveries to end devices. By employing machine learning
techniques to predict user preferences and network state variations, Netflix
predicts demanded packets of different streaming subscriptions, then proac-
tively pre-delivers them onto end devices [6].

2By applying Little’s law [32], a short queue length implies a short queueing
delay or a short response time.

two requests on server II, and another one on server III. The
processing incurs a total energy cost of 4. After processing,
VNF b’s instance on server II still has one untreated request
in its backlog. Thus Decision #1 incurs a total cost of 5 on
energy and communication, with a residual backlog size of 1.

On the other hand, when the processed request is forwarded
to the instance of VNF b on server III, the decision incurs a
high communication cost of 2 but results in balanced queue
loads among VNF b’s instances. Servers will process five
requests in total, including the new request on server I, and the
rest from server II and III. The processing incurs a total energy
cost of 5. After processing, there are no untreated request left
in the backlogs. Decision #2 incurs a higher total cost of 7
on energy and communication, but with no residual backlogs.

Insight 1: Figures 1(b) and 1(c) show that we cannot achieve
the optimal values for different system metrics simultaneously;
i.e., there is a potential trade-off between optimizing the total
system cost and reducing the total queue length.

Additionally, we find that server I is under-utilized in both
Figures 1(b) and 1(c), because VNF a’s instance only receives
and handles the new request at time t. In fact, Figure 1(d)
shows that we can exploit the spare processing power on
server I by pre-admitting and pre-serving the future request.
Consequently, we can shorten the response time for the future
request by incurring one more energy cost in time t. Note that
pre-service does not introduce extra energy cost but actually
pays it beforehand. In other words, even without pre-service,
we still have to pay one energy cost in the subsequent time
slots after the future request arrives.

Insight 2: By utilizing servers’ spare processing power
and paying system cost in advance, predictive scheduling can
effectively shorten response times of future requests.

To characterize the non-trivial trade-off and exploit the
power of predictive scheduling in NFV systems, we present
our formulation in the next section.

III. PROBLEM FORMULATION

We consider a time slotted NFV system, where virtualized
network functions (VNF) are instantiated, deployed over a
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Fig. 2. An instance of our system model. There are two network services
(NS 1 and NS 2) with their VNF instances deployed on servers I, II, and III.
At the beginning of time slot t, the traffic classifier admits and pushes requests
to the queues Qp

1(t) and Qp
2(t) with respect to their requested services. For

each instance, based on its server’s resource scheduling, it serves requests
from its processing queue and forwards requests to its next VNF instances,
e.g., instance of VNF a on server I to instance of VNF b on server III.

substrate network, and chained together to deliver numbers
of network services. Upon the arrival of new network service
requests, each VNF processes and hands over requests to its
following VNF in a pipeline fashion. All requests are assumed
homogeneous; i.e., each request is assumed to have equal size
and require the same amounts of computation to be processed.
We show an instance of our system model in Figure 2 and
summarize main notations in Table I. More details of service
chaining can be found in IETF RFC-7665 [15].

A. Substrate Network Model

We consider the substrate network with a set S of hetero-
geneous servers. On each server s, we consider R types of
resources, e.g., GPU [62], CPU cores [26], and cache [50].
The i-th resource type has a capacity of cs,i and a unit cost of
λs,i. We denote the resource capacity vector [cs,i]Ri=1 by cs,
and the resource unit cost vector [λs,i]Ri=1 by λs.

For every server pair (s′, s), we use ws′,s(t) to denote
the communication cost of transferring a request between the
servers in time t, e.g., the number of hops or round-trip times.
If two servers are not reachable from each other in time t,
then we set ws′,s(t) = +∞. The set of all communication
cost [ws′,s(t)]s′,s in time slot t is denoted by w(t).

B. Network Service Model

There are K network services and a set F of VNFs. Each
network service k is represented by a chain of Lk ordered
VNFs, wherein the j-th VNF is denoted by fk,j . To avoid
triviality, we assume that Lk ≥ 2 for every network service
k. Note that Lk is a constant and usually not very large
[16]. We regard the same VNF that appears in different
service chains as distinct VNFs. In practice, one can set up
multiple queues on one VNF instance to buffer requests for
different services and map each queue to one VNF instance in
our model.

TABLE I

MAIN NOTATIONS

Next, we use Fin to denote {fk,1}K
k=1, i.e., the set of ingress

VNFs of all network services, and Fnt to denote the set of
non-terminal VNFs of all network services. For each VNF
f ∈ F , we denote its network service by kf . If f /∈ Fin,
i.e., not the first VNF of its network service, then we denote
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its previous VNF by p(f); likewise, if f ∈ Fnt, i.e., not a
terminal VNF, then we denote its next VNF by n(f).

C. Deployment Model
In practice, due to request workload changes, it is common

to provide multiple instances for every VNF, encapsulate the
instances into containers, and distribute them on servers for
better load balancing and fault tolerance [54]. We assume that
each VNF has at most one instance on each server but it can
have multiple instances on different servers. The placement of
VNF instances is assumed to be pre-determined by adopting
VNF placement schemes similar to existing ones [9], [44],
[61], [64]. Depending on the placement, the instances required
by each service are not necessarily readily available on the
same server. Note that our model can be further extended to
cases with each VNF having multiple instances on the same
server.

For VNF f ∈ F , we use Sf to denote the set of
servers that host f ’s instances. Correspondingly, each server
s hosts a subset Fs ⊆ F of VNFs. Every instance main-
tains one queue to buffer its relevant requests. For example,
if VNF f has one instance on server s, then the instance
has a queue of size Qs

f(t) at the beginning of time slot
t. Instead of individual queues, one can also implement a
shared public queue among instances of the same VNF. All
requests from preceding VNF’s instances are firstly forwarded
and buffered in the public queue. These buffered requests
are then rescheduled to one or more idle or least loaded
instances. Such a way brings more flexibility so that requests
can avoid the potential long queueing delay on individual
instances. However, it requires additional physical storage
and communication costs due to additional rescheduling. The
choice depends on the trade-off made by system design-
ers. Here we adopt the queueing model for each individual
instance.

D. Predictive Request Arrival Model
For network service k, we use Ak(t) (≤ amax for some

constant amax) to denote the number of its new requests
that arrive in time slot t, and independent over time slots. In
practice, considering the statefulness of VNFs, requests may
be aggregated and scheduled in the unit of flow. For such cases,
our model captures the system dynamics at a finer granularity
than the flow-level abstraction, and can be further extended to
handle correlations between requests.

