
Performance Evaluation () –

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Analyzing competitive influence maximization problems
with partial information: An approximation algorithmic
framework
Yishi Lin ⇤, John C.S. Lui
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Competitive influence maximization
Information diffusion
Viral marketing
Social networks

a b s t r a c t

Given the popularity of the viral marketing campaign in online social networks, finding a
computationally efficient method to identify a set of most influential nodes so as to com-
petewellwith others is of the utmost importance. In this paper,wepropose a generalmodel
to describe the influence propagation of multiple competing sources in the same network.
We formulate the Competitive Influence Maximization with Partial information (CIMP) prob-
lem: given an influence propagation model and the probability of a node being in the com-
petitor’s seed set, how to find a set of k seeds so to trigger the largest expected influence
cascade under the presence of other competitors?Wepropose a general algorithmic frame-
work, Two-phase Competitive Influence Maximization (TCIM), to address the CIMP problem.
TCIM returns a (1 � 1/e � ✏)-approximate solution with probability of at least 1 � n�`,
where ` � 1/2 is a parameter controlling the trade-off between the success probabil-
ity and the computational efficiency. TCIM has an efficient expected time complexity of
O(c(k+ `)(m+ n) log n/✏2), where n andm are the number of nodes and edges in the net-
work, and c is a function of the given propagation model (which may depend on k and the
underlying network). To the best of our knowledge, this is the first work which provides a
general framework for the competitive influence maximization problem where the seeds
of the competitor could be given as an explicit set of seed nodes or a probability distribu-
tion of seed nodes. Moreover, our algorithmic framework provides both quality guarantee
of solution and practical computational efficiency. We conduct extensive experiments on
real-world datasets under three specific influence propagation models, and show the ef-
ficiency and accuracy of our framework. In particular, for the case where the seed set of
the competitor is given explicitly, we achieve up to four orders of magnitude speedup as
compared to previous algorithms with the same quality guarantee. When the competitor’s
seed set is not given explicitly, running TCIM using the probability distribution of the com-
petitor’s seeds returns nodes with higher expected influence than those nodes returned by
TCIM using an explicit guess of the competitor’s seeds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the popularity of online social networks (OSNs), viral marketing has become a powerful method for companies to
promote sales. In 2003, Kempe et al. [1] formulated the influence maximization problem: given a network G and an integer

⇤ Corresponding author.
E-mail addresses: yslin@cse.cuhk.edu.hk (Y. Lin), cslui@cse.cuhk.edu.hk (J.C.S. Lui).

http://dx.doi.org/10.1016/j.peva.2015.06.012
0166-5316/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2015.06.012
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
mailto:yslin@cse.cuhk.edu.hk
mailto:cslui@cse.cuhk.edu.hk
http://dx.doi.org/10.1016/j.peva.2015.06.012

2 Y. Lin, J.C.S. Lui / Performance Evaluation () –

k, how to select a set of k nodes in G so that they can trigger the largest influence cascade under a predefined influence
propagation model. The selected nodes are often referred to as seed nodes. Kempe et al. proposed the Independent Cascade
(IC) model and the Linear Threshold (LT) model to describe the influence propagation process. They proved that the influence
maximization problem under these two models is NP-hard and a natural greedy algorithm could return (1 � 1/e � ✏)-
approximate solutions for any ✏ > 0. Recently, Tang et al. [2] presented an algorithm with a high probability of finding an
approximate solution, and at the same time, with a low computational overhead.

Recognizing that companies are competing in a viral marketing, a thread of work studied the competitive influence
maximization problem under a series of competitive influence propagation models, where multiple sources spread the in-
formation in a network simultaneously (e.g., [3–5]). Many of these work assumed that there are two companies competing
with each other and studied the problem from the ‘‘follower’s perspective’’. For example, in the viral marketing, a company
introducing a new product into an existing market can be regarded as the follower, and consumers of the existing products
can be treated as nodes influenced by this company’s competitor. Formally, the problem of Competitive Influence Maximiza-
tion (CIM) is defined as follows: suppose we are given a network G and the set of seed nodes selected by our competitor,
how to select seed nodes for our product so as to trigger the largest influence cascade? In this work, we propose a more
general problem, the Competitive Influence Maximization with Partial information (CIMP) problem, where we are given the
probability of each node being in the competitor’s seed set. We refer to this given probability as the seed distribution of the
competitor. The assumption of knowing the seed distribution in the CIMP problem is much milder than the assumption in
the CIM problem where one needs to know the explicit set of seed nodes of the competitor. Note that the CIM problem is
essentially a special case of our CIMP problem.
Contributions: We believe that there can be many influence propagation models representing different viral marketing
scenarios. However, existingworks are usually restricted to specific propagationmodels (e.g., [4,6]). In thiswork,we propose
a general framework that can solve the competitive influence maximization problem under a variety of propagation models.
Our contributions are:

• We present a General Competitive Independent Cascade (GCIC) model which can accommodate different influence prop-
agation models, and apply it to the Competitive Influence Maximization (CIM) problem. We proceed to formulate a more
general Competitive Influence Maximization with Partial information (CIMP) problem, which generalizes the CIM problem
as a special case. Both the CIM and CIMP problems are NP-hard.

• For the CIMP problem under the GCIC model, we propose a Two-phase Competitive Influence Maximization (TCIM)
algorithmic framework.With probability of at least 1�n�`, TCIM guarantees a (1�1/e�✏)-approximate solution. It runs
in O(c(` + k)(m + n) log n/✏2) expected time, where n = |V |,m = |E|, ` � 1/2 is a quality control knob, and c depends
on the specific propagation model, seed-set size k and the network G = (V , E). To the best of our knowledge, this is the
first general algorithm with both (1 � 1/e � ✏) approximation guarantee and practical efficiency. Moreover, as we will
explain later, the (1�1/e�✏) approximation guarantee is in fact the best guarantee one could obtain in polynomial time.

• Todemonstrate the generality, accuracy and efficiency of our framework,we analyze the performance of TCIMusing three
popular influence propagation models: Campaign-Oblivious Independent Cascade model [6], Distance-based model [4] and
Wave propagation model [4].

• We conduct extensive experiments using real datasets to demonstrate the efficiency and effectiveness of TCIM. For the
CIM problem, when k = 50, ✏ = 0.5 and ` = 1, TCIM returns solutions comparable with those returned by baseline algo-
rithms with the same quality guarantee, but runs up to four orders of magnitude faster. We also illustrate via experiments
the benefits of taking the ‘‘seed distribution’’ of the competitor as input to our TCIM framework.

The outline of our paper is as follows. Background and relatedwork are given in Section 2.We define the General Compet-
itive Independent Cascademodel, the Competitive Influence Maximization problem and the Competitive Influence Maximization
problem with Partial information in Section 3. We present the TCIM framework in Section 4 and analyze its performance
under various influence propagation models in Section 5. We compare TCIM with the greedy algorithm with performance
guarantee in Section 6, and show experimental results in Section 7. Section 8 concludes.

2. Background and related work

Single source influencemaximization. In the seminal work [1], Kempe et al. proposed the Independent Cascade (IC) and the
Linear-Threshold (LT) propagationmodel and formally defined the influencemaximization problem. In the ICmodel, a network
G = (V , E) is given and each edge euv 2 E is associated with a probability puv . Initially, a set of nodes S is active and S is
referred to as the seed nodes. Each active node u has a single chance to influence its inactive neighbor v and succeeds with
probability puv . Let � (S) be the expected number of nodes in G that S could activate, the influence maximization problem is
defined as how to select a set of knodes such that� (S) ismaximized. Kempe et al. showed that this problem isNP-hard under
both proposed models. Moreover, they showed that � (S) is a monotone and submodular function of S under both models.
Therefore, for any ✏ > 0, a greedy algorithm returns a solution whose expected influence is at least (1 � 1/e � ✏) times
the expected influence of the optimal solution. The research on this problem went on for around ten years (e.g., [7–12]).
Recently, Borgs et al. [13] made a breakthrough and presented an algorithm that simultaneouslymaintains the performance
guarantee and significantly reduces the time complexity. Tang et al. [2] further improved the method in [13] and presented

Y. Lin, J.C.S. Lui / Performance Evaluation () – 3

an algorithm TIM/TIM+, where TIM stands for Two-phase Influence Maximization. It returns a (1 � 1/e � ✏)-approximate
solution with probability at least 1�n�` and runs in time O((`+k)(m+n) log n/✏2), where n = |V | andm = |E|. Note that
the approximation factor (1 � 1/e � ✏) is in fact optimal for two reasons. First, the evaluation of � (S) for S 6= ; is #P-hard
for both the IC model [8] and the LT model [9]. Second, for any monotone and submodular function � (S), (1 � 1/e) is the
optimal approximation guarantee one could obtain by evaluating � at a polynomial number of set [14].
Competitive influence maximization. We review some work that modeled the competition between two sources and
studied the influence maximization problem from the ‘‘follower’s perspective’’. The majority of these works considered com-
petition between two players (e.g., two companies), and the ‘‘follower’’ is the player who selects a set of seed nodeswith the
full knowledge of seed nodes selected by its competitor. Carnes et al. [4] proposed the Distance-based model and the Wave
propagation model to describe the influence spread of competing sources and considered the influence maximization prob-
lem from the follower’s perspective. Bharathi et al. [3] proposed an extension of the single source IC model and utilized the
greedy algorithm to compute the best response to the competitor. Motivated by the need to limit the spread of rumor in the
social networks, there is a thread of work focusing on how to maximize rumor containment (e.g., [15,6,16]). For example,
Budak et al. [6] modeled the competition between the ‘‘bad’’ and ‘‘good’’ sources. They focused on minimizing the number
of nodes influenced by the ‘‘bad’’ source. The majority of these works assume that seeds of one source, or the ‘‘first-mover’’,
is known. This assumption is sometimes too restrictive because competitors do not always reveal their seed set. Our work
considers that one can estimate the ‘‘distribution’’ of the seed set of the first source, this relaxes the above restrictive as-
sumption. But this relaxation also implies that one needs an accurate and efficient algorithm to solve the CIMP, and this is
the aim of our work. Note that Budak et al. [6] also considered the influence limitation problem in the presence of missing
data. However, both of their assumption and strategy differ from ours. They assumed that only the status (influenced, un-
influenced, newly influenced) of some nodes are revealed. And, their strategy was to predict the status of remaining nodes
before running the influence limitation algorithm.

