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Abstract

Hosts (or nodes) in the Internet often face epidemic risks such as virus and worms
attack. Despite the awareness of these risks and the importance of network/system se-
curity, investment in security protection is still scare, and hence epidemic risk is still
prevalent. Deciding whether to invest in security protection is an interdependent pro-

cess: security investment decision made by one node can affect the security risk of
others, and therefore affect their decisions also. The first contribution of this paper
is to provide a fundamental understanding on how “network externality” with “node
heterogeneity” may affect security adoption. Nodes make decisions on security invest-
ment by evaluating the epidemic risk and the expected loss. We characterize it as a
Bayesian network game in which nodes only have the local information, e.g., the num-
ber of neighbors, and minimum common information, e.g., degree distribution of the
network. Our second goal is to study a new form of risk management, called cyber-

insurance. We investigate how the presence of competitive insurance market can affect
the security adoption and show that if the insurance provider can observe the protection
level of nodes, the insurance market is a positive incentive for security adoption if the
protection quality is not very high. We also find that cyber-insurance is more likely to
be a good incentive for nodes with higher degree. Conversely, if the insurance provider
cannot observe the protection level of nodes, we verify that partial insurance can be a
non-negative incentive, improving node’s utility though not being an incentive.
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1. Introduction

Network security is a major problem in communication networks. One of its most
common manifestations is in form of virus, worms and bonnet spreading, which we
call the epidemic risk. In these epidemic risks, hosts (or nodes) which are infected be-
come the sources of new infections, and adversaries can use these compromised nodes
to generate new attacks. Epidemic risk is highly damaging, e.g., the Code Red worm
[2] has infected thousands of computers and induced huge financial loss. To counter
this risk, there have been great efforts in both the research and industrial fronts to come
up with techniques and tools (i.e., anti-virus software, intrusion detection systems, fire-
walls etc) to detect virus/worms. Despite the sophistication of these tools, only a small
percentage of hosts adopt some form of security protection, making epidemic risk still
prevalent. In this paper, instead of discussing the technology side of security, we dis-
cuss the security adoption in economic language. We argue that it may better explain
the low adoption level of security products.

Note that a node’s decision of whether to adopt some security measures is not a
simple individual and independent process, but rather, depends on the decisions of
many other nodes in the network. Nodes which decide not to invest in security protec-
tion, also put other nodes at security risk. This network externality effect caused by the
spreading of epidemic influences the degree of adoption of security measure. Our first
contribution in this paper is to provide a theoretical understanding on how network

externality effect with node heterogeneity may influence security adoption in a network

of interconnected nodes (i.e., the Internet). The externality effect with heterogeneity
has significant implication for policy maker aiming to boost security level in that by
subsidizing early adopters, later adopters will naturally follow.

Modeling such decision and security problem requires the combination of epidemic
theory and game theory. While extensive studies in traditional literatures have been
dedicated to epidemic theory[3, 4], few works have addressed the problems of strategic
behavior of security investment. In a realistic situation, nodes which make decision
in security investment usually do not have complete information about the network
topology or knowledge of other nodes. As a result, it is difficult for them to accurately
evaluate the epidemic risk and other nodes’ influence on itself. In this paper, we model
the security investment as a Bayesian network game where nodes only have the local
information of their degree and the minimum common information of network’s degree
distribution. In contrast to graphical game[5], in which complete topology is given and
analysis is complicated, we show that using Bayesian network game, one can elegantly
tradeoff using partial topology information while making analysis tractable.

By using Bayesian network game, we show how heterogeneous nodes, character-

ized by their degree, can estimate their epidemic risk and make decisions on security

investment with incomplete information. We show that nodes with higher degree are
more likely to be infected by epidemic, making the secure measure less effective for
node with higher degree in terms of the reduction in infection probability. Moreover,
nodes with higher degrees are more sensitive to externality, i.e., they are more likely
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to be affected by others’ decision. The final adoption fraction of nodes with different
degrees depends on their relative loss from epidemic.

While protection measures may limit the spread of virus/worms, another way to
manage the epidemic risk is to transfer the risk to a third-party, which is called cyber-

insurance[6]: nodes pay certain premium to insurance companies in return for compen-
sation in the virus outbreaks. The two main challenges in cyber-insurance are: adverse
selection and moral hazard [6, 7]. The problem of adverse selection arises when the
insurance provider cannot distinguish between high and low risk nodes. The combi-
nation of self-protection and insurance raises the problem of moral hazard, in which
nodes covered by insurance may take fewer secure measures, or even falsify their loss.
Moral hazard happens when the insurance provider cannot observe the protection level
of nodes. In this paper, we address the moral hazard problem which is especially
serious in cyber-insurance. We investigate the effect of cyber-insurance on security
adoption under competitive insurance market. Our second contribution is to show the

conditions under which cyber-insurance is an incentive, with and without moral haz-

ard. We find that cyber-insurance without moral hazard is an incentive for security
adoption if the initial secure condition is bad and the quality of secure measure is not
very high. Moreover, cyber-insurance is more likely to be an incentive for nodes with
high degree. We verify that partial insurance coverage can be a non-negative incentive
for secure adoption with moral hazard.

This is the outline of our paper. In Section 2, we present the epidemic and security
investment models. In Section 3, we show how heterogeneous nodes can determine
their infection probability and decide on proper security investment. In Section 4, we
investigate the effect of insurance market, both with and without moral hazard, on
security adoption. Validations and performance evaluations are presented in Section 5.
Section 6 gives related work. Finally, in Section 7, we briefly summarize and discuss
several ways in which our model could be improved.

2. Mathematical Models

Let us first present the mathematical models on how nodes make decision on secu-
rity investment. Our models include: (a) epidemic model: to characterize the spread of
virus or malware in a network, (b) investment model: to characterize node’s decision
in security investment, and (c) Bayesian network game: given the epidemic and invest-
ment models, how nodes make decision under the incomplete information setting.

Epidemic Model: The interaction relation of N nodes is denoted by the undirected
graph G = (V, E) with the vertex set V , |V | = N and the edge set E. For i, j ∈ V , if
(i, j) ∈ E, then nodes i and j are neighbors and we use i∼ j to denote this relationship.
Let S = {healthy, infected} represent the set of states each node can be in. If node
i is infected (healthy), then S i = 1 (S i = 0). Each infected node can contaminate
its neighbors independently with probability q. Note that this is similar to the bond

percolation process [4] in which every edge is occupied with probability q. Each node
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has an initial state of being infected or not. This can represent whether the node has
been attacked by the adversary. Let us denote it by si where si = 1 if node i is initially
infected and si = 0 otherwise. Hence, at the steady state, a node is infected either
because it is initially infected, or it contracts virus from its infected neighboring nodes.
The final state of node i can be expressed in the following recursive equation:

1 − S i = (1 − si)
∏

∀ j: j∼i

(1 − θ jiS j) ∀i ∈ V, (1)

where θ ji is a random variable indicating whether the edge (i, j) is occupied or not.
According to previous discussion, θ ji is a Bernoulli random variable with Pr(θ ji = 1) =
q. Since an infected node will incur some financial loss, hence, a node needs to decide
whether to invest in self-protection to reduce the potential financial loss. Let us present
the model to help a node in making such a decision.

