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Abstract—Incentive mechanisms are often needed in wireless
mesh networks (WMNs) so as to encourage nodes to relay
or forward packets for other nodes. However, there is a lack
of understanding on the interactions between the incentive
mechanisms and the underlying routing protocols, and whether
the network can sustain such traffic workload in the long run.
In this paper, we propose a general mathematical framework
via stochastic difference equations to model the interaction of
incentive mechanisms and routing protocols. A credit evolution
model is provided. Based on it, we study the expected credit
variation of each node and use the Gini’s coefficient to quantify
the credit disparity among nodes. We also introduce the concept
of differentiated pricing in the incentive mechanism to achieve
credit equality among nodes so the WMN is more robust to
sustain the traffic workloads.

I. Introduction

Wireless mesh networks (WMNs) have been a topic of in-
tense research in the last several years. Such networks consist
of a set of wireless and mobile nodes that can self-configure
and do not rely on an infrastructure to communicate. Typically,
a source communicates with distant destinations using inter-
mediate nodes as relays. When nodes in WMNs are not under
the control of a single authority, cooperation among nodes
are paramount so packets can be relayed to the destination.
Since there are selfish users who simply want to maximize
their own welfare (e.g., monopolize the bandwidth) or refuse
to relay packets, researchers have proposed different incentive
mechanisms to encourage nodes to collaborate. These mecha-
nisms can be broadly divided in two types: (a) reputation-based
schemes [11], [12] and, (b) credit-based schemes [7]–[10].
In reputation-based schemes, a node’s reputation is measured
by its neighbors, and selfishness is deterred by the threat of
partial or total disconnection from the network. Due to packet
collisions and interference, nodes cannot always reliably detect
if a given node actually forwarded a packet as expected, so it
is possible that cooperative nodes will be perceived as being
selfish, and wrongfully trigger a retaliation by their neighbors.
In credit-based schemes, nodes receive a payment every time
they forward a packet, and credit can be used by these nodes
to transmit their own packets. Compared with the reputation
schemes, credits enable more flexible and fine-grained control.
Although credit-based schemes can encourage cooperation

among nodes. But it does not imply that the WMN can sustain
any traffic workload. To illustrate, let us consider a WMN in
Fig. 1.1. Let α be the payment from the source node to a
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Fig. 1.1. An example to a WMN to illustrate credit imbalance

relaying node for forwarding a message. When α is small,
nodes have no incentive to forward packets. If α is sufficient to
cover the cost of forwarding messages, the node has incentive
to forward messages. Note that node 3 is in the center of the
network and it costs less credit to send data to other nodes and
has more chances to earn credit since traffic of other nodes
has to go through node 3. Node 1 or 5, on the other hand, has
no chance to earn any credit. If the payment parameter α is
not properly set, node 1, 2, 4, and 5 will eventually run out of
credit and cannot transmit their own packets. To summarize,
even if an incentive mechanism can guarantee cooperation, it
is possible that the WMN cannot sustain the traffic workload.
Contributions: The purpose of this paper is not to advo-
cate any incentive mechanism, but rather, present a gen-
eral mathematical framework to analyze the sustainability of
various incentive mechanisms and routing protocols. Using
our framework, designers can understand the interaction of
routing protocols and incentive mechanisms, as well as the
sustainability of the WMN. We quantitatively investigate the
impact of credit inequality of credit-based incentive schemes.
We take Sprite [9] as an illustrative example, and illustrate
how it interacts with a family of path-based routing protocols.
We consider the influence of link loss probability on the
incentive scheme, and derive the closed-form expressions of
the expected credit variation for some specific network topolo-
gies and traffic distribution. We also propose a differentiated
pricing to achieve credit-equality.
The outline of our work is as follows. In Sec.II, we present

the background of path-based routing protocols and credit-
based incentive mechanisms. In Sec.III, we introduce our
mathematical framework to model the credit evolution. In
Sec.IV, we introduce differentiated pricing on the incentive
mechanism. Results on the performance evaluation are given
in Sec.V. Related work and conclusion are given in Sec. VI.

II. Background and Technical Preliminaries

In this section, we provide the background for our work.
We first state the mathematical model for WMNs, the traffic
model, as well as a family of path-based routing protocols.