3. Competitive influence maximization problem

In this section, we introduce the General Competitive Independent Cascade (GCIC) model which models the influence
propagation of competing sources in the same network. Based on the GCIC model, we formally define the Competitive
Influence Maximization problem and the Competitive Influence Maximization problem with Partial information.

3.1. General Competitive Independent Cascade Model

Let us first define the General Competitive Independent Cascade (GCIC) model. A network is modeled as a directed graph
G = (V , E) with n = |V | nodes andm = |E| edges. Users in the network are modeled as nodes, and directed edges between
nodes represent the interaction between users. A node v is a neighbor of node u if there is a directed edge euv 2 E. Every
edge euv 2 E is associated with a length duv > 0 and a probability puv denoting the influence node u has on v. We assume
puv = 0 for euv 62 E. For simplicity, we assume that the length of all edges is 1. Our algorithm and analysis can be easily
extended when edges have non-uniform lengths.

We first consider two influence sources. Denote A and B as two sources that simultaneously spread information in the
network G. A node v 2 V could be in one of three states: S, IA and IB. Nodes in state S, the susceptible state, have not been
influenced by any source. Nodes in state IA (resp. IB) are influenced by source A (resp. B). Once a node is influenced, it cannot
change its state. Initially, sources A and B can each specify a set of seed nodes, which we denote as SA ✓ V and SB ✓ V .
We refer to nodes in SA (resp. SB) as seeds or initial adopters of source A (resp. B). We also assume SA \ SB = ;. As in the
single source Independent Cascade (IC) model, an influenced node u influences its neighbor v with probability puv , and we
say each directed edge euv 2 E is active with probability puv . We use Ea ✓ E to denote a set of active edges. Let dEa(v, u) be
the shortest distance from v to u through active edges in Ea and assume dEa(v, u) = +1 if v cannot reach u through active
edges.Moreover, let dEa(SA[SB, u) = minv2SA[SB dEa(v, u) be the shortest distance from the nodes in SA[SB to node u through
active edges in Ea. For a given Ea, we say a node v is the nearest initial adopter of u if v 2 SA[SB and dEa(v, u) = dEa(SA[SB, u).
In the GCIC model, for a given Ea, a node u will be in the same state as that of one of its nearest initial adopters at the end of
the influence propagation process. The expected influence of SB is the expected number of nodes in state IB at the end of the
influence propagation process, where the expectation is taken over the randomness of Ea. A specific influence propagation
model of the GCIC model will specify how the influence propagates in detail, including the tie-breaking rule for the case
where both nodes in SA and SB are the nearest initial adopters of a node.

Moreover, we make the following assumptions. Let �u(SB|SA) be the conditional probability that, given SA, node u will
be influenced by source B when SB is the seed set for source B. We assume that �u(SB|SA) is a monotone and submodular
function of SB ✓ V \ SA for all u 2 V . Let � (SB|SA) = P

u2V �u(SB|SA) be the expected influence of SB given SA, it is also
monotone and submodular of SB ✓ V \ SA. Finally, one can easily extend the above model to more than two sources. This
can be done by assuming that source B has n competitors A1, . . . , An. Let A = A1 [· · · [An, from the perspective of source
B, he is facing a single large competitor A.

We call this the General Competitive Independent Cascade model because for any graph G = (V , E) and SB ✓ V , the
expected influence of SB given SA = ; is equal to the expected influence of SB in the single source IC model. Note that there

4 Y. Lin, J.C.S. Lui / Performance Evaluation () –

are a number of specific instances of the GCIC model, e.g., the Campaign-Oblivious Independent Cascade Model [6], the Wave
propagation Model [4], and the Distance-based Model [4]. The influence spread function of these specific instances is in fact
monotone and submodular.1 We will elaborate on these models in later sections.

3.2. Problem definition

We now formally define the Competitive Influence Maximization (CIM) problem.

Definition 1 (Competitive Influence Maximization Problem). Suppose we are given a specific instance of the General
Competitive Independent Cascademodel (i.e., the Distance-basedModel), a directed graphG = (V , E) and the seed set SA ✓ V
for source A. Find a set S⇤

B of k nodes for source B such that the expected influence of S⇤
B given SA is maximized. Formally, we

have: S⇤
B = argmaxSB2{S✓V\SA, |S|=k}� (SB|SA).

As stated previously, knowing SA is not always realistic since competitors are not willing to reveal the information. We
now define a more general problem where we are given the seed distribution DA of source A, instead of the explicit seed set
SA. For each node u 2 V , DA(u) specifies the probability that u is a seed of source A. We write SA ⇠ DA to indicate that the
seed set SA is drawn from the random seed distribution DA. Given the set SB of seed nodes selected by source B, we define
the expected influence spread of SB given the seed distribution DA as � (SB|DA) = ESA⇠DA [� (SB \ SA|SA)]. Note that by this
definition, we are essentially considering the ‘‘worst case’’ influence spread of SB such that if source B happens to select a
node in SA, source Bwould fail to influence that node. One could also specify a tie-breaking rule for the situation where both
sources A and B select the same node. In this work, for the ease of presentation, we assume A dominates B (or if there is a tie,
Awins). Recall that for any given SA, � (SB \ SA|SA) is a monotone and submodular function of SB. One could easily verify that,
for any given DA, � (SB|DA) is also a monotone and submodular function of SB.

Definition 2 (Competitive Influence Maximization Problemwith Partial Information). Suppose we are given a specific instance
of the General Competitive Independent Cascade model (i.e., the Distance-based Model), a graph G = (V , E) and the seed
distributionDA for sourceA. Find a set S⇤

B of knodes for sourceB such that the expected influence of S⇤
B givenDA ismaximized,

i.e., S⇤
B = argmaxSB2{S✓V ,|S|=k}� (SB|DA).

For the distribution DA, we assume that if DA(u) < 1 holds for a node u 2 V , the probability DA(u) is upper bounded by
a constant C (0 C < 1). Moreover, we are only interested in the non-trivial case that |V \ SA| � k for the CIM problem and
|V | � k for the CIMP problem. It is easy to see that CIM problem is a special case of the CIMP problemwhere the probability
of each node being a seed of source A is either zero or one.

Note that the IC model is essentially the GCIC model where the competitor does not select seed nodes. Because the influ-
ence maximization problem under the IC model is NP-hard [1], both the CIM and the CIMP problem under the GCIC model
are also NP-hard. Moreover, because computing the expected influence of a seed set is #P-hard under the ICmodel [8], com-
puting � (SB|DA) (resp. � (SB|SA)) exactly under the GCIC model is also #P-hard, and one could only estimate the expected
influence in polynomial time. Given the above analysis and the fact that � (SB|DA) (resp. � (SB|SA)) is monotone and sub-
modular of SB, (1� 1/e� ✏) is the optimal approximation guarantee one could obtain for the CIMP (resp. CIM) problem in a
polynomial time [14]. In this paper, we provide a solution to the general CIMP problemwith the (1�1/e�✏) approximation
guarantee and at the same time, with practical run time complexity.

4. Proposed solution framework to the CIMP problem

In this section,we present our Two-phase Competitive InfluenceMaximization (TCIM) algorithm to solve the CIMP problem.
Note that ourwork is different from [2],whichwas designed for the single source influencemaximization problem. Ourwork
is a general framework for the CIMPproblemunder different instances of theGeneral Competitive Independent Cascademodel,
while maintaining the (1 � 1/e � ✏) approximation guarantee and practical efficiency. We first provide basic definitions
and the high level idea of TCIM. Then, we present a detailed description and analysis of two phases of the TCIM algorithm,
the Parameter estimation and refinement phase, and the Node selection phase.

4.1. Basic definitions and high level idea

Motivated by the definition of ‘‘RR sets’’ in [13,2], we first define the Reverse Accessible Pointed Graph (RAPG). We then
design a scoring system such that for a large number of random RAPG instances generated based on a given seed distribution
DA and a given seed set SB, the average score of SB for each RAPG instance is a good approximation of the expected influence
of SB given DA. Let dg(u, v) be the shortest distance from u to v in a graph g and assume dg(u, v) = +1 if u cannot reach v
in g . Let dg(S, v) be the shortest distance from the nodes in set S to node v through edges in g , and assume dg(S, v) = +1
if S = ; or S 6= ; but there are no paths from nodes in S to v. We define the Reverse Accessible Pointed Graph (RAPG) and the
random RAPG instance as follows.

1 We like to point out that while there does exist influence spread functions which are non-submodular, it is still an open research question as to how
to solve these non-submodular optimization problems in general.

Y. Lin, J.C.S. Lui / Performance Evaluation () – 5

Fig. 1. Example of a random RAPG instance: The graph G contains 12 nodes and 13 directed edges each represented by an arrow. The random subgraph g
is obtained from G by removing 3 edges represented by dashed arrows, i.e., e1, e6 and e7. The random seed set of source A is SA = {4, 9}. From g , SA , and
the randomly selected ‘‘root’’ node 2, we get the random RAPG instance R = (VR, ER, SR,A) where VR = {2, 5, 7, 9, 10, 11}, ER = {e4, e5, e8, e9, e10, e11} and
SR,A = {9}.

Definition 3 (Reverse Accessible Pointed Graph). For a given node r in G, a given seed set SA drawn from DA, and a subgraph
g of G obtained by removing each edge euv in G with probability 1 � puv , let R = (VR, ER, SR,A) be the Reverse Accessible
Pointed Graph (RAPG) obtained from r , SA, and g . The node set VR contains u 2 V if dg(u, r) dg(SA, r). The edge set ER
contains edges on all shortest paths from nodes in VR to r through edges in g . And the node set SR,A = SA \ VR is the set of
initial adopters of source A in R. We refer to r as the ‘‘root’’ of R.

Definition 4 (Random RAPG Instance). Let G be the distribution of g induced by the randomness in edge removals from G. A
random RAPG instance R is a Reverse Accessible Pointed Graph (RAPG) obtained from a randomly selected node r 2 V , an
instance of g randomly sampled from G, and an instance SA randomly sampled from DA.

Fig. 1 shows an example of a random RAPG instance R = (VR, ER, SR,A) with VR = {2, 5, 7, 9, 10, 11}, ER = {e4, e5, e8,
e9, e10, e11} and SR,A = {9}. The ‘‘root’’ of R is node 2.

Let us now present our scoring system. For a random RAPG instance R = (VR, ER, SR,A) obtained from a random node
r 2 V , g ⇠ G and SA ⇠ DA, the score of a node set SB in R is defined as follows.

