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a b s t r a c t

The design and implementation of resource allocation and pricing for computing and net-
work resources are crucial for system and user performance. Among various designing
objectives, we target on maximizing the social welfare, i.e., the summation of all user util-
ities. The challenge comes from the fact that users are autonomous and their utilities are
unknown to the system designer. Under the Kelly mechanism, users bid and proportion-
ally share resources. When user population is large and ‘‘price-taking’’ can be assumed, the
Kellymechanismmaximizes the social welfare; however, under oligopolistic competitions,
this mechanism might induce an efficiency loss up to 25% of the welfare optimum.

We generalize the Kelly mechanism by designing a price differentiation and show
that the efficiency gap can be closed. In particular, we analyze the resource competition
game under the generalized mechanism and show that any price differentiation induces a
unique Nash equilibrium and any non-dictatorial resource allocation can be implemented
as a Nash equilibrium under price differentiation. We further characterize the optimality
condition under which the social welfare is maximized. Based on this optimality condition,
we design a feedback price control mechanism that takes observable system parameters
as input and adapts to the optimal Nash equilibrium that maximizes the social welfare.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Resource allocation [1,2] for computing resources, e.g., CPU cycles, and network resources, e.g., bandwidth capacity, have
been studied extensively during the last decade. They are important for achieving the performance goals of computer sys-
tems that involve multiple users competing for common divisible resources. For example, in the networking context, pro-
viding Quality of Service (QoS) among heterogeneous application flows has been a long-standing research problem that
concerns about bandwidth capacity allocation. One of the biggest challenges of these problems in practice is that the char-
acteristics of users and their applications are naturally unknown to the system. Furthermore, users are often autonomous
and selfish; therefore, if requested to report their private information, e.g., preference to allocated resources and induced
utility, they might misreport so as to maximize their own utilities.

To mitigate the above incentive problem, resource pricing [3–6] mechanisms have been introduced to manage resource
allocation. Pricing comes naturally when the resource owner cares about revenue. For example, in cloud computing [7],
cloud providers apply various pricing schemes to sell resources, e.g., the on-demand instance and reserved instance pricing
of Amazon EC2 [8]. In this work, our objective is to use pricing as a control mechanism to maximize social welfare of the
system, i.e., the total utility of all individual users. This objective is aligned with that of prior work in congestion pricing and
optimal flow control [1,5,6] and is very common in mechanism design [9] and auction design [10].

⇤ Corresponding author.
E-mail addresses: yydcool@sjtu.edu.cn (Y. Yang), tbma@comp.nus.edu.sg (R.T.B. Ma), cslui@cse.cuhk.edu.hk (J.C.S. Lui).

0166-5316/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.peva.2013.08.015

http://dx.doi.org/10.1016/j.peva.2013.08.015
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2013.08.015&domain=pdf
mailto:yydcool@sjtu.edu.cn
mailto:tbma@comp.nus.edu.sg
mailto:cslui@cse.cuhk.edu.hk
http://dx.doi.org/10.1016/j.peva.2013.08.015


Y. Yang et al. / Performance Evaluation 70 (2013) 792–805 793

Amongvarious proposedpricing and allocationmechanisms, theKellymechanism [1] stands out as a simple anddesirable
solution. Under this mechanism, users bid for resources by submitting the amount they are willing to pay and the resource
is proportionally allocated based on the bids of the users. Kelly et al. [1,11] showed that when used as a congestion pricing
mechanism, it achieves a proportional fairness allocation among the users. Furthermore, when the user population is large
and each user’s impact on the market price of the resource is negligible, the resource allocation under the Kelly mechanism
maximizes the social welfare of the system. However, because the number of users is often bounded in practice, oligopolistic
competitions of resources among the users happen more often. Johari and Tsitsiklis [2] analyzed the resource competition
game under the Kelly mechanism and found that the resulting resource allocation Nash equilibrium might induce an
efficiency loss up to 25% of the maximum social welfare.

In this work, we design a price differentiation on the Kelly mechanism, which can be regarded as a generalization. Our
generalization not only inherits the scalability property of the Kelly mechanism, by choosing an appropriate price differen-
tiation, it can also close up the efficiency gap. Our contributions include the following.
• We design (Section 2.2) a novel price differentiation mechanism to generalize the Kelly mechanism.
• We analyze (Section 3) the resource competition game induced by the generalized mechanism and show the following.

– Under any price differentiation, the competition game has a unique Nash equilibrium (Theorem 1).
– Non-dictatorial resource allocations can be achieved as a unique Nash equilibrium under price differentiation and a

bijective mapping between the price and allocation domains exists (Theorem 4).
• We characterize the condition under which price differentiation maximizes the social welfare (Theorem 5).
• We propose a feedback price control mechanism (Section 4) that adapts to the maximum social welfare.