Next, considering the ever-increasing interests of applying
predictive scheduling to promote performances of NFV sys-
tems in the recent years [28], [31], [43], [68],3 we focus on the
case where a system can predict and pre-serve future request
arrivals for network services in a finite number of time slots
ahead. Though the techniques and analysis of prediction are
still under active development [38], [41], [65], we do not

3To accommodate the requirements of ultra-high processing speed and
ultra-low latency for NFV, existing works mainly resort to the analysis of
system logs and effective use of sampled queueing dynamics and structural
information of VNF service chains to reduce prediction overheads without
compromising prediction accuracies. Meanwhile, in the industry, as far as
we are concerned, more and more efforts have been devoted by multiple
parties (e.g., telecom operators) in the recent years to the development of
predictive scheduling in NFV-based systems, so as to promote QoE and
reduce costs.

assume any particular prediction technique in this article.4
Instead, we assume the prediction as the output from other
standalone predictive modules, and investigate the fundamental
benefits by acquiring and leveraging such future information
and the risks induced by mis-prediction. Note that such an
assumption is valid to approximate practical scenarios where
short-term prediction is viable. We assume that for network
service k, the system has perfect access to its future requests
in a prediction window of size Dk (≤ D for some constant D),
denoted by {Ak(t+1), . . . , Ak(t+Dk)}. In practice, however,
such prediction may be error-prone; we shall evaluate the
impact of mis-prediction in the simulation. With pre-service,
some future requests may have been admitted into or even
pre-served before time t, thus we use Q(d)

k (t) (0 ≤ d ≤ Dk)
to denote the number of untreated requests in slot (t + d) at
time t, such that

0 ≤ Q(d)
k (t) ≤ Ak(t + d). (1)

Note that Q(0)
k (t) denotes the number of untreated requests

that arrive at time t. Therefore, the total number of untreated
requests for service k is Qp

k(t) =
∑Dk

d=0 Q(d)
k (t). Here we

can treat Qp
k(t) as a virtual prediction queue that buffers

untreated future requests for network service k. In practice,
the prediction queues can be hosted on servers or storage
systems in proximity to the request traffic classifier [47]. To
simplify notations, we use Q(t) to denote the vector of all
queues’ length {Qp

k(t)}K
k=1 and {Qs

f(t)}s∈S,f∈Fs .

E. System Workflow and Scheduling Decisions

System Workflow: At the beginning of each time slot t,
system components (including traffic classifier, VNF instances,
and servers) collect relevant system dynamics to decide
request admission, service chaining, and resource allocation.
According to the decisions, the traffic classifier admits new
requests for different network services. VNF instances steer
the requests which are processed in time slot (t − 1) to their
next VNF’s instances. Meanwhile, every server allocates the
resources to its resident VNF instances [26]. The instances
then process the requests from their respective queues. At the
end of time slot, the prediction window moves one slot ahead.

In the above process, we need to consider three kinds of
scheduling decisions.

i) Admission Decision: For every network service, the traffic
classifier decides the number of untreated newly arriving and
future requests, to be admitted into the system. Particularly,
for a network service k and its respective ingress VNF f , the
classifier decides µs

k(t), i.e., the number of admitted requests
to f ’s instance on server s ∈ Sf . We use δk(t) to denote
the total number of admitted requests from prediction queue
Qp

k(t). These admitted requests should include at least all the
untreated requests that actually arrive, while not exceeding

4Although only few concrete solutions have been disclosed about predic-
tion in real-world NFV systems, considering the rapid advancement of 5G
techniques, machine learning, and dedicated chip design, the development
of such predictive techniques for NFV systems with stringent requirements
(e.g., even higher data rates) is just a matter of time. Moreover, we believe
that in the near future, more and more companies such as Netflix and
Facebook will migrate their services onto NFV-based systems and enjoy
the benefit from predictive scheduling in terms of QoE improvement and
cost reduction.
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Qp
k(t), i.e., in time slot t and for k = 1, . . . , K ,

Q(0)
k (t) ≤ δk(t) !

∑

s∈Sfk,1

µs
k(t) ≤ Qp

k(t). (2)

Note that requests are admitted in a fully-efficient manner [20].
In other words, by admitting δ(d)

k (t) untreated requests from
Q(d)

k (t) for 0 ≤ d ≤ Dk, the allocation should ensure a total
number of δk(t) requests to be admitted, i.e.,

Dk∑

d=0

δ(d)
k (t) = δk(t) ∀k ∈ {1, . . . , K}. (3)

The untreated request backlog Q(d)
k (t) evolves as follows,

Q(d)
k (t + 1) =

[
Q(d+1)

k (t)− δ(d+1)
k (t)

]+
,

∀ d ∈ [0, Dk − 1]. (4)

while Q(Dk)
k (t+1) = Ak(t+Dk+1), where we define [x]+ !

max{x, 0}. We denote all admission decisions by µ(t).
ii) Service Chaining Decision: Given a non-terminal VNF f ,

we denote X(s′,s)
f (t) ∈ {0, 1} as the service chaining decision

at time t. We consider the case when VNF f and its next
VNF n(f) have instances on server s′ and s, respectively.
The decision with value 1 indicates the processed requests
from VNF f ’s instance on server s′ will be sent to n(f)’s
instance on server s, and zero otherwise. To ensure that every
instance has a target instance to send its requests, we have

∑

s∈Sn(f)

X(s′,s)
f (t) = 1, ∀s′ ∈ Sf , ∀t. (5)

On the other hand, if VNF f (or its next VNF) has no instances
on server s (or s′), then X(s,s′)

f (t) = 0 in each time slot t.
Note that dynamic request steering can be implemented by
adopting VNFs-enabled SDN switches [19]. We denote all
chaining decisions by X(t).

iii) Resource Scheduling Decision: For each server s and
VNF f ∈ Fs, we define Y s

f (t) ∈ ZR
+ as the allocated

resource vector to f ’s instance. To ensure any allocation with
at least one CPU core and other resources, or without any
resources at all, we restrict the choice of Y s

f (t) to a finite set
of options Of . Note that ∅ ∈ Of for all f , i.e., the option of
no resource allocation is always available. Besides, the total
amount of allocated resources should not exceed server s’s
resource capacity, i.e.,

∑

f∈Fs

Y s
f (t) ) cs, ∀s ∈ S, ∀t. (6)

Note that Y s
f (t) = ∅ for all the time if f /∈ Fs. Given resource

allocation Y s
f (t), the instance can process and forward at

most φf (Y s
f (t)) requests, where φf (·) is assumed to be

estimated from system logs. Due to time slot length limit,
a VNF instance cannot process too many requests and thus we
assume φf (·) ≤ φmax for some constant φmax. We denote all
allocation decisions by Y (t).

