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Abstract—Federated learning (FL) is an emerging distributed
machine learning (ML) paradigm in the Artificial Intelligence
of Things (AIoT). FL enables AIoT devices to collaboratively
train an ML model on the network edge, while protecting
data privacy and solving the problem of isolated data islands.
Contemporary FL is typically realized through the model aggre-
gation of locally trained models and the model dissemination
of a globally averaged model; such a procedure iteratively pro-
ceeds until a predefined convergence criterion is met. However,
FL necessitates frequent information exchanges between AIoT
devices and a parameter server, which inevitably induces tremen-
dous communication costs. Therefore, this article proposes a new
design for efficient one-shot FL for AIoT systems, so that the
model aggregation and dissemination can be completed within
a single communication round. To this end, we leverage optimal
transport (OT) theory to design the coupled model averaging
(CODE) algorithm to fuse the model weights of the neural
networks (NNs) on AIoT devices. The CODE algorithm initially
performs OT-based layer-by-layer model averaging (MA) over
two NNs to form a fused NN, which will then be averaged with
another NN. The CODE algorithm progressively determines a
pair of NNs, and continues until all NNs have been examined to
achieve one-shot FL. In addition, we provide a detailed conver-
gence analysis for the proposed solution. Our simulation results
show that the proposed solution outperforms other one-shot MA
mechanisms under various parameter settings.

Index Terms—Artificial Intelligence of Things (AIoT), feder-
ated learning (FL), one-shot learning, optimal transport (OT).
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I. INTRODUCTION

MACHINE learning (ML) has demonstrated its great
achievements in various emerging applications

(e.g., smart healthcare, intelligent transportation, industrial
automation, and smart homes/cities), which are greatly revo-
lutionizing people’s daily lives. In light of the unprecedented
growth of research attention in the past decade, ML is
nowadays believed to bring transformative changes across
industries, and in practice, many companies have already
started using ML solutions due to their potentials to provide
more accurate predictions and business decisions.

Both of the model training and inference phases of ML
are conventionally carried out atop a cloud server (typically
dwelt in a data center) which has full accessibility to the
entirety of datasets. In fact, the European Union (EU) has
introduced the general data protection regulation (GDPR) [1]
to clarify that personal data can only be gathered legally under
strict conditions for legitimate purposes, thereby safeguard-
ing the personal data of its citizens. Apparently, traditional
cloud-centric frameworks that require all training data to be
uploaded from different sources to the cloud inevitably incurs
security and privacy issues. Therefore, researchers are moti-
vated to consider shifting model training and inference of ML
from the cloud to the network edge.

In contrast to the cloud-centric ML, federated learning
(FL) [2], [3], [4] evolves as a next-generation distributed ML
technology by allowing the Artificial Intelligence of Things
(AIoT) [5], [6], [7], [8] devices to collaboratively train ML
models and then conducting inferences with their locally
cached data. In the presence of FL, AIoT devices do not
have to upload their collected raw data to the cloud, thereby
saving energy and bandwidth consumption, reducing response
delays, and alleviating privacy and security concerns. In addi-
tion, Cisco [9] has revealed that by 2021 the total amount of
data driven by IoT will reach 847 zettabytes (ZB), whereas
the storage capacities installed in data centers will only
grow to 2.6 ZB. Therefore, it is increasingly desirable to let
AIoT devices participate in the ML procedures collaboratively
without exposing their raw data to the network.

One of the most well-known realization of FL is the weight-
averaging FL (often referred to as FedAvg) [10], which is
a distributed ML framework where multiple AIoT devices
collaborate in solving a distributed ML problem under the
coordination of a parameter server (PS). In particular, FedAvg
allows AIoT devices to collaboratively train a global model
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without sharing their raw data through iteratively perform-
ing the following model aggregation and model dissemination
procedures until convergence.

1) For the model aggregation, the PS receives the local
model updates from AIoT devices over multiple-access
channels, and then updates the global model by averag-
ing over the received local model updates.

2) For the model dissemination, the PS broadcasts its
updated global model to AIoT devices, each of which
updates its local model based on its own local
dataset.

Since the FL process merely involves the uploading of model
updates rather than raw data from AIoT devices during the
model aggregation, it is therefore advantageous in the preser-
vation of data privacy, the reduction of network congestion,
and the facilitation of distributed on-device computation.

Due to the emergence of 5G, IoT, and AI applications,
FL has lately opened up a wide variety of research areas,
such as edge computing [11], [12], [13], differential pri-
vacy [14], [15], [16], Byzantine robustness [17], [18], [19],
nonidentically and independently distributed (NIID)
data [20], [21], [22], personalization [23], [24], [25], and
compression and quantization [26], [27], [28]. Despite
the existing works devoted to FL from various aspects,
the requirement of iterative information exchange among
clients in FL may result in excessive communication costs
(e.g., energy and bandwidth). To resolve such a communica-
tion bottleneck, we are thus motivated to design a one-shot
FL, namely, a global model, can be produced within a single
communication round, thereby reducing communication costs
while achieving satisfactory learning performance and data
privacy protection for AIoT systems.

Conceptually, paving the way toward constructing an AIoT
system exhibits a mathematical analogy with the characteriza-
tion of the geometry among probability spaces. For example,
given two (parent) neural networks (NNs) that were trained
differently, how can we align the neurons of the two NNs
thereby producing another (child) NN? For this purpose, the
optimal transport (OT) theory can be regarded as a viable
solution approach due to its strength in aligning probability
distributions according to the underlying geometry of the con-
sidered metric space (e.g., earth mover distance (EMD) [29]
or Wasserstein distance [30]), which has recently raised
interests in several emerging research fields (e.g., NN com-
parison [31], [32], [33], domain adaptation [34], [35], [36],
Sinkhorn divergence [37], [38], [39], and wireless communi-
cations [40], [41], [42], [43]). Despite the applicability of OT
in several AI-related research fields, it remains unclear how to
leverage OT to construct AIoT systems. In particular, we aim
at designing an AIoT system in which the model aggregation
and dissemination can be performed in a one-shot fashion.
Meanwhile, each AIoT device only has to upload the model
weights of its locally trained model to a model averaging (MA)
server without exposing its raw data, thereby achieving data
privacy. To this end, we have to address the following two
fundamental questions.

1) Q1: How to design an AIoT system that completes
model aggregation and dissemination in merely one

communication round without sacrificing the data pri-
vacy of AIoT devices?