Investment Model: Node i has an initial wealth wi ∈ R+. A node’s utility ui(w) is a
function of wealth w ∈ R+. We consider nodes are risk averse, i.e., the utility function
is strictly increasing and concave in w, i.e., u′i(w) > 0 and u′′i (w) < 0. Fig. 1 depicts a
risk averse utility function. In this paper, we consider the constant relative risk averse

utility function commonly used in the economic literature [8]:

u(w) =
w1−σ

1 − σ
, 0 < σ < 1, (2)

where σ is a parameter for the degree of risk aversion. The condition 0 < σ < 1 is
added to ignore the case of σ = 1 and also for tractability of analysis later on. For
node i, the utility function is given by the above utility function with parameter σi. If
node i is infected, then it will incur a financial loss of li ∈ R+. For node i, the expected
utility is as shown in Fig. 1. D is the initial utility point, E is the utility point after
getting infected. C is the expected utility. To reduce the potential financial loss, a node
can consider some self-protection measures or purchasing insurance. In the first part of
this paper, we consider the case of self-protection. In the second part of this paper, we
consider both cases and study the influence of insurance market on security protection.

A node’s investment in self-protection can reduce the probability of being infected
initially. For the amount of investment x, the probability of being infected initially
is p(x), which is a continuous differentiable decreasing function of x. In particular,
we assumed the effort of security investment is separable with the wealth, which is
common in the literature [9]. If node i invests xi in secure protection, the expected
utility is

piui(wi − li) + (1 − pi)ui(wi) − xi, (3)

where pi is the final probability that node i will be infected. pi contains two parts:
the probability of being infected initially, given by p(xi) and the probability of getting
infected from neighbor nodes. For simplicity of analysis, we assume that the choice
of node i regarding security self-protection is a binary decision: either the node in-
vests unit amount with a cost of ci, or it does not invest at all. We use the action set
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Figure 1: Risk-averse utility function

A = {S,N} to denote the behavior, where S denotes taking secure measure and N
otherwise. If it decides to invest, the node can still be infected with probability p−.
Otherwise, it will be infected with probability p+. Obviously we have 0 < p−< p+ < 1.
Let a = (a1, ..., ai, ..., aN)= (ai, a−i) be an action profile. Given the action profile a−i

of other nodes, node i makes the decision by maximizing its expected utility. If node i
takes actionN , the expected utility is:

pi(N , a−i)ui(wi − li) + (1 − pi(N , a−i))ui(wi) (4)

where pi(N , a−i) is the final probability of node i being infected when it initially did
not adopt security protection. On the other hand, the expected utility of a node which
initially subscribed to security protection (or action S) is:

pi(S, a−i)ui(wi − li) + (1 − pi(S, a−i))ui(wi) − ci (5)

where pi(S, a−i) is the final probability of a node being infected when it initially sub-
scribed to some self-protection measures with cost of ci. Note that pi(S, a−i) and
pi(N , a−i) are functions of p− and p+, the contagion probability q and the graph G

since it controls the infection process.

Each node needs to consider whether it should subscribe to some self-protection
measures. The decision is based on the cost of investing in security measure, as well as
the risk loss of being infected. The decision is non-trivial because one has to consider
the network externality effect. In particular, node i will choose to invest in security
protection if and only if

ci < (pi(N , a−i) − pi(S, a−i))(ui(wi) − ui(wi − li)) (6)

Bayesian Network Game: According to Inequality (6), each node needs to have the
complete information of the network topology G so as to make the proper decision.
However, it is almost impossible in practice for each node to have the complete infor-
mation of G. Instead, each node can only have some local information on G, i.e., a
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node may only know its neighbors, and some cases, only knows the number of neigh-
bors it is to interact with. Secondly, it is impossible to know the exact loss of other
nodes in a large network.

In here, we assume that nodes only have the minimum common information, that
is, the knowledge of the degree distribution of G, as well as the distribution of financial
loss of nodes caused by virus. Assume that the degree distribution of the graph is

{pk}
K
K , where K is the maximum degree and K is the minimum degree. In this paper,

we consider the asymptotic case that N, the number of nodes, tends to infinity and the

degree distribution converges to the fixed probability distribution {pk}
K
K . For nodes with

degree k, the loss distribution is given by the CDF Fk(l). We assume that the cost of
secure measure is the same for all nodes which have the same degree and we denoted
this as ck. Furthermore, these nodes have the same utility function uk and the same
initial wealth wk. Nodes make decision on security investment based on the information
of degree and loss. According to the discussion in the investment model, a node should
know the probability of getting infected before deciding on security investment. Since
nodes do not have the complete information, they should estimate these probabilities
based on the limited common information. Next, we derive this infection probability
with partial topology information.

3. Analysis for Strategic Security Adoption

Let’s show how nodes make decisions on security investment and how to determine
the final security protection level.

3.1. General Case

Determining the final infection probability for a node is a difficult problem because
of the complex network structure. In this work, we assume that a node only knows
the degree distribution and consider the network topology as a random graph[4] with

a given degree distribution {pk}
K
K . Thus, nodes do not need to know the full network

topology G to determine the final infection probability. Although real networks are not
random graphs[4] and they have some characteristics, e.g., high clustering coefficient,
community structure etc, that are not possessed by random graph, recent study [10]
has shown that random graph approximation is very often accurate for real network.
Thus, it is reasonable to assume that the network topology is random graph, especially
here we consider incomplete information case. With the assumption, each node can
compute its the final infection probability using the following methodology.

Estimating the Probability: A node can calculate its final infection probability by
constructing a local mean field tree[11]. Fig. 2 illustrates the local tree structure of
node i which has degree k. For ease of illustration, let’s say that none of these nodes
take secure measure, i.e., the initial infection probability is p+ for all nodes in this
subsection. We will show how to relax this in later section.
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Figure 2: Local mean field tree for node i with degree k

The children of node i in the local mean field tree are denoted as vc, c ∈ [1, k]. The
triangle under each child node vc denotes another tree structure. Based on the results
in[11], for any node i, the local topology of a large random graph G can be modeled as
a tree rooted at node i with high probability. In other words, we transform G to a tree
rooted at node i (or local mean field of node i). Node i can be independently influenced
by each subtree rooted at vc. For every subtree rooted at vc, it consists of its subtrees.
Using this recursive structure, we derive the total infection probability that other nodes
in G can impose on node i.