F. System Workflow and Queueing Dynamics
In time slot t, the system workflow proceeds as follows. At

the beginning of time slot t, system components (including
the traffic classifier, VNF instances, and servers) collect all

Fig. 3. An instance of queueing model with a lookahead window size of
two.

available system dynamics to make request admission, service
chaining, and resource allocation decisions [µ(t), X(t), Y (t)].
According to the decisions, the traffic classifier admits new
requests for different network services. VNF instances steer
the requests which are processed in time slot (t − 1) to their
next VNF’s instances. Meanwhile, every server allocates the
resources to its resident VNF instances. The instances then
process the requests from their respective queues. At the end
of time slot t, the prediction window for each network service
k moves one slot ahead. Accordingly, given µk(t), prediction
queue Qp

k(t) is updated as follows

Qp
k(t + 1) = [Qp

k(t)−
∑

s∈Sf

µs
k(t)]+ + Ak(t + Dk + 1). (7)

With the above workflow, we have the following queueing
dynamics for different VNF instances.

Instances of Ingress VNFs: For every network service k and
its respective ingress VNF f , there are µs

k(t) admitted requests
to f ’s instance on server s ∈ Sf . Accordingly, the update
function for queue length Qs

f (t) is

Qs
f (t + 1) =

[
Qs

f (t)− φf (Y s
f (t))+ µs

kf
(t)

]+
. (8)

Instances of Non-Ingress VNFs: For the instance of VNF
f /∈ Fin on server s, if X(s′,s)

p(f) (t) = 1, then the instance will
receive processed requests from the instance of VNF p(f) on
server s′; otherwise, the instance will receive no new requests.
Then the queueing update function is given by

Qs
f(t + 1)≤

[
Qs

f (t)−φf (Y s
f (t))+

∑

s′∈Sp(f)

X(s′,s)
p(f) (t)·Bs′

p(f)(t)
]+

,

(9)

where Bs′

p(f)(t) ! φp(f)

(
Y s′

p(f)(t − 1)
)
, i.e., the allocated

service rate for the instance of p(f) on server s′ in time (t−1).
The inequality is due to that the actual number of untreated
requests may be less than the service rate in time (t− 1). All
requests processed by the last instances of service chains are
considered finished. The vector [Bs

f (t)]s,f is denoted by B(t).
Figure 3 shows an example of our queue model, in which there
are two network services that require six types of VNF whose
instances are hosted on three servers. Each of the network
services has a prediction window of size two. In Figure 3,
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we show how requests are admitted and transferred between
successive queues for the first network service (NS 1) in time t,
given admission decision µI

1(t), µII
1 (t), and chaining decision

X(I,II)
2 = X(II,III)

2 = X(II,I)
1 = X(III,I)

1 = 1.

G. Optimization Objectives
Communication Cost: Recall that transferring a request

over link (s′, s) incurs a communication cost ws′,s(t), e.g.,
the number of hops or round-trip times. Low communication
cost are highly desirable for responsiveness of requests. In time
slot t, given the service chaining decisions, the communication
cost between server s and s′ is

ms′,s(t) ! m̂s′,s(X(t)) =
∑

f∈Fnt

Bs′

f (t)X(s′,s)
f (t)ws′,s(t),

(10)

where ws′,s(t) denotes the communication cost of transferring
a request between servers s′ and s in time t. Then the total
communication cost in time t is given by

m(t) ! m̂ (X(t)) =
∑

s′,s∈S
m̂s′,s(X(t)). (11)

Energy Cost: Efficient resource utilization for servers is
another important objective to achieve in NFV systems [56].
Given the resource allocation Y s

f (t), we define the correspond-
ing energy cost in time t as λT Y s

f (t), where λ ∈ ZR
+ is a

constant vector, with each entry λi as the unit cost of i-th
type of server resources. The total energy cost in time t is

g(t) ! ĝ(Y (t)) =
∑

s∈S

∑

f∈Fs

λT Y s
f (t). (12)

Queue Stability: Considering the responsiveness of requests
and scarcity of computational resources such as memory and
cache, it is also imperative to ensure that no queues would
be overloaded. We denote the weighted total queue length in
time t as

h(t) ! ĥ(Q(t))=
K∑

k=1

Qp
k(t)+α

∑

s∈S

∑

f∈Fs

Qs
f (t) (13)

where α is a constant that measures the importance of
stabilizing instances queues compared to prediction queues.
Accordingly, we define the queue stability [39] as

lim sup
T→∞

1
T

T−1∑

t=0

E {h(t)} <∞. (14)

H. Problem Formulation
Based on the above models, we formulate the following

stochastic network optimization problem (P1) that aims at the
joint minimization of time-average expectations of weighted
communication costs and energy costs while ensuring queue
stability. With such formulation, we seek to achieve the
potential trade-off among different system metrics.

P1: Minimize
{µ(t),X(t),Y (t)}t

lim sup
T→∞

1
T

T−1∑

t=0

E {m(t) + γg(t)}

Subject to µs
k(t) ∈ Z+, ∀k and s ∈ Sfk,1

Y s
f (t) ∈ Of , ∀s ∈ S, f ∈ Fs

(2), (5), (6), (14), (15)

where γ ≥ 0 is a constant that measures the relative impor-
tance of energy efficiency to reducing communication cost.

IV. ALGORITHM DESIGN AND PERFORMANCE ANALYSIS

In this section, we present POSCARS, an online and pre-
dictive algorithm that solves problem P1 through a series of
online decisions, followed by its performance analysis and
three variants.