Definition 5 (Score). Suppose we are given a random RAPG instance R = (VR, ER, SR,A) obtained from a random node r ,
g ⇠ G and SA ⇠ DA. The score of a node set SB in R, denoted by fR(SB), is defined as the probability that node r will be
influenced by source B when (1) the influence propagates in graph g with all edges being ‘‘active’’; and (2) SA \ VR and
(SB \ SA) \ VR are seed sets for sources A and B respectively.

Recall that for the General Competitive Independent Cascade model, we assume that for any node u 2 V , the conditional
probability �u(SB|SA) is a monotone and submodular function of SB ✓ V \ SA. It follows that, for any given R = (VR, ER, SR,A),
fR(SB) is also a monotone and submodular function of SB ✓ V . Furthermore, we define the marginal gain of the score as
follows.

Definition 6 (Marginal Gain of Score). For a random RAPG instance R with root v, we denote

�R(w|SB) = fR(SB [{w}) � fR(SB) (1)

as the marginal gain of score if we add w to the seed set SB.

From the definition of GCIC model and that of the RAPG, we know that for any RAPG instance R obtained from r , g ⇠ G
and SA ⇠ DA, R contains all nodes that can influence r and all shortest paths from these nodes to r . Hence, for any given DA,
SB and node w, once an instance R is constructed, the evaluation of fR(SB) and �R(w|SB) can be done based on Rwithout the
knowledge of g and SA \ SR,A, where SA is drawn from DA.

From Definition 5, for any SB ✓ V , the expected value of fR(SB) over the randomness of R equals the probability that a
randomly selected node in G can be influenced by SB. Formally, we have the following lemma.

Lemma 1. Given a seed distribution DA and a seed set SB, we have � (SB|DA) = n · E[fR(SB)], where the expectation of E[fR(SB)]
is taken over the randomness of R, and n is the number of nodes in G.

FromLemma1, for any given set SB, a high expected ‘‘score’’ implies a high expected influence spread. By Lemma1 and the
Chernoff–Hoeffding bound, for a sufficiently large number of random RAPG instances, the average score of a set SB in those
RAPG instances could be a good approximation to the expected influence of SB in G. The main challenge is how to determine
the number of RAPG instances required, and how to select seed nodes for source B with a high expected influence spread
based on a set of random RAPG instances. TCIM consists of the following two phases, which will be described in detail in
later subsections.

6 Y. Lin, J.C.S. Lui / Performance Evaluation () –

1. Parameter estimation and refinement: Suppose S⇤
B is the optimal solution to the CIMP problem. Let OPT = � (S⇤

B |DA) be
the expected influence spread of S⇤

B given DA. In this phase, TCIM estimates and refines a lower bound of OPT and uses
the lower bound to derive a parameter ✓ .

2. Node selection: In this phase, TCIM first generates a setR of ✓ randomRAPG instances ofG andDA, where ✓ is a sufficiently
large number obtained in the previous phase. Using the greedy approach, TCIM returns a set of seed nodes SB for source
Bwith the goal of maximizing the summation of ‘‘score’’ over all RAPG instances generated.

4.2. Node selection

We first describe theNode selection phase, because wewould like to explain whywe need to estimate the lower bound of
OPT first. Algorithm 1 shows the pseudo-code of the node selection phase. Given a graph G, the seed distributionDA of source
A, the seed set size k for source B and a constant ✓ , the algorithm returns a seed set SB of k nodes for source B with a large
expected influence spread. In Lines 1–2, the algorithm generates ✓ random RAPG instances and initializes the marginal gain
of score for all nodes u 2 V . Then, in Lines 3–12, the algorithm selects seed nodes SB iteratively using the greedy approach
with the goal of maximizing the summation of ‘‘score’’, i.e.,

P
R2R fR(SB).

Algorithm 1 NodeSelection (G, DA, k, ✓)

1: Generate a set R of ✓ random RAPG instances.
2: LetMGR(u) = P

R2R fR({u}) for all u 2 V .
3: Initialize the seed set SB = ;.
4: for i = 1 to k do

5: Identity the node vi 2V\SB with largest MGR(vi).
6: Add vi to SB.
7: if i < k then

8: // UpdateMGR(u) as
P

R2R �R(u|SB) for all u 2 V\SB.
9: Let R0 ={R|R 2 R, �R(vi|SB\{vi}) > 0}.
10: for all R 2 R0 and u 2 VR\(SB [SR,A) do
11: MGR(u) = MGR(u) � �R(u|SB\{vi}).
12: MGR(u) = MGR(u) + �R(u|SB).
13: return SB

Generation of RAPG instances. We adapt the randomized breadth-first search (BFS) [13,2] here. To generate one random
RAPG instance, we first randomly pick a node r as its ‘‘root’’. Then, we create a queue containing a single node r and initialize
the RAPG instance under construction as R = (VR = {r}, ER = ;, SR,A = ;). For a node u, let dR(u, r) be the shortest distance
from u to r in the current R and let dR(u, r) = +1 if u cannot reach r in R. We iteratively pop the node v at the top of the
queue and examine its incoming edges. For each incoming neighbor u of v satisfying dR(u, r) � dR(v, r)+1, with probability
puv , we insert euv into R and push node u into the queue if it has not been pushed into the queue before. Whenever we push
a node u into the queue, including the ‘‘root’’ node r , we add u to SR,A with probability DA(u). If set SR,A first becomes non-
empty when we push a node u into the queue and dR(u, r) = d, we terminate the BFS after we have examined incoming
edges of all nodes whose distance to r in R is d. Otherwise, the BFS terminates naturally when the queue becomes empty. If
reverse the direction of all edges in R, we obtain an accessible pointed graph, in which all nodes are reachable from r . For
this reason, we refer to r as the ‘‘root’’ of R.
Greedy approach. Let FR(SB) = P

R2R fR(SB) for all SB ✓ V . Since fR(SB) is amonotone and submodular function of SB ✓ V for
any RAPG instance R, we can conclude that FR(SB) is also a monotone and submodular function of SB ✓ V for any R. Hence,
the greedy approach selecting a set of nodes SB with the goal of maximizing FR(SB) could return a (1 � 1/e) approximate
solution [17]. Formally, let S⇤

B be the optimal solution. The greedy approach in Lines 3–12 of Algorithm 1 returns a solution
SB such that FR(SB) � (1 � 1/e)FR(S⇤

B). From Lemma 1, FR(SB) being large implies that SB has a large expected influence
spread when used as a seed set for source B.
The ‘‘marginal gain vector’’. During the greedy selection process, we maintain a vectorMGR such thatMGR(u) = FR(SB [
{u}) � FR(SB) holds for current SB and all u 2 V \ SB. We refer to MGR as the ‘‘marginal gain vector ’’. The initialization of
MGR could be done during or after the generation of random RAPG instances, whichever is more efficient. At the end of each
iteration of the greedy approach, we updateMGR . Suppose in one iteration, we expand the previous seed set S 0

B by adding a
node vi and the new seed set is SB = S 0

B [{vi}. For any RAPG instance R such that vi 62 VR \SR,A, we have�R(u|S 0
B) = �R(u|SB)

for all u 2 V \ SB. And, for any RAPG instance R such that fR(S 0
B) = 1, for all u 2 V \ S 0

B, we have �R(u|S 0
B) = 0 and the

marginal gain of score cannot be further decreased. To conclude, for a given R = (VR, ER, SR,A) and a node u 2 VR \ (SR,A [SB),
�R(u|SB) differs from �R(u|S 0

B) only if node vi 2 VR \ SR,A and fR(S 0
B) < 1. Hence, to updateMGR(u) as

P
R2R �R(u|SB) for all

u 2 V \ SB, it is not necessary to compute �R(u|SB) for all R 2 R and u 2 V \ (SR,A [SB). Note that for any RAPG instance R
and node vi, �R(vi|SB \ {vi}) > 0 implies vi 2 VR \ SR,A and fR(S 0

B) > 1. Hence, Lines 9–12 do the update correctly.
Time complexity analysis. Let E[NR] be the expected number of random numbers required to generate a random RAPG
instance, the expected time complexity of generating ✓ random RAPG instances is O(✓ · E[NR]). Let E [|ER|] be the expected

Y. Lin, J.C.S. Lui / Performance Evaluation () – 7

number of edges in a randomRAPG instance.We assume that the initialization and update ofMGR takes timeO(c✓ ·E [|ER|]).
Here, c = ⌦(1) depends on specific influence propagation model and may also depend on k and G. In each iteration,
we select a node from V \ SB with the largest marginal gain of score, which takes time O(n). Hence, Algorithm 1 runs in
O(kn + ✓ · E[NR] + c✓ · E [|ER|]) expected time. Moreover, from the fact that E [|ER|] E[NR] and c = ⌦(1), the expected
running time can be written in a more compact form as

O(kn + c✓ · E[NR]). (2)

In Section 5, we will show the value of c and provide the expected running time of the TCIM algorithm for several influence
propagation models, e.g., the Distance-based model.
The approximation guarantee. From Lemma 1, we see that the larger ✓ is, the more accurate is the estimation of the ex-
pected influence. The key challenge is how to determine the value of ✓ , i.e., the number of RAPG instances required, so as to
achieve certain accuracy of the estimation. Specifically, we like to find a ✓ such that the node selection algorithm returns a
(1� 1/e� ✏)-approximation solution. At the same time, we want ✓ to be as small as possible because it has a direct impact
on the running time of Algorithm 1. Applying the Chernoff–Hoeffding bound, one can show that for a sufficiently large set
R of random RAPG instances, n ·FR(SB)/✓ = n ·

�P
R2R fR(SB)

�
/✓ could be an accurate estimate of the influence spread of SB

given DA. Then, the set SB of k nodes returned by the greedy algorithm has a large FR(SB) and also a large expected influence
spread. Specifically, for Algorithm 1, we have the following theorem.

Theorem 1. Given that ✓ satisfies

✓ � (8 + 2✏)n · ` ln n + ln
�n
k

�
+ ln 2

OPT · ✏2 . (3)

Algorithm 1 returns a solution with (1 � 1/e � ✏) approximation with probability at least 1 � n�`.

Proof. Please refer to Appendix. ⇤

By Theorem 1, let � = (8 + 2✏)n(` ln n + ln
�n
k

�
+ ln 2)/✏2, Algorithm 1 returns a (1 � 1/e � ✏)-approximate solution for

any ✓ � �/OPT .