First we divide nodes into levels. The root node i is at the zero level. The neighbors
of node i is at the first level and so on. Let Y j be the final state of node j, j ! i,
conditioned on its parent in the tree structure is not infected, and y j be the initial state
of node j. For the root node i, we use S i to denote its final state and si to denote its
initial state, then we have

1 − S i = (1 − si)
∏

∀ j: j∼i

(1 − θ jiY j). (7)

The above equation indicates the root node i is either initially infected, or it can be
infected by its neighbors. The state of its neighbors conditioned on that the root node
i is not infected is also determined by the state of the children of the neighbors in the
tree structure, or one can express it recursively as:

1 − Y j = (1 − y j)
∏

∀l:l→ j

(1 − θl jYl) ∀ j ! i, (8)

where l → j denotes that l is a child of j in the tree structure. To solve Eq. (8), we
need to know the degree distribution of a child node. This degree distribution can be
expressed as:

p̃k =
kpk

∑K
k=K kpk

=
kpk

d̄
,

where d̄ is the average degree of nodes in G. The number of edges of a child excluding
the edge connecting to its parents is called the excess degree[4]. Let K′ =max{0,K−1}
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and K
′
=max{0,K−1}. The excess degree distribution of a child is

qk = p̃k+1 =
(k + 1)pk+1

d̄
, k ∈ [K′,K

′
]. (9)

As in [11], if nodes are at the same level of the tree structure, then their states are
independent of each other. Let ρn, n ≥ 1 be the probability that a node at the nth level
is infected conditioned on its parent is not infected. By Eq. (8), we have

1 − ρn = (1 − p+)

K
′

∑

k=K′

qk(1 − qρn+1)k.

ρ1 is the average probability that a child node of the root node i will be infected condi-
tioned on the root node is not infected. When we scale up the network (or let n→ ∞),
define ρ ! limn→∞ ρ1, then ρ is determined by the solution of the fixed point equation

1 − ρ = (1 − p+)

K
′

∑

k=K′

qk(1 − qρ)k.

By Eq. (7), for a node with degree k, the infection probability is

φk = 1 − (1 − p+)(1 − qρ)k. (10)

Security Adoption: In the previous subsection, we show how a node can compute
the infection probability with incomplete information. The calculation is based on the
assumption that none of the nodes take secure adoption, so that the initially infection
probability is p+. In here, we show how to use this infection probability for strategy
selection. Let λk be the fraction of nodes with degree k which take action S. Then by
applying the method shown above, we have

Proposition 1. If λk fraction of the nodes with degree k take secure measure, ρ is given
by the unique solution of the fixed point equation in [0, 1]:

ρ = 1 −

K
′

∑

k=K′

qk(1 − p+ + λk+1(p+ − p−))(1 − qρ)k. (11)

For a node with degree k, if it decides to take secure measure, then by Eq. (10), the
infection probability is

φk(S, λK , ..., λK) = 1 − (1 − p−)(1 − qρ)k. (12)

If it does not invest in protection measure, the probability for this node to get infected
is

φk(N , λK , ..., λK) = 1 − (1 − p+)(1 − qρ)k. (13)
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The infection probability reduction for a node with degree k is

φk(N) − φk(S) = (p+ − p−)(1 − qρ)k. (14)

Note that this infection probability reduction decreases as degree increases. This im-
plies that higher degree nodes have less incentive to invest in protection measure.

Corollary 1. ρ, given by the solution of fixed point Eq. (11), has a unique solution in

[0, 1], and ρ(λK , ..., λK) is a decreasing function of λk, ∀k ∈
[
K,K
]
.

Proof: Let

g(ρ, λK , ..., λK)=1 −

K
′

∑

k=K′

qk(1− p+ + λk+1(p+ − p−))(1 − qρ)k.

Obviously, g(ρ, λK , ..., λK) is an increasing function of ρ.

g(0, λK , ..., λK) = 1 −

K
′

∑

k=K′

qk(1 − p+ + λk+1(p+ − p−)) > 0,

g(1, λK , ..., λK)=1 −

K
′

∑

k=K′

qk(1−p++λk+1(p+−p−))(1−q)k<1.

We can see that the fixed point equation ρ = g(ρ) has at least one solution. Taking the
second order derivative with respect to ρ, we have

gρρ= −

K
′

∑

k=K′

qk(1−p++λk+1(p+−p−))k(k − 1)(1−qρ)k−2q2<0,

g(ρ) is a concave function. Let ρ∗ be one of the solutions, i.e., ρ∗ = g(ρ∗). Then by

concavity of g(ρ), gρ(ρ
∗) < 1. Otherwise, g(ρ∗) = g(0) +

∫ ρ∗
0

gρ(ρ)dρ > ρ
∗. Then for

0 < ρ < ρ∗, g(ρ) > ρ, for ρ∗ < ρ < 1, g(ρ) < ρ. As a result, the fixed point equation
ρ = g(ρ, λK , ..., λK) has a unique solution in [0, 1].

Let λ1
k
< λ2

k
, and ρ1 = g(ρ1, λ

1
k
) and ρ2 = g(ρ2, λ

2
k
). Since g(ρ, λk) is a decreasing

function of λk for all k ∈
[
K,K
]

and λ1
k
< λ2

k
, we have g(ρ2, λ

1
k
) > g(ρ2, λ

2
k
) = ρ2. By

the same argument in proving uniqueness, we can get ρ1 > ρ2. As a result, the solution

of ρ = g(ρ, λk) is a decreasing function of λk, ∀k ∈
[
K,K
]
.

Remark: Combining Corollary 1 with Eq. (14), we see that the reduction in infection
probability by taking security measure increases as other nodes adopt security measure.
This shows the network externality effect, i.e., the value of security measure increases
as more nodes invest in self-protection.
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This externality effect is first modelled in [12, 13] and later verified in [14, 15]. We
complement their results by studying externality effect with heterogeneity character-
ized by node degree.

Sensitivity Analysis: Nodes with different degrees have different sensitivity to the
externality effect. Define φ̃k = φk(N)−φk(S) = (p+− p−)(1−qρ)k. Assume ρ decreases
by a small amount ∆ρ, then ∆φ̃k = (p+ − p−)(1−qρ)k−1kq∆ρ, and the relative change is

given by ∆φ̃k

φ̃k
=

kq∆ρ
(1−qρ)

, which indicates that sensitivity to the network externality effect

is proportional to the degree.

A node with degree k will invest if and only if the utility with secure measure is
higher than that without secure measure, or

ck <(φk(N) − φk(S))(uk(wk) − uk(wk − l))

= (p+ − p−)(1 − qρ)k(uk(wk) − uk(wk − l)).

Note that the loss distribution of nodes with degree k is Fk(l). Since the infection
probability varies with the fraction of security adopters, we consider the self-fulfilling

expectations equilibrium [16] in analyzing the final adoption extent. Nodes form a
shared expectation that the fraction of the nodes has adopted security measure and if
each of them makes decision based on this expectation, then the final fraction is indeed
the initial expectation.

Let l∗
k

be the minimum value that satisfies the above inequality in the equilibrium,
then λ∗k, the fraction of node of degree k taking the secure measure, is given by the
equation λ∗

k
= 1 − Fk(l∗

k
). Summarizing the previous analysis, we have the following

proposition.

Proposition 2. Nodes with degree k take the secure measure if their loss is greater than
l∗
k
. The final fraction of nodes with degree k that invest in self-protection is λ∗

k
. l∗

k
and

λ∗k are solutions of the following fixed point equations:

λ∗k = 1 − Fk(l∗k), (15)

ck = (p+ − p−)(1 − qρ∗)k(uk(wk) − uk(wk − l∗k)), (16)

where ρ∗ is given by the solution of the following equation

ρ∗ =1−

K
′

∑

k=K′

qk(1 − p+ + λ∗k+1(p+ − p−))(1 − qρ∗)k. (17)

We first propose an algorithm to compute the equilibrium point in Proposition 2,
then we prove the existence of equilibrium points by showing that the algorithm will
lead to a feasible answer.