2) Q2: How to perform MA based on the locally
trained models, thereby achieving promising learning
performance for AIoT devices?

In this article, we aim at studying how to leverage MA and
OT techniques to construct an AIoT system in response to Q1
and Q2. For this, we consider that multiple AIoT devices are
connected to a PS, where each AIoT device is equipped with
an NN that trains its local model based on its own dataset, and
the locally trained models will be aggregated by the PS. The
PS first sorts the locally trained models according to their indi-
vidual test accuracies, and then perform MA over two of them
at one time. Initially, the PS averages the model weights of two
physical NNs to form a virtual NN, and the virtual NN will
be averaged with another physical NN. After performing MA
over all physical NNs, the PS broadcasts the globally averaged
model to all AIoT devices for the purpose of local infer-
ence. To assess the cost-effectiveness of the considered AIoT
system, we view the model weights of each locally trained
model as probability measures, and the MA is analogous to
transporting probability masses from AIoT devices to the PS.
In this way, we propose the coupled model averaging (CODE)
algorithm to characterize the progressive MA, where the inher-
ent OT problems will be tackled by the ε-OT subroutine that
yields an ε-approximate solution, and ε is an OT convergence
parameter. In addition, we further provide a convergence anal-
ysis for the integrated solution of the CODE algorithm and
the ε-OT subroutine. Finally, we conduct simulations based
on the MNIST dataset under various degrees of NIID-ness to
demonstrate the learning performance of our proposed solu-
tion. The contributions of this article can be summarized
as follows.

1) We design an AIoT system in which locally
trained models can be averaged progressively to
produce a globally averaged model in a one-shot
fashion.

2) We propose the CODE algorithm to perform progressive
MA, wherein the ε-OT subroutine is invoked to produce
ε-approximate OT solutions.

3) We analyze the convergence of the integrated solution
of the CODE algorithm and the ε-OT subroutine.

The remainder of this article is organized as follows. In
Section II, we briefly introduce the related works regard-
ing distributed ML and model averaging. In Section III,
we present an AIoT system, where a PS is deployed to
perform MA for a set of AIoT devices, and then we
overview the widely used OT problem formulations, the
discretization and regularization techniques. In Section IV,
we leverage OT techniques to formulate the problem of
model fusion in the considered AIoT systems. In Section V,
we propose the ε-OT subroutine to fuse the locally
trained models layer-by-layer and the inherent OT prob-
lems are solved approximately, and present the conver-
gence analysis. In Section VI, we describe our simula-
tions. Finally, this article is concluded in Section VII.
The notations used throughout this article are summarized
in Table I.
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Fig. 1. Illustration of an AIoT system.

TABLE I
SUMMARY OF NOTATIONS

II. RELATED WORKS

A. One-Shot Federated Learning

In the extant literature, the designed one-shot FL frame-
works are primarily based on knowledge distillation or dataset
distillation techniques. The main idea is to use public datasets
or distilled synthetic data from clients to do model distil-
lation on a PS, where the locally trained models play as
teachers and the PS acts like a student. Guha et al. [44]
leveraged ensemble methods to design one-shot FL under
supervised and semi-supervised settings. Shin et al. [45]
developed an XOR-based mixup data augmentation method
XorMixFL to correct the NIID-ness of data distributions for
one-shot FL. Zhou et al. [46] proposed a distilled one-shot

FL framework DOSFL, where each client distills its private
dataset and sends its synthetic data, instead of transmitting
bulky gradients or weights, to a PS. Li et al. [47] proposed
a knowledge transfer-based algorithm FedKT for one-shot
FL under cross-silo settings. Zhang et al. [48] designed a
data-free one-shot FL framework FedSyn that trains a global
model through a data generation stage and a model distillation
stage. Song et al. [49] proposed FedD3 based on the concept
of decentralized dataset distillation, which allows clients to
upload distilled data instead of models to a PS in a one-shot
manner. Despite the strength of knowledge or dataset distil-
lation revealed from the above works, it is unclear whether
and how OT can be used to pave the way toward an efficient
one-shot FL.

B. Model Averaging of Neural Networks

MA evolves as a promising solution to fuse multiple NNs
into one. Kamp et al. [50] proposed an efficient dynamic aver-
aging protocol for decentralized training of deep NNs (DNNs)
from distributed data sources. Yu et al. [51] provided a thor-
ough and rigorous theoretical study on how MA works as well
as parallel mini-batch SGD but with greatly reduced com-
munication overhead. Lin et al. [52] proposed a distillation
framework for robust federated model fusion, where a central
classifier is trained through unlabeled data on the outputs of
the models from clients. Wang et al. [53] designed a layer-
wise FL algorithm for convolutional NNs (CNNs) and long
short-term memories (LSTMs) that appeal to Bayesian non-
parametric methods to adapt to data heterogeneity. The above
works have coped with the MA of NNs from various aspects,
but it is unknown how OT can be leveraged to design one-shot
FL. Although [54] dropped hints about applying OT to model
fusion, it does not guide us to design CODE across NNs.

III. SYSTEM MODEL

A. Network Architecture

We consider an AIoT system consisting of a PS and a set
K of AIoT devices (as shown in Fig. 1). The AIoT devices
are connected to the PS through orthogonal multiple access
channels. That is, the transmission of an AIoT device to the
PS will not be interfered by that of another AIoT device. In

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 06:34:55 UTC from IEEE Xplore.  Restrictions apply. 



CHIANG et al.: OPTIMAL-TRANSPORT-BASED ONE-SHOT FEDERATED LEARNING 2169

addition, each AIoT device collects data through monitoring
and sensing, and the acquired data will be stored in its own
dataset Dk. For the sake of data privacy protection, the dataset
of each AIoT device will not be revealed to the PS, and no
collaboration or information sharing can take place between
AIoT devices.

Each AIoT device locally performs DL over an L-layer NN,
where the first and the Lth layers represent the input and output
layers, respectively. The number of neurons of the lth layer of
AIoT device k is denoted as Nk,l. Based on its own dataset,
each AIoT device performs DL to train its local model. To
characterize the locally trained model, we denote by Wk,l the
column vector of the incoming edge weights of the lth layer of
AIoT device k, and W[i]

k,l indicates the ith entry of the column
vector, where 1 ≤ i ≤ Nk,l−1Nk,l and 1 ≤ l ≤ L.

In the considered AIoT system, multiple AIoT devices
collaborate in solving a distributed ML problem, under the
coordination of the PS. The details of the considered FL
algorithm can be described as follows.