4.3. Parameter estimation

The goal of our parameter estimation algorithm is to find a lower bound LBe of OPT so that ✓ = �/LBe � �/OPT . Here,
the subscript ‘‘e’’ of LBe is short for ‘‘estimated’’.
Lower bound of OPT . We define a probability distribution V+ over the nodes in V . Recall that DA(u) is the probability of
node u being a seed of source A. And, we denote the indegree of u as d�(u). In the distribution V+, the probability mass for
each node u is proportional to (1 � DA(u))d�(u). The intuition is that we are trying to select nodes with high indegree but
have a low probability of being a seed of A. Suppose we take k samples from V+ and use them to form a node set S+

B with
duplicated nodes eliminated. A natural lower bound of OPT is the expected influence of S+

B given the seed distribution DA
of source A, i.e., � (S+

B |DA). Furthermore, a lower bound of � (S+
B |DA) is also a lower bound of OPT . In the following lemma,

we present a lower bound of � (S+
B |DA).

Lemma 2. Let R be a random RAPG instance. And, let V 0
R = {u|u 2 VR, fR({u}) = 1}. We define the width of R, denoted by

w(R), as w(R) = P
u2V 0

R
(1 � D(u)) d�(u). We define m0 = P

u2V (1 � D(u)) d�(u) and ↵(R) = 1 �
⇣
1 � w(R)

m0

⌘k
. We have

n · E[↵(R)] � (S+
B |SA), where the expectation of E[↵(R)] is taken over the randomness of R.

Proof. Please refer to Appendix. ⇤

Let LBe := n · E[↵(R)]. Then, Lemma 2 shows that LBe is a lower bound of OPT .
Estimation of the lower bound. By Lemma 2, we can estimate LBe by first measuring n ·↵(R) on a number of random RAPG
instances and then take the average of the estimation. By Chernoff–Hoeffding bound, to obtain an estimation of LBe within
� 2 [0, 1] relative error with probability at least 1� n�`, the number of measurements required is ⌦(n` log n✏�2/LBe). The
difficulty is that we usually have no prior knowledge about LBe. Tang et al. [2] provided an adaptive sampling approachwhich
dynamically adjusts the number of measurements based on the observed sample value. We apply Tang et al.’s approach
directly and Algorithm 3 shows the pseudo-code that estimates LBe.

For Algorithm 2, the theoretical analysis in [2] can be applied directly and the following theorem holds.

Theorem 2. When n � 2 and ` � 1/2, Algorithm 2 returns LB⇤
e 2 [LBe/4,OPT] with at least 1 � n�` probability, and has

expected running time O(`(m + n) log n). Furthermore, E[1/LB⇤
e] < 12/LBe.

8 Y. Lin, J.C.S. Lui / Performance Evaluation () –

Algorithm 2 EstimateLB(G, DA, `) [20]
1: for i = 1 to log2 n � 1 do

2: Let ci = (6` ln n + 6 ln(log2 n)) · 2i.
3: Let si = 0.
4: for j = 1 to ci do
5: Generate a random RAPG instance R and calculate ↵(R).
6: Update si = si + ↵(R).
7: if si > ci/2i

then

8: return LB⇤
e = n · si/(2 · ci).

9: return LB⇤
e = 1.

Running time of the node selection phase. We now analyze Algorithm 1 assuming ✓ = �/LB⇤
e . From ✓ � �/OPT and

Theorem 1, we know Algorithm 1 returns a (1� 1/e� ✏)-approximate solution with high probability. Now we analyze the
running time of Algorithm 1. The running time of building ✓ random RAPG instances is O(✓ · E[NR]) = O(�

LB⇤
e
· E[NR]) where

E[NR] is the expected number of random numbers generated for building a random RAPG instance. The following lemma
shows the relationship between LB⇤

e and E[NR].

Lemma 3. For E[NR] and LB⇤
e , we have O

⇣
E[NR]
LB⇤

e

⌘
= O

�
1 + m

n

�
.

Proof. Please refer to Appendix. ⇤

Recall that the greedy selectionprocess inAlgorithm1has expected time complexityO(kn+c✓ ·E[NR]). Let ✓ = �/LB⇤
e . Ap-

plying Lemma 3, the expected running time of Algorithm 1 becomes O
�
kn+ c�E[NR]/LB⇤

e
�

= O
�
c(` + k)(m + n) log n/✏2

�
.

4.4. Parameter refinement

As discussed before, if the lower bound of OPT is tight, our algorithm will have a small running time. The current lower
bound LBe is no greater than the expected influence spread of a set of k independent samples from V+, with duplicates
eliminated. Hence, LBe is often much smaller than the OPT . To narrow the gaps between OPT and the lower bound we get in
Algorithm 2, we use a greedy algorithm to find a seed set S 0

B based on the limited number of RAPG instances we generated in
Algorithm 2, and estimate the influence of S 0

B with a reasonable accuracy. Then, the intuition is that we can use a creditable
lower bound of � (S 0

B|DA) or LB⇤
e , whichever is larger, as the refined bound.

Algorithm 3 refines the lower bound. Lines 2–8 greedily find a seed set S 0
B based on the RAPG instances generated in

Algorithm 2. Intuitively, S 0
B should have a large influence spread when used as seed set for source B. Lines 9–13 estimate the

expected influence of S 0
B. By Lemma1, letR00 be a set of RAPG instances, F := n(

P
R2R00 fR(S 0

B))/|R00| is anunbiased estimation
of � (S 0

B|DA). Algorithm 3 generates a set R00 of sufficiently large number of RAPG instances such that F (1+ ✏0)� (S 0
B|DA)

holds with high probability. Then, with high probability, we have F/(1+ ✏0) OPT , meaning that F/(1+ ✏0) is a creditable
lower bound of OPT . We use LBr = max{F/(1 + ✏0), LB⇤

e} as the refined lower bound of OPT , which will be used to derive ✓
in Algorithm 1. The subscript ‘‘r’’ of LBr stands for ‘‘refined’’.

Algorithm 3 RefineLB(G, k, DA, LB⇤
e, ✏, `)

1: Let R0 be the set of RAPG instances generated in Algorithm 2.
2: LetMGR0 (u) = P

R2R0 fR({u}) for all u 2 V .
3: Initialize the seed set S 0

B = ;.
4: for i = 1 to k do

5: Identity the node vi 2V\SB with largest MGR0 (vi).
6: Add vi to S 0

B.
7: if i < k then

8: Update MGR0 (u) as
P

R2R �R(u|SB) for all u 2 V\SB.
9: ✏0 = 5 · 3

p
` · ✏2/(` + k)

10: �0 = (2 + ✏0)`n ln n/✏02

11: ✓ 0 = �0/LB⇤
e

12: Generate a set R00 of ✓ 0 random RAPG instances.
13: Let F = n ·

�P
R2R00 fR(S 0

B)
�
/✓ 0.

14: return LBr = max{F/(1 + ✏0), LB⇤
e}

Theoretical analysis. The following lemma shows that Algorithm 3 returns LBr 2 [LB⇤
e,OPT] with high probability.

Lemma 4. Given LB⇤
e 2 [LBe/4,OPT], Algorithm 3 returns LBr 2 [LB⇤

e,OPT] with at least 1 � n�` probability.

Proof. Please refer to Appendix. ⇤

Y. Lin, J.C.S. Lui / Performance Evaluation () – 9

Fig. 2. Example of a random RAPG instance with 6 nodes and 6 edges. The set SR,A contains a single node 3.

In the following theorem, we formally show the performance guarantee and the time complexity of Algorithm 3.

Theorem 3. Given E[1/LB⇤
e] = O(12/LBe) and LB⇤

e 2 [LBe/4,OPT], Algorithm 3 returns LBr 2 [LB⇤
e,OPT] with at least 1� n�`

probability and runs in O(c(m + n)(` + k) log n/✏2) expected time.

Proof. Please refer to Appendix. ⇤

4.5. TCIM: the full algorithm

Wenowput Algorithms 1–3 together and present the complete TCIM algorithm. Given a network G, the seed distribution
DA for the source A together with parametric values k, ` and ✏, TCIM returns a (1�1/e�✏) solutionwith probability at least
1� n�`. First, Algorithm 2 returns the estimated lower bound of OPT , denoted by LB⇤

e . Then, we feed LB⇤
e to Algorithm 3 and

get a refined lower bound LBr. Finally, ✓ = �/LBr and Algorithm 1 returns a set SB of k seeds for source B based on ✓ = �/LBr
random RAPG instances. Algorithm 4 describes the pseudo-code of TCIM as a whole.

Algorithm 4 TCIM (G, DA, k, `, ✏)
1: `0 = ` + ln 3/ ln n
2: LB⇤

e = EstimateLB(G, DA, `
0)

3: LBr = RefineLB(G, k, DA, LB⇤
e , ✏, `

0)
4: � = (8 + 2✏)n

�
`0 ln n + ln

�n
k

�
+ ln 2

�
/✏2

5: ✓ = �/LBr
6: SB = NodeSelection(G, DA, k, ✓)
7: return SB

The following theorem states the solution quality and expected time complexity of the TCIM framework.

Theorem 4 (TCIM). When n � 2 and ` � 1/2, TCIM returns (1 � 1/e � ✏)-approximate solution with probability at least
1 � n�`. The expected time complexity is O(c(` + k)(m + n) log n/✏2).

Proof. We use `0 = `+ ln 3/ ln n as the input parameter value of ` for Algorithms 1–3 . By setting this, Algorithms 1–3 each
fails with probability at most n�`/3. Hence, by union bound, TCIM succeeds in returning a (1 � 1/e � ✏) approximation
solution with probability at least 1 � n�`. Moreover, the expected running time of TCIM is O(c(` + k)(m + n) log n/✏2),
because Algorithms 1–3 each has expected running time at most O(c(` + k)(m + n) log n/✏2). ⇤

5. Applying and analyzing various propagation models under GCIC

In this section, we describe some special cases of the GCIC model and provide detailed analysis about TCIM for these
models. To illustrate the generality of the GCIC model, we use the following propagation models: the Campaign-Oblivious
Independent Cascade Model in [6], the Distance-based model and the Wave propagation model in [4] as specific propagation
models. For each model, we first briefly describe how the influence propagates given explicit seed sets of both sources.
Then, we give examples of the score in a simple RAPG instance shown in Fig. 2, and analyze the time complexity of the TCIM
algorithm for the Competitive Influence Maximization problem with Partial information.