To illustrate our framework, we consider the Sprite [9] in-
centive protocol. We like to emphasize that our mathematical
framework is very general and can accommodate other routing
and incentive protocols. In here, we simply use the path-based
routing and Sprite to illustrate the utility of our analytical
framework.
Network model. We model a WMN as a directed graph G =
(N , E), N is the set of wireless nodes with |N | = N and E
is the set of wireless links. A link (i, j) ∈ E from node i to
node j denotes that node j is within the transmission range of
node i. If there is no link from i to j, then the message from
node i has to be transmitted to another node, and this node
has to forward the message, either directly or indirectly, to j.
Let ϵ(i,j) be the loss probability of link (i, j). A message from
i to j on (i, j) is correctly received with probability 1−ϵ(i,j).
Let r be a route, which is a sequence of ordered nodes or

an non-empty subset of E . All routes in G is represented by
the set R. Let S be the set of all traffic sources in the network.
For a traffic source s ∈ S, let Ds be the set of its destinations.
For a given source s and its destination d ∈ Ds, we define
(s, d) as the flow between node s and d. Each flow has a set
of routes, which is denoted by Rsd and |Rsd| represents the
number of routes for flow (s, d). Let Ar

sd(t) be the traffic for
flow (s, d) on route r at time t, then the traffic of flow (s, d)
at time t is Asd(t) =

∑

r∈Rsd
Ar

sd(t). The total traffic arrival
for source s at time t is As(t) =

∑

d∈Ds
Asd(t).

Traffic model. The packet arrival process {As(t)}∞t=1 are i.i.d.
sequences of a random variables for all s ∈ S. The arrival rate
E[As(t)] of source s is denote by λs, wherein the expected
time between two consecutive arrivals is 1 (or a unit slot). The
destination of a flow is chosen as follows: with probability hsd,
the packets generated by the source node will choose node d
as the destination. Obviously, we have

∑

d∈Ds
hsd = 1 for

s ∈ S. Unless we state otherwise, we assume the uniform
traffic model, which means λs =λ and hsd = 1

N−1 for all s, d.
Shortest-path based routing. In this paper, we consider a
family of shortest-path based routing protocols, where the
quality of a path can be chosen by (a) hop count, or (b)
expected transmission count (ETX) [5]. Hop count assumes
all links are homogeneous (i.e., links have the same loss
probability, and channel fading characteristics). Therefore, for
the flow (s, d), Shortest-path hop-count routing selects those
paths with the smallest link distance between s and d.
Under ETX [5], it allows links to be heterogeneous. ETX

minimizes the expected total number of packet transmissions
required to successfully deliver a packet to the destination.
ETX of a link is based on the delivery ratio: number of
transmissions needed to successfully deliver a single packet.
ETX of a path is the sum of the ETX for each link in that path.
In general, ETX is able to reflect per-link performance and
affect the per-flow performance. For the ease of mathematical
formulation, we only consider use the forward delivery ratio
to calculate these ETX values.
Consider the WMN in Fig. 2.1 as an example, where the

link loss probability are shown along the edge. Consider the
flow (1, 4). Under the shortest-path hop-count routing, there is
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Fig. 2.1. Example of a WMN with link loss probabilities.

only one shortest path (1, 5, 4). Under the shortest-path ETX
routing, there are two shortest paths (1, 2, 3, 4) and (1, 5, 4).
Multi-path case.When flow (s, d) has multiple shortest paths,
or |Rsd| > 1, we use a traffic splitting approach. To illustrate,
consider the flow (1, 4) in Fig. 2.1. Under the shortest-path
ETX routing, there are two shortest paths r = (1, 2, 3, 4) and
r′ = (1, 5, 4). In this paper, we assume the uniform traffic
splitting approach in our analysis, although our mathematical
framework can accommodate more general splitting rule. This
means Ar