Corollary 2. Fixed point equations (15)–(17) have at least one solution.
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Algorithm 1 Compute the equilibrium

1: Input: The error tolerance ϵ.

2: Output: The equilibrium point {λ∗k}
K
K .

3: for all k ∈ [K,K] do

4: λ0
k
← 0

5: λ1
k ← 1

6: end for

7: Compute ρ0 by substituting λ0
k

in Eq. (17).
8: t ← 0
9: repeat

10: t ← t + 1
11: Compute lt

k
by substituting ρt in Eq. (16).

12: Compute λt
k

by substituting łt
k

in Eq. (15).
13: Compute ρt+1 by substituting λt

k
in Eq. (17).

14: until maxk |λ
t−1
k
− λt

k
| < ϵ

15: return λ∗k = λ
t
k
.

Proof: In Algorithm 1, we start from λ0
k
= 0 and do the iteration. Obviously λ1

k
≥ λ0

k
=

0. If there does not exist k such that λ1
k > λ

0
k
, then λ∗k = 0 is an equilibrium point. Oth-

erwise, with Corollary 1, it is easy to prove that ρt+1 ≤ ρt and λt+1
k
≥ λt

k
by induction.

During the iteration process, λt
k

is non-decreasing with t and is bounded with λt
k
≤ 1.

So λt
k

will converge to the minimum equilibrium point, which is one of the solutions of
the fixed point equations in Proposition 2.

The above proof also shows the dynamics of the adoption process. Initially, λ0
k
= 0,

based on this belief nodes make decisions. Then they update the belief and continue to
update their decision. The above proof shows the convergence of this dynamic process.

Corollary 3. The equilibrium points given by fixed point equations (15)–(17) are mono-
tone, i.e., if Λ∗1 = (λ∗1K , ..., λ

∗1
k , ..., λ

∗1

K
) and Λ∗2 = (λ∗2K , ..., λ

∗2
k , ..., λ

∗2

K
) are two equilib-

rium points, then we have either Λ∗1 ≥ Λ∗2 or Λ∗1 ≤ Λ∗2 and there exists at least one
k ∈ [K,K] such that λ∗1

k
! λ∗2

k
.

Proof: We prove the above corollary by contradiction. Assume there exist k1 and
k2 such that λ∗1

k1
< λ∗2

k1
and λ∗1

k2
> λ∗2

k2
. Since λ∗1

k1
< λ∗2

k1
, by Eq. (15) and (16), we

have ρ∗1 > ρ∗2. Since ρ∗1 > ρ∗2, by similar analysis in Corollary 2, we can conclude
λ∗1

k2
≤ λ∗2

k2
, which contradicts λ∗1

k2
> λ∗2

k2
.

The above corollaries prove the existence and monotonicity of equilibrium points.
In the following, we study the multiplicity and monotonicity of the equilibrium points
by considering a special case.
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3.2. Analysis of Node Heterogeneity: Two Types Case

To provide more insight on how different nodes can influence each other, let us
consider a special case where there are two types of nodes: nodes with low degree kL

and nodes with high degree kH , kH > kL. We assume that the cost of self-protection
for low degree nodes is cL and the loss due to being infected is lL. On the other hand,
if k = kH , the cost of self-protection is cH and the loss is lH . Note that in Proposition
2, we did not explicitly impose any restriction on the CDF Fk(l). So Proposition 2 still
applies to the case when the loss is the same for all node with given degree.

Nodes will invest in self-protection if their utility with investment is greater than
that without investment, hence

λL = Pr((φL(N) − φL(S))(uL(wL) − uL(wL − lL)) ≥ cL),

λH = Pr((φH(N) − φH(S))(uH(wH) − uH(wH − lH)) ≥ cH).

Note that the probabilities φL(S), φL(N) and φH(S), φH(N) are functions of λL and
λH . We can compare the utilities to determine the fraction of users that will invest in
self-protection. Define ∆uL(lL) ! uL(wL) − uL(wL − lL) and fL(λL, λH) ! (φL(N) −
φL(S)) = (p+ − p−)(1 − qρ)kL . For k = kL, the utility gap is

fL(λL, λH)∆uL(lL) − cL,

where fL(λL, λH) is the reduction in probability for nodes being finally infected if they
invest in self-protection. Similarly, for k = kH , define ∆uH(lH) ! uH(wH)−uH(wH− lH)
and fH(λL, λH) ! (φH(N) − φH(S)) = (p+ − p−)(1 − qρ)kH , the utility gap is :

fH(λL, λH)∆uH(lH) − cH ,

By Corollary 1, fL(λL, λH) and fH(λL, λH) are increasing functions in λL and λH , which
indicates that λL and λH degenerate to indicator functions. In other words, either no
nodes invest in self-protection, or all of them invest in self-protection.

Nodes can decide whether to make investment or not by comparing the expected
profit of investment fL(λL, λH)∆uL(lL) ( fH(λL, λH)∆uH(lH)) with the cost cL (cH) for
nodes with low (high) degree. It is equivalent to compare fL(λL, λH)( fH(λL, λH)) with

cL

∆uL(lL) ( cH

∆uH (lH ) ). The possible equilibrium points are show in Fig. 3.

We divide them into four cases:
Case I : If cL/∆uL(lL) < fL(0, 0), cH/∆uH(lH) < fH(0, 0), then there is a unique equilib-
rium point (λ∗L, λ

∗
H) = (1, 1) where all nodes invest in self-protection. Even if initially

none of the nodes invest in self-protection, the profit of investment exceeds the cost re-
gardless of the degree of nodes and eventually, all nodes will purchase self-protection
tools.

Case II: If cL/∆uL(lL) < fL(0, 0), cH/∆uH(lH) > fH(0, 0), then all nodes with degree
k = kL will invest in self-protection because the profit of investment for low degree
nodes exceeds the cost, while the profit is smaller than the cost for high degree nodes.
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Figure 3: Equilibrium in two types case

• If cH/∆uH(lH) < fH(1, 0), then all nodes with degree kH will invest in self-protection.
The profit of investment for nodes with high degree increases since nodes with low de-
gree invest in security protection. Hence, the investment in security by nodes with
degree kL will incentivize nodes with degree kH to invest also. There is a unique equi-
librium point (λ∗L, λ

∗
H) = (1, 1).

• If fH(1, 0) < cH/∆uH(lH) < fH(1, 1), there exists a tipping point λT
H , such that

fH(1, λT
H) = cH

∆uH (lH )
. This implies that if we can offer self-protection to λT

H fraction of
nodes with degree kH for free, then this will incentivize all nodes with high degree to
invest. There are two equilibrium points (λ∗L, λ

∗
H) = (1, 0) and (λ∗L, λ

∗
H) = (1, 1).

• If cH/∆uH(lH) > fH(1, 1), all nodes with degree kH will not perform self-protection.
There is only one equilibrium point, which is (λ∗L, λ

∗
H) = (1, 0).

