
PowerWalk: Scalable Personalized PageRank via
Random Walks with Vertex-Centric Decomposition

Qin Liu1, Zhenguo Li2, John C.S. Lui1, Jiefeng Cheng2

1The Chinese University of Hong Kong
2Huawei Noah’s Ark Lab

1{qliu, cslui}@cse.cuhk.edu.hk
2{li.zhenguo, cheng.jiefeng}@huawei.com

ABSTRACT
Most methods for Personalized PageRank (PPR) precompute and
store all accurate PPR vectors, and at query time, return the ones
of interest directly. However, the storage and computation of all ac-
curate PPR vectors can be prohibitive for large graphs, especially
in caching them in memory for real-time online querying. In this
paper, we propose a distributed framework that strikes a better bal-
ance between offline indexing and online querying. The offline in-
dexing attains a fingerprint of the PPR vector of each vertex by
performing billions of “short” random walks in parallel across a
cluster of machines. We prove that our indexing method has an
exponential convergence, achieving the same precision with previ-
ous methods using a much smaller number of random walks. At
query time, the new PPR vector is composed by a linear combi-
nation of related fingerprints, in a highly efficient vertex-centric
decomposition manner. Interestingly, the resulting PPR vector is
much more accurate than its offline counterpart because it actu-
ally uses more random walks in its estimation. More importantly,
we show that such decomposition for a batch of queries can be
very efficiently processed using a shared decomposition. Our im-
plementation, PowerWalk, takes advantage of advanced distributed
graph engines and it outperforms the state-of-the-art algorithms by
orders of magnitude. Particularly, it responses to tens of thousands
of queries on graphs with billions of edges in just a few seconds.

Keywords
Personalized PageRank; random walks; vertex-centric decomposi-
tion

1. INTRODUCTION
Nowadays graph data is ubiquitous, usually in very large scale.

It is of great interest to analyze these big graphs to gain insights
into their formation and intrinsic structures, which can benefit ser-
vices such as information retrieval and recommendations. Conse-
quently, large-scale graph analysis becomes popular recently, espe-
cially in domains like social networks, biological networks, and the
Internet, where big graphs are prevalent. It is found that general-
purpose dataflow systems like MapReduce and Spark are not suit-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983713

able for graph processing [32, 16]. Instead, many graph comput-
ing engines such as Pregel [32] and PowerGraph [16] are being
developed, which can be orders of magnitude more efficient than
general-purpose dataflow systems [32, 16, 17]. A key feature of
most graph engines is the adoption of a simple yet general vertex-
centric programming model that can succinctly express a wide va-
riety of graph algorithms [32, 17, 16, 12]. Here, a graph algorithm
is formulated into a user-defined vertex-program which can be ex-
ecuted on each vertex in parallel. Each vertex runs its own instance
of the vertex-program which maintains only local data and affects
the data of other vertices by sending messages to these vertices. To
leverage the power of such a graph engine, it is thus important to
formulate the algorithm into a vertex-centric program.

PageRank is a popular measure of importance of vertices in a
graph [34]. This is particularly useful in large applications where
data and information are crowded and noisy; a measure of their im-
portance allows to process them by importance [34]. One promi-
nent application is the web search engine of Google where the
pages returned, in response to any query, are ordered by their im-
portance measured by PageRank. The intuition behind PageRank
is that a vertex is important if it is linked to by many important
vertices. This “global” view of vertex importance does not reflect
individual preferences, which is inadequate in modern search en-
gines, online social networks, and e-commerce, where customiz-
able services are in urgent need. Consequently, “personalized”
PageRank (PPR) [34] attracts considerable attention lately that al-
lows to assign more importance to a particular vertex in order to
provide “personalized views” of a graph. PPR has been widely
used in various tasks across different domains: personalization of
web search [34], recommendation in online social networks [18]
and mobile-app marketplaces [19], graph partitioning [1], and other
applications [40]. While the enabling of “customization” in PageR-
ank greatly expands its utility, it also brings a huge challenge on its
computation – the customization to each vertex leads to a work-
load N times of the original PageRank, where N is the number of
vertices in the graph, and the customization on any combination of
vertices exponentially increases the complexity.

Despite significant progress, existing approaches to PPR com-
putation are still restricted in large-scale applications. While the
power iteration method is used in most graph engines to calcu-
late the global PageRank [32, 17, 16, 12], it is impractical for PPR
computation, which would take O(N(N +M)) time for all PPR
vectors (N and M are the numbers of vertices and edges respec-
tively) [6]. Furthermore, most algorithms for PPR computation are
designed for single-machine in-memory systems which cannot deal
with large-scale problems [37, 31, 30]. The Hub Decomposition al-
gorithm [20] allows personalization only for a small set of vertices
(hubs). To achieve full personalization (the computation of all N

PPR vectors), it requires O(N2) space. Fogaras et al. [13] pro-
posed a scalable Monte-Carlo solution to full personalization. This
approach first simulates a large number of short random walks from
each vertex, and store them in a database. Then it uses these ran-
dom walks to approximate PPR vectors for online queries. As we
will show in our evaluation (Section 4.3), to achieve high accuracy,
the simulation of random walks is very time-consuming. Also, the
precomputed database is usually too large to fit in the main memory
for large graphs which makes this method undesirable in practice.
Bahmani et al. [5] suggested to concatenate the short random walks
in the precomputed database to answer online queries. This exten-
sion can reduce the size of database, but it still incurs random ac-
cess to the graph data and precomputed database. If implemented
on a distributed graph engine, it would require thousands of iter-
ations to concatenate short random walks together to form a long
walk which makes it inefficient.

One can see that, given the great effort in scaling up PPR, it re-
mains open for a practically scalable solution, in that: (1) it enables
full personalization for all vertices in the graph; (2) it is scalable for
very large problems; (3) it supports online query efficiently; and (4)
it executes a large number of queries in reasonable time, which is
critical to modern online services where numerous requests are fed
to a system simultaneously [2].

In this paper, we present a novel framework, PowerWalk, for
scalable PPR computation. We implement PowerWalk on distributed
graph engines, in order to harness the power of a computing clus-
ter. Furthermore, to enable fast online services, we separate the
computation into offline preprocessing and online query, in a flex-
ible way that the computation can be shifted to the offline stage as
much as the memory budget allows. The offline stage uses a variant
of the Monte-Carlo methods [13, 3] to compute an approximation
for each PPR vector. We can tune the precision of PPR vectors ac-
cording to the memory budget, so that all approximate PPR vectors
can be cached in distributed memory. At query time, the PPR vec-
tors of the querying vertices are computed efficiently based on the
precomputed PPR approximate vectors by utilizing the Decompo-
sition theorem in [20]. Our main contributions are:

• We propose a Monte-Carlo Full-Path (MCFP) algorithm for
offline PPR computation, and prove that it converges expo-
nentially fast. In practice, it requires only a fraction of ran-
dom walks to achieve the same precision compared with the
previous Monte-Carlo solution [13].

• We propose a Vertex-Centric Decomposition (VERD) algo-
rithm which can provide results to online PPR queries in real-
time and more accurate than their offline counterparts. More
importantly, it is able to execute a large number of queries
very efficiently with a shared decomposition.