Our new mechanism extends the flexibility of the Kelly mechanism in a way that allows autonomous resource owners
to apply different price differentiation schemes so as to achieve individual objectives, e.g., making tradeoffs between user
fairness (in terms of price differentiation) and systemefficiency (in terms of socialwelfare). Because themechanismdepends
on a congestion pricing principle and the allocations are implemented as Nash equilibrium solutions, it is also adaptive and
robust. We believe that our new generalization of the Kelly mechanism provides better controls for the resource owner to
achieve different performance goals of the system.

2. Resource allocation

In this section, we give some background about the Kelly mechanism and further generalize it by using an embedded
price differentiation. In the next section, we will explore the properties of the generalized mechanisms.

2.1. The Kelly mechanism

We consider a set N = {1, . . . ,N} of rational users bidding for a share of divisible resource of capacity C . We assume
that more than one user compete for the resource, i.e., N = |N | > 1. Each user i has a valuation function vi(·), where vi(di)
defines the monetary utility to user i when she is given di amount of the resource.

A common objective in resource allocation is to maximize the social welfare. Under our context, it is to maximize the
sum of the valuations of all the users as the following optimization problem:

max
X

i2N

vi(di)

subject to
X

i2N

di  C and di � 0 8i 2 N .
(1)

We define the above convex and compact constraint set as

D =
(

d |
X

i2N

di  C, and di � 0, 8i 2 N

)

.

In the Kelly mechanism [1], each user i submits a bid wi � 0, which equals the payment for obtaining a share di of the
resource. We denote ui as the utility of each user i, defined in a quasi-linear [12] environment as

ui(di) = vi(di) � wi,

which is the valuation of the allocated resource vi(di) less the payment wi. The Kelly mechanism allocates the full capacity
C among all users and the resource share di of each user i is proportional to her bid wi. Mathematically, given a nonzero bid
vectorw = (w1, w2, . . . , wN), the resource allocation vector d = (d1, d2, . . . , dN) is defined by

di = Di(w) = wi
NP
j=1

wj

C, 8i 2 N , (2)

where Di(·) denotes the proportional allocation function for user i under the Kelly mechanism.
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As a result of the Kelly mechanism, each user is charged the same unit price of the resource µ such that µdi = wi for all
users. This implicit unit price µ can be calculated as

µ =

NP
j=1

wj

C
.

2.2. The generalized Kelly mechanism

Rather than implementing a nondiscriminatory price µ under the Kelly mechanism, we consider a price differentiation
among users. Our motivation of designing the price differentiation is to achieve different efficiency points for the social
welfare defined as the objective function of (1). Under our generalization, we consider a strict positive price vector p =
(p1, p2, . . . , pN) as a parameter of the mechanism. Each user i submits a bid ti � 0 to compete for the resource and the
allocation rule is the same proportional rule defined in Eq. (2):

di = Di(t) = ti
NP
j=1

tj

C, 8i 2 N . (3)

The difference of our generalization from the Kellymechanism is that each user i pays piti amount ofmoney forDi(t) amount
of shared resource, and therefore, obtains a utility of

ui(t, p) = vi(di) � piti = vi(Di(t)) � piti.
This generalized mechanism can be imagined as a process where users buy divisible tickets to compete for the resource.
We denote ti as the number of tickets bought by user i and pi as the monetary price of each ticket for user i. Like the Kelly
mechanism, it fully allocates the capacity C among all users and the resource share di = Di(t) to each user i is proportional
to the number of tickets bought: ti. Although we do not differentiate tickets in resource allocation, the unit ticket price to
users could be different. In particular, the Kelly mechanism is a special case of the generalization where p = 1.

Compared to the Kelly mechanism, the generalized mechanism achieves a similar virtual unit price ⌫ in terms of tickets
(measured as tickets per unit of resource) defined as

⌫ =

NP
j=1

tj

C
.

Consequently, the effective/real unit price for resource among users will be proportional to the price vector p, because
each user i’s real price becomes pi⌫ (measured as abstract monetary units per unit of resource). Notice that although a
pre-determined price is assigned to each user, the generalized mechanism inherits the simplicity/scalability of the Kelly
mechanism in two ways: (1) the strategy space of the mechanism is still simply one-dimensional; and (2) only a single
virtual price feedback, i.e., ⌫, is required to be sent to all users.

2.3. Resource competition game (N , v, p)

Kelly’s original work [1] considered the competitive equilibrium: a pair of a strategy profile and a single unit price of
resource (w, µ) that satisfies the following conditions:

vi

✓
wi

µ

◆
� wi � vi

✓
ŵi

µ

◆
� ŵi, 8ŵi � 0, i 2 N and µ =

NP
j=1

wj

C
.

The competitive equilibrium assumes that a same price µ is given to all users so that they choose the demand of resource
to maximize individual utilities. This same price in equilibrium is also a market clearing price for which the summation of
users’ demand equals the available capacity C . Kelly proved that the solution to the above equations solves the social welfare
optimization problem defined in (1).