Case III: If cL/∆uL(lL) > fL(0, 0), cH/∆uH(lH) < fH(0, 0), then all nodes with degree
kH will take self-protection measure.
• If cL/∆uL(lL) < fL(0, 1), then all nodes with degree kL will invest in self-protection.

In this case, the investment in security by nodes with degree kH will incentivize nodes
with degree kL to invest in self-protection. There is only one equilibrium point, which
is (λ∗L, λ

∗
H) = (1, 1).

• If fL(0, 1) < cL/∆uL(lL) < fL(1, 1), there exists a tipping point λT
L , such that

fL(λT
L , 1) = cL/∆uL(lL). There are two equilibrium points (λ∗L, λ

∗
H) = (0, 1) and (λ∗L, λ

∗
H) =

(1, 1).
• If cL/∆uL(lL) > fL(1, 1), all nodes with degree kL will not invest in self-protection.

There is only one equilibrium point (λ∗L, λ
∗
H) = (0, 1).

Case IV: If fL(0, 0) < cL/∆uL(lL) < fL(1, 1), fH(0, 0) < cH/∆uH(lH) < fH(1, 1), then
there exists a tipping point λT

L and λT
H . There are two equilibrium points (λ∗L, λ

∗
H) =

(0, 0) and (λ∗L, λ
∗
H) = (1, 1).
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The tipping point induced by externality effect has significant implication for secu-
rity provider and also for policy maker aiming to promote the security adoption. For
security providers, setting an initially low price will promote the security adopters,
when the fraction exceeds the tipping point, a large fraction of hosts will purchase
the product. Policy makers can increase the adoption fraction by subsiding the initial
security adopter so as to boost the initial fraction above the tipping point.

4. Analysis for Cyber-insurance Market

Let use consider cyber-insurance and analyze its impact on security adoption.

4.1. Supply of Insurance

The presentation of insurance model in this subsection tailors that in the economic
literature [7] to adapt to the model in our paper.

Let’s say the insurance provider offers insurance at the price of π < 1. Nodes which
buy insurance at the premium of πX from the insurance provider will be compensated X

for the loss incurred if they are infected. Given the price π, node will choose to buy the
amount of insurance that maximizes its utility. Define φk(S)(φk(N)) as the probability
that a node with degree k will be infected if it subscribes (does not subscribe) to a
secure measure. In this paper, we consider cyber-insurance without adverse selection,
in which the insurance provider can observe the degree of a node, hence the risk type
of a node (high degree indicates high risk level). Thus, in the following, we drop the
subscript k where the meaning is clear for general presentation. A node will choose the
amount of insurance that maximizes

U(π, X)=φu(w− l + (1 − π)X)+(1− φ)u(w− πX) −x, (18)

where x is the wealth spent on security protection. When a node choosesN , φ becomes
φ(N), x = 0. When a node chooses S, φ becomes φ(S), x = c. Assume the insurance
provider is risk neutral, so they only care about the expected wealth. If a node buys X

amount of insurance, then the profit of the insurance is (π − φ)X. In here, we consider
a competitive market so the insurance provider has to offer the insurance at the price
π=φ, or the actuarially fair price[17].

Lemma 1. When the insurance is offered at the actuarially fair price, the optimal in-
surance coverage is a full insurance coverage, i.e., a node will buy insurance amount l,
which is equal to the loss. The maximal expected utility is maxX U(φ, X) = u(w−φl)−x,
i.e., when a node choosesN , the maximal expected utility is u(w−φ(N)l), when a node
chooses S, the maximal expected utility is u(w − φ(S)l) − c.

Proof: A node will optimize

U(φ, X)=φu(w− l + (1 − φ)X)+(1− φ)u(w− φX) −x. (19)
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Taking the derivative of U(φ, X) with respect to X, we have

U ′(φ,X)=φ(1−φ)
[
u′(w−l+(1−φ)X)−u′(w−φX)

]
.

Since u(w) is an increasing and concave function, u′(w) is a decreasing and positive
function. When X < l, U ′(φ, X) > 0; when X > l, U ′(φ, X)< 0. The expected utility is
maximized at X= l, the optimal expected utility is u(w−φl) − x.

In Fig. 1, the expected utility without insurance market is point C, i.e., nodes feel
that they lose more than the expected wealth loss because of the risk aversion. With
insurance market, the expected utility improves from point C to point B.

Lemma 2. When the insurance is offered at price π > φ, the optimal insurance cover-
age is partial insurance coverage, i.e., a node will buy insurance coverage less than l.
The maximal expected utility is u(w − φl − δ(φ, π))− x., where δ(φ, π) > 0.

Proof: Similar to the proof of Lemma 1, a node optimizes

U(π, X)=φu(w− l + (1 − π)X)+(1− φ)u(w− πX) − x.

The first order differentiation of U(π, X) is

U ′(π,X) = φ(1− π)u′(w− l +(1−π)X)− (1 − φ)πu′(w−πX).

It is easy to verify that U ′(π, l) < 0 since π > φ. The second order derivative is

U ′′(π, X) =φ(1 − π)2u′′(w − l + (1 − π)X)

+ (1 − φ)π2u′′(w − πX).

Since u(w) is concave, u′′(w) < 0, it follows that U ′′(π, X) < 0. U(π, X) is a concave
function of X. Also, U ′(π, l) < 0, so the optimal solution is smaller than l. As a result,
the optimal insurance converge is partial coverage. Let the optimal expected utility
be u(w−φl−δ(φ, π)) − x. Since U(φ, X) > U(π, X), u(w−φl) − x = maxX U(φ, X) >
maxX U(π, X) = u(w−φl−δ(φ, π))− x, we can get δ(φ, π) > 0.

Remark: Lemma 1 shows that the expected utility with insurance market is u(w−φl)−
x > φu(w−l)+(1−φ)u(w)−x. The utility of a node is improved by the insurance market
with the fair price. But if the contract is at an unfair price, the utility improvement is
smaller according to Lemma 2.

One problem with the combination of insurance and self-protection is moral haz-

ard, which happens when the insurance provider cannot observe the protection level of
a node. Insurance coverage may discourage the node to take self-protection measure
to prevent the losses from happening, or even to encourage nodes to cause the loss and
make insurance claims. In here, we examine the effect of the insurance market on the
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self-protection level. We consider the two cases, one is without moral hazard, where the
insurance provider can observe the protection level of a node, the other is with moral
hazard, where insurance provider does not have any information about the protection
level of a node. Without the moral hazard, the insurance provider can discriminate
against the nodes with protection measure and those without protection measure. We
investigate whether the insurance market will help to incentivize nodes to take secure
measure. For the case with moral hazard, we investigate whether insurance provider
can design contracts so that insurance market is not a negative incentive.

4.2. Cyber-insurance Without Moral Hazard

Security Adoption with Cyber-insurance Market: Because the insurance provider
can observe the protection level of a node, the insurance provider will offer insurance
price of φ(S) (or φ(N)) for those nodes with (or without) security protection. Accord-
ing to Lemma 1, nodes will buy the full insurance regardless of its protection level.
As a result, the expected utility for nodes without protection is u(w − φ(N)l) and the
expected utility for nodes with protection is u(w − φ(S)l) − c. Thus, with insurance
market, a node will invest in security protection if and only if

c < g(l, ρ) ! u(w − φ(S)l) − u(w − φ(N)l).