5.1. Campaign-Oblivious Independent Cascade model

Budak et al. [6] introduced the Campaign-Oblivious Independent Cascade model (COICM) extending the single source IC
model. The influence propagation process starts with two sets of active nodes SA and SB, and then unfolds in discrete steps.
At step 0, nodes in SA (resp. SB) are activated and are in the state IA (resp. IB). When a node u first becomes activated in step
t , it gets a single chance to activate each of its currently uninfluenced neighbor v and succeeds with the probability puv .
Budak et al. assumed that one source is prioritized over the other one in the propagation process, and nodes influence by

10 Y. Lin, J.C.S. Lui / Performance Evaluation () –

the dominant source always attempt to influence its uninfluenced neighbors first. Here we assume that if there are two or
more nodes trying to activate a node v at a given time step, nodes in the state IB (i.e., nodes influenced by source B) attempt
first, which means source B is prioritized over source A.
Examples of score. Suppose we are given seed sets SA and SB and a set of active edges Ea. In COICM, source B ends up
influencing a node u if and only if du(SB, Ea) du(SA, Ea). For the RAPG instance R in Fig. 2 where node 3 is a seed of source
A, we have fR(SB) = 1 if SB \ {0, 1, 2, 4, 5} 6= ; and fR(SB) = 0 otherwise.
Analysis of TCIM algorithm. Recall that while analyzing the running time of TCIM, we assume that if |R| = ✓ , the expected
time complexity for the initialization and update of the ‘‘marginal gain vector’’ MGR is O(c✓ · E [|ER|]). We now show that
c = O(1) for COICM. Suppose we are selecting nodes based on a set R of ✓ RAPG instances. The initialization of MGR takes
time O(✓ · |ER|) for any RAPG instance R = (VR, ER, SR,A), we have fR({u}) = 1 for all u 2 VR \ SR,A and fR({u}) = 0
otherwise. Suppose in one iteration, we add a node vi to the set S 0

B and obtain a new seed set SB = S 0
B [{vi}. Recall

that we define R0 = {R|R 2 R, �R(vi|S 0
B) > 0} in the greedy approach. For every RAPG instance R 2 R0 and for all

u 2 V \ (SR,A [SB), we would have �R(u|SB) = 0 and �R(u|S 0
B) = 1 and hence we need to updateMGR(u) correspondingly.

For each RAPG instance R, it only appears in R0 in at most one iteration. Hence, the expected total time complexity for the
initialization and update of the ‘‘marginal gain vector’’ is O(✓ · E [|ER|]). It then follows that the expected running time of
TCIM is O((` + k)(m + n) log n/✏2).

5.2. Distance-based model

Carnes et al. proposed the Distance-based model [4]. The idea is that a consumer is more likely to be influenced by the
early adopters if their distance in the network is small. The model governs the diffusion of sources A and B given the initial
adopters for each source and a set Ea ✓ E of active edges. Let du(Ea, SA [SB) be the shortest distance from u to SA [SB
along edges in Ea and let du(Ea, SA [SB) = +1 if there u cannot reach any node in SA [SB. For set S ✓ V , we define
hu(S, du(Ea, SA [SB)) as the number of nodes in S at distance du(Ea, SA [SB) from u along edges in Ea. Given SA, SB and a set of
active edges Ea, the probability that node uwill be influenced by source B is hu(SB,du(Ea,SA[SB))

hu(SA[SB,du(Ea,SA[SB))
. Thus, the expected influence

of SB is � (SB|SA) = E
hP

u2V
hu(SB,du(Ea,SA[SB))

hu(SA[SB,du(Ea,SA[SB))

i
, where the expectation is taken over the randomness of Ea.

Examples of the score. Suppose we are given a random RAPG instance R shown in Fig. 2. If SB \ {0, 1, 2} 6= ;, we would
have fR(SB) = 1. Suppose SB = {4, 5}, we have d0(ER, SR,A [SB) = 2, h0(SB, 2) = 2 and h0(SR,A [SB, 2) = 3. Hence, node 0
will be influenced by SB with probability 2

3 , and fR({4, 5}) = 2
3 . For SB = {4} or SB = {5}, one can verify that fR(SB) = 1

2 .
Analysis of TCIM algorithm. We now show that c = O(k) for the Distance-based Model. In the implementation of TCIM
under the Distance-based Model, for each RAPG instance R = (VR, ER, SR,A) with ‘‘root’’ r , we keep dR(v, r) for all v 2 VR and
dR(SR,A, r) in memory. Moreover, we keep track of the values hr(SR,A [SB, dR(SR,A, r)) and hr(SB, dR(SR,A, r)) for the current
SB and store them in memory. Then, for any given RAPG instance R = (VR, ER, SR,A) and a node u 2 VR \ (SR,A [SB), if
dR(u, r) = dR(SR,A, r), we have fR(SB [{u}) = hr (SB,dR(SR,A,r))+1

hr (SR,A[SB,dR(SR,A,r))+1 . Otherwise, we have fR(SB [{u}) = 1. In each iteration, for
each RAPG instance R, the update of hr(SR,A [SB, dR(SR,A, r)) and hr(SB, dR(SR,A, r)) after expanding previous seed set SB by
adding a node could be done in O(1). Moreover, for any R and u 2 VR \ (SR,A [SB), we could evaluate �R(u|SB) in O(1). There
are O(✓) RAPG instances with the expected total number of nodes being O(✓ · E [|ER|]). Hence, in k iterations, the expected
total time complexity of the initialization and update of the marginal gain vector is O(k✓ · E [|ER|]). Substituting c with O(k)
in O(c(` + k)(m + n) log n/✏2), the running time of the TCIM algorithm is O(k(` + k)(m + n) log n/✏2).

5.3. Wave propagation model

Carnes et al. also proposed the Wave Propagation model in [4]. Suppose we are given SA, SB and a set of active edges Ea.
Let p(u|SA, SB, Ea) be the probability that source B influences node u. We also let dEa(SA [SB, u) be the shortest distance from
seed nodes to u through edges in Ea. Let Nu be the set of neighbors of u whose shortest distance from seed nodes through
edges in Ea is dEa(SA [SB, u)� 1. Then, Carnes et al. [4] defined p(u|SA, SB, Ea) =

�P
v2Nu

p(v|SA, SB, Ea)
�
/|Nu|. The expected

number of nodes SB can influence given SA is � (SB|SA) = E
⇥P

v2V p(v|SA, SB, Ea)
⇤
, where the expectation is taken over the

randomness of Ea.
Examples of score. For a random RAPG instance R shown in Fig. 2, as for the Distance-based Model, we have fR(SB) = 1
if SB \ {0, 1, 2} 6= ;. Suppose SB = {4}, source B would influence nodes 4 and 2 with probability 1, influence node 1 with
probability 1/2 and influence node 0with probability 3/4. Hence, fR({4}) = 3/4. Suppose SB = {5}, source Bwould influence
nodes 5 and 2 with probability 1, influence node 0 with probability 1/2. Hence, fR({5}) = 1/2. Moreover, one can verify that
fR({4, 5}) = 3/4.
Analysis of TCIM algorithm. We now show that for a greedy approach based on a set of ✓ random RAPG instances, the
expected time complexity for the initialization and update of the ‘‘marginal gain vector’’ isO(kn ·✓ ·E[|ER|]). In each iteration
of the greedy approach, for each RAPG instance R = (VR, ER, SR,A) and each node u 2 VR\(SR,A[SB), it takesO(|ER|) to update
the marginal gain vector. Since there are ✓ RAPG instances each having at most n nodes and the greedy approach runs in k

Y. Lin, J.C.S. Lui / Performance Evaluation () – 11

iteration, it takes at most O(kn · ✓ · E[|ER|]) in total to initialize and update the marginal gain vector. Substituting c = O(kn)
into O(c(` + k)n(m + n) log n/✏2), the expected running time of TCIM is O(k(` + k)n(m + n) log n/✏2).

6. Comparison with the greedy algorithm

In this section, we compare TCIM to the greedy approach with Monte-Carlo method and we consider the Competitive
Influence Maximization (CIM) problem where the seed set SA for source A is given. We denote the greedy algorithm as
GreedyMC, and it works as follows. The seed set SB is empty initially and the greedy selection approach runs in k iterations.
In the ith iteration, GreedyMC identifies a node vi 2 V \ (SA [SB) that maximizes the marginal gain of influence spread of
source B, i.e., maximizes � (SB [{vi}|SA) � � (SB|SA), and puts it into SB. Every estimation of the marginal gain is done by ✓
Monte-Carlo simulations. Hence, GreedyMC runs in O(kmn✓) time. Tang et al. [2] provided the lower bound of ✓ that ensures
the (1 � 1/e � ✏) approximation ratio of the greedy method for single source influence maximization problem. We extend
their analysis on GreedyMC and give the following theorem.

Theorem 5. For the Competitive Influence Maximization problem, GreedyMC returns a (1�1/e� ✏)-approximate solution with
at least 1 � n�` probability, if

✓ � (8k2 + 2k✏) · n · (` + 1) ln n + ln k
✏2 · OPT . (4)

Proof. Please refer to Appendix. ⇤

Remark. Now we compare TCIM with GreedyMC. For the simplicity of comparison, we assume that ` � 1/2 is a constant
shared by both algorithms, and n/2 m. We believe these assumptions are realistic in practice. Suppose we are able to
set ✓ to the smallest value satisfying Inequality (4), the time complexity of GreedyMC is O(k3n2m log n · ✏�2/OPT). Given
that OPT n, the time complexity of GreedyMC is at least O(k3nm log n/✏2). Under the assumption that ` is a constant and
O(n + m) = O(m), TCIM runs in O(c(` + k)(m + n) log n/✏2) = O(ckm log n/✏2). Therefore, for the case where there exist
two non-negative constants �1 and �2 so that �1 + �2 > 0 and c = O(k2��1n1��2), TCIM is more efficient than GreedyMC.
Note that for all three models described in Section 5, TCIM is more efficient than GreedyMC. For the case where c = O(k2n),
TCIM may still be a better choice than GreedyMC. For example, the time complexity of GreedyMC depends on the value of
OPT or a lower bound of OPT . However, in practice, we usually have no prior knowledge about OPT . Suppose we are not
able to get a tight lower bound of OPT , or the lower bound we get is much smaller than n, TCIMmay outperform GreedyMC,
because the time complexity of TCIM is independent of the value of OPT .