14(t) = A14(t)/|R14| = A14(t)/2.
Incentive scheme. Sprite [9] is a well-known incentive scheme
to encourage nodes to collaborate. It has an important property
of cheat-proof. Compared with other incentive schemes, Sprite
does not require any tamper-proof hardware. Briefly speaking,
it uses a centralize credit clearance service (CCS), to collect
receipts from each forwarding nodes. Charges and rewards are
based on these receipts, which provides incentive for nodes to
cooperate and report actions honestly. Formally, Sprite can be
described as follows:
(1) A sender selects a path to delivery a message to the
destination. Denote this path as r = (s, n1, · · · , ne, · · · , nlr),
where nlr = d and lr is the hop count of r.
(2) The sender will be charged for transmitting the message.
(3) CCS believes that a node along r has forwarded the
message if and only if there is a successor of that node on
the path reporting a valid receipt of that message.
(4) CCS charges Cr from node s, and pays P r

nk
to node nk:

Cr = (lr − 1)α + β − (lr − e)γβ, (2.1)

P r
nk

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α, if k < e = lr
β, if k = e = lr
γα, if k < e < lr
γβ, if k = e < lr,

(2.2)

here ne is the last node on path r that submits a valid receipt,
γ < 1 and β < α.
To illustrate, consider again the network in Fig. 2.1. We

assume that node 1 is to send a message to node 4 along the
path r = (1, 2, 3, 4), where lr = 3. When node 3 is the last
node on path r that submits a valid receipt, then e = 2, Cr =
2α + β − γβ, P r

2 = γα, P r
3 = γβ and P r

4 = 0. When node 4
is the last node on path r that submits a valid receipt, i.e. the
message is send successfully, then e = 3, Cr = 2α +β, P r

2 =
α, P r

3 = α and P r
4 = β.

Let δ be the cost of forwarding a receipt from one node
to another. Then a colluding node (if any) incurs a cost of δ
and nk must compensate the colluding node with δ. We state
some definitions and property of the Sprite system [9] here.
Definition 1: For a player, an optimal strategy is a strategy
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Fig. 2.2. A typical Lorenz curve for the network in Fig.2.1.

that brings the maximum expected welfare to it, regardless of
the strategies of all the other nodes.
Definition 2: A game is collusion-resistant, if any group of
colluding players cannot increase the expected sum of their
welfare by using any strategy profile other than that in which
everybody tells the truth.
Definition 3: A game is cheat-proof if truth-telling is an opti-
mal strategy for all nodes and the game is collusion-resistant.
Theorem 1: The receipt-submission game of Sprite, if δ ≥ γβ
and δ ≥ (lr − 1)γα, is cheat-proof.
Credit inequality metrics. In economics, the Lorenz curve
[13] is a graphical representation of the cumulative distribution
of wealth for a group of people. Here, we use it to represent
credit distribution among nodes, where it shows for the poorest
x% of nodes, what y% of the total credit of the system they
possess. One can use the Lorenz curve to represent social (or
credit) inequality. A Lorenz curve of a 45 degrees straight line
thus represents perfect equality among nodes.
The Gini coefficient is defined based on the Lorenz curve,

which is the ratio of the area that lies between the equality line
and the Lorenz curve (marked ‘A’ in Fig. 2.2) over the total
area under the equality line (marked ‘A’ and ‘B’ in Fig.2.2);
i.e., G = A/(A+B). The Gini coefficient is a measure of the
inequality of a distribution among nodes: G = 0 implies perfect
equality and G = 1 implies maximal inequality.
To illustrate, consider again the network in Fig.2.1. Assume

that there are total 10 credits. If each node has two credits,
then the Lorenz curve is along the line of equality and G =
0. If node 1, 2 and 3 have one credit respectively, node 4
has three ones and node 5 has four ones, the Lorenz curve is
shown in Fig.2.2 and G = 0.21.

III. Mathematical Model For Credit Evolution

Let us present the mathematical model to describe the credit
evolution, i.e., the dynamic change of credit, for each node in a
WMN. We model the evolution of nodes’ credit as a sequence
of random variables, and for some network topologies, we
can obtain the closed form expression for the expected credit
variation. We consider two scenarios:
(a) persistent transmission mode: when a collision or packet
lost occurs, a node will retransmit the packet until it is
successfully received by its neighbor.
(b) single transmission mode: when a collision or packet lost
occurs, a node will not retransmit. The source node is responsi-
ble to retransmit the packet until the destination node receives

the packet. Since source nodes need to perform retransmission,
this can be regarded as the upper bound (or the worst case)
payment for source nodes under Sprite [9]. For simplicity of
presentation, we make the following assumptions:

• there is no cheating and no collusion for message-
forwarding and receipt-submission,

• the link capacity is sufficient to satisfy all demands.