In a competitive equilibrium, users are assumed to be price-takers. This assumption holds when the number of users is
large and each user’s impact on the market price is negligible. However, in practice, we might have a few number of users
forming an oligopolistic competition, and therefore, if we implement the proportional share allocation, strategic users will
know that their strategies are going to change the implicit price µ as well as the resource allocation to them.

To consider rational and price-anticipating users, we regard the generalized Kelly mechanism as a resource competition
game, through which each user i uses her strategy ti to maximize the individual utility of ui. More precisely, given a price
vector p for the set of players N , each user i 2 N tries to choose strategy ti that maximizes the utility ui(ti; t�i, p) =
vi(Di(t)) � piti, where t�i denotes the strategy profile of users other than i. A strategy profile t⇤ is a Nash equilibrium of the
resource competition game if for any user i, the following is satisfied:

ui(t⇤i ; t⇤�i, p) � ui(t̂i; t⇤�i, p), 8t̂i � 0. (4)



Y. Yang et al. / Performance Evaluation 70 (2013) 792–805 795

Under our generalization, we define the feasible set of price vectors P to be strictly positive, i.e.,

P = {p| pi > 0, 8i 2 N }.
We require each component pi to be positive, because any user with pi  0 can always increase its strategy ti to increase
utility, and therefore no Nash equilibrium exists. For a set N of players and their valuation functions v = {vi(·) : i 2 N },
given any p 2 P , we denote the generalized resource competition game as a triple (N , v, p).

Hajek and Gopalakrishnan [13] showed that the Kelly mechanism (i.e., p = 1) induces a unique Nash equilibrium. Johari
and Tsitsiklis [14] showed that the worst efficiency loss of the Nash equilibrium relative to the social efficient solution to
the problem defined by (1) is 25%.

3. Price differentiation

In this section, we study how the price differentiation generalization of the Kelly mechanism affects the resulting equi-
librium of the resource competition game.

3.1. Uniqueness of the Nash equilibrium

Inherited from the uniqueness property of the Nash equilibrium under the Kelly mechanism, we first show that for any
price vector p 2 P , the corresponding resource competition game (N , v, p) also induces a unique Nash equilibrium. The
result is parallel to Theorem 2.2 of Johari [15], originated from Hajek and Gopalakrishnan [13]. Similar to the assumptions
made in prior work [14], we make the following assumption for the valuation functions.

Assumption 1. Each vi : R+ 7! R+ is concave, strictly increasing, and continuously differentiable.

Next, we present the uniqueness result for the Nash equilibrium of our generalized competition game (N , v, p). We
present the proofs of the theorems in the Appendix.

Theorem 1 (Uniqueness of the Nash Equilibrium). Under Assumption 1 and for any p 2 P , the resource competition game
(N , v, p) has a unique Nash equilibrium t � 0, under which at least two components of t are positive.

In this case, the resource allocation vector d⇤ defined by

d⇤
i = Di(t) = ti

NP
j=1

tj

C, 8i 2 N , (5)

is the unique solution to the optimization problem:

max
NX

i=1

v̂i(di)

subject to d 2 D,

(6)

where

v̂i(di) = 1
pi

" 

1 � di
C

!

vi(di) + 1
C

Z di

0
vi(z)dz

#

. (7)

Theorem 1 states that for any p 2 P , there is a unique Nash equilibrium. Thus, we denote tp as the unique Nash
equilibrium of the game (N , v, p) that satisfies

ui(t
p
i ; tp�i, p) � ui(t̂i; tp�i, p), 8t̂i � 0.

Accordingly, we denote the mapping di : P 7! D to be the unique resource allocation for user i under the unique Nash
equilibrium, defined as di(p) = Di(tp).

3.2. Structural properties of the Nash equilibrium

Although each game (N , v, p) induces a unique Nash equilibrium tp, different price vectors p and q might induce the
same Nash equilibrium tp = tq, resulting in the same resource allocation d(p) = d(q), and even the same user utilities, i.e.,
ui(tp, p) = ui(tq, q) for all i 2 N . We classify the equivalent price vectors by the following two theorems.
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Theorem 2 (Linear Equivalence). Given any p 2 P and q = kp for some k > 0, the games (N , v, kp) and (N , v, q) result in
the same resource allocation under their unique Nash equilibria, i.e., d(q) = d(p). Moreover, tq = 1

k t
p and ui(tq, q) = ui(tp, p)

for all i 2 N .

Theorem 2 states that when the price vector is scaled by a positive constant k, the resource allocation does not change
in equilibrium. Consequently, the strategy profile scales by 1/k and keeps the user payments and utilities unchanged in
equilibrium. A consequence of this theorem is that any equal price mechanism will result in the same resource allocation
and utilities for the users as those under the Kelly mechanism.

Theorem 3 (No-Share Equivalence). For any p 2 P , we denote Ep as the set of users who get no resource in equilibrium, defined
as Ep = {i|tpi = 0}. Let the set Qp be

Qp = {q | qi = pi, 8i 62 Ep; qi � pi, 8i 2 Ep}.
Then for any q 2 Qp, the Nash equilibrium tq equals tp. Also, d(q) = d(p) and ui(tq, q) = ui(tp, p) for all i 2 N .