1) Local Training: Each AIoT device performs a local
training based on its own dataset. Once the local training
completes, the AIoT device will have its trained model,
which is specified by the model weights (i.e., the edge
weights between two adjacent layers of an NN).

2) Model Aggregation: Once the local training of an AIoT
device completes, the PS will schedule the AIoT device
to upload its trained model weights.

3) Model Averaging: Once the PS receives all of the trained
models from AIoT devices, it will then perform MA over
the model weights of those locally trained models.

4) Model Dissemination: The PS broadcasts its globally
averaged model, which will be used for local inference
(i.e., prediction) on each AIoT device.

Note that the AIoT system only involves the uploading of
model updates rather than simply updating raw data by
each individual AIoT device during the model aggregation.
This offers several distinct advantages, such as the preser-
vation of data privacy, the reduction of network congestion,
and distributed on-device computation. Unlike conventional
FL requiring multiple communication rounds to converge,
the considered AIoT system aims to perform the steps
1–4 in a noniterative way, thereby reducing the consump-
tion of computing and communication resources for AIoT
devices.

Remark 1: In the MA in step 3, the PS needs to produce a
globally averaged model based on the locally trained models
aggregated from AIoT devices. To ensure that the produced
globally averaged model works similarly to the underlying
data distribution of those locally trained models, we are moti-
vated to leverage OT to help perform the MA in merely one
communication round.

Remark 2: Orchestrating FL algorithms with the consider-
ation of channel impairments (e.g., [55], [56], and [57]) can
take more communication rounds to reach the same con-
vergence criterion. To address this issue, the co-design of
other advanced techniques (e.g., resource allocation and client
selection) and/or the migration from “one-shot” to “few-shot”
paradigm could be more appropriate.

Fig. 2. Illustration of OT.

B. Optimal Transport: Preliminaries

A simple way to understand the concept of OT [30] is to
use an analogy of moving a pile of sand. Suppose that we are
given a hole and we have to fill it up with a pile of sand,
where the pile and the hole have the same volume (see Fig. 2
for a conceptual example). Consider that the mass of the pile
is normalized to 1. Then, the pile and the hole can be modeled
as probability measures μ and ν, which are defined on some
measure spaces X and Y , respectively. For example, if X ′
and Y ′ are measurable subsets of X and Y , μ(X ′) and ν(Y ′)
indicate the measures of how much sand is located inside X ′
and Y ′, respectively. In addition, we model a measurable and
nonnegative cost function c(x, y), which quantifies the costs
of transporting one unit of mass (i.e., sand) from location x to
location y.

1) Discretization: When μ and ν are only accessible
through discrete samples, the corresponding empirical prob-
ability measures can be written, respectively, as

a =
m∑

i=1

μiδ(xi), b =
n∑

j=1

νjδ
(
yj
)

(1)

where δ(·) denotes the Dirac function, μi and νj are probability
masses associated to the ith and jth samples, where the weights
μi and νj live in the probability simplex, namely,

∑m
i=1 μi = 1

and
∑n

i=1 νj = 1, respectively.
Given the empirical probability measures a and b, we now

denote by V the set of probabilistic couplings (or transport
polytopes) as

V(a,b) = {T ∈ R
m×n+ |T1n = a,TT1m = b

}

∀a ∈ R
m,b ∈ R

n (2)

where 1d is a d-dimensional vector of ones, U(a,b) contains
all nonnegative m-by-n matrices with row and column sums
a and b, respectively. In addition, V(a,b) has a probabilistic
interpretation: for any two multinomial random variables A
and B taking values in {1, . . . , n} and {1, . . . ,m}, each with the
probability distribution a and b, respectively, the set V(a,b)
contains all possible joint probabilities of (A,B). Indeed, any
T ∈ V(a,b) can be identified as a joint probability matrix for
(A,B) such that T[i,j] = Pr[A = xi,B = yj], where T[i,j] is the
(i, j)th entry of T.

For the discretization, we denote by C is the cost function
matrix, whose (i, j)th entry C[i,j] is the ground cost of moving
the probability mass xi to yj. Given the transport cost matrix
C, the cost of mapping a to b using a transport matrix (or
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joint probability) T is computed by 〈T,C〉. The Kantorovitch
problem between a and b given the transport cost matrix C
can then be expressed as

P0 : min
T∈V(a,b)

〈T,C〉 (3)

where 〈·, ·〉 stands for the Frobenius dot product, i.e.,
〈A,B〉 � tr(ATB) for any two matrices A and B with the
same size.

2) Wasserstein Distance and Barycenter: When the ground
cost is a metric, the optimal value of OT problems is also
a metric. To quantitatively characterize the transport costs,
we conventionally define the Wasserstein distance of order p
between a and b as

Wp(a,b) =
(

min
T∈V(a,b)

〈T,C〉
) 1

p

(4)

where C[i,j] = (dS(xi, yj))
p denotes a metric measuring the

distance between xi and yj, and dS(·) represents distance
over the space S . Note that the Wasserstein distance is also
known as the EMD [58] in computer vision communities,
and it defines a metric over the space of integrable squared
probability measures.

In literature, it is typical to look for the “mean” or “barycen-
ter” of several data points. The notion of barycenters can be
extended to the use of the Wasserstein distance. Formally, we
have the barycenter of multiple probability measures

a∗ = arg min
a∈Rm

∑

k∈K
ρkWp(a, ak),

K∑

k=1

ρk = 1 (5)

where a lies in the probability simplex composed of probabil-
ity vectors in R

m. Although (5) is in essence an LP, its scale
forbids the use of generic solvers for medium-scale problems.

3) Regularization: In practice, pursuing an optimal solu-
tion to OT problems is computationally prohibitive. To address
this issue, it is typical to introduce an entropic regularization
penalty to the original OT problems. In particular, let us denote
by λ > 0 a regularization parameter and by �(T) the corre-
sponding regularization term given a transport matrix T. Then,
we have the discrete regularized OT problem as

Oλ(a,b) := min
T∈V(a,b)

〈T,C〉 − λ�(T) (6)

where the regularization term [37] is defined as

�(T) = −〈T, log(T)− 1m×n〉
= −

m∑

i=1

n∑

j=1

T[i,j]
(

log
(

T[i,j]
)
− 1
)

(7)

where log(T) represents the entry-wise logarithms of T.