7. Experimental results

Weperform experiments on real datasets. First, we consider the Competitive InfluenceMaximization (CIM) problemwhere
the seeds of the competitive source are explicitly given, and we demonstrate the effectiveness and efficiency of our TCIM
framework. Then, we present results on the general Competitive Influence Maximization problem with Partial information
(CIMP) to show the benefit of taking seed distributions of the competitor as input for the TCIM framework.
Datasets. Our datasets contain three real networks: (i) A Facebook-like social network containing 1899 users and 20,296
directed edges [18]. (ii) The NetHEPT network, an academic collaboration network including 15,233 nodes and 58,891
undirected edges [10]. (iii) An Epinions social network of the who-trusts-whom relationships from the consumer review site
Epinions [19]. The network contains 508,837 directed ‘‘trust’’ relationships among 75,879 users. As the weighted IC model
in [1], for each edge euv 2 E, we set puv = 1/d�

v where d�
v is the indegree of v.

Propagation models. For each dataset, we use the following propagation models: the Campaign-Oblivious Independent
Cascade Model (COICM), the Distance-based model and the Wave propagation model as described in Section 5.

7.1. Effectiveness and efficiency

In this subsection, we demonstrate the effectiveness and efficiency of the TCIM framework. We only report results for
the CIM problem for two reasons. First, for all propagation models we tested, the TCIM framework solves the CIM problem
exactly the sameway as it solves the CIMP problem. Second, we compare TCIMwith classical greedymethods and a heuristic
algorithm. The heuristic algorithm cannot be easily extended to solve the CIMP problem.
Baselines. We compare TCIM with the following three algorithms. CELF [7] is a greedy approach based on a ‘‘lazy-forward’’
optimization technique. It exploits the monotone and submodularity of the object function to accelerate the algorithm.
CELF++ [11] is a variation of CELF which further exploits the submodularity of the influence propagation models. It avoids
some unnecessary re-computations of marginal gains in future iterations at the cost of introducing more computation
for each candidate seed set considered in the current iteration. SingleDiscount [10] is a degree discount heuristic initially
proposed for single source influencemaximization problem. For the CIM problem,we adapt this heuristicmethod and select

12 Y. Lin, J.C.S. Lui / Performance Evaluation () –

Fig. 3. Results on the Facebook-like network: Influence vs. k under three propagation models. (|SA| = 50, ` = 1).

Fig. 4. Results on the Facebook-like network: Running time vs. k under three propagation models. (|SA| = 50, ` = 1).

knodes iteratively. In each iteration, for a given set SA and current SB, we select a nodeu such that it has themaximumnumber
of outgoing edges targeting nodes not in SA [SB.

For the TCIM algorithm, letR be all RAPG instances generated in Algorithm1 and let SB be the returned seed set for source
B, we report n ·

�P
R2R fR(SB)

�
/|R| as the estimation of � (SB|SA). For other algorithms tested, we estimate the influence

spread of the returned solution SB using 50,000 Monte-Carlo simulations. In each experiment, we run each algorithm three
times and report the average results.
Parametric values. For TCIM, the default parametric values are |SA| = 50, ✏ = 0.1, k = 50, ` = 1. For CELF and CELF++,
we run 10,000 Monte-Carlo simulations to estimate the expected influence spread of each candidate seed set SB under
consideration, following the setting in the literature (e.g., [1]). One should note that the number of Monte-Carlo simulations
required in all of our experiments is much larger than 10,000 by Theorem 5. For each dataset, the seed set SA for source A is
returned by the TCIM algorithm with parametric values SA = ;, ✏ = 0.1 and ` = 1.
Results on small network: We first compare TCIM to CELF, CELF++ and the SingleDiscount heuristic on the Facebook-like
social network. Fig. 3 shows the expected influence spread of SB selected by TCIM and other methods. The influence spread
of SB returned by TCIM, CELF and CELF++ are comparable. The influence spread of the seeds selected by SingleDiscount is
slightly less than other methods. Interestingly, there is no significant difference between the expected influence spread of
the seeds returned by TCIMwith ✏ = 0.1 and ✏ = 0.5, which shows that the quality of solution does not degrade too quickly
with the increasing of ✏. Fig. 4 shows the running time of TCIM, CELF and CELF++, with k varying from 1 to 50. Note that
we did not show the running time of SingleDiscount because it is a heuristic method and the expected influence spread of
the seeds returned is inferior to the influence spread of the seeds returned by the other three algorithms. Fig. 4 shows that
among three influence propagation models, as compared to CELF and CELF++, TCIM runs two to three orders of magnitude
faster if ✏ = 0.1 and three to four orders of magnitude faster when ✏ = 0.5. CELF and CELF++ have similar running time
becausemost time is spent to select the first seed node for source B and CELF++ differs fromCELF starting from the selection
of the second seed.
Results on large networks: For NetHEPT and Epinion, we experiment by varying k, |SA| and ✏ to demonstrate the efficiency
and effectiveness of the TCIM. We compare the influence spread of TCIM to SingleDiscount heuristic only, since CELF and
CELF++ do not scale well on larger datasets.

Fig. 5 shows the influence spread of the solution returned by TCIM and SingleDiscount, where the influence propagation
model is the Wave propagation model. We also show the value of LBe and LBr returned by the lower bound estimation
and refinement algorithm. On both datasets, the expected influence of the seeds returned by TCIM exceeds the expected
influence of the seeds return by SingleDiscount. Moreover, for every k, the lower bound LBr improved by Algorithm 3
is significantly larger than the lower bound LBe returned by Algorithm 2. For the TCIM framework, generating RAPG
instances consumes the largest fraction of running time. Recall that the number of RAPG instances we generate is inversely
proportional to the lower bound we estimate. Therefore, the significant decrease of the estimated lower bound shows the

Y. Lin, J.C.S. Lui / Performance Evaluation () – 13

(a) NetHEPT. (b) Epinion.

Fig. 5. Results on large datasets: Influence vs. k under theWave propagation model. (|SA| = 50, ✏ = 0.1, ` = 1).

(a) NetHEPT. (b) Epinion.

Fig. 6. Results on large datasets: Running time vs. k under three propagation models. (|SA| = 50, ✏ = 0.1, ` = 1).

(a) NetHEPT. (b) Epinion.

Fig. 7. Results on large datasets: Running time vs. ✏ under three propagation models. (|SA| = 50, k = 50, ` = 1).

important role of Algorithm 3 in reducing the total running time. When the influence propagation model is COICM or the
Distance-based model, the results are similar to that in Fig. 5.

Fig. 6 shows the running time of TCIM, with k varying from 1 to 50. For every influence propagation model, when k = 1,
the running time of TCIM is the largest. With the increase of k, the running time tends to drop first, and it may increase
slowly after k reaches a certain number. This is because the running time of TCIM is mainly related to the number of RAPG
instances generated in Algorithm 1, which is ✓ = �/LBr. When k is small, LBr is also small as OPT is small. With the increase
of k, if LBr increases faster than the decrease of �, ✓ decreases and the running time of TCIM also tends to decrease. From
Fig. 6, we see that TCIM is especially efficient for large k. Moreover, for every k, TCIM based on COICM is the smallest while
the running time of TCIM based on the Wave propagation model is the largest. This is consistent with the analysis of the
running time of TCIM in Section 5.

Fig. 7 shows that the running time of TCIM decreases quickly with the increase of ✏, which is consistent with its
O(c(` + k)(m + n) log n/✏2) time complexity. When ✏ = 0.5, TCIM finishes within 7 s for NetHEPT dataset and finishes
within 23 s for Epinion dataset. This implies that if we do not require a very tight approximation ratio, we could use a larger
✏ as input and the performance of TCIM could improve significantly.

Fig. 8 shows the running time of TCIM as a function of the seed-set size of source A. For every propagation model, when
|SA| increases, OPT decreases and LBr tends to decrease. As a result, the total number of RAPG instances required in the node
selection phase increases and consequently, the running time of TCIM also increases.

14 Y. Lin, J.C.S. Lui / Performance Evaluation () –

(a) NetHEPT. (b) Epinion.

Fig. 8. Results on large datasets: Running time vs. |SA| under three propagation models. (k = 50, ✏ = 0.1, ` = 1).

(a) NetHEPT. (b) Epinion.

Fig. 9. Results on large datasets: Memory consumption vs. k under propagation models. (|SA| = 50, ✏ = 0.1, ` = 1).

Fig. 9 shows the memory consumption of TCIM as a function of k. For any k, TCIM based on COICM consumes the least
amount of memory because we only need to store nodes for each RAPG instance. TCIM based on Wave propagation model
consumes the largest amount of memory because we need to store both nodes and edges of each RAPG instance. In the
Distance-based model, for each RAPG instance, we do not need to store the edges, but need to store some other information;
therefore, the memory consumption is in the middle. For all three models and on both datasets, the memory usage drops
when k increases because the number of RAPG instances required tends to decrease.

7.2. TCIM with partial information

In this subsection, we report results for the general Competitive Influence Maximization problem with Partial information
(CIMP) and demonstrate the importance of allowing the seed of a competitor being a ‘‘distribution’’ over all nodes. We also
report the running time and memory consumption for each experiment. Here, the default parametric values of TCIM are
✏ = 0.1, k = 50 and ` = 1. We run each experiment ten times and report the average results.

We consider the scenario where we know the competitor has the budget to influence 50 nodes as its initial adopters.
Moreover, we ‘‘guess’’ that the seed set of our competitor is a set of nodes selected by the single source influence maxi-
mization algorithm [2], or nodes with the highest degree, or nodes with highest closeness centrality. We denote the above
mentioned three sets by Sg, Sd and Sc. Let DA be our estimated seed distribution. For each node u, define DA(u) as the prob-
ability of u being in a set randomly chosen from the above mentioned three possible sets. We refer to the seed distribution
DA as the ‘‘mixed method distribution’’.

Table 1 shows the results of this scenario for datasetsNetHEPT and Epinion. For each dataset, we run the TCIM framework
given seed distribution DA, given explicit seed set Sg, Sd and Sc. For each seed set SB returned, we run 50,000 Monte-Carlo
simulations to compute the influence given that the true seed set of competitor being Sg, Sd and Sc. We also report the
average influence given different true seed set SA. Denote the seed set returned by the TCIM framework given the mixed
method distribution by S⇤

B . For example, given that the network is NetHEPT and the propagation model is COICM, Table 1
shows that � (S⇤

B |Sg) = 599.82, � (S⇤
B |Sd) = 632.23 and � (S⇤

B |Sc) = 657.49. And, on average, the expected influence of S⇤
B

is 629.85. From Table 1, we can see that the seed set S⇤
B has higher average influence than seed sets returned by running

TCIM given Sg , Sd and Sc as seeds of the competitor. Moreover, we observe from Table 1 that, for any true seed set SA, S⇤
B

has a larger influence than any other seed set returned by TCIM given a wrong guess of the explicit seed set. For example,
suppose the network is NetHEPT, the propagation model is COICM, and the ‘‘true’’ seed set of our competitor is Sg . Let S 0

B be
the set returned by TCIM given Sd as a (wrong) guess of SA. In this case, we have � (S 0

B|Sg) = 400.18 < � (S⇤
B |Sg) = 599.82.