• Combining the MCFP and VERD algorithms, we propose an
efficient distributed framework, PowerWalk, for computing
full personalization of PageRank. PowerWalk can adaptively
trade off between offline preprocessing and online query, ac-
cording to the memory budget.

• We evaluate PowerWalk on billion-scale real-world graphs
and validate its state-of-the-art performance. On the Twitter
graph with 1.5 billion edges, it responses to 10,000 queries in
3.64 seconds and responses to 100,000 queries in 17.96 sec-
onds.

The rest of the paper is organized as follows. We elaborate
our two algorithms for PPR computation in Section 2. Section 3

presents the implementation of PowerWalk. We extensively eval-
uate PowerWalk in Section 4. Section 5 reviews related work on
PPR computation. Finally, Section 6 concludes the paper.

2. ALGORITHM
In this section, we propose two algorithms for computing Per-

sonalized PageRank (PPR) for web-scale problems. The first al-
gorithm is called the Monte-Carlo Full-Path (MCFP) Algorithm,
which is based on the Monte-Carlo simulation framework and can
be used to compute the fully PPR (or all PPR vectors of all vertices
in the graph) in an offline manner. Our second algorithm is called
the Vertex-Centric Decomposition (VERD) Algorithm, which is ca-
pable of computing the PPR vector for any vertex in an online man-
ner. As we will show in Section 3, the proper coupling of these two
algorithms can lead to a practically scalable solution to the PPR
computation which can response to a large number of queries very
efficiently. Before we proceed to our algorithms, let us first provide
some preliminaries.

2.1 Preliminaries
Let G = (V,E) be a directed graph, where V is the set of ver-

tices and E is the set of edges. An edge (u, v) ∈ E is considered
to be directed from u to v. We also call (u, v) as an out-edge of
u and an in-edge of v, and call v as an out-neighbor of u and u as
an in-neighbor of v. Let N = |V | and M = |E| denote the num-
bers of vertices and edges respectively, and O(v) denote the set of
out-neighbors of v.

Personalized PageRank (PPR) measures the “importance” of all
vertices from a perspective of a particular vertex. Let pu be the
stochastic row vector that represents the PPR vector of u (i.e., pu

is a non-negative row vector with entries summed up to 1), and
pu(v) represents the Personalized PageRank of vertex v from the
perspective of the source vertex u. If pu(v) > pu(w), this means
that, from the perspective of vertex u, vertex v is more important
than vertex w. Finally, pu can be defined as the solution of the
following equation [13]:

pu = (1− c)puA+ ceu, (2.1)

where A is a row-stochastic matrix1 and Ai,j equals to 1/|O(i)|
if (i, j) ∈ E, eu is a unit row vector with the u-th entry eu(u)
being one and zero elsewhere, and c ∈ (0, 1) is a given teleport
probability. Typically, c is set to 0.15, and empirical studies show
that small changes in c have little effect in practice [34]. If i is a
dangling vertex (i.e., one without any out-edge), to make sure A is
row-stochastic, one typical adjustment is to add an artificial edge
from i to u [6]. This is equivalent to setting row i of A as eu, and
as a result, any visit to vertex i will immediately follow by a visit
to vertex u. This reflects the intrinsic of pu, that is, it encodes the
importance of all vertices from the perspective of vertex u.

The above equilibrium equation has the following random walk
interpretation: a walk starts from vertex u; in each jump, it will
move to one random out-neighbor with probability 1 − c, or jump
back (or teleport) to vertex u with probability c. Particularly, if the
current vertex is a dangling vertex, then the next jump will surely
go to vertex u. In summary, the PPR vector pu is exactly the sta-
tionary distribution of such a random walk model, and pu(v) is the
probability of the random walk visiting v at its equilibrium.

2.2 The MCFP Algorithm
The fact that pu(v) is the probability of a random walk visiting

v at its equilibrium immediately suggests that one can approximate
1I.e., A is non-negative and the entries in each row sum up to 1.

pu(v) by xn(v)/n for a large n, where xn(v) denotes the number
of visits to v in n steps. However, simulating a long random walk
(or a random walk with many jumps) on a large graphs is ineffi-
cient for the following reasons. As a large graph usually cannot
be held in the main memory, it must be partitioned across multiple
machines or to be stored on the disk. At each step, the random walk
may jump to a vertex at another machine or access data on disk, in-
curring an expensive network or disk I/O and latency. Moreover,
a long walk takes many iterations to reach the steady state solu-
tion, which can become a bottleneck for systems like MapReduce.
Finally, there is an inherent restriction of implementing a long ran-
dom walk on any graph computation engines: the dependency be-
tween adjacent moves prevents executing the walks in parallel.

()

u v1 v2

u v2 v3 v1

u v3 v1 v2

teleport

three short walksone long walk

teleport

u v1 v2

u v2 v3 v1

u v3 v1 v2

transform

Figure 1: Breaking a long walk into three short ones

To overcome this inefficiency, we propose to transform the long
random walk into many short walks by breaking it at every teleport
move. This is illustrated in Figure 1. One crucial benefit of do-
ing so is that these short random walks can be executed in parallel.
In the next section, we will show how to simulate billions of short
random walks on a distributed cluster. The above idea translates
to our Monte-Carlo Full-Path (MCFP) algorithm for PPR compu-
tation as stated in Algorithm 1, and we show in Theorem 2.1 that it
converges exponentially fast.

Algorithm 1: Monte-Carlo Full-Path (MCFP)
Input: vertex u, the number of random walks R
Output: an approximation of pu

1 Simulate R random walks starting from u;
2 At each step, each of the R random walks terminates with

probability c and takes a further step according to the matrix
A with probability 1− c;

3 Approximate pu(v) by the fraction of moves resident at v, i.e.,
pu(v) ∼ xn(v)/n, where xn(v) is the number of visits by
all R random walks to vertex v, and n is the total moves in all
R random walks;

Theorem 2.1. Let p̂u denote the estimator of pu obtained from
Algorithm 1. The probability of over-estimating pu can be bounded
as follows:

Pr[p̂u(v)− pu(v) ≥ γ] ≤
1√
c

(
1 +

γc

10

)
exp

(
−γ2R

20

)
.

The same bound also holds for the probability of under-estimation.

Proof. For detail proof, please refer to our technical report [29].

Prior Art. Let us compare with one current state-of-the-art ran-
dom walk method in computing PPR [13]. Consider a random
walk starting from vertex u. At each step, the random walk ter-
minates with probability c, or it jumps to other states according to
the matrix A with probability 1 − c. It has been proved in [20]
that the last visited vertex of such a random walk has a distribution

pu which suggests another Monte-Carlo algorithm in approximat-
ing pu. Note that the distribution pu is achieved by simulating the
random walk for many times, and each time, the random walk may
end in a different vertex. So one needs to normalize all such end-
ing vertex occurrences to have the probability distribution pu. This
state-of-the-art algorithm was proposed in [13] and it is illustrated
in Algorithm 2.