IV. PROBLEM FORMULATION

In the following, we leverage discrete OT techniques for the
MA in the considered AIoT system. In particular, we formulate
the transport cost minimization problem P1 and show that
its optimal solution has a closed-form expression. Then, we
present the equivalent minimization problem P2 that preserves

the optimality of P1, and we will further use P2 to guide our
algorithm design and analysis in Section V.

Recall that the Wasserstein distance, barycenter and regu-
larization have been defined in (4), (5), and (6), respectively.
Now, we are ready to formulate the cost minimization for a
given layer among K NNs in the AIoT system as

P1 : min
a∈Rm

∑

k∈K
ρk

(
min

T∈V(ak,a)
〈T,C〉 − λ�(T)

) 1
p

.

Note that P1 differs from (5) in that multiple probability
masses are transported to a single destination, while the latter
operates in the opposite way.

Lemma 1: The optimal solution T∗ to P1 has the form

T∗ = diag(u)Kdiag(v) (8)

where u ∈ R
m and v ∈ R

n represent two scaling variables,
and K ∈ R

m×n with K[i,j] = e−C[i,j]/λ.
Proof: By introducing two dual variables f ∈ R

m and
g ∈ R

n for each marginal constraint, the Lagrangian of P1
can be expressed as

Lk(T, f, g) = 〈T,C〉 − λ�(T)
−〈f,T1n − ak〉 −

〈
g,TT1m − a

〉
. (9)

After partially differentiating (9) with respect to T[i,j], we have

∂Lk(T, f, g)

∂T[i,j]
= C[i,j] + λ log

(
T[i,j]

)
− f[i] − g[j] (10)

based on which we see that the (i, j)th entry of the OT matrix
T∗ is given by

T∗ij = ef[i]/λK[i,j]eg[j]/λ = u[i]K[i,j]v[j] (11)

where f[i] refers to the ith entry of f, and g[j] refers to the jth
entry of g, and the last equality results from the settings of

u := ef/λ and v := eg/λ. (12)

Finally, orchestrating (11) in matrix form gives rise to (8).
In practice, computing the OT matrix T∗ may encounter

numerical overflows if the regularization parameter λ is rela-
tively small as compared to the entries of the transport cost
matrix C. Thanks to Lemma 1, the issue of numerical over-
flows can be alleviated by carrying out the computations in the
log domain. The relevance of this approach is clearer by con-
sidering the equivalent form P2, in which these log-domain
computations arise naturally

P2 : min
a∈Rm

∑

k∈K
ρk

(
min

f∈Rm,g∈Rn
ψ(f, g)

) 1
p

where

ψ(f, g) = λ1Tdiag
(

ef/λ
)

Kdiag
(
eg/λ)1

−〈f, a〉 − 〈g,b〉. (13)

Theorem 1: P2 is equivalent to P1.
Proof: Recall that the optimal solution to P1 can be fac-

torized in matrix form as T∗ = diag(u)Kdiag(v) according
to Lemma 1. Due to the probabilistic couplings V(a,b), it is
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clear that the dual variables u and v must satisfy the following
nonlinear equations:

diag
(

ef/λ
)

Kdiag
(
eg/λ)1n = a (14)

diag
(
eg/λ)KTdiag

(
ef/λ
)

1m = b. (15)

In addition, it is straightforward to see that

log
(
T∗
) = log(diag(u)Kdiag(v))

=
⎡

⎢⎣
log
(
u[1]K[1,1]v[1]

)
log
(
u[1]K[1,2]v[2]

) · · ·
log
(
u[2]K[2,1]v[1]

)
log
(
u[2]K[2,2]v[2]

) · · ·
...

...
. . .

⎤

⎥⎦

= 1

λ

(
f1T

n − C+ 1mgT) (16)

where the last equality results from (12). Again, according to
Lemma 1, we see that

�
(
T∗
) = −〈T∗, log

(
T∗
)− 1m×n

〉

= −1

λ

〈
diag

(
ef/λ
)

Kdiag
(
eg/λ)

f1T
n − C+ 1mgT − λ1m×n

〉

= 1

λ
〈f, a〉 − 1

λ

〈
ef/λ,K◦eg/λ

〉

+1

λ
〈g,b〉 −

〈
ef/λ,Keg/λ

〉
(17)

where the second equality results from (16), the last one
follows according to (14) and (15), and

K◦ =

⎡

⎢⎢⎣

C[1,1]e−C[1,1]/λ C[1,2]e−C[1,2]/λ · · ·
C[2,1]e−C[2,1]/λ C[2,2]e−C[2,2]/λ · · ·

...
...

. . .

⎤

⎥⎥⎦. (18)

By the fact that
〈
ef/λ, eg/λK◦

〉
= 〈T∗,C

〉
(19)

combining (17) and (19) yields the Lagrangian

Lk
(
T∗, f, g

) = 〈f, a〉 + 〈g,b〉 − λ
〈
ef/λ,Keg/λ

〉
. (20)

By the fact that maximizing the Lagrangian serves as a lower
bound of the original minimization problem, therefore we have

max
f∈Rn,g∈Rm

〈f, a〉 + 〈g,b〉 − λ
〈
ef/λ,Keg/λ

〉

= min
f∈Rn,g∈Rm

ψ(f, g) (21)

which implies the equivalence between P1 and P2.

V. ALGORITHM DESIGN AND ANALYSIS

In this section, we apply the concepts of Wasserstein dis-
tance and barycenter to design the CODE algorithm, and then
present how to employ the Sinkhorn projection technique [59]
to design the ε-OT subroutine. Then, we present the conver-
gence analysis for the integrated solution, where the ε-OT
subroutine is invoked iteratively as a subroutine of the CODE
algorithm.

Algorithm 1 CODE Algorithm

Input: K,
{Nk,l

}
, L, ε, λ.

Output:
{

Wk̄,l

}
.

1: Sort the NNs of K into K◦; � [A1]
2: Set the first NN of K◦ as the non target NN kNT;
3: for q = 2 to |K| do � [A7]
4: Select the q-th NN of K◦ as the target NN kT; � [A2]
5: Calculate the initial transport matrix TkNT,1 based on (22);
6: for l = 2 to L do � [A3]
7: Calculate the pre-processed model weights ŴkNT,l and

transport cost matrices C[i,j]
kNT,kT,l

based on (23) and (24),
respectively; � [A4]

8: Calculate the post-processed model weights W̃kNT,l based
on (25); � [A5]

9: Get the model weights Wk̄,l of the synthetic NN k̄ based
on (26); � [A6]

10: Set the synthetic NN k̄ as the non-target kNT.