Theorem 3 states that when we only increase the prices of the users who bid zero, these users will remain to bid zero
and prefer not to get any resource. Also, there is no change in resource allocation or user utility.

Next, we explore the conditions under which the mapping between the price differentiation vector p and the resource
allocation d(p) is one-to-one. To exclude the equivalent ‘‘no-share’’ prices under Theorem 3, we focus on the domain D̃ of
non-zero allocations to the users, defined as follows:

D̃ =
(

d |
X

i2N

di = C, and di > 0, 8i 2 N

)

.

Accordingly, we define the domain of non-zero allocation price vectors as P̃ = {p | d(p) 2 D̃}.
To further exclude the linearly dependent price vectors mentioned by Theorem 2, we consider any constant c > 0 and

define P̃c = {p 2 P̃ f | PN
j=1 pj = c}.

Theorem 4 (Bijective Mapping). For any c > 0, the mapping d : P̃c 7! D̃ is continuous and bijective. In particular, the inverse
mapping P : D̃ 7! P̃c is

p̃i = Pi(d) = v0
i(di)(C � di)P

j2N

v0
j(dj)(C � dj)

c. (8)

The corresponding unique Nash equilibrium is

tp̃ =
P
j2N

v0
j(dj)(C � dj)

cC
d.

Theorem 4 implies that any resource allocation solution d 2 D̃ can be implemented as a unique Nash equilibrium in
the price domain P̃c for any c > 0. To illustrate, we consider an example of three users competing for a divisible resource
with capacity C = 3. The user valuation functions are v1(d1) = d1

2 , v2(d2) =
q
d2 + 1

2 , v3(d3) = ln(d3 + 1). Fig. 1 shows

the social welfare under any resource allocation d 2 D̃ , where the maximum social welfare is achieved at the allocation
d⇤ = (1.5, 0.5, 1.0). Fig. 2 shows the social welfare achieved under the Nash equilibrium tp for any p 2 P̃1. In particular,
we illustrate that the corresponding optimal price vector is p⇤ = P(d⇤) = ( 1

4 ,
5
12 ,

1
3 ) based on Eq. (8). Also, we show the set

P̃ by highlighting the three boundary segments drawn in solid, dash and dotted curves, which correspond to the boundary
segments d2 = 0, d3 = 0 and d1 = 0 of D̃ , respectively.

By Theorem 1, at least two components of any Nash equilibrium tp are positive, which implies that any dictatorial
allocation, i.e., di = C for some i 2 N and dj = 0 for all j 6= i, is not implementable via a Nash equilibrium. We denote D̂ as
the set of non-dictatorial allocations, defined by

D̂ =
(

d |
X

i2N

di = C, and di 2 [0, C), 8i 2 N

)

.

Theorem 4 implies that any d 2 D̃ can be implemented as a Nash equilibrium via a price vector p 2 P̃ . In fact, any non-
dictatorial allocation d̂ 2 D̂ \ D̃ can also be implemented via Nash equilibria. For any target d̂j = 0, we can keep increasing
pj until d̂j reaches zero in equilibrium. Any further increase in pj will result in the same resource allocation by Theorem 3.
By doing so, we virtually exclude user j from participating in the competition game. For the remaining users with positive
allocation targets, i.e., p̂j > 0, we can apply Theorem 4 again to find the corresponding prices as if the competition game is
restricted to themselves.
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Fig. 1. Social welfare under the allocation domain D̃ . The maximum welfare is attained at d⇤ = (1.5, 0.5, 1.0).

Fig. 2. Social welfare achieved as the Nash equilibrium under price differentiations (boundary P̃1 showed).

4. Optimization via price control

We have shown that any non-dictatorial resource allocation d̂ 2 D̂ can be achieved as a Nash equilibrium under the
generalized Kelly mechanism. Thus, in theory, we can close the 25% efficiency gap by choosing an appropriate price vector
that maximizes the social welfare, defined in (1). However, the central planner might not knowwhat the optimal allocation
d⇤ is in the first place. In general, the challenge is that we need to know the valuation functions vi(·) of users, which are
private information and may not be revealed by the users.

In this section, we derive the condition for a resource allocation d to be optimal for the social welfare and then design a
feedback control mechanism on the prices so as to drive the users to converge to the global optimality.

Theorem 5 (Conditions of Optimality). A price vector p 2 P̃ induces a resource allocation d(p) that maximizes the social welfare
defined by the optimization problem (1), if and only if for any positive di(p) and dj(p), the following condition is satisfied:

pi : pj = C � di(p) : C � dj(p). (9)

In particular, when N = 2, the optimality is achieved when both users pay the same amount, i.e., p1t
p
1 = p2t

p
2 .