Algorithm 2: Monte-Carlo End-Point (MCEP) in [13]
Input: vertex u, the number of random walks R
Output: an approximation of pu

1 Simulate R random walks starting from u;
2 At each step, each of the R random walks terminates with

probability c and takes a further step according to the matrix
A with probability 1− c;

3 Approximate pu(v) by the fraction of R random walks that
terminate at vertex v, i.e., pu(v) ∼ y(v)/R. Here, y(v)
denotes the number of the random walks terminate at v;

Note that while Algorithm 2 takes only the ending vertex of
each random walk into account, our proposed MCFP algorithm
leverages the full trajectory of each random walk. Our motiva-
tion is that the intermediate vertices on each trajectory contain sig-
nificant information regarding the distribution of the random walk
and should be included in approximating. Our theoretical analy-
sis stated in Theorem 2.1 guarantees not only the validity of our
algorithm but also the exponential convergence rate. Our evalua-
tion in Section 4.2 confirms that this does lead to a much better
approximation. In other words, our MCFP is far more efficient
than the state-of-the-art under the same precision. For example,
to achieve the same precision of our MCFP algorithm with 1,000
random walks, Algorithm 2 needs to simulate 6,700 random walks.

2.3 The VERD Algorithm
With the MCFP algorithm, we can approximate the fully PPR,

i.e., we can compute an approximate vector p̂u of pu for all u ∈ V ,
which can be carried out offline. Depending on our memory bud-
get, we can adjust the precision of our approximations by vary-
ing R used in the MCFP algorithm, so that all approximations of
PPR vectors fit in the distributed memory. For web-scale problems
and with limited memory budget, this can lead to low-resolution
approximations. In this section, we propose a method to recover
in real-time a high-resolution PPR vector from low-resolution ap-
proximations. Our method is inspired by the decomposition theo-
rem [20, Theorem 3].

Theorem 2.2 (Decomposition). Suppose pu is the PPR vector of
vertex u. We have

pu = c · eu +
1− c
|O(u)|

∑
v∈O(u)

pv. (2.2)

This theorem basically says that the PPR vector of a vertex can
be recovered from the PPR vectors of its out-neighbors. Another
more important observation is that such an approximation is more
accurate than those of its out-neighbors, because it actually uses
R · |O(u)| random walks when pv , v ∈ O(u), uses R random
walks, and the error of pu is reduced by a factor of 1 − c. Fur-
thermore, the decomposition theorem can be applied recursively to
achieve higher precision. This suggests Algorithm 3 in approximat-
ing the PPR vector pu of vertex u with T iterations. When T = 0
(Lines 2 & 3), the algorithm simply returns the precomputed ap-
proximation obtained from our MCFP algorithm.

Algorithm 3: Recursive Decomposition

1 function decomp(u, T)
Input: a vertex u, the number of iterations T
Output: an approximation of pu

2 if T = 0 then
3 return the precomputed p̂u

4 return c · eu + 1−c
|O(u)|

∑
v∈O(u) decomp(v, T − 1);

However, implementing such a recursive algorithm on distributed
graph engines appears to be very challenging, because existing graph
engines only provide vertex-centric programming interface which
does not support recursion. On the other hand, there is a huge re-
dundancy in Algorithm 3 because the out-neighbors of different
vertices are likely to overlap. To illustrate our idea, consider the
graph in Figure 2. To compute pv1 with two iterations of recursion
by calling decomp(v1, 2), decomp(v5, 0), decomp(v6, 0),
and decomp(v7, 0) will be called twice.

v2 v3

v4 v5 v6 v7

v1

v8

decomp(v1, 2)

decomp(v3, 1)

decomp(v, 0)

duplicated calls
| {z }

decomp(v2, 1)

v 2 fv4; v5; v6; v7; v8g

Figure 2: A simple graph to illustrate the VERD algorithm

To remove such redundancy in T levels of recursion, we suggest
to unfold the T levels of recursion by applying the decomposition
in Equation (2.2) iteratively T times:

pu = s(T)
u +

∑
v∈V

f (T)
u (v)pv, (2.3)

where s
(T)
u and f

(T)
u are two row vectors given by

s(T)
u = s(T−1)

u +
∑
w∈V

c · f (T−1)
u (w)ew

f (T)
u =

∑
w∈V

1− c
|O(w)|

∑
v∈O(w)

f (T−1)
u (w)ev.

where

s(0)
u = ~0,f (0)

u = eu.

The benefits of the unfolded decomposition in Equation (2.3) are
several-fold. First, besides the removal of redundancy, it enables
vertex-centric programming, as we show in Algorithm 4. Consider
Lines 6-9, the updates on the two vectors are carried entirely in a
vertex-centric manner, which makes it easy to implement on exist-
ing graph engines as shown in Section 3.3. For this reason, we call
Algorithm 4 the Vertex-Centric Decomposition (VERD) algorithm.
Second, since the VERD algorithm is iterative, it will not overload
the stack like the recursive decomposition algorithm (Algorithm 3)
when T is large. Finally, as we show in Section 3.3, it allows to
simultaneously compute multiple PPR vectors very efficiently by
sharing network transfer, which is important to online services. In
our technical report [29], we show that Algorithm 4 is equivalent
to Algorithm 3.

To illustrate how the VERD algorithm removes redundant calls,
consider again the graph in Figure 2. Calling vc-decomp(v1, 2),

Algorithm 4: Vertex-centric Decomposition (VERD)

1 function vc-decomp(u, T)
Input: a vertex u, the number of iterations T
Output: an approximation of pu

2 s
(0)
u ← ~0,f

(0)
u ← eu;

3 for i = 1 to T do
4 f

(i)
u = ~0;

5 foreach w ∈ V do
6 if f (i−1)

u (w) > 0 then
7 foreach v ∈ O(w) do
8 f

(i)
u (v)← f

(i)
u (v) + 1−c

|O(w)|f
(i−1)
u (w);

9 s
(i)
u (w)← s

(i−1)
u (w) + c · f (i−1)

u (w);

10 return s
(T)
u +

∑
v∈V f

(T)
u (v)p̂v;

we have s
(2)
v1 equals to(

c,
c(1− c)

2
,
c(1− c)

2
, 0, 0, 0, 0, 0

)
and f

(2)
v1 equals to(

0, 0, 0,
(1− c)2

8
,
(1− c)2

4
,
(1− c)2

4
,
(1− c)2

4
,
(1− c)2

8

)
.

Then the VERD algorithm simply returns a new approximation of
pv1 by computing

s(2)v1 +

8∑
i=4

f (2)
v1 (i)p̂vi .

In this process, each involved precomputed approximation is loaded
only once. In contrast, in the recursive decomposition algorithm,
we have to load p̂v5 , p̂v6 , and p̂v7 twice.

The sizes of s(T)
u and f

(T)
u grow with the number of iterations

T , and in the worst case, they can be up to the size of pu, which
is the number of vertices reachable from u. In practice, when T is
small, s(T)

u and f
(T)
u are usually highly sparse which can be stored

in hash tables or sorted vectors. Also, we can discard values below
a certain threshold ε in s

(T)
u and f

(T)
u to keep them sparse when

T becomes larger. On distributed graph engines, network commu-
nication is mainly caused by the synchronization at each iteration.
As we will show in Section 4.2, by utilizing the precomputed ap-
proximations, our VERD algorithm needs just a few iterations to
achieve reasonable accuracy, which makes it quite efficient for on-
line query.
Prior Art. In Algorithm 4, when T → ∞, we have f

(T)
u → 0.