A. Coupled Model Averaging Algorithm

We provide the detailed descriptions of the CODE algorithm
(see Algorithm 1) as follows.

1) [A1] Initial Selection of a Nontarget NN: In the begin-
ning, with all of the locally trained models on hand, we
sort the NNs in ascending or descending order accord-
ing to their test accuracies. Let K◦ be the sorted list of
NNs. In each pair of NNs, we have a nontarget NN and
a target NN, where the former gets aligned to the latter.
Here, we select the first NN from K◦ as the nontarget
NN kNT.

2) [A2] Selection of a Target NN: Given the selected non-
target NN kNT, we need to select a target NN so as to
perform an MA. Suppose that we are at the qth iteration.
Then, we select the qth NN from K◦ as the target NN kT .
Then, we use a uniform distribution to initialize the
transport matrix of the input layer for the nontarget NN
kNT through

TkNT,1 ← diag

(
1

NkT,1
1NkT,1

)
. (22)

3) [A3] Layer-by-Layer Model Alignment: To keep the
layer structure of the target and the nontarget NNs intact,
we consider aligning the model weights of a pair of NNs
in a layer-by-layer fashion as shown in Figs. 3 and 4.
For example, the model weights of the lth layer in the
nontarget NN get aligned with respect to the target NN,
and the same procedure continues for the (l+1)th layer.
This procedure begins with the second layer (since the
model weights of the first layer are initialized according
to [A2]). Note that even the number of neurons of a
given layer differs among these two NNs, the alignment
of model weights can still be handled (to be described
in [A5]).

4) [A4] Construction of Transport Cost Matrices: Before
invoking Algorithm 2, it is necessary to define the trans-
port cost matrix. To this end, we first preprocess the
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(a)

(b)

(c)

Fig. 3. Procedures of the layer-by-layer model alignment between a nontarget NN and a target NN. (a) Layer-1 model alignment. (b) Layer-2 model
alignment. (c) Layer-3 model alignment.

Fig. 4. Evolving roles of the target and nontarget NNs.

model weights of NN k in the lth layer through

ŴkNT,l ← WkNT,lTkNT,ldiag

(
1

NkT,l
1NkT,l

)

∀l ∈ {1, . . . ,L} (23)

where the model weights of the nontarget NN kNT are
weighted by TkNT,l and then properly normalized by a
diagonal matrix. Then, we are now ready to construct
the transport cost matrix of the lth layer from nontarget

NN k to the target NN k̂ through

C[i,j]
kNT,kT,l

←
∥∥∥Ŵ[i]

kNT,l
− Ŵ[j]

kT,l

∥∥∥
2

∀i ∈ NkNT,l, j ∈ NkT,l, l ∈ {1, . . . ,L} (24)

where Ŵ[i]
kNT,l

and Ŵ[j]
kT ,l

denote the ith and the jth entries
of the model weights of NN kNT and kT in the lth
layer, respectively. Note that the 2-norm used in (24)
corresponds to the setting of dS to ‖ · ‖2 in (4).

5) [A5] Adjustment of Model Weights: Here, we run
Algorithm 2 to get an ε-approximate transport matrix
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Algorithm 2 ε-OT Subroutine
Input: ε, C, λ.
Output: T̂.

1: Initialize the iteration index t← 0;
2: Initialize the auxiliary variables f(0), g(0) ← 0; � [B1]
3: while the transport matrix T̂(t) satisfies (27) do � [B2]
4: if t is even then � [B3]
5: Update the auxiliary variable f(t) according to (28);
6: Set the auxiliary variable g(t+1) ← g(t);
7: else � [B3]
8: Update the auxiliary variable g(t) according to (29);
9: Set the auxiliary variable f(t+1) ← f(t);

10: Construct the transport matrix T̂(t+1) according
to (30); � [B4]

11: Increase the iteration index t← t + 1;
12: Set the ε-approximate transport matrix T̂← T̂(t).

Tk,l between the probability measures of the pair of NNs
kNT and kT . Then, we get the adjusted model weights by
using Tk,l to align the model weights of NN kNT with
respect to the target NN kT through

W̃kNT,l ← diag

(
1

NkT,l+1
1NkT,l+1

)
TT

kNT,l+1ŴkNT,l

∀l ∈ {1, . . . ,L− 1}. (25)

6) [A6] Averaging of Model Weights: Next, we average the
model weights between the pair of NNs kNT and kT to
obtain those of the synthetic NN k̄ through

Wk̄,l =
1

2

(
W̃kNT,l +WkT,l

) ∀l ∈ {1, . . . ,L}. (26)

Note that the synthetic NN k̄ essentially has the same
structure (e.g., the number of layers and neurons) as the
target NN kT .

7) [A7] Repeating Procedure: If there are any NNs remain
un-selected, we assign the synthetic NN k̄ as the new
nontarget NN kNT, and then go back to [A2]. Otherwise,
the algorithm is terminated, and the final synthetic NN
k̄ becomes the globally averaged model.

B. ε-OT Subroutine

In the following, we first provide the definition of
ε-approximate transport matrices. Then, we give the detailed
descriptions of the ε-OT subroutine (see Algorithm 2),
which produces an ε-approximate transport matrix for
the optimization problem P2 and meanwhile serves as
a subroutine of the CODE algorithm (i.e., line 9 of
Algorithm 1).

Definition 1: Given a transport cost matrix C and the prob-
ability measures a and b, the transport matrix T̄ ∈ R

m×n+
is called an ε-approximate transport matrix if T̄1n = a and
T̄T1m = b, and the following inequality holds true:

〈
T̄,C

〉 ≤ 〈T∗,C
〉+ ε

where T∗ is an OT matrix for P0.
With this definition in mind, our aim is to design an algo-

rithm that produces ε-approximate transport matrix and has

a convergence bound parameterized by 1/ε. In the following,
we elaborate on the design of the ε-OT subroutine.

1) [B1] Auxiliary Variable Initialization: According to P2,
there are two auxiliary variables f and g need to be
determined. Here, the ε-OT subroutine tends to itera-
tively update those auxiliary variables, we denote by f(t)
and g(t) their values at the tth iteration, and we initialize
them to zeros.