Note that g(l, ρ) is a function of ρ because φ(S) and φ(N) can be expressed in ρ.

Lemma 3. The function g(l, ρ) ! u(w − φ(S)l) − u(w − φ(N)l) increases with respect
to the loss l.

Proof: Substituting u(w) with w1−σ

1−σ , we can get the first order derivative of g(l, ρ):

gl = −
φ(S)

(w − φ(S)l)σ
+

φ(N)

(w − φ(N)l)σ
(20)

It is easy to verify that gl > 0 since φ(N) > φ(S).

Lemma 4. The function g(l, ρ) ! u(w−φ(S)l)−u(w−φ(N)l) = u(w− (1− (1− p−)(1−
qρ)k)l) − u(w − (1 − (1 − p+)(1 − qρ)k)l) is decreasing with respect to ρ.

Proof: Similarly, taking the first order derivative we can get:

gρ = lkq(1 − qρ)k−1[(1 − p+)(w − l + (1 − p+)(1 − qρ)kl)−σ

− (1 − p−)(w − l + (1 − p−)(1 − qρ)kl)−σ]

It is easy to verify that function h(p) ! (1 − p)(w − l + (1 − p)(1 − qρ)kl)−σ decreases
with p. Thus, h(p+) < h(p−) and gρ < 0.
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Lemma 3 indicates that nodes with higher loss are more likely to invest in secu-
rity. From Lemma 4 we know that positive network externality still exists even in the
presence of insurance market. Similar to the analysis in Sec. 3, we can arrive in the
following proposition regarding the adoption fraction with insurance market:

Proposition 3. With insurance market, nodes with degree k will take the secure mea-
sure if their loss is greater than l∗I

k
. The final fraction of nodes with degree k that will

invest in self-protection is λ∗I
k

. l∗I
k

and λ∗I
k

are solutions of the following fixed point
equations:

λ∗Ik = 1 − Fk(l∗Ik ), (21)

ck = uk(wk − φ(S)l∗Ik ) − uk(wk − φ(N)l∗Ik ), (22)

where ρ∗I is given by the solution of the following equation

ρ∗I =1−

K
′

∑

k=K′

qk(1−p+ + λ∗Ik+1(p+ − p−))(1 − qρ∗I)k. (23)

Previous corollaries following Proposition 2 on the existence and monotonicity of
equilibrium points also hold here. Comparing Proposition 3 with Proposition 2, we can
recognize the only difference lies in Eq. (22) and Eq. (16). Buying insurance improves
node’s utility, and hence changes their decision on security protection as well. In the
following, we examine the effect of insurance market on security adoption. An overall
and detailed analysis needs calculating out all the equilibrium points and comparing
the equilibrium points specified by the two propositions. which is quite complicated.
Instead, we examine the effect from the local point of view, but still provide enough
insight.

Incentive Analysis: According to previous analysis, a node will take secure measure
if

c < cNI ! (φ(N) − φ(S))(u(w) − u(w − l)), (24)

where cNI is the threshold without insurance market. With insurance market, nodes
will take secure measure if and only if

c < cI ! u(w − φ(S)l) − u(w − φ(N)l), (25)

where cI denotes the threshold with insurance market.

In order for insurance market to be a good incentive for self-protection, we should
have cNI <cI , i.e.,

cI−cNI = u(w − φ(S)l) + φ(S)(u(w) − u(w − l))

− [u(w − φ(N)l) + φ(N)(u(w) − u(w − l))] > 0.

Define r(p) ! u(w − pl) + p(u(w) − u(w − l)), then the above condition becomes
r(φ(S)) > r(φ(N)). Next we investigate under what condition the above inequality will
hold. Consider the function r(p), we have the following lemma.
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Lemma 5. r(p) is a concave function of p, there exists a unique p∗ that maximizes
r(p).

Proof: Substituting u(w) with w1−σ

1−σ , we can derive the second order derivative of r(p):

r′′(p) = −σl2(w − pl)−σ−1,

Since r′′(p) < 0, r(p) is a concave function with respect to p. Because r(0) = r(1) =
u(w), there exists a unique optimal point p∗ ∈ (0, 1) that maximizes r(p).

Proposition 4. If the initial infection probability φ(N) is greater than p∗ and the qual-
ity of self-protection is not too high, i.e., φ(N) − φ(S) is bounded, insurance will be a
good incentive for self-protection.

Proof: We want r(φ(S)) > r(φ(N)) conditioned on φ(N) > φ(S). Let φ∗ be the min-
imum value such that r(φ∗) = r(φ(N)). If φ(N) is smaller than the optimal value p∗,
as shown in Fig. 4a, then φ∗ = φ(N). In this case, it is impossible for insurance to be
an incentive for self-protection. Otherwise if φ(N) is bigger than the optimal value p∗,
then φ∗ < φ(N). In this case, if φ∗ < φ(S) < φ(N), then insurance market will be a
good incentive for self-protection. The feasible region of φ(S) is shown in Fig. 4b.

p
u(w)

1

r(
p
) r(p)

φ(Ν) p∗0

(a) insurance is not an incentive

p
u(w)

1

r(
p
) r(p)

φ(Ν)φ∗ p∗0

(b) insurance is an incentive

Figure 4: Thresholds of φ(S )

Fig. 4a shows the case where φ(N) is smaller than the optimal value p∗ that max-
imizes r(p). In this case, it is impossible for insurance to be an incentive. In Fig. 4b,
φ(N) is greater than p∗. If φ(S) is within the region [φ∗, φ(N)] , then insurance is a
good incentive for security adoption. From Fig. 4b, we can see that insurance will
be more likely to be an incentive with large φ(N) and small φ(N) − φ(S). Hence, if
the initial secure situation is bad and the protection quality of secure measure is not
too high, then insurance market is a positive incentive for self-protection; otherwise,
insurance market is a negative incentive, i.e., if a node adopts secure measure without
insurance, it may decide not to adopt secure measure with insurance market.
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We can study the effect of cyber-insurance on nodes with different degrees based
on above analysis. For k1 < k2, we have φk1

(S) < φk2
(S), φk1

(N) < φk2
(N) and

φk1
(N) − φk1

(S) < φk2
(N) − φk2

(S). In other words, nodes with higher degree have
higher initial infection probability and the protection measure will be less effective to
nodes with higher degree. As a result, insurance market will be more likely to be an
incentive for nodes with higher degree. (A quantitative conclusion needs to examine
the influence of wealth and loss difference for nodes with different degrees.)

Whether insurance will be an incentive greatly depends on the parameters. Gen-
erally speaking, cyber-insurance can be a positive insurance for all nodes, a negative
insurance for all nodes and a negative incentive for low degree nodes, but a positive
incentive for high degree nodes. We provide extensive numerical results in the Section
5 to demonstrate the above cases.