So when T is large enough, Algorithm 4 can be used to compute
PPR vectors without any precomputed approximations by simply
returning s

(T)
u as an approximation of pu. Similar approaches were

also used in [7, 1]. The key difference between our algorithm and
previous approaches is that our VERD algorithm can utilize the
precomputed approximations to accelerate the online query of PPR
vectors. As shown in Section 4.3, with precomputed approxima-
tions, the query response time can be reduced by 86%.

3. IMPLEMENTATION
We now present our complete solution to PPR computation, in-

cluding its implementation details. Our proposed framework is

called PowerWalk, which consists of two phases: offline prepro-
cessing and online query. In the offline preprocessing, our MCFP
algorithm is used to approximate the fully PPR (all the vectors pu

for all u ∈ V). The size and computation time of an approxi-
mate PPR vector depend on the number of random walks R in the
MCFP algorithm, which in turn depends on the available memory
budget. In practice, R should be chosen such that the approximate
fully PPR can be computed in reasonable time and can be cached
in the allocated memory. We call these approximate PPR vectors
the “PPR index”. Recall that our MCFP algorithm simulatesR ran-
dom walks for each vertex in V . Therefore, the major challenge in
generating the PPR index is how to efficiently simulate all N · R
random walks. We will discuss our solution implemented on top of
DrunkardMob [23] in Section 3.1.

For the PPR query to a vertex u (i.e., to compute pu), we have
two options: (1) we can return the approximate PPR vector p̂u in
the PPR index directly; (2) we can use our proposed VERD al-
gorithm to compute a new approximate PPR vector p̂u from the
PPR index. In the first case, to achieve high accuracy, we need
a very large R in the offline preprocessing. As we will show in
Section 4.3, when R is large, the preprocessing is very time con-
suming. Also the resulting PPR index is too large to fit in the main
memory which slows down the online query significantly. The key
idea of PowerWalk is that, to achieve the same level of accuracy as
the first case, the second case allows us to use a smaller R in the
preprocessing and migrate the computation cost to the online query.
More importantly, the smaller R allows us to cache the PPR index
in the main memory which accelerates the online query greatly. We
report in Section 4.3 that the second case is much more efficient in
handling large batches of queries which is common in nowadays
search engines [2]. We will discuss how to execute a large number
of PPR queries efficiently on PowerGraph [16] in Section 3.3.

3.1 Preprocessing
In preprocessing, we use our MCFP algorithm to approximate

pu for every vertex u ∈ V . These approximate PPR vectors will
constitute the PPR index which accelerates online query. The MCFP
algorithm simulatesR random walks per vertex, thusN ·R random
walks in total. Depending on the memory budget, there are two
cases to consider. If the graph can be cached in the main memory
of a single machine, we can use a simple loop to simulate one ran-
dom walk for each source vertex, where the walk will be confined
to one machine and no network or disk latency will be incurred.
Repeating this procedureN ·R times gives usR random walks per
vertex.

If the graph is too large to be cached in the main memory of a
single machine, it has to be partitioned and distributed across mul-
tiple machines or to be accessed from disk. Then at each step, the
random walk may incur a network transmission or disk access. As
network or disk I/O is much slower than memory access, the ran-
dom walk simulation will be inefficient. To address this challenge,
Kyrola proposes an algorithm called DrunkardMob to simulate bil-
lions of random walks on massive graphs on a single PC [23]. Since
it has been shown to be an efficient solution for computing random
walks and is also used in production by Twitter [23], we implement
our offline preprocessing based on DrunkardMob, with several im-
portant improvements, as discussed below.

DrunkardMob is built on top of disk-based graph computation
systems like GraphChi [24]. To improve the performance, Drunk-
ardMob simulates a large number of random walks simultaneously
and assumes that the states of all walks can be held in memory. The
states of walks can be seen as a mapping from vertices to walks: for
each vertex, DrunkardMob knows the walks whose last hop is in

that vertex. In a graph computation system, the edges are usually
sorted by their source vertex, which means we can load a chunk
of vertices and their out-neighbors using a sequential disk I/O. At
each iteration, the graph computation system performs a sequen-
tial scan over the whole graph. For each incoming vertex and its
out-neighbors, DrunkardMob first retrieves all walks on that vertex
from memory and then moves these walks to the next hop.

To further accelerate the preprocessing, we reimplement Drunk-
ardMob on our system, VENUS [28] (a disk-based graph compu-
tation system in C++) and extend it in a distributed environment
using MPI [33]. PowerWalk distributes the simulation of random
walks to a set of workers. One of the workers acts as the master
to coordinate the remaining slave workers. The master divides the
set of vertices of an input graph into disjoint intervals. When there
is an idle slave, the master assigns an interval of vertices to that
slave. Each slave works independently by using DrunkardMob to
simulate R random walks for each vertex in the assigned interval
and computes an approximate PPR vector for each vertex. Finally,
all approximate PPR vectors compose the PPR index which is used
to accelerate the online query.
Remark. Simulating random walks on graphs is a staple of many
other ranking and recommendation algorithms [14, 21]. Our imple-
mentation of random walk simulation is highly competitive com-
pared to previous solutions on general distribute dataflow systems.
For example, to simulate 100 random walks from each vertex on
the Twitter graph, DrunkardMob on VENUS takes 1728.2 seconds
while an implementation on Spark takes 2967 seconds on the same
cluster [27]. The detailed setup of our experiments is described in
Section 4.

Next, we give a brief introduction to PowerGraph before we pro-
ceed to present our online query implementation.

3.2 PowerGraph
To achieve low query response time, it is essential to utilize the

main memory. Hence we implement the query phase of PowerWalk
on PowerGraph [16], which is a popular distributed in-memory
graph engine. Note that it is also possible to implement Power-
Walk on shared-memory graph processing systems like Galois [35]
and Ligra [38]. However, we do not consider this case, since their
maximum supported graph size is limited by the memory size of a
single machine.

Many recent graph engines adopt a flexible vertex-centric pro-
gramming model [32, 17, 16, 12], which is quite expressive in
encompassing most graph algorithms. A graph algorithm can be
formulated into a vertex-program which can be executed on each
vertex in a parallel fashion, and a vertex can communicate with
neighboring vertices either synchronously or asynchronously. Each
vertex runs its own instance of the vertex-program which main-
tains only local information of the graph and performs user-defined
tasks. The vertex-program can affect the data of other vertices by
sending messages to these vertices.

Compared with other graph engines [32, 24], PowerGraph [16]
is empowered by a more sophisticated vertex-centric GAS (Gather-
Apply-Scatter) programming model. In the GAS model, a vertex-
program is split into three conceptual phases: gather, apply, and
scatter. In executing the vertex-program for a vertex, the gather
phase assembles information from adjacent edges and vertices. The
result is then used in the apply phase to update the vertex data. Fi-
nally, the scatter phase distributes the new vertex data to the adja-
cent vertices.

Next, we show how to formulate the query phase of our proposed
framework, PowerWalk, on top of PowerGraph.

3.3 Batch Query
Most existing methods for fully PPR first compute and store the

fully PPR in a database, and at query time, load the PPR vectors
from the database directly [4, 23]. This is not scalable as the com-
putation and storage of fully PPR can be prohibitively costly, es-
pecially for large graphs. For example, our evaluation shows that
it takes more than 11 hours to compute the fully PPR for the uk-
union graph with 133.6 million vertices and 5.5 billion edges when
R = 2000, and it needs 1.1 TB to store the PPR index. The re-
quired time and space increase with the size of the graph and the
number of random walks starting from each vertex.