2) [B2] Convergence Criterion: The ε-OT subroutine aims
to iteratively update the auxiliary variables g(t) until the
constraints are met given the predetermined accuracy ε.
In particular, we have the stopping criterion expressed
as

∥∥T̂(t)1− a
∥∥

1 +
∥∥∥T̂T

(t)1− b
∥∥∥

1
≤ ε (27)

where T̂(t) refers to the transport matrix at the end of tth
iteration. Once (27) can be satisfied, an ε-approximate
transport matrix will then be output.

3) [B3] Bidirectional Update: Since we have two auxiliary
variables to be updated, we consider updating them in
turn. When the iteration index t is even, we update the
auxiliary variable f(t) according to

f(t+1)← f(t) + log(a)− log
(
T̂(t)1

)
. (28)

Similarly, we update the auxiliary variable g(t)
according to

g(t+1)← g(t) + log(b)− log
(

T̂T
(t)1
)
. (29)

4) [B4] Transport Matrix Construction: When f(t) or g(t)
gets updated, we can construct the transport matrix
through

T̂(t+1)← diag
(

ef(t+1)/λ
)

Kdiag
(
eg(t+1)/λ

)
1. (30)

The transport matrix will be iteratively updated, and its
converged one will fall within the specified convergence
parameter ε.

Remark 3: In the proposed solution, the CODE needs to
be operated over feed-forward NNs [e.g., multilayer percep-
tron (MLP)]. In addition, the CODE works in a layer-by-layer
fashion, and therefore the number of layers needs to be the
same for all NNs. However, the number of neurons of the
same layer across NNs can be different.

Remark 4: The computing costs induced by the CODE
algorithm are different from the FedAvg algorithm as follows.

1) From the perspective of a PS, both one-shot and mul-
tishot versions of the FedAvg algorithm have the least
energy consumption as they simply need weighted aver-
aging operations. On the other hand, the proposed
solution needs to run the ε-OT subroutines, and hence
it incurs higher computing costs.

2) From the perspective of an AIoT device, the proposed
solution has identical computing costs with respect to
the one-shot FedAvg algorithm, and lower computing
costs with respect to the multishot FedAvg algorithm.
In spite of the elevated computing costs at the PS, the
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Fig. 5. Data heterogeneity among the AIoT devices subject to various parameters of the Dirichlet distribution. (a) α = 1020. (b) α = 1. (c) α = 0.1.

proposed solution is advantageous in alleviating the bur-
den of computing for AIoT devices (especially resource-
and/or energy-constrained ones).

C. Convergence Analysis

To analyze the convergence of the proposed solution, we
have to estimate the number of iterations required for reaching
the stopping criteria. In particular, we first formally define the
differential transport costs, and then quantify how they can be
upper bounded according to the changes of dual variables.

Definition 2: Given any two variables f and g, we define
the differential transport costs as

ψ̃(f, g) = ψ(f, g)− ψ(f∗, g∗
)

= 〈1,B(f, g)1〉 − 〈1,B
(
f∗, g∗

)
1
〉

+〈f∗ − f, a
〉+ 〈g∗ − g,b

〉
. (31)

Lemma 2: At the end of each iteration t, the differential
transport costs induced by Algorithm 2 satisfies

ψ̃
(
f(t), g(t)

)
(32)

≤ R
(∥∥B

(
f(t), g(t)

)
1− a

∥∥
1 +

∥∥∥B
(
f(t), g(t)

)T1− b
∥∥∥

1

)

where R = − ln(e−‖C‖∞/λ min(ǎ, b̌)), ǎ = min1≤i≤m a[i], and
b̌ = min1≤j≤n b[j].

Proof: See Appendix A.
Given the upper bounds derived in Lemma 2, we are now

ready to assess the convergence of the proposed solution.
Theorem 2: The convergence of the integrated solution of

Algorithms 1 and 2 is given by O(|K|LR/ε).
Proof: See Appendix B.

VI. PERFORMANCE EVALUATION

We consider an AIoT system composed of 16 AIoT devices
and a PS. For all AIoT devices, we use the same configuration
to set up their individual NNs. All AIoT devices perform deep
learning tasks for the standard image classification using the
MNIST dataset [60], which consists of 60 000 training images
and 10 000 testing images. In addition, we use the MLP [61]
(denoted as MLP) to construct a fully connected NN with
three hidden layers, which consists of 784 input neurons, ten
output neurons, and the hidden layers have 400, 200, and 100
neurons, respectively. The local training is conducted over 10

TABLE II
DEFAULT PARAMETER SETTINGS

epochs, and the batch size is 64. On the other hand, we set the
OT regularization parameter to 0.01 and the OT convergence
parameter to 10−7. The order of Wasserstein distance is set
to 2. All of the default parameter settings used throughout all
simulation results are summarized in Table II unless stated
otherwise.

To demonstrate the impacts of data heterogeneity, the whole
dataset is partitioned among the AIoT devices according to the
Dirichlet distribution [62], denoted as Dir(α) for all α ≥ 0,
where α is the parameter determining the degree of data
heterogeneity. The smaller the parameter α, the more pro-
nounced the heterogeneity of the data distributions across
AIoT devices, and vice versa. In Fig. 5, we consider one IID
setting (i.e., α = 1020) and two NIID settings (i.e., α = 1,
0.1). In Fig. 5(a), we observe that the training data is almost
uniformly allocated to each AIoT device. When the data dis-
tributions across AIoT devices go heterogeneous, we see from
Fig. 5(b), the training data is unevenly allocated to the AIoT
devices. Once if the data heterogeneity becomes more pro-
nounced as Fig. 5(c), we can see that each AIoT device holds
massive training data of some data labels but very few of
others.
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Fig. 6. Impacts of the OT convergence parameter.

To evaluate the performance of our proposed solution, we
consider the following MA mechanisms.

1) CODE: The integrated solution of the CODE algorithm
and the ε-OT subroutine, where the locally trained mod-
els are sorted in ascending order of their prediction
accuracies. Then, the MA will be performed by the
CODE algorithm, where the NNs are sorted in ascending
order of their individual test accuracies.

2) LMF: Following the OT-based layer-wise model
fusion [54], the model weights are averaged across NNs
first given a layer, and the same procedure proceeds until
the last layer. Note that this mechanism also requires
to solve OT inherently, and hence we apply the ε-OT
subroutine here for a fair comparison.

3) FedAvg-�: The model weights are averaged across NNs
for all layers according to the FedAvg algorithm [10],
where � denotes the number of shots (i.e., communica-
tion rounds) elapsed. Note that FedAvg-1 is in essence
a Vanilla averaging.