A. General Mathematical Model
We use Rn

sd = {r ∈ Rsd : n ∈ r} to denote the route set
(or path set) that node n is an intermediate node of some route
r for flow (s, d). Let Cr be the cost for source node s and P r

n

be the payment to node n ∈ r for successfully transmitting a
packet along the path r to d. Let Cn(0) be the initial credit
of node n. At time t, node n has credit

Cn(t) = Cn(0) +
t

∑

k=1

∆Cn(k), t ≥ 1, n ∈ N , (3.1)

where
∆Cn(k) =

∑

s∈S,d∈Ds,r∈Rn
sd

Ar
sd(k)P r

n

+
∑

s∈S,n∈Ds
Asn(k)β −

∑

d∈Dn,r∈Rnd
Ar

nd(k)Cr (3.2)

is the credit variation of node n in time slot k. In (3.2), the
first and the second terms represent the payments from CCS
to node n for forwarding messages and for reporting receipts
for the message respectively. The third term represents the
payment from node n to CCS for sending messages to other
nodes. The credit evolution for the CCS is

C(t) = C(t − 1) −
∑

n∈N

∆Cn(t), t ≥ 1.

Persistent Transmission Mode: Under the persistent trans-
mission mode, each intermediate node in the path would
forward and/or retransmit an arbitrary number of times until a
successful transmission occurs. In this case, we have P r

n ≡ α
for all n ∈ r and Cr = (lr−1)α+β for all r ∈ R. Substituting
them into equation (3.2), we have

∆Cn(k) = Bn(k)β + Fnn(k)α −
∑

m ̸=n

Fnm(k)α, (3.3)

where Bn(k) is the difference between the traffic ending at
node n and the one starting from node n, Fnn(k) is the traffic
that node n forwards for others nodes, Fnm(k) is the traffic
that node m forwards for node n at time slot k. We have

Bn(k) =
∑

s∈S,n∈Ds
Asn(k) −

∑

d∈Dn
And(k)

Fnn(k) =
∑

s∈S,d∈Ds,r∈Rn
sd

Ar
sd(k)

Fnm(k) =
∑

d∈Dn,r∈Rm
nd

Ar
nd(k).

Under the persistent transmission mode, the credit of CCS is
always zero, i.e., C(t) ≡ 0, t ≥ 0, which means that the credit
variation of nodes is conservation, i.e.,

∑

n∈N ∆Cn(t) = 0 for
t ≥ 1.
Under the assumptions we made about the traffic model,

{Bn(k)}∞k=1 and {Fnm(k)}∞k=1 are i.i.d. sequences of a ran-
dom variables for all n, m ∈ N and n ̸= m. By (3.3), the



expected credit variation of node n is

∆cn = bnβ + fnnα −
∑

m ̸=n

fnmα, (3.4)

where ∆cn = E[∆Cn(k)], bn = E[Bn(k)], fnm = E[Fnm(k)]
and fnn =

∑

s̸=n fsn. Furthermore, by (3.1), the expected
credit balance of node n is

E[Cn(t)] = Cn(0) + t∆cn, t ≥ 1, n ∈ N .

Single Transmission Mode: Under this mode, intermediate
nodes along the path will only forward the packet only once.
In this case, P r

n and Cr in equation (3.2) are random variables.
Assume r = (s, n1, · · · , nl) be a path for flow (s, d), where

nl = d and we omit the subscript r from lr. Let Ai denote the
outcome that the message arrives at node ni but fails to arrive
at node ni+1, i = 1, · · · , l. Denote the probability that Ai

happens by pi. The corresponding cost of node s and payment
to intermediate node nk for outcome Ai are denoted by ci and
pnk

i for k, i = 1, · · · , l, respectively. Note that if the packet is
not sent to node n1, the CCS will not make an effective record.
So we assume the source node s always makes a successful
transmission when we calculate the cost and payments.
Theorem 2: It holds that
(i) the expected cost that node s successfully sends a

message along path r to node d is c̄/pl, where c̄ =
c1p1 + · · · + clpl, and

(ii) the expected payment to node nk that node s
successfully sends a message along path r to node d is
p̄nk

/pl, k = 1, · · · , l, where pnk
= pnk

1 p1+ · · ·+pnk

l pl.