A. Algorithm Design
Problem P1 is challenging to solve due to time-varying

system dynamics, the online nature of request arrivals, and
complex interaction between successive VNF instances. There-
fore, instead of solving problem P1 directly, we adopt Lya-
punov optimization techniques [39] to transform the long-term
stochastic optimization problem into a series of sub-problems
over time slots, as specified by the following lemma.

Lemma 1: By applying Lyapunov optimization techniques
and the concept of opportunistically minimizing an expecta-
tion, problem P1 can be transformed to the following opti-
mization problem to be solved in each time slot t:

P2: Minimize
µ,X,Y

K∑

k=1

∑

s∈Sfk,1

[
−Qp

k(t) + αQs
fk,1

(t)
]
µs

k

+
∑

f∈Fnt

∑

s′∈Sf

∑

s∈Sn(f)

l(s
′,s)

f (t)X(s′,s)
f

+
∑

s∈S

∑

f∈Fs

rs
f (t, Y s

f ) (16)

Subject to (2), (5), (6) and µs
k ∈ Z+, ∀k, s ∈ Sfk,1

X(s′,s)
f ∈ {0, 1}, ∀s′, s ∈ S, f ∈ Fs

Y s
f ∈ Of ∀s ∈ S, f ∈ Fs. (17)

where l(s
′,s)

f (t) is defined as

l(s
′,s)

f (t) !
[
V ws′,s (t) + αQs

n(f) (t)
]
Bs′

f (t), (18)

such that V is a positive parameter that measures the impor-
tance of minimizing system cost compared to stabilizing system
queues, and rs

f (t, Y ) is defined as

rs
f (t, Y ) ! V γλT

s Y − αQs
f (t)φf (Y ) . (19)

The detailed proof of Lemma 1 is relegated to Appendix-A
of the supplementary materials. Here we provide a sketch
of how the problem transformation is carried out. Note that
the key technique we adopt is the drift-plus-penalty method
[39], which generally aims to stabilize a queueing network
while also optimizing the time-average of some objective
(e.g., the total cost of energy consumption and communication
in P1). To this end, a quadratic function (a.k.a. Lyapunov
function) is first introduced to characterize the stability of all
queues in each time slot. Then the key idea of the method
is to introduce a drift-plus-penalty term to characterize the
joint change in the queue stability and the objective value
across time slots. In particular, the drift-plus-penalty term is
defined as the weighted sum of two parts. One is defined as
the difference (a.k.a. drift) between the Lyapunov functions
of two consecutive time slots, which measures the short-term
change in queue stability. The other part is defined as the
instant objective value in a time slot. Then the stability of the
queueing network and the optimization of the time-average of
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the objective are jointly achieved by deriving an online control
policy that greedily minimizes the upper bound of the drift-
plus-penalty term during each time slot. In this way, it can be
proven that it is equivalent to solving problem P1 by resolving
a series of subproblems (P2) over time slots.

Note that by solving problem P2 over time slots, problem
P1 can be solved asymptotically optimally as the total number
of time slots T and the value of parameter V both approach
infinity, as shown by Theorem 1 in Sec. IV-B. Furthermore,
problem P2 can be decomposed into three sub-problems for
request admission, service chaining, and resource allocation,
with their decisions in each time slot denoted by µ, X , and
Y , respectively. Specifically, based on Lemma 1, we propose
POSCARS, a predictive online service chaining and predictive
resource scheduling scheme, and show its pseudocode in
Algorithm 1.

Remark 1: Regarding request admission, when all instances
are severely loaded compared to the prediction queue. In
order not to overload any instances, POSCARS admits only
untreated requests at the current time slot and spreads them
evenly onto the least loaded instances. Otherwise, i.e., when
instances all have shorter queue lengths than the prediction
queue, POSCARS admits all future requests and assigns them
to the least loaded instances.

Remark 2: POSCARS decides the service chaining by
jointly considering instances’ queue length and the communi-
cation cost. Recall by the definition in (18), the weighted sum-
mation αQs

n(f)(t) + V ws′,s(t) actually reflects the unit price
of sending a request from VNF f ’s instance on server s′ to
the instance of its next VNF on server s. If the target instance
is heavily loaded, there will be a high price of forwarding
the request to that instance. Besides, a large communication
cost ws′,s(t) also makes it less willing to choose the target
instance.

Remark 3: On server s, the resource allocation is decided
by jointly considering the resource cost and the queue length
of its resident instances. Particularly, we regard the term
V γλs − αQs

f (t)φf as the unit net cost vector of resources
allocated to the instance of VNF f ∈ Fs. Regarding the
unit net cost of type-i resource, i.e., V γλs,i − αQs

f (t)φf , it
is a weighted difference between the unit cost λs,i of type-i
resource and the queue length Qs

f (t) of the instance. A high
unit resource cost will result in a prudent allocation. On the
other hand, a sufficiently long queue length will make the
allocation more worthwhile. In both cases, POSCARS selects
the set of resource allocation decisions {Y s

f }f∈Fs that satisfy
constraint (6) and minimize the total net cost.

Remark 4: In practice, there is often a tradeoff between the
accuracy of predictive scheduling and the incurred overhead
such as the control traffic overhead among VNF instances and
the overhead for acquiring real-time information for decision-
making. The finer the granularity of scheduling, the more
accurate the request processing will be.

B. Performance Analysis
We analyze the computational complexity of POSCARS in

each time slot as follows. For each network service, it takes
O(|S|) time to make request admission decisions (lines 4-10).
Next, each non-terminal VNF instance selects and forwards
requests to its successors in O(|S|) time (line 15). Every server
takes O(|F|) time to initialize the lookup table (lines 21-23)
and O(Ωmax × |F|) time to decide the resource allocation,
where Ωmax is the maximum number of applicable resource

Algorithm 1 POSCARS (Predictive Online Service Chaining
And Resource Scheduling) in One Time Slot
1: Initially in time slot t, given backlog sizes Q(t), service

rates B(t), energy cost {λs}, and communication cost
w(t). Output: chaining and scheduling decisions.

2: for every network service k ∈ {1, 2, . . . , K}
3: %% Request admission for ingress VNF fk,1

4: The traffic classifier first finds the set S∗
fk,1

of servers
that host the least loaded instances of VNF fk,1.

5: if αQs
fk,1

(t) > Qp
k(t) for all s ∈ S∗

fk,1
then

6: Admit the Q(0)
k (t) untreated requests at current time.