Theorem 5 implies that for any pair of users i and jwith positive allocation in the optimal resource allocation, i.e., d⇤
i > 0

and d⇤
j > 0, the optimal price ratio p⇤

i : p⇤
j should equal the ratio of C � d⇤

i : C � d⇤
j . This result not only gives us a way to

verify the optimality without knowing hidden valuations of the users, but it also guides us to design a feedback price control
mechanism under which the resource allocation under the Nash equilibrium converges the maximum social welfare of the
system.

We design a control system such that it adjusts the prices to achieve the optimal social welfare without the knowledge
of users’ valuation function vi(·). We denote p(t) as the system price differentiation at time t . Based on Theorem 5, we know
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Fig. 3. The valuation functions of users.

that an optimal allocation p⇤ 2 P̃ satisfies the following conditions

C � di(p⇤)
p⇤
i

= C � dj(p⇤)
p⇤
j

= (N � 1)CP
k2N

p⇤
k

, 8i, j 2 N .

This further implies that for each d⇤
i > 0, we must have

C � d⇤
i

N � 1
= p⇤

iP
k2N

p⇤
k
C .

Motivated by the above optimality condition, we design a feedback price control mechanism that updates the prices
every 1t amount of time by the following equation:

pi(t + 1t) = pi(t) +
 
C � di(p(t))

N � 1
� Cpi(t)P

j2N

pj(t)

!

1t. (10)

To fully capture the behavior of our price differentiation and feedback control mechanism under a dynamic environment
where arrivals and departures of users occur, we perform a simulation study of five users, whose valuation functions are
shown in Fig. 3.

Without loss of generality, we control the price vector within the domain P̃1 and start with the equal pricing as the Kelly
mechanism, i.e., p(0)i = 1/N(0) for all user i, where N(0) is the number of competing users at time t = 0.

We assume that the resource capacity is C = 10 and users 1, 2 and 3 stay in the system competing for the resource
throughout the whole simulation. User 4 arrives at the system at time t = 1 and departs at time t = 3. User 5 arrives at
the system at time t = 2 and stays until the end of simulation. Upon a user arrival at time t to the system, we set the new
user’s price as 1/N(t), where N(t) includes the new user in the system. For the remaining users, we decrease their prices
proportionally by a factor N(t)�1

N(t) , so that wemaintain the new price vector to be in the domain P̃1; however, the price ratios
are kept the same among all old users. Similarly, when a user departure happens in the system at time t , we increase the
price of all users proportionally, so that the price vector p(t) lies in P̃1 throughout the simulation.

We take the simulation time unit as a day. For every 10min, we randomly choose a user for updating its bidding strategy;
for every hour, i.e., 1t = 1/24 (day), the system updates the price differentiation based on Eq. (10). In order to capture the
user behavior more realistically under price differentiations, we simulate the user’s response to prices as follows. When a
user i updates its bidding strategy, it calculates its best response t⇤i and sets its new bid as t 0i = ti + Kt(t⇤i � ti), where the
step size Kt is chosen to be 0.2. At time t = 0, each user i starts with bidding ti = 1 simultaneously. Subsequently, when a
new user arrives in the system, it starts ti = Kt t⇤i , as if its last bit was zero.

We conduct a simulation from time t = 0–4.1. In Fig. 4, we plot the instantaneous social welfare of the system under
our feedback price control mechanism and that under the Kelly mechanism, together with the maximum achievable social
welfare for comparison. In Figs. 5–8, we plot the instantaneous prices pi(t), the allocated resources di(t), the bidding
strategies ti(t), and the marginal valuations v0

i(t) of the users, respectively.
From Fig. 4, we can observe that when more users join the system, the potential maximum social welfare increases,

and vice-versa. Throughout the simulation, we observe that under the Kelly mechanism, when users adapt to their optimal
strategies, the social welfare converges to some suboptimal value; however, under our feedback price control, users’ optimal
strategies and the resulting resource allocation drive the social welfare to converge to the global maximum.

In Fig. 4, we use the Kelly mechanism for a fair comparison in which the price vector always equals ( 1
N , . . . , 1

N ), and
choose the same user to change strategy as our approach. As we randomly let users change strategy, the social welfare
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Fig. 4. Social welfare dynamics under feedback price control.

Fig. 5. The dynamics of prices.

Fig. 6. The dynamics of resource allocation.

Fig. 7. Bids ti of all users.
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Fig. 8. The marginal valuations v0
i (di) of all the users.

under Kelly will go to an upper bound after users’ strategy reaches the Nash equilibrium. However, the social welfare of our
approach goes to the optimal after several rounds of adjustment on the price vector. At time t = 1 and t = 2, the optimal
social welfare increases because a new user comes into the system. At time t = 3, as user 4 leaves the system, both our
approach and Kelly mechanismwill lose social welfare because the system is out of Nash equilibrium, but our approach will
adjust to social optimal again after a while.