Please refer to [18] for the proofs of Theorem 2 and other
theorems hereafter.
We can further provide a closed-form expressions for E[Cr]

and E[P r
nk

], k = 1, · · · , l. By the payoff scheme of Sprite (2.1)
and (2.2), we have ci = (l − 1)α + β − (l − i)γβ and

pnk

i =

⎧

⎨

⎩

γα, if k < i
γβ, if k = i
0, if k > i.

Submitting them into the results in Theorem 2, we have
E[Cr] =

cl−γβ
∑

l−1

i=1
(l−i)pi

pl
, E[P r

d ] = β and E[P r
nk

] = α +

γ
pkβ+

∑

l−1

i=k+1
piα

pl
, k = 1, · · · , l − 1, where pi =

∏i−1
j=1(1 −

ϵ(nj ,nj+1))ϵ(ni,ni+1), i = 1, · · · , l − 1, pl =
∏l−1

j=1(1 −
ϵ(nj ,nj+1)).
Remark: Let us provide a physical interpretation of Theorem
2. 1/pl is the expected number of transmissions that node
s makes for a message it sends along path r to d, c̄ is the
expected cost that s sends a message to d and p̄nk

is the
expected payments to node nk, k = 1, · · · , l. Therefore, the
expected cost for s to successfully send a message to d is
the product of the expected number of transmissions and the
expected cost according to item (i) in Theorem 2. The similar
results also hold for the payments to nodes n1, · · · , nl.
Consider again the flow (1, 4) in Fig. 2.1, where node 1

sends a message along path r = (1, 2, 3, 4) to node 4. We

Nn1 n-1 n+1

Fig. 3.1. Linear topology with N nodes.

have E[Cr] = (100(2α + β) − 29γβ)/81, E[P r
2 ] = (81α +

9γα + 10γβ)/81, E[P r
3 ] = (9α + γβ)/9 and E[P r

4 ] = β.

B. Expected Credit Variation for Special Topologies with the
Shortest Hop-count Routing

We consider the expected credit variation for three special
topologies with the shortest hop-count routing. Closed-form
expressions can be given, where the expected traffic starting
from n is consistent with that ending at n, i.e. λ. So we have
bn = 0 for all n. Let Fsn(t) =

∑

d∈Ds,r∈Rn
sd

Ar
sd(t) denote

the traffic of n forwarding for s, s ̸= n.
Linear topology. We consider the one in Fig. 3.1. There is
only one shortest path for each flow (s, d). We have Fs1(t) = 0
and FsN (t) = 0. For 1 < n < N , we have

Fsn(t) =

{

Asd(t), if d > n, s < n
0, if d < n, s < n

(3.5)

Fsn(t) =

{

0, if d > n, s > n
Asd(t), if d < n, s > n.

(3.6)

For the uniform traffic, by (3.5) we have that

fsn = E[Fsn(t)] = E[E[Fsn(t)|d]]
= Pr(d > n)E[Asd(t)] = N−n

N−1 λ

if s < n. Similarly, by (3.6) we have fsn = n−1
N−1λ if s > n.

Furthermore, we have

fnn =
(

∑n−1
s=1

N−n
N−1 +

∑N
s=n+1

n−1
N−1

)

λ

= 2(n−1)(N−n)
N−1 λ

and
∑

m:m ̸=n fnm =
(

∑n−1
m=1

m−1
N−1 +

∑N
m=n+1

N−m
N−1

)

λ

= (n−2)(n−1)+(N−n−1)(N−n)
2(N−1) λ.

Submitting them into equation (3.4), we have

∆cn =
3n(N − (n − 1)) − 1

2N(N + 3) − 1

N − 1
λα,

which is symmetric about N/2.
Ring topology. Consider the WMN in Fig.3.2. For n ∈ N ,
we let s = mod(n∓ k, N), k = 1, 2, · · · , ⌊N/2⌋, where mod
is the modulo operation and ⌊N/2⌋ means the largest integer
not greater than N/2. In the sequel, we assume mod(0, N) =
mod(N, N) = N for convenience of formulation.
We first consider the case that N is odd, where each flow

has only one shortest path. We have

Fsn(t) =

⎧

⎨

⎩

Asd(t), if d = mod(n ± l, N),
l = 1, · · · , ⌊N/2⌋ − k

0, otherwise.
(3.7)
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Fig. 3.2. Ring topology with N nodes.