7: else
8: Admit all Qp

k(t) untreated requests.
9: endif

10: Spread admitted request evenly to least loaded instances.
11: endfor
12: %% Service chaining
13: for every non-terminal VNF f ∈ Fnt:
14: for the instance of f on server s′ ∈ Sf :
15: Forward its processed requests to one of the servers

from Sn(f) with minimum l(s
′,s)

f (t).
16: endfor
17: endfor
18: %% Resource scheduling
19: for every server s ∈ S:
20: Initialize an empty lookup table Ycand and set Falloc.
21: Set Ycand[rs

f (t, Y )]← (f, Y ), ∀ f ∈ Fs and Y ∈ Of

22: while |Ycand| > 0:
23: Choose the minimum r∗ among all keys of Ycand.
24: Select its associated f∗ and Y ∗.
25: Remove entry with key r∗ from Ycand.
26: if r∗ < 0 and

∑
f∈Falloc

Y s
f (t) + Y ∗ ) cs:

27: Allocate resource to f∗ according to Y ∗.
28: Falloc ← Falloc + {f∗}.
29: Remove all entries related to f∗.
30: endif
31: endwhile
32: endfor

allocation for any VNF instance. In practice, POSCARS can be
run in a distributed manner. Particularly, the request admission
sub-routine can be implemented on each traffic classifier with a
computational complexity of O(K× |S|); meanwhile, the ser-
vice chaining and resource scheduling sub-routines can be
deployed on the hypervisor of each server, with computational
complexities of O(|S|) for each instance and O(Ωmax × |F|)
for each server, respectively. Note that Ωmax is the maximum
number of applicable resource allocations.

On the other hand, without predictive scheduling, we
show that POSCARS achieves an [O(V ), O(1/V )] trade-off
between the time-averages of total queue length and total cost
via the tunable parameter V . In particular, given the value of
γ, let (m∗ + γg∗) denote the optimal value of problem P1;
then we have the following theorem.

Theorem 1: Suppose that h(0) <∞ and, given the system
resource capacities on each server and VNF placement, there
exists an online scheme which ensures that, for each VNF
instance, the mean arrival rate is smaller than its mean service
rate. Under POSCARS without prediction, there exist constants
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B > 0 and ε > 0 such that

lim sup
T→∞

1
T

T−1∑

t=0

E {m(t) + γg(t)} ≤ B

V
+ m∗ + γg∗,

lim sup
T→∞

1
T

T−1∑

t=0

E {h(t)} ≤ B + V (m∗ + γg∗)
ε

.

The proof is relegated to Appendix-B of the supplemen-
tary materials. Theorem 1 demonstrates an [O(V ), O(1/V )]
trade-off between system cost optimization and queue stability.
Particularly, without prediction, POSCARS can achieve a
near-optimal cost within an O(1/V ) optimality gap but at the
cost of an O(V ) increase in the time-averaged total queue
length. Intuitively, with a large value for V , VNF instances
are more willing to steer requests to their successive instances
in nearby servers, while server would allocate resources to
instance with less energy cost. As a result, the total cost can
be effectively reduced; however, some servers may become
hot spots and the total queue length will increase. In contrast,
a smaller value of V conduces to more balanced queue loads
among servers and more energy cost consumed to serve
requests, leading to an increasing total cost. Moreover, given
predicted information about future requests, POSCARS can
achieve a better trade-off with a notable delay reduction by
pre-serving requests with surplus system resources. We verify
such advantages by our simulation results in Section V.

C. Practical Issues and Variants of POSCARS
The distributed nature of POSCARS requires each VNF

instance to gather relevant system dynamics on its own.
However, the probing process may incur considerable sam-
pling overheads and additional latencies. Meanwhile, each
instance makes its independent decision based on the sampled
information at the beginning of each time slot. Therefore,
instances may blindly choose the same lowest-cost instance,
without knowing others’ choices. The chosen instance will
then become overloaded due to the non-coordinated decisions.
An alternative is to perform sampling before sending each
request. Nonetheless, this method suffers from the messaging
overheads of frequent samplings. A possible compromise is
to split the processed requests into batches, then sample and
schedule for each batch separately.

To mitigate such issues, we propose the following variants
of POSCARS, by adopting the ideas from recent randomized
load balancing techniques, such as The-Power-of-d-Choices
[36], Batch-Sampling [40], and Batch-Filling [57].

POSCARS With The-Power-of-d-Choices (P-Pod): To
reduce sampling overheads, we apply the idea of The-Power-
of-d-Choices to POSCARS. Particularly, every non-terminal
instance probes only the d instances uniformly randomly from
its next VNF. Next, the instance chooses to send all of its
processed requests to the lowest-cost instance among the d
samples. In such a way, each instance requires only few times
of sampling to decide its target instance. Although the selected
instance may not be the least-cost one, our later simulation
results show that the reduced sampling brings only a mild
increase in the total cost.

The above variant significantly reduces the sampling over-
heads. However, the issue of non-coordinated decision making
remains. To mitigate such issues, we adopt the idea of batch-
sampling [40] and batch-filling [57] and propose another

two variants of POSCARS, namely POSCARS with Batch-
Sampling (P-BS) and POSCARS with Batch-Filling (P-BF),
respectively. Basically, these two variants split the processed
requests on each instance into batches, each batch with a size
of b, then carry out scheduling upon such request batches.
When b=1, we actually perform scheduling for each request
separately. When b is greater than the number of processed
requests, then scheduling is only performed once in a time
slot, degenerating to POSCARS. We elaborate on the design
of P-BS and P-BF as follows.

POSCARS With Batch-Sampling (P-BS): Given an instance
with z batches of requests, it probes dbsz instances uniformly
randomly from its next VNF, where dbs is the respective
probe ratio. Then the instance sends the z request batch to
the least-cost z instances, with each batch to a distinct target
instance.

POSCARS With Batch-Filling (P-BF): Given an instance
with z request batches, it probes dbfz instances uniformly
randomly from its next VNF. Then it forwards the request
batches one by one. Each batch is sent to the least-cost instance
among the dbfz samples. The chosen instance’s cost is updated
after it receives the batch of requests.