For ease of demonstration, CODE, LMF, and FedAvg-1 are
illustrated in nongray colors, while FedAvg-10, FedAvg-30,
and FedAvg-50 are drawn in gray colors.

Figs. 6 and 7 illustrate the impacts of OT regularization and
convergence parameters, respectively. For this, we restrict our
focuses to executing the ε-OT subroutine, instead of the whole
integrated solution. In Fig. 6, we see that the number of itera-
tions required for the algorithm to converge decreases with the
OT convergence parameter. The greater the OT convergence
parameter, the smaller the elapsed time for iteratively updating
the variables. In addition, when the OT regularization param-
eter increases, the required number of iterations reduces due
to the tolerance to more blurred OT solution. On the other
hand, Fig. 7 depicts the output transport matrices correspond-
ing to different OT regularization parameters. The greater the
OT regularization parameter, the less concentrated the entry
values (i.e., the less the zero-valued entries). This is because
the OT regularization parameter tends to make the transport
matrix smoother, and hence increasing its value results in less
sparse transport matrices.

Fig. 8 shows the impacts of number of AIoT devices in
terms of test accuracies. From Fig. 8(a)–(c), we see that

CODE significantly outperforms FedAvg-1. This is because
FedAvg-1 tends to be under fitting and thus far away from
reaching a converged global model, and such a situation dete-
riorates when the degree of NIID-ness increases. In addition,
CODE is comparable to LMF under the IID setting, and it
tends to be superior when the degree of NIID-ness increases,
thanks to its efficient CODE. When comparing Fig. 8(a)–(c)
with Fig. 8(d)–(f), the test accuracies of all mechanisms are
elevated thanks the rapid convergence of Adam with respect
to SGD. On the other hand, FedAvg-10, FedAvg-30, and
FedAvg-50 can gradually converge to global models that
yield better test accuracies than CODE when the number of
AIoT devices is not excessive, due to the benefits of perform-
ing MA over multiple communication rounds. Nevertheless,
CODE is advantageous in that it can achieve a satisfactory
test accuracy in merely one communication round, which can
effectively reduce the computing and communication costs for
AIoT devices.

Fig. 9 illustrates how the number of epochs in local
training affects the test accuracies. From Fig. 9(a)–(c), we
observe that the test accuracy of CODE increases with the
number of epochs, whereas FedAvg-1 completely diverges
in the presence of tens of AIoT devices regardless of the
degree of NIID-ness. Similarly, CODE is comparable to LMF
under the IID setting, and it outperforms when the degree
of NIID-ness increases. When comparing Fig. 9(a)–(c) with
Fig. 9(d)–(f), the test accuracies of all mechanisms (except
FedAvg-1) improve with the number of epochs, where SGD
grows more than Adam as the former requires more local
training to reach the same level of the latter. On the other
hand, FedAvg-10, FedAvg-30 and FedAvg-50 can reach
good test accuracies with few epochs due to multiple commu-
nication rounds elapsed, and CODE is comparable to them
under the IID setting with a sufficient number of epochs.
The performance gap in between inevitably enlarges when
the degree of NIID-ness increases, since CODE has to fin-
ish MA based on the locally trained models that look very
different in merely one communication round. Nevertheless,
CODE performs much better than LMF under the NIID
settings.

To demonstrate how our proposed solution is applicable
to advanced NNs, we implement a CNN (identical to VGG-
11 [63] except that only one fully connected layer is used) for
ease of demonstration, which is denoted as CNN for brevity.
To this end, we have to make the following configurations
specifically for the MNIST dataset:

1) The MNIST dataset is merely constituted by grayscale
images, whereas CNN generically takes RGB images as
its input. Therefore, we have to map one-channel data
(i.e., grayscale images) to three-channel one (i.e., RGB
images) by triplicating the gray values. For example, if
the gray value is 10, the corresponding RGB value will
be (10, 10, 10).

2) Since each image of the MNIST dataset is 28×28,
which is incompatible with the input format of CNN,
say 224×224. Therefore, we resize the images of the
MNIST dataset by means of zero-padding to ensure the
input compatibility.
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(a) (b) (c)

Fig. 7. Impacts of the OT regularization parameter. (a) λ = 0.1. (b) λ = 0.01. (c) λ = 0.001.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Impacts of the numbers of AIoT devices under different optimizers and various data heterogeneity settings. (a) SGD, α = 1020. (b) SGD, α = 1.
(c) SGD, α = 0.1. (d) Adam, α = 1020. (e) Adam, α = 1. (f) Adam, α = 0.1.

Fig. 10 shows how different types of NN architectures affect
the test accuracies, where we use the Adam optimizer with
the learning rate of 0.0001. In Fig. 10(a)–(c), we observe that
MLP works better than CNN in both CODE and LMF under
the one-shot setting. This is because MLP has a much simpler
NN architecture than CNN, and hence the former converges
soon while the latter tends to be underfitting. In addition,
when extending the one-shot setting to the few-shot ones, we
see that CNN outperforms MLP since it can extract features
and converge better thanks to more local training opportuni-
ties. Notably, CODE aided with CNN can achieve promising
performance in the presence of data heterogeneity as long as
a few shots are given.

Remark 5: For the datasets with merely few object classes
(e.g., the considered MNIST dataset), simple NNs (e.g., MLP)
may work better under the one-shot setting, while more

advanced NNs (e.g., CNN) are preferable to boost learning
performance if a few more shots are allowable, especially
when the data heterogeneity across AIoT devices increases.

VII. CONCLUSION

FL enabling AIoT devices to collaboratively train ML mod-
els on the network edge has been widely regarded a promising
solution for realizing distributed ML. In this article, we inves-
tigated the design of AIoT systems, where AIoT devices
perform local training without exposing their own data and
a PS is responsible for averaging the locally trained models.
To assess the cost effectiveness of AIoT systems, we lever-
aged OT to formulate the transport costs of averaging the
model weights of moving couples of AIoT devices. Then, we
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Impacts of the numbers of epochs under different optimizers and various data heterogeneity settings. (a) SGD, α = 1020. (b) SGD. α = 1. (c) SGD.
α = 0.1. (d) Adam, α = 1020. (e) Adam, α = 1. (f) Adam, α = 0.1.

(a) (b) (c)

Fig. 10. Impacts of the types of NNs under various data heterogeneity settings. (a) α = 1020. (b) α = 1. (c) α = 0.1.

proposed the CODE algorithm to average locally trained mod-
els progressively, wherein the ε-OT subroutine is designed to
yield ε-approximate transport matrices. Our simulation results
showed that the proposed solution outperforms other MA
mechanisms under various parameter settings, and it bene-
fits much from the locally trained models if their own test
accuracies are further elevated.