In practice, it is much desired to allow to allocate the computa-
tion and storage between the offline and online stages, according to
the available budget in memory, response time, and precision. Mo-
tivated by this, our framework PowerWalk proposed in this paper
computes an approximate of fully PPR offline, whose computa-
tion and storage cost can be decided based on the allowed time and
memory. These precomputed approximate PPR vectors are called
PPR index. At query time, we apply our VERD algorithm to effi-
ciently compute a more precise approximation of the PPR vectors
of interest based on the PPR index. Particularly, our VERD algo-
rithm can execute a large number of queries efficiently in parallel,
which is important to modern online services where multiple re-
quests can come at the same time. Our key observation is that the
computation of multiple PPR vectors shares the access to the graph
and the PPR index, so the small network packets used to access the
graph and the PPR index can be multiplexed and aggregated into
packets with large payload. This reduces the average computation
time of each PPR vector, because bulk network transfer workloads
are more efficient. For online query, PowerWalk buffers the incom-
ing PPR queries and computes a batch of PPR queries at a time. As
we will show in Section 4.3, our evaluation indicates that we can
compute thousands of PPR queries in several seconds.

We now elaborate further how we can perform batch PPR queries.
We use a vertex set S to represent a batch of PPR queries: for each
u ∈ S, we would like to approximate pu. We can utilize our vertex-
program on PowerGraph to compute fu and su for each u ∈ S as
shown in Algorithm 5. Each instance of the vertex-program main-
tains two maps: f_map and s_map. For the instance of vertex u,
f_map[v] and s_map[v] represent fv(u) and sv(u) respectively.
At the beginning of each iteration, f_map is initialized with prev_f
sent from the previous iteration (Line 7), except that at the first
iteration we let fu = eu for u ∈ S (Line 5). In the method
apply(), for each vertex w that fw(u) is not zero, we update
sw(u) and fw(u) accordingly. The method scatter() will be
invoked on each out-edge of vertex u, and f_map will be sent to
each out-neighbors of vertex u. At the end of each iteration, the
PowerGraph engine will aggregate f_map by their target vertices.

In summary, the online query can be split into two steps. First,
we run the above vertex-program iteratively to compute fu and su

for u ∈ S. Suppose p̂u is the approximate PPR vector of u stored
in the index. In the second step, we compute a refined approxima-
tion for each pu as discussed in Section 2.3:

p̃u = su +
∑
v∈V

fu(v)p̂v.

3.4 Analysis
In this subsection, we analyze the complexity of our MCFP al-

gorithm and VERD algorithm. We also elaborate on some choices
we made in designing PowerWalk.

Let us start with the MCFP algorithm for a single vertex u de-
scribed in Algorithm 1. If the graph fits in the memory of a sin-

Algorithm 5: VERD on PowerGraph

1 class VertexProgram(u)
Data: f_map is a map and f_map[v] represents fv(u)
Data: s_map is a map and s_map[v] represents sv(u)

2 procedure init(u, prev_f)
3 if first iteration then
4 if u ∈ S then
5 f_map[u]← 1;

6 else
7 f_map← prev_f;

8 procedure apply(u)
9 foreach key-value pair 〈w, t〉 ∈ f_map do

10 s_map[w]← s_map[w] + c · t;
11 f_map[w]← 1−c

|O(u)| t;

12 procedure scatter(u, edge (u, v))
13 send f_map to vertex v;

gle machine, the time complexity is O(R/c), since we simulate R
walks and the average length of these walks is 1/c. More impor-
tantly, the size of the obtained approximation p̂u is also O(R/c).
So the size of the PPR index obtained in the preprocessing phase
is bounded by N · R/c. On the other hand, consider the VERD
algorithm for a single vertex u described in Algorithm 4. When the
number of iterations T is large enough, the worst case time com-
plexity is O(N +M), since the algorithm works in the same way
as the breadth-first search. Similarly, in the worst case, the size of
su, fu, and the final approximation p̃u is O(N).

To compute the PPR vectors for all vertices in a vertex set S
at query time, it is possible to use one of the two Monte-Carlo
methods described in Section 2.2 instead of the VERD algorithm
by starting a number of random walks from each vertex in S. To
make sure that most random walks have terminated, we need to
run a Monte-Carlo method for at least 10 iterations. On the other
hand, if we use the VERD algorithm for online query, we only
need two iterations to achieve reasonable accuracy as shown in our
evaluation (Section 4.2). On distributed settings, the running time
is mainly decided by the bulk network transfers in each iteration
which makes the VERD algorithm a preferred approach. We com-
pare the running time of the MCFP algorithm and the VERD al-
gorithm in terms of online query in Section 4.3, and show that the
VERD algorithm is more efficient. For example, to execute 10,000
PPR queries on a Twitter social network with 41 million vertices,
the MCFP algorithm takes 179.38 seconds while the VERD algo-
rithm takes only 3.64 seconds, which has orders of magnitude im-
provement in computational efficiency.

4. EVALUATION
In this section, we experimentally evaluate our framework, Pow-

erWalk. In Section 4.2, we evaluate the accuracy of our MCFP
algorithm and our VERD algorithm with various parameters. In
Section 4.3, we evaluate the time and space costs of the offline pre-
processing and also the running time of the online batch query in
PowerWalk. Let us first introduce the setup of our experiments.

4.1 Experimental Setup
In the following experiments, unless we state otherwise, we set

the teleport probability to 0.15.

Table 1: Graph datasets
Dataset N M

wiki-Vote [25] 7,115 103,689
web-BerkStan [26] 685,230 7,600,595
web-Google [26] 875,713 5,105,039
uk-1m [9, 10] 1,000,000 41,247,159

twitter-2010 [22] 41,652,230 1,468,365,182
uk-union [9, 10] 133,633,040 5,507,679,822

Datasets. To evaluate PowerWalk, we run our experiments on six
real-world graph datasets as shown in Table 1. Our datasets are of
various types: wiki-Vote is a Wikipedia who-votes-on-whom net-
work; twitter-2010 is an online social network; and web-BerkStan,
web-Google, uk-1m, and uk-union are web graphs.
Cluster. We perform all experiments on a cluster of eight ma-
chines, each with two eight-core Intel Xeon E5-2650 2.60 GHz pro-
cessors, 377 GB RAM, and 20 TB hard disk, running Ubuntu 14.04.
All machines are connected via Gigabit Ethernet.

4.2 Accuracy of Our Algorithms
In this subsection, we evaluate the accuracy of our MCFP algo-

rithm and VERD algorithm.
Measurement. In most applications of PPR, the common approach
is to return the top k ranked vertices of the PPR vector for the
vertex in query [23]. For example, in Twitter’s “Who to Follow”
recommendation service, only the top-ranked users will be recom-
mended [18]. So to compare the exact and approximate PPR vec-
tors personalized to vertex u, it is important to measure the differ-
ence between the top k ranked vertices of exact PPR vector pu and
approximate PPR vector p̂u. Let Tu

k be the set of vertices having
the k highest scores in the PPR vector pu. We approximate Tu

k

by T̂u
k , which is the set of vertices having the k highest approxi-

mated scores in p̂u obtained from our algorithms or competitors.
The relative aggregated goodness (RAG) [39] measures how well
the approximate top-k set performs in finding a set of vertices with
high PPR scores. RAG calculates the sum of exact PPR values in
the approximate set compared to the maximum value achievable
(by using the exact top-k set Tu

k):

RAG(k, u) =

∑
v∈T̂u

k
pu(v)∑

v∈Tu
k
pu(v)

.