V. SIMULATION

We conduct trace-driven simulations to evaluate the per-
formance of POSCARS and its variants. The request arrival
measurements are drawn from real-world systems [4], with
a mean arrival rate of 25.5 per time slot (10ms) and mean
inter-arrival time of 0.594ms. Besides, we conduct simulations
with Poisson request arrivals at the same rate of 25.5. All the
results are obtained by averaging measurements collected from
50 repeated and independent simulations.

A. Simulation Settings
Substrate Network Topology: We construct the substrate

network based on two widely adopted topologies, i.e., Jellyfish
[48] and Fat-Tree [3]. Both topologies have a comparable scale
to clusters in data center networks, each equipped with 720
switches, 24 servers with deployed VNFs, and the remaining
3456 servers as hosts that generate service requests. Particu-
larly, in Fat-Tree, there are 24 pods, each pod containing to 144
servers. Among such servers in each pod, we choose one server
uniformly at random as the one with deployed VNFs and the
rest as hosts. Requests can be processed on servers in any pod
with the VNF they demand. Between any two servers, request
traffic traverses over the shortest path with a link capacity of
40Gbps. For each pair of servers, the communication cost per
request is proportional to the number of hops of the shortest
path between them, with 10% variation.

Server Resources: We consider CPU cores as the resources
on each server, since CPUs have become the major bottleneck
for request processing in NFV systems [1], [7], [34]. Servers
are heterogeneous, each with a number of CPU cores ranging
from 16 to 64. In every time slot, we calculate the power
consumption in the unit of utilized CPU cores, with λs ∈
[1, 3]. Regarding parameter γ, setting it with a greater value
would encourage each server to assign most resources to
heavily loaded VNF instances. Conversely, a smaller value
of γ would lead to more balanced resource allocation among
such instances; consequently, this will minimize the impact of
imbalanced queue loads on the decision making for service
chaining. The value setting depends on the objectives to
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fulfill in real systems. In our simulation, by fixing γ = 1,
we assume that communication cost reduction and system
energy efficiency are equally important.

Service Function Chains: We deploy five network services,
each with a service chain length ranging from 3 to 5. Each
service contains at least one of the most commonly-deployed
VNFs; e.g., Intrusion Detection System (IDS), Firewall (FW),
Load Balancer (LB). The remaining VNFs of each service are
chosen uniformly from other 30 commonly-used VNFs [30] at
random without replacement. For each VNF, the total number
of instances ranges from 12 to 18.

Prediction Settings: Network services’ traffics often have
different predictabilities. We denote the average window size
by D, and set each service window size by sampling uniformly
from [0, 2×D] at random. We evaluate the cases with perfect
and imperfect prediction. For perfect prediction, future request
arrivals in the time window are assumed perfectly known
to the system and can be pre-served. In practice, such an
assumption is not feasible for stateful requests; nonetheless,
that can be seen as the extended case of our results with more
constraints on request processing. For imperfect prediction,
the failure of prediction generally falls into two categories.
One is false-negative detection, i.e., a request is not predicted
to arrive, and as a result, it receives no pre-service before its
arrival. The other is false-positive detection, i.e., a request that
does not exist is predicted to arrive. In this case, the system
pre-allocates resources to pre-serve such requests. We consider
two extreme cases: one is that we fail to predict the arrivals
of all future requests; the other is that we correctly predict
the actual future arrivals, and furthermore, some extra arrivals
are falsely alarmed. Note that any form of mis-prediction can
be seen as a superposition of such two extremes. In addition,
we also implement five schemes that forecast request arrivals
in the next time slot (with window size D = 1), including: 1)
Kalman filter (Kalman) [8]; 2) distribution estimator (Distr),
which generates the next estimate by independent sampling
from the distribution of arrivals learned from historical data; 3)
Prophet (FB) [49], Facebook’s time-series forecasting proce-
dure; 4) moving average (MA) and 5) exponentially weighted
moving average (EWMA) [5].

Baseline Schemes: We compare POSCARS with three
baseline schemes, including Random, JSQ (Join-the-Shortest-
Queue), and state-of-the-art OneHop-SCH (OneHop schedul-
ing) [52]. These schemes differ in the service chaining strategy
from POSCARS. In Random scheme, each instance uniformly
randomly sends requests to one of its successors. In JSQ
scheme, each instance sends requests to its least-loaded suc-
cessor. In OneHop-SCH, each instances sends requests to its
successor with the least communication cost and idle capacity.

Variants of POSCARS: To compare the performance of
POSCARS and its variants, we evaluate them under different
settings. For each of the variants, we vary their probe ratio
(d for P-Pod, dbs for P-BS, and dbf for P-BF) from 2 to 5,
and fix the batch size for P-BS and P-BF as 5 requests per
batch. We omit the cases when the ratio is 1 and greater than
5. Notice that the former corresponds to the random scheme
and actually leverages no load information; the latter leads
to excessively fined-grained control as it incurs too much
sampling overheads.

Request Response Time Metric: To evaluate the impact of
predictive scheduling, we define a request’s response time as
the number of time slots from its actual arrival to its eventual
completion. If a request is pre-served before it arrives, then the

Fig. 4. Average response time (ms) with various window sizes given trace
and Poisson arrival process, under different topologies.

Fig. 5. Total queue length under different window sizes.

system is assumed to respond to the request instantly upon its
arrival, and the request will experience a zero response time.

B. Performance Evaluation Under Perfect Prediction

Intuitively, POSCARS is promising to shorten the requests’
response time by exploiting predicted information and
pre-allocating idle system resources to pre-serve future
requests. Therefore, the essential benefits of predictive
scheduling come from the load balancing in the temporal
dimension. To verify such an intuition, we first consider the
case with perfectly predicted request arrivals, and evaluate
POSCARS with (D > 0) and without (D = 0) prediction,
against the baseline schemes.

Average Response Time vs. Window Size D: Figure 4
shows the performance of the different schemes under Jel-
lyfish and Fat-Tree topology. The response times induced
by the baseline schemes remain constant since they do
not involve predictive scheduling. Random incurs the high-
est response time (∼ 47ms), as it disregards information
about workloads or communication costs when schedul-
ing requests. JSQ does much better (∼ 32ms) because
requests are always greedily forwarded to the least-loaded
successors. OneHop-SCH outperforms the previous two by
jointly taking the workloads and communication cost into
consideration. Meanwhile, without prediction (D = 0),
POSCARS achieves a comparable performance with OneHop-
SCH; but as the value of D increases from 0 to 20,
we observe a significant reduction in the average response
time under both topologies; e.g., from 29.1ms to 0.5ms
under Fat-Tree topology. The marginal reduction diminishes
as the value of D further increases and eventually remains at
around 0.2ms.