When the influence propagation model is the Distance-based model, the results are similar to those in Table 1. This indicates

Y. Lin, J.C.S. Lui / Performance Evaluation () – 15

Table 1

Expected influence of seeds SB returned by the TCIM framework given the ‘‘mixed method distribution’’ (mixed method) as seed distribution for source A or
given the guess of explicit seeds of A. Seeds ‘‘greedy’’ for source A is the set of nodes selected by single source influence maximization algorithm. The set
‘‘degree’’ for source A (resp. ‘‘centrality’’) denotes the top 50 nodes ranked by (out)degree (resp. closeness centrality). (k = 50, ✏ = 0.1, ` = 1).

Dataset Estimated DA/SA Influence given explicit SA selected by different methods (|SA| = 50)
COICM Wave propagation model
Greedy Degree Centrality Average Greedy Degree Centrality Average

NetHEPT

Mixed method 599.82 632.23 657.49 629.85 586.58 624.41 650.39 620.46
Greedy 658.38 515.72 519.50 564.53 644.53 525.70 515.37 561.87
Degree 400.18 702.93 622.15 575.09 372.58 693.95 613.98 560.17
Centrality 233.14 478.74 763.43 491.77 201.72 462.66 752.97 472.45

Epinion

Mixed method 2781.71 4603.63 10683.26 6022.87 2773.17 4494.80 10517.00 5928.32
Greedy 4440.93 3958.87 6372.13 4923.98 4265.87 3813.06 6377.30 4818.74
Degree 3130.99 5473.33 7283.28 5295.87 2983.56 5299.18 7258.24 5180.33
Centrality 224.93 2809.74 12078.70 5037.79 204.01 2721.87 12075.78 5000.55

Table 2

Running time and memory consumption of the TCIM framework given the ‘‘mixed method distribution’’ (mixed method) as seed distribution for source A
or given the guess of explicit seeds of A. (k = 50, ✏ = 0.1, ` = 1).

Dataset Estimated DA/SA COICM Wave propagation model
Time (s) Memory (GB) Time (s) Memory (GB)

NetHEPT

Mixed method 24.73 1.16 107.41 5.63
Greedy 25.46 1.16 97.75 5.18
Degree 23.29 1.16 90.15 4.82
Centrality 21.42 1.11 82.11 4.42

Epinion

Mixed method 38.61 0.77 250.12 8.63
Greedy 47.05 0.82 273.67 9.46
Degree 35.07 0.61 250.72 4.45
Centrality 30.62 0.36 93.91 0.78

that if one is not confident of ‘‘guessing’’ the competitor’s seed set correctly, using a mixed method distribution as the seed
distribution and run TCIM can be a good strategy.

Table 2 shows that, for each datasets, the running time andmemory consumption of the TCIM framework given the seed
distribution are comparable to those of TCIM given the explicit seed distribution. Because running TCIM given the mixed
method distribution returns a seed set with significantly higher average influence for both datasets and for both propagation
models reported, we conclude that running TCIM given properly estimated seed distribution is a good strategy when we
have no prior knowledge about the explicit seed set of our competitor.

8. Conclusion

In this work, we introduce a General Competitive Independent Cascade (GCIC) model, define the Competitive Influence Max-
imization (CIM) problem and the Competitive Influence Maximization problem with Partial information (CIMP). We show that
the CIMP problem is a generalization of the CIM problemwith amilder assumption about the knowledge of the competitor’s
initial adopters. We then present a Two-phase Competitive Influence Maximization (TCIM) framework to solve the CIMP prob-
lems under the GCICmodel. TCIM returns (1�1/e�✏)-approximate solutionswith probability of at least 1�n�` and has an
efficient expected time complexityO(c(`+k)(m+n) log n/✏2), where c depends on specific influence propagationmodel and
may also depend on k and graph G. To the best of our knowledge, this is the first general algorithmic framework for both the
Competitive InfluenceMaximization (CIM) problemand the Competitive InfluenceMaximization problemwith Partial infor-
mation (CIMP)with both performance guarantee andpractical running time.We analyze TCIMunder the Campaign-Oblivious
Independent Cascade model [6], the Distance-based model and the Wave propagation model [4]. We show that, under these
three models, the value of c is O(1), O(k) and O(kn) respectively. We provide extensive experimental results to demonstrate
the efficiency and effectiveness of TCIM. For the CIM problem, the experimental results show that TCIM returns solutions
comparable with those returned by the previous algorithms with the same quality guarantee, but it runs up to four orders of
magnitude faster than them. In particular, when k = 50, ✏ = 0.1 and ` = 1, given the set of 50 nodes selected by the com-
petitor, TCIM returns the solution within 6min for a dataset with 75,879 nodes and 508,837 directed edges. We also present
extensive experimental results for the CIMPproblem,which demonstrate the importance of allowing the TCIM framework to
take the ‘‘seed distribution’’ as an input.We show via experiments that whenwe have no prior knowledge of the competitor’s
seed set, running the TCIM framework given an estimated ‘‘seed distribution’’ of competitor is a good and effective strategy.

Appendix

In the following lemma, we first state the Chernoff–Hoeffding bound in the form that we will use throughout our
derivation.

16 Y. Lin, J.C.S. Lui / Performance Evaluation () –

Lemma 5 (Chernoff–Hoeffding Bound). Let X be the summation of ✓ i.i.d. random variables bounded in [0, 1]with a mean value
µ. Then, for any � > 0,

Pr[X > (1 + �)✓µ] exp
⇣
� �2

2 + �
· ✓µ

⌘
, (5)

Pr[X < (1 � �)✓µ] exp
⇣
�✏2

2
· ✓µ

⌘
. (6)

To prove Theorem 1, we first provide and prove the following lemma.

Lemma 6. Suppose we are given a set R of ✓ random RAPG instances, where ✓ satisfies Inequality (3) as follows:

✓ � (8 + 2✏)n · ` ln n + ln
�n
k

�
+ ln 2

OPT · ✏2 .

Then, with probability at least 1 � n�`,
���
n
✓

· FR(SB) � � (SB|DA)
��� <

✏

2
OPT (7)

holds for all SB ✓ V with k nodes.

Proof of Lemma 6. First, let SB be a given seed set with k nodes. Let µ = E[fR(SB)], FR(SB) = P
R2R fR(SB) can be regarded

as the sum of ✓ i.i.d. variables with ameanµ. By Lemma 1, we haveµ = � (SB|DA)/n OPT/n. Thus, by Chernoff–Hoeffding
bound,

Pr
���

n
✓

· FR(SB) � � (SB|DA)
��� � ✏OPT

2

�
= Pr

|FR(SB) � ✓ · µ| � ✏OPT

2nµ
· ✓µ

�

 2 exp

0

B@�

⇣
✏OPT
2nµ

⌘2

2 + ✏OPT
2nµ

· ✓µ

1

CA = 2 exp
✓

� ✏2OPT 2

8n2µ + 2✏nOPT
· ✓

◆

 2 exp
✓

� ✏2OPT
(8 + 2✏) · n · ✓

◆
 n�`/

✓
n
k

◆
.

The last step follows by Inequality (3). There are at most
�n
k

�
node set SB ✓ V with k nodes. By union bound, with probability

at least 1 � n�`, Inequality (7) holds for all SB ✓ V with k nodes. ⇤

Proof of Theorem 1. Suppose we are given a set R of ✓ random RAPG instances where ✓ satisfies Inequality (3). Let SB be
the set of nodes returned by Algorithm 1 and let S⇤

B be the set of nodes that maximizes FR(S⇤
B). As we are using a greedy

approach achieving an approximation ratio of (1 � 1/e) to select SB, we have FR(SB) � (1 � 1/e)FR(S⇤
B).

Let SoptB be the optimum seed set for source B, i.e., the set of nodes that maximizes the influence spread of B. Then, we
have FR(SoptB) FR(S⇤

B). By Lemma 6, with probability at least 1� n�`, we have � (SB|DA) � FR(SB) · n/✓ �OPT · ✏/2 holds
for all SB ✓ V with k nodes. Thus, we can conclude

� (SB|DA) � n
✓

· FR(SB) � ✏

2
OPT

� n
✓

· (1 � 1/e)FR(S⇤
B) � ✏

2
OPT

� n
✓

· (1 � 1/e)FR(SoptB) � ✏

2
OPT

� (1 � 1/e)
⇣
OPT � ✏

2
OPT

⌘
� ✏

2
OPT � (1 � 1/e � ✏)OPT ,

which completes the proof. ⇤

Proof of Lemma 2. Let S+
B be a set formed by k samples from V+ with duplicated nodes eliminated. Let R be a random

RAPG instance R, and let p1(R) be the probability that S+
B overlaps with V 0

R. For any S+
B , we have fR(S+

B) � 0 by the definition
of the scoring system. Moreover, if S+

B overlaps with V 0
R, we would have fR(S+

B) = 1. Hence, p1(R) fR(S+
B) holds and

n · E[p1(R)] n · E[fR(S+
B)] = � (S+

B |DA) follows from Lemma 1. Furthermore, we define a probability distribution E+ over
the edges in Gwhere the probability mass of each edge euv is to (1 � D(v)). Let E+ be a set of edges sampled from E+ with

Y. Lin, J.C.S. Lui / Performance Evaluation () – 17

duplicates removed, and let p2(R) be the probability that at least one edge in E+ points to a node in V 0
R. It can be verified that

p1(R) = p2(R). From the definition of w(R), we have p2(R) = ↵(R) = 1 � (1 � w(R)/m0)k. Therefore, we can conclude that

E[↵(R)] = E[p2(R)] = E[p1(R)] � (S+
B |DA)/n,

which completes the proof. ⇤

Proof of Lemma 3. We denote NRV as the number of random numbers we generate to decide whether nodes are seeds of
source A. Because we want to upper bound the number of random numbers we generate, here we assume that we generate
a random number to decide whether node u is a seed of A even if DA(u) = 1. And, we denote the random numbers we
generate to decide whether edges are ‘‘active’’ as NRE . Then, we have NR = NRV + NRE . For each edge euv we examine during
the construction, we generate one random number to decide whether it is ‘‘active’’, and we generate at most one random
number to decide whether u is a seed of source A. Therefore, we have NRV � 1 NRE and NR 2NRE + 1.