APPENDIX A

Let us denote the function �
(
f◦, g◦|f(t), g(t)

)
for k ≥ 1 and

arbitrary (f◦, g◦) as

�
(
f◦, g◦|f(t), g(t)

) = 〈1,B
(
f◦, g◦

)
1
〉− 〈f◦,B

(
f(t), g(t)

)
1
〉

−
〈
g◦,B

(
f(t), g(t)

)T1
〉

(33)

which is a convex function of (f, g). According to Definition 2
and (33), we have

ψ̃
(
f(t), g(t)

) = �(f(t), g(t)|f(t), g(t)
)−�(f∗, g∗|f(t), g(t)

)

+ 〈f(t) − f∗,B
(
f(t), g(t)

)
1− a

〉

+
〈
g(t) − g∗,B

(
f(t), g(t)

)T1− b
〉

≤ 〈f(t) − f∗,B
(
f(t), g(t)

)
1− a

〉

+
〈
g(t) − g∗,B

(
f(t), g(t)

)T1− b
〉

(34)

where the inequality holds because the gradient of (33) van-
ishes at

(
f(t), g(t)

)
. In addition, at the end of each iteration, it

is clear that
〈
1,B

(
f(t), g(t)

)
1− a

〉 = 0, we have
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〈
f(t) − f∗,B

(
f(t), g(t)

)
1− a

〉

=
〈
f(t) − f∗ −

(
max

i
f[i]
(t) −min

i
f[i]
(t)

)
1,B

(
f(t), g(t)

)
1− a

〉

≤
∥∥∥∥∥f(t) −

maxi f[i]
(t) −mini f[i]

(t)

2
1

∥∥∥∥∥∞

∥∥B
(
f(t), g(t)

)
1− a

∥∥
1

+
∥∥∥∥∥f∗ − maxi f[i]

(t) −mini f[i]
(t)

2
1

∥∥∥∥∥∞

∥∥B
(
f(t), g(t)

)
1− a

∥∥
1

≤ R
∥∥B
(
f(t), g(t)

)
1− a

∥∥
1 (35)

where the first inequality follows by the Hölder’s inequality.
Using the same procedure, it is straightforward to show that

〈
g(t) − g∗,B

(
f(t), g(t)

)T1− b
〉

≤ R
∥∥∥B
(
f(t), g(t)

)T1− b
∥∥∥

1
. (36)

Combining (35) and (36) completes the proof of this lemma.

APPENDIX B

Consider that k ≥ 1 is even, where g(t) = g(t+1). Then, we
see that

ψ̃
(
f(t), g(t)

)− ψ̃(f(t+1), g(t+1)
)

= ψ(f(t), g(t)
)− ψ(f(t+1), g(t+1)

)

= 〈1,B
(
f(t), g(t)

)
1
〉− 〈1,B

(
f(t+1), g(t+1)

)
1
〉

+ 〈f(t+1) − f(t), a
〉+ 〈g(t+1) − g(t),b

〉

= 〈a, f(t+1) − f(t)
〉

= 〈a, ln(a)− ln
(
B
(
f(t), g(t)

)
1
)〉

(37)

where the last inequality follows according to the algorithm
construction. In fact, (37) can be linked to the well-known
Kullback–Leibler divergence, which defines the measure
between two probability distributions p and q as

KL(p‖q) :=
m∑

i=1

n∑

j=1

p[i,j] log

(
p[i,j]

q[i,j]

)
. (38)

Therefore, we obtain
〈
a, ln(a)− ln

(
B
(
f(t), g(t)

)
1
)〉

= KL
(
a‖B(f(t), g(t)

)
1
)

≥ 1

2

∥∥B
(
f(t), g(t)

)
1− a

∥∥2
1 (39)

where the inequality follows by the Pinsker’s inequality. In
addition, according to Lemma 2 and the stopping criterion of
Algorithm 2, we see that

∥∥B
(
f(t), g(t)

)
1− a

∥∥
1 ≥ max

(
ψ̃
(
f(t), g(t)

)

R
, ε

)
. (40)

Combining (37) and (40), we get

ψ̃
(
f(t), g(t)

)− ψ̃(f(t+1), g(t+1)
)

≥ 1

2
max

(
ψ̃2
(
f(t), g(t)

)

R2
, ε2

)
. (41)

On the other hand, according to [64], the following inequalities
hold:

ψ̃
(
f(t+1), g(t+1)

)

2R2
≤ ψ̃

(
f(t), g(t)

)

2R2
−
(
ψ̃
(
f(t), g(t)

)

2R2

)2

≤
(

t + 2R2

ψ̃
(
f(1), g(1)

)
)−1

(42)

which implies

t ≤ 2R2

ψ̃
(
f(t), g(t)

) − 2R2

ψ̃
(
f(1), g(1)

) . (43)

In addition, the following inequality holds naturally:

ψ̃
(
f(t+τ), g(t+τ)

) ≤ ψ̃(f(t), g(t)
)− τε

2

2
(44)

from which we obtain

t ≤ 1+ 2

ε2

(
ψ̃
(
f(1), g(1)

)− ψ̃(f(t), g(t)
))
. (45)

By the fact that ψ̃
(
f(t), g(t)

) ≤ ψ̃(f(1), g(1)
)
, (43) and (45) can

be jointly interpreted as

t ≤ min
ζ∈(0,ψ̃(f(1),g(1))

]G(ζ ) (46)

where the function G(ζ ) is expressed as

G(ζ ) = 2+ 2R2

ζ
− 2R2

ψ̃
(
f(1), g(1)

) + 2ζ

ε2
. (47)

Now, the derivative of G(ζ ) gives rise to

∂G(ζ )

∂ζ
= −2R2

ζ 2
+ 2

ε2
. (48)

Therefore, (46) can be further expressed as

t ≤
⎧
⎨

⎩
2+ 4R

ε
− 2R2

ψ̃(f(1),g(1))
, if ψ̃

(
f(1), g(1)

)
> Rε

2+ 2ψ̃(f(1),g(1))
ε2 , otherwise

(49)

from which we get the convergence bound as t = O(R/ε).
Since Algorithm 1 invokes Algorithm 2 for |K|−1 NNs, each
of which has L layers, we finally arrive at the convergence
bound of O(|K|LR/ε).
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