Insight: In practice, due to traffic variability, it is often
not realistic to achieve high predictability (a large value of
D). However, the results show that, only mild-value of future
information suffices to POSCARS’s shortening requests
response time effectively and achieving load-balancing in
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the temporal dimension. With more future information,
the reduction diminishes since the idle system resources have
already been depleted.

Considering the qualitative similarities among curves with
different settings, we only present results under Fat-Tree and
trace-driven request loads.

Backlog-Cost Trade-Off With Parameter V : Recall from
Theorem 1 that the value of parameter V controls the trade-off
between the cost optimality gap and the total queue backlog
size. Figures 5(a) and 5(b) verify such a trade-off. Figure 5(a)
compares the time-average communication cost of POSCARS
with D = 0, 10, 20, against baselines. Both Random and JSQ
incur a high total cost since their decision making disregards
the resultant communication cost and the heterogeneity of
servers in terms of energy cost. OneHop-SCH achieves a
lower total cost by about 13.6%, by taking its advantages of
jointly optimizing cost and shortening queue lengths based on
flow-level statistics. Given different values of D, POSCARS
achieves a close-to-optimal time-average total cost as the value
of V rises up to 103. Notably, POSCARS excels OneHop-SCH
whenever V > 10.

However, recall that parameter V weighs the importance
of minimizing system cost compared to maintaining queue
stability. Hence, to reduce system cost, large values of V
also lead to increased queue lengths. By Little’s theorem [32],
this would increase the response time as well. In Figure 5(b),
we see that the total queue length is almost proportional to
value of V , exceeding all other baselines as V > 150.

Insight: POSCARS achieves a backlog-cost trade-off with
different values of parameter V . By choosing an appropriate
value of V from [10, 150], it outperforms the baseline schemes
with both lower system cost and shorter queue lengths. In
practice, such an interval may vary from system to system but
it is usually proportional to the ratio of magnitudes of the total
queue length to the total system cost.

POSCARS and Its Variants: When forwarding requests,
POSCARS requires each instance to collect statistics from
all its successors. In practice, this may require non-negligible
sampling overheads in face of a large number of instances.
In Section III.C, we propose three variants of POSCARS,
i.e., P-Pod, P-BS, and P-BF. These variants trade off opti-
mality of decision making for reduction in sampling over-
heads and complexity [57] from O(n) to O(1), where n
denotes the total number of candidate instances. Figure 6
evaluates the total cost and average response time induced
by POSCARS and its variants, with parameter V = 10,
D = 1, batch size of 5 for P-BS and P-BF, and the probe
ratio d = dbs = dbf ∈ {2, 5, 8}.

In Figure 6(a), we see that POSCARS achieves the lowest
total cost, since each instance’s decision making is based on
the full dynamics of its succeeding instances. For each variant,
we see a cut-down in the total cost by up to 22.1% as d
increases from 2 to 8. Similarly, from Figure 6(b), we also
observe a reduction in response time from about 34.3ms by
up to 17.6%. Among the three variants, P-BS and P-BF
induce more reduction in both cost and response time than
P-Pod, because aggregated sampling is often more conducive
to lowering the cost [40].

Insight: By sampling partial system dynamics for deci-
sion making, variants of POSCARS trade off optimality for
reduction in sampling overheads and complexity. Owing to
aggregated sampling, P-BF and P-BS outperforms P-Pod in
terms of both lower total cost and response time.

Fig. 6. Comparison among POSCARS and its variants.

C. Performance Evaluation Under Imperfect Prediction

In practice, prediction errors are inevitable due to dataset
bias and noise. To explore the fundamental limits of predictive
scheduling, we evaluate the impact of imperfect prediction on
the system performance.

Total Cost and Response Time vs. V : Figure 7 compares
the time-average total cost and average response time incurred
by different forecasting schemes and perfect scheduling using
POSCARS. In Figure 7(a), we observe that all forecasting
schemes incur higher time-average total costs than predic-
tive scheduling by up to 35.2%. The reason is as follows.
Recall that the prediction under these forecasting schemes are
imperfect, with both false-negative and false-positive predic-
tions. Particularly, the system pre-allocates extra resources to
pre-serve false-positive requests, resulting in higher total cost.
Figure 7(b), shows the overall ascending trend proportional to
the value of V . This is due to that larger values of V lead
to a greater total queue length, and by Little’s theorem [32],
a greater queue length implies longer response time. However,
we also see that, even under imperfect prediction, predictive
scheduling does not necessarily lead to a longer response time
than that under perfect prediction.

To figure out the reason, we consider two extreme cases.
One is all-false-negative, i.e., during each time slot, all future
request arrivals in the lookahead window are false-negative.
Notice that this case is equivalent to the case without predictive
scheduling (D = 0), since no requests will be pre-allocated
resources. The other is all-false-positive, i.e., all future request
arrivals are perfectly predicted, and some extra requests are
wrongly predicted to arrive.

Perfect Prediction vs. Two Extremes: Figure 8(a) compares
average response times under perfect prediction and the two
extremes, with D=5, α=10, and 5 false-positive requests on
average. Overall, the average response time is proportional to
the value of V . Miss detection incurs a higher response time
than the other two, because it does not pre-serve any requests
before they arrive. On the other hand, perfect prediction and
false alarm do not necessarily outperform each other with
lower response times. This is because of two consequences
of false alarm. The first is that false-positive requests will
consume extra system resources and prolong the request
queues’ length, thus leading to longer response times. The
second is that, according to lines 5 - 9 in Algorithm 1,
false-positive requests result in a greater prediction queue
length. That forces POSCARS to admit future requests more
frequently, thus conducing to shorter response times. The same
effect can be achieved by tuning the parameter α – greater
values of α lead to less frequent admission.

How do these two consequences interplay? The question
is answered by Figure 8(b), where the number of average
false-positive requests varies from 0 to 100, with D = 5,
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Fig. 7. Performance of prediction schemes with D = 1 and α = 10.

Fig. 8. Average response time under three different prediction cases.