For the uniform traffic, similarly with the linear topology, by
(3.7) we have fsn = ⌊N/2⌋−k

N−1 λ. Furthermore, we have

fnn =
∑

s̸=n fsn =
∑

m ̸=n fnm

= 2
∑⌊N/2⌋

k=1
⌊N/2⌋−k

N−1 λ = (⌊N/2⌋−1)⌊N/2⌋
N−1 λ.

Submitting them into equation (3.4), we have ∆cn = 0.
When N is even, the flow (s, mod(s + N/2, N)) has two

shortest paths for all s. We have

Fsn(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Asd(t), if d = mod(n ± l, N),
l = 1, · · · , N/2 − k − 1

Asd(t)/2, if d = mod(n ∓ k + N/2, N)
0, otherwise.

(3.8)
For the uniform traffic, by equation (3.8) we have

fsn =
N/2 − k − 1

N − 1
λ +

1

N − 1

λ

2
=

N/2 − k − 1/2

N − 1
λ.

Furthermore, we have
∑

m ̸=n fnm = fnn

= 2
∑N/2−1

k=1
N/2−k−1/2

N−1 λ = (N/2−1)2

N−1 λ.

Submitting them into equation (3.4), we have ∆cn = 0.
Grid topology. Consider the topology in Fig. 3.3, there is
N = HP nodes. In the sequel, let n = pH + h, where p =
0, 1, · · · , P − 1, h = 1, 2, · · · , H . For a given flow (s, d), let
s = psH+hs and d = pdH+hd. To obtain the credit variation
of node n, we must know how much traffic it forwards for a
given flow (s, d), which needs the number of shortest path for
flow (s, d).
Lemma 1: The fact holds that |Rsd| =

(P0+H0

P0

)

for flow
(s, d), where

(

n
k

)

is the binomial coefficient, P0 = |ps − pd|
and H0 = |hs − hd| be the vertical and horizontal hop count
between node s and d, respectively.
In the sequel, we let k1 =

(|ps−p|+|hs−h|
|ps−p|

)

, k2 =
(|p−pd|+|h−dd|

|p−pd|

)

, k =
(|ps−pd|+|hs−hd|

|ps−pd|

)

and use the notation
(0
0

)

to denote 0.
Lemma 2: If node n forwards traffic for flow (s, d), i.e.
Rn

sd ̸= ∅, then
∑

r∈Rn
sd

Ar
sd(t) = k1k2

k Asd(t).

To get the closed-form of the expected credit variation of
node n, three cases are consider respectively.
Case A: ps < p. If hs < h, we have

Fsn(t) =

⎧

⎨

⎩

∑

r∈Rn
sd

Ar
sd(t), if pd = p, · · · , P − 1,

hd = h, · · · , H, d ̸= n
0, otherwise.

d

P

N

n

1nn

n

1n

s

H

Fig. 3.3. Grid topology with N = HP nodes.

Then the expected value of Fsn(t) is

fsn =
P−1
∑

pd=p

H
∑

hd=h

Pr(d = pdH+hd, d ̸= n)E

⎡

⎣

∑

r∈Rn
sd

Ar
sd(t)

⎤

⎦ .

For the uniform traffic and Lemma 2, we have fsn =
k1

∑P−1
pd=p

∑H
hd=h

1
N−1

k2

k λ. If hs = h, we have k1 = 1.
Making a similar ananlysis with above, we have fsn =
∑P−1

pd=p

∑H
hd=1

1
N−1

k2

k λ. If hs > h, we have fsn =

k1
∑P−1

pd=p

∑h
hd=1

1
N−1

k2

k λ.
Case B: ps = p. Then k1 = 1 and we have

fsn =

{

∑P−1
pd=0

∑H
hd=h

1
N−1

k2

k λ, hs < h
∑P−1

pd=0

∑h
hd=1

1
N−1

k2

k λ, hs > h.