Next, we investigate the price dynamics under the feedback control mechanism. In Figs. 5 and 6, during the first day, the
prices and resource allocations adjusted to the optimal social welfare point. During the second day, the resource is mainly
exchanged between user 1 and user 4, this is because v0

4(d4) > v0
1(d1), then allocating resources to user 4 will always have

more valuation than user 1, which leads user 1’s resource allocation d1 goes to 0. At time t = 2, user 5 arrives, and finally
gets resource d5 = 1 as v0

5(d5) = 1
d5+1 = v0

4(d4) = 1. At time t = 3, user 4 departs; other user’s allocation increased
proportionally at first, but as user 1’s price gradually decreases, user 1’s allocation will increase until optimal social welfare
is reached. In Fig. 8, we observe that the marginal valuations v0

i for each user who has resource allocation di > 0 will go to
a same value.

5. Related work

Pricing [3,5,4] and resource allocation [1,15] for computing and network resources, e.g., bandwidth, have been studied
extensively during the last decade. Among various proposed pricing and allocationmechanisms, the Kellymechanism stands
out as a simple and practical mechanism that achieves multiple desirable properties [14]: (1) the strategy space of the users
is ‘‘simple’’, i.e., one-dimensional; (2) the feedback from the system to users is a single price per unit of resource; (3) for price-
taking users, the competitive equilibrium optimizes the social welfare of the network system; and (4) for price-anticipating
users, the resource competition gamehas a uniqueNash equilibrium. Asmentioned in [14], the streamof research of divisible
resource allocation and pricing can be compared as their strategic flexibility and pricing flexibility. The Kelly mechanism is an
example of low strategic flexibility (one-dimensional strategy space) and low pricing flexibility (single price), which has a
bounded efficiency loss [2]. It was argued in [14] that if we increase the strategic flexibility while preserving the single price
restriction, the efficiency loss can be arbitrarily large.

To achieve efficiency, many mechanisms have been designed by introducing pricing flexibility into the proportional
allocation mechanism. Maheswaran and Basar [16,17] modified the proportional allocation rule by adding a parameter ✏ to
the aggregate bids in the denominator and designed explicit price functions for players with different valuation functions.
Nguyen and Vojnovic [18] introducedweights to the proportional allocation function and studied the revenuemaximization
problem for the resource provider. In our mechanism, the proportional allocation remains the same; however, the players
are charged at different rates. Our objective is to maximize social welfare rather than revenue.

Another major line of extending pricing flexibility is to apply the celebrated Vickrey–Clarke–Groves (VCG) [19–21]
mechanism with the proportional allocation rule. Yang and Hajek [22,23] and Johari and Tsitsiklis [14] independently
designed VCG-type of mechanism with one-dimensional bids from the players. Dimakis, Jain and Walrand [24] considered
the VCGmechanism inmultiple divisible goods’ allocation for a two-dimensional strategy space. Stoenescu and Ledyard [25]
designed a mechanism that can implement efficient allocation in the sense of Pareto optimality as a Nash equilibrium in a
two-dimensional strategy space.We introduce the pricing flexibility as a built-in parameter, integrated into the proportional
allocation mechanism itself; therefore, we view our mechanism as a generalization of the Kelly mechanism instead of an
add-on pricing mechanism to the players.

6. Future work and conclusion

In this work, we generalized the Kelly mechanism by designing a price differentiation mechanism. In particular, we
consider that price-anticipating users compete under oligopolistic competitions and we model the resource competition
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game under price differentiations. We show that a unique Nash equilibrium exists under any positive price differentiation.
Based on an optimality condition of the Nash equilibrium,we further develop a feedback price controlmechanism to achieve
the maximum social welfare of the system, which closes the 25% efficiency gap of the Kelly mechanism. The breakthrough
of this result is that we can use the prices as a control knob to incentivize selfish users to reach a Nash equilibriumwhere the
social welfare is optimal. In particular, our approach only takes observable parameters, e.g., the prices and bids of the users,
as input and does not require the knowledge of the hidden/private valuation functions of the users. From a practical point
of view, our generalization also inherits the simplicity of the Kelly mechanism; for example, we keep the strategy space of
the users to be one-dimensional and a single resource price ⌫ (in terms of tickets) needs to be broadcast to the users.

Two future directions of this work are as follows.
• Revenue Maximization: This paper’s focus is mainly on maximizing the social welfare. However, revenue maximization

could be an interesting orthogonal direction where resource owners are profit seeks themselves. Related questions
include: what are the prices that maximize the total revenue and how does that affect the efficiency (social welfare)
of the system and the fairness among the users?

• Multi-ResourceAllocation: In a large scalemarket-oriented resource platform, resources of heterogeneous typesmight be
available to users. Moreover, users’ valuation might depend on a bundle of resources, e.g., CPU time and bandwidth. One
interesting open question is to see if the price differentiation mechanism can be extended to a multi-resource scenario.
In conclusion, the generalized Kelly mechanism enables resource owners to make tradeoffs between different system

objectives, e.g., fairness among users, social welfare, and revenue. We believe that it shed some light on designing pricing
mechanisms that suit a large range of market-based computing and networking platforms.