α = 10, and V=50. When the average number of false-positive
requests increases from 0 to 5, the resultant response time falls
even lower than that under perfect prediction. In such cases,
the second consequence dominates – mild false alarm leads to
more frequent admissions, making POSCARS spread requests
more evenly among instances. However, as false alarm con-
tinues aggravating, the reduction diminishes and the response
time grows constantly. In such cases, though the admission
frequency is intensified, too much false alarm severely extends
the total queue length, offsetting and eventually outweighing
the effect of load balancing.

Insight: Imperfect prediction does not necessarily degrade
system performance in terms of longer response times. Instead,
mild false alarm allows the system to make better use of idle
system resources, further shortening response time.

VI. RELATED WORK

In this section, we first summarize existing works that study
the optimization of NFV from different aspects. Then we
narrow down our focus onto those that are most relevant to
this article and compare their proposed approaches with ours.

A. Optimizing NFV/VNF From Different Aspects

A wide range of recent works have studied NFV systems
from various aspects. Below we take a brief overview and
discuss how they are related to our work.
- VNF placement: In NFV, the placement of VNF instances

often has a significant impact on system performances
[27] and thus deserves an elaborate design. A number
of existing works have been conducted to this end (e.g.,
[2], [10], [12], [42], [63]). In practice, such approaches
can serve to decide the VNF placement, upon which
our schemes can carry out their scheduling procedures
accordingly.

- VNF Resource Allocation: Another series of works (e.g.,
[26], [29], [67]) focused on the optimization of resource
allocation for VNF/NFV, with the aim to minimize VNF
execution overheads and accelerate the processing speed
of VNF instances. They concentrated on achieving such

improvements with particular hardware designs. Different
from such works, we mainly focus on exploiting predicted
information to perform effective scheduling on existing
NFV systems. Nonetheless, our schemes can be applied
to systems built with their solutions.

- Load Balancing: Existing works (e.g., [51], [53], [59])
also developed various schemes to balance the workloads
among chained VNF instances to improve resource uti-
lization and fault tolerance while shortening delays in
NFV systems. In practice, existing solutions can serve as
reference points for system designers to tune the proper
value of parameter V for desired performance metrics.

- Performance Characterization: Another line of works
have devoted their efforts to characterizing various
dynamics of NFV systems such as performance inter-
ferences among VNF instances [45], [60]. Insights from
such works can be combined with our schemes to achieve
even better performance.

B. Chaining and Resource Scheduling of VNFs in NFV

Regarding the optimization of VNF service chaining and
resource scheduling in NFV, existing works generally fall into
two categories.

Of the first category are the schemes that perform ser-
vice chaining and resource scheduling in an offline fashion.
Typically, they assume the full availability of information
about all service requests or flows. Based on flow abstrac-
tion, Zhang et al. [61] considered the joint optimization for
VNF placement and service chaining. They formulated the
problem as an ILP problem and developed an efficient
rounding-based approximation algorithm with performance
guarantee. Yoon et al. [58] adopted the BCMP queueing
model for VNF service chains and proposed heuristics to
approximately minimize the expected waiting time of service
chains. Wang et al. [52] considered the joint optimization
of service chaining and resource allocation and devised a
greedy scheme that aims to place instances and schedule
traffic with minimum link cost, CAPEX, and OPEX. Later,
D’Oro et al. [11] studied service chaining problem from the
perspective of congestion games. By formulating the problem
as an atomic weighted congestion game, they proposed a
distributed algorithm that provably converges to the Nash
equilibrium. On the other hand, Zhang et al. [64] formulated a
request-level optimization problem based on steady-state met-
rics and proposed a heuristic scheme by applying techniques
from open Jackson queueing network. However, there is no
empirical evidence to show that service request arrivals follow
Poisson process in NFV systems. Different from existing
works, our model and problem formulation assume no prior
knowledge about underlying request traffic. Moreover, instead
of offline or even centralized decision making, our solution is
capable to perform near-optimal service chaining and schedul-
ing in a computationally efficient and decentralized manner.

Of the second category are the online schemes that process
requests upon their arrivals. Under this setting, Mohammad-
khan et al. [37] formulated the VNF placement for service
chaining as an MILP problem based on flow abstraction
and designed a heuristic to solve the problem incremen-
tally. Lukovszki et al. [33] proposed an online algorithm
that performs request admission and service chaining with a
logarithmic competitive ratio. Zhang et al. in [66] devised a
novel VNF brokerage service model and online algorithms

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 11,2021 at 08:30:52 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: ONLINE VNF CHAINING AND PREDICTIVE SCHEDULING: OPTIMALITY AND TRADE-OFFS 1879

to predict traffic demands, purchase VMs and deploy VNFs.
Further, Fei et al. [13] presented an effective algorithm that
performs online VNF scheduling and flow routing with pre-
dicted flow demand, so as to minimize the impact of inaccurate
prediction and the cost of over-provisioned resources. Later,
Xiao et al. [55] designed an adaptive service chaining deploy-
ment scheme based on deep reinforcement learning techniques,
which conducts service chaining to serve incoming requests in
an online fashion. Such schemes either resort to flow-level sys-
tem dynamics and predicted information for decision making,
or perform finer-grained control at the request level to optimize
dedicated objectives. In comparison, our model considers such
trade-offs and separates the granularity of system state and
decision making. Besides, we also explore the fundamental
benefits and limits of predictive scheduling, which remains
open in NFV systems.

VII. CONCLUSION

In this article, we studied the problem of dynamic service
chaining and resource scheduling and systematically investi-
gated the benefits of predictive scheduling in NFV systems. We
developed a novel queue model that accurately characterizes
the system dynamics. Then we formulated a stochastic network
optimization problem and then proposed POSCARS, an effi-
cient and decentralized algorithm that performs service chain-
ing and scheduling through a series of online and predictive
decisions. Theoretical analysis and trace-driven simulations
showed the effectiveness and robustness of POSCARS and
its variants in achieving a near-optimal system cost while
effectively shortening average response time. Our results also
show that prediction with mild false-positive conduces to
shorter response times. In addition, note that the fair sharing of
resources and performance isolation among VNF instances is
the key to maintaining high quality of service. Therefore, it is
an interesting direction for future work to establish a more
effective joint service chaining and scheduling scheme with
multi-resource fairness consideration among VNF instances.
Moreover, it would also be intriguing to explore the interplay
between resource fairness and other performance metrics.
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