Case C: ps > p. Then we have

fsn =

⎧

⎪

⎨

⎪

⎩

k1
∑p

pd=0

∑H
hd=h

1
N−1

k2

k λ, hs < h
∑p

pd=0

∑H
hd=1

1
N−1

k2

k λ, hs = h

k1
∑p

pd=0

∑h
hd=1

1
N−1

k2

k λ, hs > h.

Submitting fsn into equation (3.4), we can get the desired
result.

IV. Balancing Credit via Pricing

When a node has abundant amount of credit, this node has
no incentive to forward packets for other nodes. On the other
hand, when a node does not possess sufficient credit, it cannot
transmit packet to its target receiver, so it needs to wait until it
accumulates sufficient credits. These are undesirable since they
reduce collaboration and lower system throughput. We address
this problem here by determining the optimal incentive price
for each node so to ensure fair distribution of credits.
Tradeoff between Incentive and Balancing: We introduce
differentiated pricing by allowing different node to charge dif-
ferently in forwarding a message. Under the Sprite mechanism,
all nodes use the same price and we called this the homoge-
neous Sprite (HomoSprite). We consider the heterogeneous
Sprite (HeteroSprite). Assume that node s sends a message to
d along the path r = (s, n1, · · · , nlr), where nlr = d and lr



is the hop count of path r. In HeteroSprite, the CCS charges
Cr from node s, and pays P r

nk
to node nk, where

Cr =
lr−1
∑

k=1

αnk
+ β − (lr − e)γβ

P r
nk

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

αnk
, if k < e = lr

β, if k = e = lr
γαnk

, if k < e < lr
γβ, if k = e < lr,

where ne is the last node on path r that submits a valid receipt,
γ < 1 and β < αn for all n. Similar to [9], HeteroSprite has
the following property:
Theorem 3: The receipt-submission game of HeteroSprite, if
δ ≥ γβ and δ ≥ γ

∑lr
k=1 αnk

, is cheat-proof.
Comparing the expected gain of credit from forwarding a

message with that of not forwarding the message, an interme-
diate node m can expect a net gain of

p2(1 − γ)αm + p1γ(αm − β), (4.1)

where p1 and p2 are the probabilities that the message arrives
at the next node and destination respectively. For the persistent
transmission mode, similarly to (3.4) for HomoSprite, the
expected credit variation of node n for HeteroSprite is

∆cn = fnnαn −
∑

m ̸=n

fnmαm + wn, (4.2)

where wn = bnβ is independent of other nodes and

fnn =
∑

s̸=n

fsn. (4.3)

We need to consider two desirable requirements: one is to
keep the expected credit variation (4.2) for each node as zero,
i.e. ∆c = (∆c1, · · · , ∆cN ) = 0. The other is to maximize
the incentive to each node, i.e. maximize α = (α1, · · · , αN )
according to (4.1). Therefore, a trade-off must be made be-
tween the two requirements. Taking ∥∆c∥ as the metric of
the expected credit variation vector ∆c, we minimize ∥∆c∥
over the price vector α subject to the box constraints, i.e.

minimize ∥∆c∥ (4.4a)
subject to α ≤ αn ≤ ᾱ, n = 1, · · · , N, (4.4b)

where α and ᾱ is the lower and upper bound of the price,
respectively. Note that we need α > β. Furthermore, it should
be chosen such that the expected net gain of node m in
(4.1) be greater than the cost for forwarding a message. The
upper bound ᾱ should be less that δ

hmaxγ , where hmax is the
maximum hop count for possible routing. Then the price vector
satisfies the condition established in Theorem 3.
To see the effect of the credit balancing method, we have to

answer a more fundamental question: given an optimal price
vector resulting from (4.4), what is the underlying physical
meaning and how does it depend on the traffic workload of
the system? We answer the problem via the shadow prices
associated with the price constraints.