Appendix. Proof of theorems

Lemma 1. The strategy profile t is a Nash equilibrium of the resource competition game (N , v, p) if and only if at least two
components of t are positive, and for each i, the following conditions hold:

1
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v0
i
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j=1

tj

1
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0

BBB@
1 � ti
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j=1
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1
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=

NP
j=1

tj

C
, if ti > 0; (A.1)

1
pi

v0
i(0) 

NP
j=1

tj

C
, if ti = 0. (A.2)

Proof of Lemma 1. The proof follows the same argument of Hajek and Gopalakrishnan [13] and Johari [15] and takes the
price vector p as a new parameter.

Step 1: If t is a Nash equilibrium, at least two components of t are positive. Suppose we have a strategy profile t such that
only ti > 0 for some user i and tj = 0 for all j 6= i. This strategy profile cannot be an equilibrium, because user i can always
be better off by reducing the bid ti slightly. However, t = 0 cannot be an equilibrium as well, because any user can be better
off by bidding an infinitesimal amount and obtains the whole bandwidth. Thus, in equilibrium, t must have at least two
positive components.

Step 2: For any p > 0 and t � 0 with at least two positive components, the function ui(ti; t�i, p) is strictly concave and
continuously differentiable in ti, for ti � 0. Because t has at least two positive components, the utility function ui can be
written as

ui(ti; t�i, p) = vi

0

B@
ti

ti +P
j6=i

tj
C

1

CA� piti.

Because ti/(ti + P
j6=i tj) is a strictly increasing function of ti (for ti � 0) and vi(·) is a strictly increasing, concave, and

differentiable function by assumption, by extracting a linear function, piti, ui is also a strictly increasing, concave, and
differentiable function in ti.

Step 3: Let t be a Nash equilibrium. By Steps 1 and 2, t has at least two positive components and ui(ti; t�i, p) is strictly
concave and continuously differentiable in ti � 0. Thus ti must be the unique maximizer of ui(ti; t�i, p) over ti � 0, and
satisfy the first order optimality conditions:

@

@ti
ui(ti; t�i, p)

⇢= 0, if ti > 0;
 0, if ti = 0.

By multiplying
PN

j=1 tj/C , the above conditions become the conditions (A.1)–(A.2).
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Conversely, if we have a strategy profile t with at least two positive components, by Step 2, we know that ui(ti; t�i, p)
is strictly concave and continuously differentiable in ti � 0. The conditions (A.1)–(A.2) imply that ti maximizes ui(ti; t�i, p)
over ti � 0. Thus t is a Nash equilibrium. ⇤
Proof of Theorem 1. We first show that d⇤ is the unique solution to the optimization problem (6). The proof uses Lemma 1
and follows the same argument of Johari [15].

Step 1: The function v̂i defined in (7) is strictly concave and strictly increasing over 0  di  C . By differentiating v̂i, we
obtain v̂0

i(di) = 1
pi
v0
i(di)(1 � di/C). Since vi is concave and strictly increasing, we know that v0

i(di) > 0, and that v0
i is non-

increasing. Because 1 � di/C is decreasing over 0  di  C , we conclude that v̂0
i is nonnegative and strictly decreasing in di

over 0  di  C , as required.
Step 2: There exists a unique d and scalar ⇢ such that

v̂0
i(di) = 1

pi
v0
i(di)

✓
1 � di

C

◆
= ⇢, if di > 0; (A.3)

v̂0
i(0) = 1

pi
v0
i(0)  ⇢, if di = 0; (A.4)

NX

j=1

dj = C . (A.5)

The vector d is the unique optimal solution to the optimization problem (6)–(7). By Step 1, we know that the optimization
problem (6)–(7) has a unique optimal solution. This optimal solution d is uniquely identified by the optimality conditions
(A.3)–(A.4) and the constraint

PN
i=1 di  C . Because each v̂i is strictly increasing, the constraint must be tight and satisfy

(A.5). Finally, because at least one di is strictly positive, ⇢ is uniquely determined by Eq. (A.3).
Step 3: If (d, ⇢) satisfies (A.3)–(A.5), then t = ⇢d is a Nash equilibrium. First, we show that at least two components of

d are strictly positive and ⇢ > 0. From Eq. (A.5), we know that at least one component of d is strictly positive. If only one
component di > 0, we know that di = C , and from Eq. (A.3), ⇢ = 0. However, since v0

i(0) > 0, condition (A.4) cannot hold.
Thus at least two components of d are strictly positive and ⇢ > 0 follows from Eq. (A.3).

By Lemma 1, we only need to check the conditions (A.1)–(A.2). Using Eq. (A.5), we rewrite t = ⇢d as ⇢ = PN
i=1 ti/C and

di = tiC/
PN

i=1 ti. By substituting the above into (A.3)–(A.4), we obtain the conditions (A.1)–(A.2), and therefore, t is a Nash
equilibrium.