Note that the higher the RAG, the higher is the accuracy. Also,
RAG and its variant have been widely used in previous work [13,
36, 4]. Since the degrees in social or web graphs follow power law
distributions, the vertices in tested graphs have widely different de-
grees. In order to observe the behavior of the algorithms for differ-
ent degrees, we divide the vertices in each tested graph intoB buck-
ets, with bucket i including all vertices whose out-degrees are in the
interval [2i−1, 2i) for i = 1, 2, . . . , B − 1 and bucket B including
all vertices whose out-degrees are in the interval [2B−1,∞). Since
when B = 10, bucket B only contains a very small number of ver-
tices, so we set B to 10 in our evaluation. For each tested graph,
we choose 10 vertices from each bucket randomly. Then we use
the power iteration method to compute the ground truth PPR vec-
tors for all 100 selected vertices, denoted by pu for a vertex u.
Then, we compute the average RAG for these vertices at different
values of k. Because the computation of the ground truth is very
costly, we evaluate the accuracy on four small graphs: wiki-Vote,
web-BerkStan, web-Google, and uk-1m.
Comparison of Monte-Carlo methods. In Figure 3, we evaluate
the accuracy of our proposed MCFP algorithm and the state-of-the-
art method described in Algorithm 2 (and we denote it by MCEP).

MCEP MCFP

100 101 102 103 104
0

0.5

1

R

R
A

G

(a) wiki-Vote

100 101 102 103 104
0

0.5

1

R

R
A

G

(b) web-BerkStan

100 101 102 103 104
0

0.5

1

R

R
A

G

(c) web-Google

100 101 102 103 104
0

0.5

1

R

R
A

G

(d) uk-1m

Figure 3: Effect of R on the MCFP algorithm (k = 200)

From Figure 3, to achieve RAG larger than 0.99, it suffices to set
R = 2000 for MCFP, when k is 200. Also, we observe that the
existing MCEP algorithm is less accurate given the same value of
R, the number of random walks starting from each vertex.

Note that given R random walks, our MCFP algorithm gen-
erates R/c ≈ 6.7R dependent sample points, since the average
length of each walk is 1/c ≈ 6.7. In Figure 4, we observe that
our MCFP algorithm with only 1, 000 random walks achieves the
same level of accuracy as the existing MCEP algorithm with 6, 700
random walks. This means that the dependent sample points from
the MCFP algorithm and the independent sample points from the
MCEP algorithm actually have almost the same effect in approxi-
mating PPR vector. From Figure 4, we also observe that the RAG
decreases as k increases. The reason is that when we have a larger
value of k, it is more difficult to approximate the top-k set, because
lower ranked vertices has smaller difference in PPR scores.
Effectiveness of the VERD algorithm. As described in Section 2,
our VERD algorithm computes a new PPR vector based on the PPR
index whose precision is decided by the number of random walks
R used in the preprocessing. Obviously, if the precision of the PPR
index is low, we have to run the VERD algorithm for more itera-
tions. If the precision of the PPR index is high enough for online
query, then PowerWalk can return the PPR vector in the index di-
rectly. In this experiment, we first use the preprocessing procedure
described in Section 3.1 to generate the PPR index with R = 10 or
100. Then, we use the batch query procedure based on our VERD
algorithm described in Section 3.3 to execute the PPR queries. The
results are shown in Figure 5. Here, when T = 0, it means that
the batch query procedure returns the PPR vector stored in the PPR
index directly. Also, when R = 0, it means we use the VERD al-
gorithm directly without the precomputed PPR index. On all four
graphs, to achieve RAG larger than 0.99, we need T = 7, 5, 2 iter-
ations when R = 0, 10, 100 respectively. The results confirm with
our hypothesis: with more random walks used in the preprocess-
ing phase, we need less iterations during the batch query phase to
achieve the same level of accuracy. However, more random walks
also increase the overheads of the preprocessing phase. Let us ex-
amine the time and space costs of the preprocessing phase and also
the running time of the batch query phase in the next subsection.

MCFP (R = 1000) MCEP (R = 1000) MCEP (R = 6700)

101 102 103
0.9

0.95

1

k

R
A

G

(a) wiki-Vote

101 102 103
0.9

0.95

1

k

R
A

G

(b) web-BerkStan

101 102 103
0.9

0.95

1

k

R
A

G

(c) web-Google

101 102 103
0.9

0.95

1

k

R
A

G

(d) uk-1m

Figure 4: Comparison of the MCFP algorithm and MCEP al-
gorithm with varying top set size k

4.3 Performance
In this subsection, we first evaluate the space and time costs of

the preprocessing phase of PowerWalk on two large graphs twitter-
2010 and uk-union. Then, we compare the online query of Power-
Walk with other previous state-of-the-art methods.
Offline Preprocessing. We show the preprocessing costs in Ta-
ble 2. The preprocessing time is sublinear to the number of random
walks R starting from each vertex, which is an attractive property.
When we set R = 100, the preprocessing time of the uk-union
graph is 53 mins and the index size is 1.6X compared to the graph
size. As we will show later, we can achieve very fast online query
when we set R = 100.

Fogaras et al. [13] propose to use the Monte-Carlo methods to
first compute the fully PPR, and then return the PPR vectors di-
rectly as query results. This approach can be considered as a spe-
cial case of our PowerWalk when R is large. In the preprocessing,
when R is large enough, the precomputed approximate PPR vec-
tors are already accurate enough and can be returned directly as
online query results. If we want to achieve RAG larger than 0.99,
this special case can be achieved by settingR to 2000. However, as
shown in Table 2, in this case, the preprocessing takes 11.6 hours
for the uk-union graph to finish, which makes it undesirable for
large graphs. More importantly, since the index size increases al-
most linearly with R, when R = 2000, the PPR index (1.48 TB
on the disk for the twitter-2010 graph) cannot fit in the distributed
memory (around 2.9 TB in our cluster) due to the additional stor-
age overhead of the hash tables. This significantly slows down
the online query as we will show later. This means that for very
large graphs, computing and storing the fully PPR with large R is
impractical. In contrast, PowerWalk only computes and caches a
light-weight PPR index which allows fast online query.
Online Query. In Section 4.2, we observe that to achieve RAG
larger than 0.99, when R is set to 0, 10, and 100 in the preprocess-
ing, the VERD algorithm should set the number of iterations T to
7, 5, and 2 respectively. We compare the query response time by
using different values of R in the preprocessing, and these results
are shown in Figure 6. We can observe that when R increases, the
query response time decreases because it needs less iterations to

R = 0 R = 10 R = 100

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

T

R
A

G

(a) wiki-Vote

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

T

R
A

G

(b) web-BerkStan

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

T

R
A

G

(c) web-Google

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1

T

R
A

G

(d) uk-1m

Figure 5: Effect of T on the VERD algorithm (k = 200)

achieve the same accuracy. Note that R = 0 means that Power-
Walk runs without the PPR index. In comparison, with the PPR
index generated by setting R = 100, the query response time is re-
duced by 86% on the uk-union graph when the number of queries is
10, 000 vertices. Moreover, when the number of queries increases,
the query response time increases very slowly. This means our
batch query procedure is very efficient by sharing the computation
and access to the underlying graph and index.