4.3. Cyber-insurance with Moral Hazard

With moral hazard, insurance provider cannot observe the protection level of the
nodes. As a result, insurance contract cannot be differentiated for nodes with different
protection level. Instead, with the insurance contracts given, nodes will choose the
behavior that maximizes their expected utility. It is possible that nodes will choose
not to invest in self-protection if the insurance can cover part of the loss. In this case,
insurance is a negative incentive for self-protection. In here, we investigate whether it
is possible to design a contract that is not a negative incentive for self-protection.

In a competitive insurance market, the only possible equilibrium is that the insur-
ance provider offers the contracts at the price φ(S) (φ(N)) and the nodes choose (not)
to invest in self-protection. If the price is at φ(S), but nodes choose not to invest in self-
protection, then the expected profit of the provider (φ(S) − φ(N))X < 0. The provider
will not offer such insurance since it will lead to a loss. On the other hand, if the in-
surance provider sells the contracts at the price of φ(N), but nodes choose to invest in
self-protection, then the expected profit is (φ(N) − φ(S))X > 0. Since the market is
competitive, the positive profit will lead to competition and the insurance provider who
offers contracts at price φ(S) will survive.

We first consider the case when insurance provider can offer the full insurance
coverage. Nodes can choose the optimal amount of insurance coverage. First, we
consider the N-equilibrium, i.e., contracts are sold at φ(N) and nodes choose N . If
the insurance provider offers the price at φ(N), nodes will decide to choose N if the
expected utility with N is greater. By Lemma 1, if nodes choose N , they will buy the
full coverage of insurance. The expected utility is u(w − φ(N)l). If nodes choose S,
then by Lemma 2, the maximal expected utility is u(w− φ(S)l− δ(φ(S), φ(N)))− c. So
nodes will chooseN if c > cNE = u(w− φ(S)l− δ(φ(S), φ(N)))− u(w− φ(N)l), where
cNE is the threshold forN-equilibrium.

Next, we consider the S-equilibrium, i.e., contracts are sold at the price of φ(S) and
nodes chooseS. If nodes chooseN , the optimal expected utility is maxX UN (φ(S), X) ≥
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UN (φ(S), l) = u(w−φ(S)l). If nodes choose S, by Lemma 1, the optimal expected util-
ity is u(w−φ(S)l)−c < u(w−φ(S)l). So nodes will chooseN if full insurance coverage
can be offered. In other words, S-equilibrium does not exist under full insurance cov-
erage. Full coverage insurance is never an incentive for security adoption with moral
hazard. The reason why full coverage insurance is not an incentive is that if nodes get
infected, loss will be covered fully regardless whether they take secure measure or not
by paying the same premium. As a result, the investment on security protection is not
necessary. One solution to the moral hazard problem is partial coverage against loss
[18]. Partial insurance can incentivize nodes to invest in self-protection by exposing
them to certain risk loss.

Consider the S-equilibrium, insurance provider offers contract at price φ(S) and
the maximal insurance coverage is W. We already showed W< l. In a partial insurance
contract, a node cannot decide the amount of coverage by maximizing its utility. If a
node choosesN , its maximal expected utility is

UN (φ(S),W) =φ(N)u(w − l + (1 − φ(S))W)

+ (1 − φ(N))u(w − φ(S)W). (26)

If a node chooses S, its maximal expected utility is

US(φ(S),W) =φ(S)u(w − l + (1 − φ(S))W)

+ (1 − φ(S))u(w − φ(S)W) − c. (27)

The S -equilibrium exists if and only if

∆(W) =US(φ(S),W) − UN (φ(S),W)

=(φ(N) − φ(S))(u(w− l + (1 − φ(S))W)

− u(w − φ(S)W)) − c ≥ 0. (28)

It is easy to find out that ∆(W) is a strictly decreasing function of W. We want to
find out whether there exits W such that W ∈ [0, l] and ∆(W) ≥ 0. From previous
analysis, we know ∆(l) < 0, i.e., when full insurance is offered, nodes will choose
N . If W = 0, it indicates no insurance is provided. ∆(0) is the expected utility gap
when no insurance is provided. If ∆(0) < 0, i.e., nodes will not invest in self-protection
without insurance market, it is impossible to find out W such that ∆(W) > 0 due to
the monotonicity of ∆(W). Thus, cyber-insurance can never be a positive incentive for
self-protection. However, if ∆(0) > 0, i.e., nodes will invest in self-protection without
insurance market, we can always find such W such that ∆(W) = 0 since ∆(W) is a
continuous function of W. As a result, the maximal insurance coverage which can be
offered by the insurance provider so that S-equilibrium is possible is:

Wmax = arg{∆(W) = 0}. (29)

Here we show that cyber-insurance with moral hazard can never be positive in-
centive for security adoption. Though cyber-insurance can not be positive incentive,
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Figure 5: Determine final infection prob. via local mean field

we demonstrate it can be non-negative, which still has practical meaning. The cyber-
insurance with moral hazard can improve hosts’ welfare while not impeding them from
investing in security.

In the competitive insurance market without moral hazard, the expected utility of
nodes who choose S with insurance market is u(w − φ(S)l) − c. With moral haz-
ard, the maximal insurance coverage is Wmax. Then the maximal expected utility for
nodes choosing S is US(φ(S),Wmax). Since Wmax < l, we have US(φ(S),Wmax) <
u(w − φ(S)l) − c. In other words, nodes’ welfare is hurt by the moral hazard. If the
insurance provider offers full insurance, nodes will, on the contrary, chooseN . Partial
insurance with maximal contract Wmax will make it worthwhile for nodes to invest in
self-protection.

5. Simulation & Numerical Results

We present simulation and numerical results to investigate the influence of various
parameters in this section.

Validating Final Infection Probability: We consider a large graph with power-law
degree distribution[19]. We want to verify the accuracy of using the mean field on these
power law graphs. We use the popular Generalized Linear Preference (GLP) method
to generate power law graphs[20]. Parameters were selected so that the power law
exponent γ = −3. We generate graphs with 10, 000 nodes and approximately 30, 000
edges. The minimum degree is 3 and the maximum degree is approximately 200. First,
we verify the case when all the nodes have the same probability of being infected
initially. The result is shown in Fig. 5a. Initially, every node is infected with the
same probability p and every edge is occupied with probability q. We calculate the
probability that nodes with certain degree is infected. Fig. 5a shows the simulation
verifies the theoretical results. One can also observe that the infection probability is
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an increasing function of node’s degree. When the p and q increases, the infection
probability also increases.

Next, Fig. 5b shows the infection probability of nodes with different degrees under
different initial infection probability. For both curves, q is set to be 0.1. For the curve
above, we set the initial probability for nodes with degree k to be p(k) = 0.4/k

1
3 . The

probability decreases with degree. For the curve below, we set the initial infection
probability to be p(k) = 0.2k

1
3 . The probability increases with degree. From the figure,

we see that the local mean field technique is very accurate and the theoretical results
accurately match with simulation results.
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Figure 6: Externality effect on nodes with different degrees

Security Adoption: Let us investigate how parameters can influence the fraction of
nodes with different degrees in adopting secure measures. We consider a graph G with
power law distribution with γ = −3, minimum and maximum degree are 3 and 13.
Here maximum degree is set small for the convenience of selecting other parameters.
With very large maximum degree, even a small q will make the infection probability
φk(N) or φk(S) very big because of the power relationship. However, our results still
apply when the maximum degree is large.