We first focus on finding the upper bound of NRE . Recall that V 0
R is defined as V 0

R = {u|u 2 VR, fR({u}) = 1}. If we generate
a random number for an edge euv during the construction of R, we know it must point to a node in V 0

R. Hence, let w0(R) be
the number of edges in G pointing to any node u 2 V 0

R, we have NRE w0(R). Note that DA(u) < 1 for all u 2 V 0
R. And, we

have made the assumption that maxu2V {DA(u)|DA(u) < 1} < C where C is a non-negative constant less than 1. Hence, we
have NRE w0(R) w(R)/(1 � C).

Now, we can conclude that

n
m

E [NR] n
m

E[2NRE + 1] 2nE

NRE

m0

�
+ n

m

 2n
1 � C

·
X

R

✓
Pr(R) · w(R)

m0

◆
+ n

m

 2n
1 � C

·
X

R
(Pr(R) · ↵(R)) + n

m

= 2n
1 � C

· E[↵(R)] + n
m

= 2
1 � C

LBe + n
m

,

and therefore LBe � (E[NR] � 1) · (1 � C)n/(2m).
If E[NR] � 2, we have LBe � E[NR] · (1 � C)n/(4m) and E[NR]/LBe 4m/((1 � C)n). For the case where E[NR] < 2,

we have E[NR]/LB⇤
e < 2 because LB⇤

e � 1. We can now conclude that O(E[NR]/LB⇤
e) = O(1 + m/n), which completes the

proof. ⇤

Proof of Lemma 4. As LBr = max{F/(1 + ✏0), LB⇤
e} and LB⇤

e OPT , it suffices to show F/(1 + ✏0) OPT holds with
probability at least 1 � n�`. By Line 13 in Algorithm 3, we know F/(1 + ✏0) OPT if and only if

P
R2R00 fR(S 0

B)
OPT · ✓ 0(1 + ✏0)/n. Let µ = E[fR(S 0

B)], by Lemma 1, we have nµ = � (S 0
B|DA) OPT . Since

P
R2R00 fR(S 0

B) is the summation
of |R00| = ✓ 0 i.i.d. random variable with mean µ, by nµ OPT , LB⇤

e OPT and Chernoff bound,

Pr

"
X

R2R00
fR(S 0

B) � OPT (1 + ✏0)

n
· ✓ 0

#

 Pr

"
X

R2R00
fR(S 0

B) � µ✓ 0 � OPT✏0

nµ
· µ✓ 0

#

 exp

0

B@�

⇣
OPT✏0
nµ

⌘2

2 + OPT✏0
nµ

· µ✓ 0

1

CA = exp
✓

� OPT 2✏02

2n2µ + OPT✏0n
· ✓ 0

◆

 exp
✓

� OPT✏02

(2 + ✏0)n
· �0

LB⇤
e

◆
 exp

✓
� ✏02�0

(2 + ✏0)n

◆
 1

n`
.

The last inequality holds since �0 = (2 + ✏0)`n ln n/✏02 and this completes the proof. ⇤

Proof of Theorem 3. From Lemma 4, it remains to analyze the time complexity of Algorithm 3. Theorem 2 shows that the
expected running time of Algorithm 2 is O(`(m + n) log n), which means that the total number of edges in R0 is at most
O(`(m+ n) log n). Hence, the running time of Lines 2–8 is O(c`(m+ n) log n+ kn) = O(c(`+ k)(m+ n) log n). The running
time of the Lines 9–13 is O

�
�0/LB⇤

e · E[NR]
�
, because we generate �0/LB⇤

e RAPG instances and the running time of computing

fR(S 0
B) for an RAPG instance R = (VR, ER, SR,A) is linear with |VR|. From Lemma 3, O

⇣
�0
LB⇤

e
· E[NR]

⌘
= O

�
�0(1 + m

n)
�

=
O(`(m + n) log n/✏02). To make sure that Algorithm 3 has the time complexity O(c(m + n)(` + k) log n/✏2), the value
of ✏0 must satisfy ✏0 � ✏

p
`/(c(` + k)). In TIM/TIM+ [2] that returns approximation solution for single source influence

maximization problem under the IC model, Tang et al. set ✏0 = 5 3
p

` · ✏2/(k + `) for any ✏ 1. Because the GCIC model
with SA = ; is actually the single source IC model, we also set ✏0 = 5 3

p
` · ✏2/(k + `) for any given ✏ 1. Note that c � 1,

18 Y. Lin, J.C.S. Lui / Performance Evaluation () –

it could be verified that 5 3
p

` · ✏2/(k + `) � p
`/(c(` + k))✏ holds for any ✏ 1. Therefore, Algorithm 3 has expected time

complexity O(c(m + n)(` + k) log n/✏2), which completes the proof. ⇤

Proof of Theorem 5. Let SB be any node set that contains atmost k nodes in V and let � 0(SB|SA) be the estimation of � (SB|SA)
computed by r Monte-Carlo simulations. Then, r� 0(SB|SA) can be regarded as the sum of r i.i.d. random variable bounded in
[0, 1] with the mean value � (SB|SA). By Chernoff–Hoeffding bound, if r satisfies Inequality (4), it could be verified that

Pr
h
|� 0(SB|SA) � � (SB|SA)| >

✏

2k
OPT

i
 1

k · n`+1 .

Given G and k, GreedyMC considers at most kn node sets with sizes at most k. Applying the union bound, with probability at
least 1 � n�`, we have

|� 0(SB|SA) � � (SB|SA)| >
✏

2k
· OPT (8)

holds for all sets SB considered by the greedy approach. Under the assumption that � 0(SB|SA) for all sets SB considered by
GreedyMC satisfies Inequality (8), GreedyMC returns a (1 � 1/e � ✏)-approximate solution. For the detailed proof of the
accuracy of GreedyMC, we refer interested readers to [2] (Proof of Lemma 10). ⇤

References

[1] D. Kempe, J. Kleinberg, É Tardos, Maximizing the spread of influence through a social network, in: Proc. of KDD’03, 2003.
[2] Y. Tang, X. Xiao, Y. Shi, Influence maximization: Near-optimal time complexity meets practical efficiency, in: Proc. of SIGMOD’14, 2014.
[3] S. Bharathi, D. Kempe, M. Salek, Competitive influence maximization in social networks, in: Internet and Network Economics, Springer, 2007.
[4] T. Carnes, C. Nagarajan, S.M. Wild, A. Van Zuylen, Maximizing influence in a competitive social network: a follower’s perspective, in: Proc. of ICEC’07,

2007.
[5] A. Borodin, Y. Filmus, J. Oren, Threshold models for competitive influence in social networks, in: Internet and Network Economics, Springer, 2010.
[6] C. Budak, D. Agrawal, A. El Abbadi, Limiting the spread of misinformation in social networks, in: Proc. of WWW’11, 2011.
[7] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, Cost-effective outbreak detection in networks, in: Proc. of ICDM’07, 2007.
[8] W. Chen, C. Wang, Y. Wang, Scalable influence maximization for prevalent viral marketing in large-scale social networks, in: Proc. of KDD’10, 2010.
[9] W. Chen, Y. Yuan, L. Zhang, Scalable influence maximization in social networks under the linear threshold model, in: Proc. of ICDM’10, 2010.

[10] W. Chen, Y. Wang, S. Yang, Efficient influence maximization in social networks, in: Proc. of KDD’09, 2009.
[11] A. Goyal, W. Lu, L.V. Lakshmanan, Celf++: optimizing the greedy algorithm for influence maximization in social networks, in: Proc. of WWW’11,

2011.
[12] K. Jung, W. Heo, W. Chen, IRIE: Scalable and robust influence maximization in social networks, in: Proc. of ICDM’12, 2012.
[13] C. Borgs, M. Brautbar, J. Chayes, B. Lucier, Maximizing social influence in nearly optimal time, in: Proc. of SODA’14, Vol. 14, SIAM, 2014.
[14] G.L. Nemhauser, L.A. Wolsey, Best algorithms for approximating the maximum of a submodular set function, Math. Oper. Res. 3 (3) (1978).
[15] J. Kostka, Y.A. Oswald, R. Wattenhofer, Word of mouth: Rumor dissemination in social networks, in: Structural Information and Communication

Complexity, Springer, 2008.
[16] X. He, G. Song,W. Chen, Q. Jiang, Influence blockingmaximization in social networks under the competitive linear thresholdmodel, in: Proc. of SDM’12,

SIAM, 2012.
[17] G.L. Nemhauser, L.A. Wolsey, M.L. Fisher, An analysis of approximations for maximizing submodular set functions—I, Math. Program. 14 (1) (1978).
[18] T. Opsahl, P. Panzarasa, Clustering in weighted networks, Soc. Networks 31 (2) (2009).
[19] M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web, in: The Semantic Web-ISWC 2003, Springer, 2003.

Yishi Lin received her B.E. degree from the School of Computer Science and Technology at theUniversity of Science and Technology
of China in 2013. She is currently a Ph.D. candidate in the Department of Computer Science and Engineering at the Chinese
University of Hong Kong, under the supervision of Prof. John C.S. Lui. Her main interests include social influence and applications,
graph algorithms and network economics.

John C.S. Lui is currently the Choh-Ming Li Professor in the Department of Computer Science & Engineering at The Chinese
University of Hong Kong (CUHK). He received his Ph.D. in Computer Science from UCLA. After his graduation, he joined the IBM
Almaden Research Laboratory/San Jose Laboratory and participated in research and development projects on file systems and
parallel I/O architectures. He later joined the Department of Computer Science and Engineering at CUHK. His current research
interests are in Internet, network sciences,machine learning on large data analytics, network/system security, network economics,
large scale distributed systems and performance evaluation theory. John received various departmental teaching awards and the
CUHK Vice-Chancellor’s Exemplary Teaching Award. John also received the CUHK Faculty of Engineering Research Excellence
Award (2011–2012), he is a co-recipient of the best paper award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS 2006, and
SIMPLEX 2013. He is an elected member of the IFIPWG 7.3, Fellow of ACM, Fellow of IEEE, Senior Research Fellow of the Croucher
Foundation.

http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref3
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref5
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref13
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref14
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref15
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref16
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref17
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref18
http://refhub.elsevier.com/S0166-5316(15)00060-7/sbref19