Finally, we compare our PowerWalk with other algorithms for
online query:

• PI: We implement the naive power iteration method [34] on
PowerGraph.

• MCFP: We also implement the MCFP algorithm as described
in Section 2.2 for online query on PowerGraph. To achieve
RAG > 0.99, we set R to 2000.

• Fully PPR (FPPR): As discussed above, our preprocessing
phase can compute all PPR vectors offline. Then at the on-
line query, the PPR vectors in the PPR index can be returned
directly. However, in this case, the PPR index cannot fit in
the main memory, so we store the PPR index in a constant
key/value storage library called sparkey2.

The results are summarized in Table 3. PowerWalk outperforms
PI and MCFP significantly, especially when the number of queries
is large. For example, as shown in Table 3, the MCFP algorithm
takes 179.38 seconds to compute 10,000 PPR vectors on twitter-
2010, while our VERD algorithm takes just 9.06 and 3.64 seconds
when R = 0 and 100 in preprocessing respectively. Note that
the power iteration method cannot even handle multiple queries
due to its large space requirement. When the number of queries
is one, FPPR has the fastest response time. The reason is that all
PPR vectors are already precomputed in the preprocessing phase
and it only requires one disk I/O to retrieve the query result from
sparkey. However, as the number of queries increases, the query
response time of FPPR increases linearly, because the throughput
of sparkey is bounded by disk I/O when the PPR index is larger
than the main memory.
2https://github.com/spotify/sparkey

Table 2: Preprocessing Costs
Dataset Data Size Type R = 10 R = 100 R = 2000

twitter-2010 25 GB Preprocessing Time 933.8 s 1728.2 s 4.5 hours
Index Size on Disk 12.4 GB 95.5 GB 1.48 TB

uk-union 93 GB Preprocessing Time 2087.4 s 3187.2 s 11.6 hours
Index Size on Disk 29.7 GB 148.0 GB 1.1 TB

Table 3: Comparison of PowerWalk with other PPR computation algorithms

Dataset Number of PI MCFP FPPR PowerWalk

Queries R = 0 R = 10 R = 100

twitter-2010 1 95.2 s 7.83 s 25 ms 3.10 s 2.28 s 1.65 s
100 N/A 9.45 s 2.50 s 3.13 s 2.45 s 1.65 s
10,000 N/A 179.38 s 117.50 s 9.06 s 8.74 s 3.64 s
100,000 N/A 1739.74 s 978.25 s 55.65 s 52.20 s 17.96 s

uk-union 1 320 s 15.47 s 18 ms 5.57 s 4.81 s 3.70 s
100 N/A 16.85 s 1.75 s 5.67 s 4.91 s 3.80 s
10,000 N/A 20.14 s 125.25 s 6.84 s 5.78 s 3.96 s
100,000 N/A 50.20 s 1037.25 s 58.10 s 44.19 s 7.68 s

R = 0 R = 10 R = 100

100 101 102 103 104 105

2

5

10

25

50

Number of queries

Ti
m

e
(s

)

(a) twitter-2010

100 101 102 103 104 105

2

5

10

25

50

Number of queries

Ti
m

e
(s

)

(b) uk-union

Figure 6: Running time of the online query with varying the
number of queries

5. RELATED WORK
There are extensive studies on Personalized PageRank computa-

tion. Here, we highlight some examples. The idea of Personalized
PageRank is first proposed in [34]. The simplest method for com-
puting PPR is by the power iteration method [34]. To compute pu,
it starts with pu = eu and repeatedly performs the update fol-
lowing Equation (2.1). Since the complexity of every iteration to
compute only one PPR vector is O(N +M), the power iteration
method is prohibitively expensive for large graphs. Many approx-
imation techniques have been proposed to speed up the PPR com-
putation since then.

The seminal work by Jeh and Widom [20] proposed the Hub De-
composition algorithm which approximates the PPR vectors for a
small hub set H of high-PageRank vertices. However, to achieve
full personalization, the hub set needs to include all vertices which
requires O(N2) space, clearly impractical for large problems. Our
VERD algorithm is partially inspired by the decomposition theo-
rem in [20]. The key idea of our VERD algorithm is that it can
utilize the precomputed PPR index to provide fast online query for
any vertex. Compared to the Hub Decomposition algorithm, the
size of the PPR index in PowerWalk is much more compact and
thus can be cached in distributed memory, which is critical to effi-
cient online query.

Note that most existing methods for PPR computation are de-
signed for a single machine, and are therefore limited by its re-
stricted computational power [36, 15, 30, 31, 37]. Fogaras et al. [13]
proposed the Monte-Carlo End-Point algorithm which is the first
scalable solution that achieves full personalization, although they
do not provide an implementation. To the best of our knowledge,

there are only two scalable implementations for [13]. The first sys-
tem is designed for the MapReduce model, which aims to opti-
mize the I/O efficiency [4]. The other system, called Drunkard-
Mob [23], is designed for single-machine disk-based graph engines
like GraphChi [24] and VENUS [28]. Although DrunkardMob
works on a single machine, since it stores the graph on disk, it can
still handle graphs larger than the main memory. The two imple-
mentations can be used to compute the PPR vectors offline. How-
ever, since they both rely on disk heavily, they cannot handle online
query efficiently unless they precompute all PPR vectors which is
very costly. In this paper, we propose a more efficient Monte-Carlo
Full-Path (MCFP) algorithm which utilizes the full trajectory of
each random walk. Furthermore, we propose the VERD algorithm
which can execute PPR queries online based on the PPR index ob-
tained from the MCFP algorithm. Our VERD algorithm could also
be realized on disk-based graph engines like GraphChi [24] and
VENUS [28] that support vertex-centric programming. Since at
each iteration, a disk-based graph engine will scan the entire graph
on disk, the I/O cost is at least M

B
, whereB is the size (measured in

edge) of block transfer. So due to the excessive I/O cost, the VERD
algorithm, if implemented on disk-based graph engines, could be
difficult to handle online PPR queries very efficiently. Fujiwara et
al. [15] proposes a method to compute a single PPR vector via non-
iterative approach based on sparse matrix representation. Similar
to PowerWalk, their solution also separates the computation into
an offline phase and an online phase. However, in the offline phase,
their approach needs to permute the adjacent matrix and precom-
pute the QR decomposition of the matrix. For large matrix, this
can be very time consuming. For example, even for a graph with
only 0.35 million vertices and 1.4 million edges, the precompu-
tation takes more than two hours which makes their method not
suitable for large-scale graphs.

Avrachenkov et al. [3] proposed a Monte-Carlo complete path al-
gorithm for computing the global PageRank which also utilizes the
full trajectory of each random walk. Bahmani et al. [5] extended
the Monte-Carlo method in [3] to incremental graphs and Person-
alized PageRank. Their approach stores a small number of precom-
puted random walks for each vertex, and then stitch short random
walks to answer online (Personalized) PageRank queries [5]. How-
ever, this algorithm is not suitable for distributed graph engines for
several reasons: (1) it requires random accesses to the graph data
and precomputed index, (2) its algorithmic logic is not compatible

with the vertex-centric programming model, and 3) it may require
a large number of iterations.