We set the degree of risk of aversion of the utility function σ = 0.5, the same for
all node. The initial wealth of nodes with degree k is wk = 10 ∗ k+50. The loss follows
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uniform distribution from 0 to half of the initial wealth. The cost of secure measure
of all nodes is c = 0.3. Initially, all nodes without (with) secure measure are infected
initial with probability p+ = 0.3 (p− = 0.2). Having fixed the above parameters,
we choose to change the q to calculate the fraction of adoptors with different degrees
because nodes with different degrees are mainly differentiated via the term (1 − qρ)k,
in which q plays an important role. We want to examine the effect of heterogeneity by
setting different q.

We show the initial fraction and final fraction of adoption in Fig. 6. Here the initial
fraction means that every node assumes that other nodes will not adoption secure mea-
sure and makes its decision on this assumption. Final fraction means the fraction given
by the minimum equilibrium point in Proposition 2. Due to the positive externality
effect, final fraction is greater than initial fraction. We plot them to examine the exter-
nality effect. From Fig. 6a to Fig. 6c, we set q to be 0.05, 0.10 and 0.15 respectively.
The figures show that the adoption fraction of nodes with every degree decreases as q

increases. This indicates that the spreading effectiveness can inhibit adoption of secure
measure. In Fig. 6a, the adoption fraction increases with degree, in Fig. 6b, the adop-
tion fraction initially increases with degree, then decreases with degree, while in Fig.
6c , the adoption fraction decreases with degree. Comparing these three figures, we
see that there is no general rule regarding the fraction of adoptors as a function of the
degree. It greatly depends on the parameters. However, we can see in all figures that
the gap between the final adoption fraction and the initial adopt fraction increases with
degree, indicating nodes with higher degree will be incentivized better than nodes with
lower degree. This agrees with our previous result that higher degree nodes are more
sensitive to the externality effect.

Influence of Cyber-insurance: We claim in previous section that insurance can be
a negative incentive for all nodes, a positive incentive for all nodes and a negative
incentive for low degree nodes but a positive incentive for high degree nodes. We
demonstrate these cases through numerical results. In Fig. 7a, we set the parameters
p+ = 0.3, p− = 0.2 and q = 0.02. We see that the fraction of nodes which adopt the
secure measure without insurance market is greater than that with insurance market.
This is because the infection probability without secure measure is low. In Fig. 7b, we
set the parameters p+ = 0.8, p− = 0.7 and q = 0.02. As the figure shows, insurance
market is a positive incentive. In this case, the infection probability without secure
measure is high and the protection quality is low. In Fig. 7c, we set the parameters
p+ = 0.8, p− = 0.7 and q = 0.15. In contrast to Fig. 7a, q is greater, making the
infection probability for low degree nodes small while for high degree nodes big. Thus
insurance is a negative incentive for low degree nodes, but a positive incentive for high
degree nodes.

6. Related Work

Recently there has been growing research in the economic of information security[21,
22]. Several models are proposed to study the strategic behavior of security investment.
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Figure 7: Effect of cyber-insurance on security adoption

[12, 13] are the earliest work to consider strategic security investment and to find ex-
ternality effect. [23] assumes that security investment is continuous and considers the
cases when the security of one agent depends on others by the summation, weakest,
best of the investment effort of all agents. They find the overall security investment is
highly relevant with how the security condition depends on each other. These papers all
do not incorporate the effect of network topology. Others assume that the graph topol-
ogy is given. The authors in [24] combine the N-intertwined epidemic model with
game theory and model nodes’ strategic behavior. The model is based on complete
information of topology. In [25, 26], the level of security is determined by weights
assigned to a topology and no infection process is modeled. [27] generalized the work
of [23] to consider topology and also assume that the network topology information
is incomplete for agents. Our model contrasts [27] in that the security investment in
discrete and security dependence is caused by epidemic spreading. [28, 29, 30] are
extension of [23] by considering some parameters of [23] such as loss or attack prob-
ability are incomplete information and model it as a Bayesian security game. [14, 15]
are the closely related to our work. The network topology is modeled as a homoge-
neous random graph while real networks are with power law degree distribution. Also,
they do not consider the interaction among those nodes. In contrast, we consider the
interaction of nodes by studying a Bayesian network game. Our modeling result pro-
vides significant insight on the influence of node heterogeneity on the adoption extent,

24



sensitivity to network externality and cyber-insurance as an incentive. [31] is our previ-
ous extended abstract in considering network heterogeneity, which is defined by setting
degree thresholds to divide the nodes into classes. This work generalizes previous work
and also considers the effect of cyber-insurance.

Insurance was studied in the economic literature long time ago[17, 18]. But these
literatures lack to consider many characteristics specific to computer network, such
as the interdependence of security, heterogeneity considered in this work. Cyber-
insurance was proposed to manage security risk [32] but is only modeled recently[6,
33, 9]. A key concern is whether cyber-insurance is an incentive for security adop-
tion. [33] concludes that competitive and monopoly insurance market are not incentive
with moral hazard and competitive insurance market is an incentive without moral haz-
ard. In contract, we find competitive insurance market is an incentive conditioned that
the protection quality is not high. The authors do not consider the heterogeneity in
modeling cyber-insurance. We consider heterogeneity and show that cyber-insurance
is more likely to be an incentive for node with higher degree. [9] assumes the effort
on security protection is continuous and find that competitive cyber-insurance market,
if exist, can not be incentive for security investment with moral hazard. In [34], the
authors consider there are two types of negatively correlated failures, security related
and non-security related. They propose a new type of cyber-insurance in which loss
is partially covered. When cyber-insurance is mandatory, this types of new insurance
will be preferred than traditional cyber-insurance in which all loss is covered. These
papers on cyber-insurance, including ours, all show that moral hazard is the obstacle
for cyber-insurance to be incentive for security investment.

7. Discussion

Modeling strategic behavior in security adoption helps us to understand what are
the factors that could result in under investment. In this paper, we show, via a Bayesian
network game formulation, how “network externality” with “node heterogeneity” can
affect security adoption in a large communication network. We also investigate the
effect of cyber-insurance on protection level. We establish the conditions under which
cyber-insurance is a positive incentive without moral hazard. Under the situation of
moral hazard, we verify that partial insurance can be a non-negative incentive.

There are several ways to extend the result of our work. The first is to follow
the paper to continue to analyze cyber-insurance with both moral hazard and adverse
selection (insurance provider can not distinguish between high and low risk(degree)
nodes). The second is to consider that the effort on security investment is continuous,
which is more practical. The third direction is to incorporating the strategic behavior
of adversaries, which can overcome the weakness of our paper by assuming that all
the nodes have the same probability of being attacked. It is interesting to see how the
behavior of adversaries may impact adoption of security measures. We also hope to
get the real data on the parameters defined in our paper to verify the model, which we
artificially set in the simulation.
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