Step 4: If t is a Nash equilibrium, then the corresponding resource allocation d and ⇢ = PN
i=1 ti/C are the unique solution

to (A.3)–(A.5). We can reverse the argument of Step 3. The uniqueness of (d, ⇢) follows by Step 2.
Step 5: There exists a unique Nash equilibrium t, and the resource allocation d⇤ defined by (5) is the unique optimal solution

to (6)–(7). Existence follows by Steps 2 and 3, and uniqueness follows by Step 4 (since the mapping from t to (d, ⇢) is
one-to-one). Finally, d⇤ is an optimal solution to (6)–(7) followed by Steps 2 and 4. ⇤
Proof of Theorem 2. Let t = 1

k t
p. We want to prove that t is a Nash equilibrium of (N , v, q). Since tp is a Nash equilibrium,

by Lemma 1, at least two components of tp are strictly positive, and therefore, so as the vector t.
By Lemma 1, we know that the Nash equilibrium tp satisfies the following conditions:
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By substituting pi = 1
k qi and tpi = kti into the above, we obtain the following conditions:
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After dividing k on both sides, we obtain the following:
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Since t has at least two strictly positive components and satisfies the above stationarity conditions, by Lemma 1, we deduce
that t = 1

k t
p is a Nash equilibrium of (N , v, q). By Theorem 1, t is also the unique Nash equilibrium tq.

Since tq = 1
k t

p, the proportional share rule of (3) gives the same resource allocation, i.e., d(tq) = d(tp). Each user i’s
payment under (N , v, q) is qit

q
i = kpi 1k t

p
i = pit

p
i , which is the same as the payment under (N , v, p). Since users have the

same valuation and payment under both games, they achieve the same amount utility as well. ⇤
Proof of Theorem 3. Let t = tp. We want to prove that t is a Nash equilibrium of (N , v, q). Since tp is a Nash equilibrium,
by Lemma 1, at least two components of tp are strictly positive, and therefore, so as the vector t.

To prove that t is a Nash equilibrium of (N , v, q), by Lemma 1, we need to show the following conditions:
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Since qi = pi for all tpi > 0, the first equation is the same as the stationarity condition of (A.1) for tp being a Nash
equilibrium. Since qi � pi for all t

p
i = 0, we want to show
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The above condition is the same as the stationarity condition of (A.2) for tp being a Nash equilibrium. By Theorem 1, t is also
the unique Nash equilibrium tq of (N , v, p).

Since tq = tp, both mechanisms achieve the same resource allocation, i.e., d(tq) = d(tp). Each user i’s payment under
(N , v, q) is

qit
q
i = qit

p
i =

⇢
pit

p
i , if tpi > 0;

0, if tpi = 0.

This is the same as the payment under (N , v, p). Since users have the same valuation and payment under both games, they
achieve the same amount utility as well. ⇤
Proof of Theorem 4. First, we do not restrict p to be in the set P̃c . We want to show that if p is defined by

pi = hi(di) = v0
i(di)

✓
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, i = 1, . . . ,N, (A.6)

the Nash equilibrium strategy profile tp = d.
Let t = d and p be defined as in Eq. (A.6). Since

PN
i=1 ti = PN

i=1 di = C , the resource allocation to the strategy profile t
becomes d(t) = d under the proportional share rule (3). Now, we want to prove that t is a Nash equilibrium of (N , v, p).
Since t = d 2 D̃ , at least two components of t are strictly positive.

To prove that t is a Nash equilibrium of (N , v, q), by Lemma 1, we need to show the following conditions:
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1
pi

v0
i(0) 

NP
j=1

tj

C
, if ti = 0.

Since
PN

i=1 ti = C , the right hand sides of the above equal 1. By substituting ti = di and pi = v0
i(di)(1�di/C) into the above,

the left hand sides equal 1 too. By Theorem 1, t = d is the unique Nash equilibrium tp of (N , v, p).
Finally, by combining the above result and the linearity of Theorem 2, we derive the bijective mapping result. ⇤

Proof of Theorem 5. To show the optimality condition of Eq. (9), we start with the ‘‘only if’’ part. Because d > 0, the
optimality condition for d being optimal is v0

i(d
⇤
i ) = v0

j(d
⇤
j ) for all i, j 2 N . Suppose p induces a Nash equilibrium that

achieves d. Then the Nash equilibrium condition of (A.1) can be rewritten as
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Therefore pi : pj = v0
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i )(C � d⇤

i ) : v0
j(d
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j )(C � d⇤

j ) = C � d⇤
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j for all i, j = 1, . . . ,N .

Then we solve the ‘‘if’’ part. By Theorem 4, we know that p defined by Eq. (A.6), i.e., pi = hi(d⇤
i ) = v0

i(d
⇤
i )(1 � d⇤

i
C ) for

all i = 1, . . . ,N , induces d⇤. Since v0
i(d

⇤
i ) is the same for any user i, we know that p satisfies condition (9). Then any price

vector p̂ that satisfies condition (9) can be expressed as p̂ = kp for some positive constant k. By Theorem 2, we know that
p̂ achieves d⇤ as well. ⇤
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