Buehrer and Chellapilla [11] designed a graph compression al-
gorithm for web graphs. To compute (Personalized) PageRank
or other random walk based computations, they proposed to first
compress the web graph, and then perform the computation on
the compressed graph using the power iteration method. However,
this approach has two disadvantages: (1) it cannot be extended to
weighted graphs like our approach; (2) its efficiency can degrade
significantly on social networks since compressing social graphs is
usually more costly and the compression ratios on social networks
are much worse compared to web graphs [8]. Also, to our knowl-
edge, there is no available implementation of the algorithm in [11].

6. CONCLUSION
In this paper, we present our system, PowerWalk, which adopts a

novel framework for online PPR computation on distributed graph
engines. PowerWalk uses the MCFP algorithm to compute a light-
weight PPR index, and then uses the VERD algorithm to compute
PPR vectors by a linear combination of the PPR index in an online
manner. Our evaluation shows that our MCFP algorithm provides
a more accurate approximation compared to the existing Monte-
Carlo End-Point algorithm [13] by simulating the same number
of random walks. Extensive experiments on two large-scale real-
world graphs show that PowerWalk is quite scalable in balancing
offline preprocessing and online query, and is capable of comput-
ing tens of thousands of PPR vectors in an order of seconds. We
believe PowerWalk can be readily extended for many large-scale
random walk models [27, 41].

7. REFERENCES
[1] R. Andersen, F. Chung, and K. Lang. Local Graph Partitioning using

PageRank Vectors. In FOCS, pages 475–486, 2006.
[2] J. Attenberg and R. Baeza-yates. Batch Query Processing for Web

Search Engines. In WSDM, pages 137–146, 2011.
[3] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte

Carlo Methods in PageRank Computation: When One Iteration is
Sufficient. SINUM, 45(2):890–904, 2007.

[4] B. Bahmani, K. Chakrabarti, and D. Xin. Fast Personalized
PageRank on MapReduce. In SIGMOD, pages 973–984, 2011.

[5] B. Bahmani, A. Chowdhury, and A. Goel. Fast Incremental and
Personalized PageRank. PVLDB, 4(3):173–184, jun 2010.

[6] P. Berkhin. A Survey on PageRank Computing. Internet
Mathematics, 2(1):73–120, 2005.

[7] P. Berkhin. Bookmark-Coloring Approach to Personalized PageRank
Computing. Internet Mathematics, 3(1):41–62, 2006.

[8] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In WWW, pages 1–13, 2011.

[9] P. Boldi, M. Santini, and S. Vigna. A Large Time-Aware Web Graph.
ACM SIGIR Forum, 42(1):78–83, 2008.

[10] P. Boldi and S. Vigna. The WebGraph Framework I : Compression
Techniques. In WWW, pages 595–602, 2004.

[11] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to
web graph compression with communities. In WSDM, pages 95–106,
2008.

[12] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. Lui, and C. He. VENUS:
Vertex-centric streamlined graph computation on a single PC. In
ICDE, pages 1131–1142, apr 2015.

[13] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards Scaling
Fully Personalized PageRank: Algorithms, Lower Bounds, and
Experiments. Internet Mathematics, 2(3):333–358, jan 2005.

[14] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast
and Exact Top-k Search for Random Walk with Restart. PVLDB,
pages 442–453, 2012.

[15] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and
M. Onizuka. Efficient Personalized PageRank with Accuracy
Assurance. In KDD, pages 15–23, 2012.

[16] J. E. Gonzalez, D. Bickson, and C. Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs. In OSDI,
pages 17–30, 2012.

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. GraphX: Graph Processing in a Distributed Dataflow
Framework. In OSDI, 2014.

[18] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. WTF:
The Who to Follow Service at Twitter. In WWW, pages 505–514,
2013.

[19] X. He, W. Dai, G. Cao, R. Tang, M. Yuan, and Q. Yang. Mining
target users for online marketing based on app store data. In IEEE
BigData, pages 1043–1052. IEEE, 2015.

[20] G. Jeh and J. Widom. Scaling Personalized Web Search. In WWW,
pages 271–279. Stanford University, 2003.

[21] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi. Scalable
similarity search for SimRank. In SIGMOD, pages 325–336, 2014.

[22] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter , a Social
Network or a News Media? In WWW, 2010.

[23] A. Kyrola. DrunkardMob: Billions of Random Walks on Just a PC.
In RecSys, pages 257–264, 2013.

[24] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-Scale
Graph Computation on Just a PC. In OSDI, pages 31–46, 2012.

[25] J. Leskovec, D. Huttenlocher, and J. M. Kleinberg. Predicting
Positive and Negative Links in Online Social Networks. In WWW,
pages 641–650, 2010.

[26] J. Leskovec, K. J. Lang, and M. W. Mahoney. Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large
Well-Defined Clusters. Internet Mathematics, 6(1):29–123, 2009.

[27] Z. Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, and J. C. S. Lui. Walking
in the Cloud: Parallel SimRank at Scale. PVLDB, 9(1):24–35, 2015.

[28] Q. Liu, J. Cheng, Z. Li, and J. Lui. VENUS: A System for
Streamlined Graph Computation on a Single PC. TKDE, 2015.

[29] Q. Liu, Z. Li, J. C. Lui, and J. Cheng. PowerWalk: Scalable
Personalized PageRank via Random Walks with Vertex-Centric
Decomposition. Technical report, 2016.

[30] P. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri. FAST-PPR:
Scaling Personalized PageRank Estimation for Large Graphs. In
KDD, apr 2014.

[31] T. Maehara, T. Akiba, Y. Iwata, and K.-i. Kawarabayashi. Computing
Personalized PageRank Quickly by Exploiting Graph Structures.
PVLDB, 7(12):1023–1034, 2014.

[32] G. Malewicz, M. Austern, and A. Bik. Pregel: a system for
large-scale graph processing. In SIGMOD, pages 135–145, 2010.

[33] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Technical report, 2012.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical report,
Stanford InfoLab, 1999.

[35] K. Pingali, M. Méndez-Lojo, D. Prountzos, X. Sui, D. Nguyen,
M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H. Lee,
A. Lenharth, and R. Manevich. The Tao of Parallelism in Algorithms.
In PLDI, pages 12–25, 2011.

[36] T. Sarlós, A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz. To
Randomize or Not To Randomize: Space Optimal Summaries for
Hyperlink Analysis. In WWW, pages 297–306, 2006.

[37] K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: Block Elimination
Approach for Random Walk with Restart on Large Graphs. In
SIGMOD, 2015.

[38] J. Shun and G. Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In PPoPP, pages 135–146, 2013.

[39] P. K. C. Singitham, M. S. Mahabhashyam, and P. Raghavan.
Efficiency-Quality Tradeoffs for Vector Score Aggregation. In
VLDB, pages 624–635, 2004.

[40] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast Random Walk with
Restarts and Its Applications. In ICDM, 2006.

[41] X.-M. Wu, Z. Li, A. M.-C. So, J. Wright, and S.-F. Chang. Learning
with partially absorbing random walks. In NIPS, pages 1–9, 2012.