In constrained optimization, the shadow price is the change
in the objective value of the optimal solution of an opti-
mization problem obtained by relaxing the constraint by one
unit: it is the marginal utility of relaxing the constraint, or
equivalently the marginal cost of strengthening the constraint.
Each constraint in an optimization problem has a shadow price
or dual variable. The value of the shadow price can provide
decision makers powerful insight into problem. In the sequel,
we consider the shadow price for constraints (4.4b).
Taxicab Norm Pricing Approach: We take taxicab norm in
(4.4a) and call it as taxicab norm pricing scheme. Introducing
the nonnegative variable xn, we translate the associated non-
smooth optimization problem (4.4) to a linear programming
problem

minimize
∑N

n=1 xn

subject to fnnαn −
∑

m ̸=n fnmαm + xn ≥ −wn

−fnnαn +
∑

m ̸=n fnmαm + xn ≥ wn

α ≤ αn ≤ ᾱ, n = 1, · · · , N.

(4.5)

The dual of the optimization problem (4.5) is given by

maximize
∑N

n=1(wnzn − wnyn + αµn − ᾱνn)
subject to

∑

s̸=n fsn(zs − ys)
−fnn(zn − yn) + µn − νn = 0
yn + zn = 1
yn, zn, µn, νn ≥ 0, n = 1, · · · , N.

(4.6)

Let (α∗,x∗) be the solution to (4.5). Then the expected credit
variation of node n is ∆c∗n = fnnα∗

n−
∑

m:m ̸=n fnmα∗
m+wn.

It can be easily check that x∗
n = |∆c∗n| for all n.

Let R = {n ∈ N : ∆c∗n = x∗
n} be the index set of rich

node, i.e., whose expected credit variation is positive, and P =
{n ∈ N : ∆c∗n = −x∗

n} is the index set of poor node, i.e.,
whose expected credit variation is negative. Define index sets
L = {n ∈ N : α∗

n = α}, M = {n ∈ N : α < α∗
n < ᾱ} and

U = {n ∈ N : α∗
n = ᾱ}. The following theorem shows how

the optimal price vector depends on the traffic workload.
Theorem 4: Let (α∗,x∗) be the solution of (4.5). Let
(y∗, z∗, µ∗, ν∗) be a solution of (4.6). Then
(i) ∀n ∈ R∩ (U ∪M), it holds that µ∗

n = ν∗
n = 0; In addition,

fsn = 0, ∀s ∈ P, s ̸= n.
(ii)∀n ∈ R∩L, it holds that µ∗

n = 2
∑

s∈P,s̸=n fsn and ν∗
n = 0.

(iii) ∀n∈P∩U , it holds that ν∗
n =2

∑

s∈R,s̸=n fsn and µ∗
n = 0.

(iv) ∀n ∈ P ∩(M ∪L), it holds that µ∗
n = ν∗

n = 0; In addition,
fsn = 0, ∀s ∈ R, s ̸= n.
Note that we can carry out similar analysis of the shadow price
for the pricing method with infinity norm or even Euclidean
norm in (4.4a). In view of complexity, both infinity norm
and taxicab norm pricing approaches need to solve a linear
programming problem. For Euclidean norm pricing approach,
it is necessary to solve a linear least-squares problem with box
constraints, which is also solvable in polynomial time.

V. Performance Evaluation
A. Simulation Setup
For the linear and ring topologies, we set N = 10. For the

grid topology, set H = 5 and P = 5, or N = 25. A topology
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Fig. 5.1. Specific topology randomly generated.

consists of N = 36 nodes that are randomly distributed in an
area of 1000 by 1000 meters as shown in Fig. 5.1. We use
the lognormal shadowing propagation model [4]. Let dij and
pij be the distance and the delivery probability for the link
from node i to node j, respectively. Based on [4], pij can be
approximated as a function of dij :

pij =

⎧

⎨

⎩

1 − (dij

D )2ρ/2, if dij ≤ D

(2D−dij

D )2ρ/2, if D < dij ≤ 2D
0, otherwise,

where ρ is the power attenuation factor ranging from 2 to 6,
and D is defined as the distance such that pij(D) = 0.5. In
our simulation, we set ρ = 5 and D = 200m. We assume j
is not in the transmission range of node i if pij < 0.6. The
average degree of a vertex is 3.44.
The source’s traffic arrival rate is set as λ = 1 under the

uniform traffic model. In HomoSprite, we set the parameters
α = 1, β = 0.1 and γ = 0.001. In the pricing model (4.4) for
HeteroSprite, we set α = 0.5 and ᾱ = 10.

B. Persistent Transmission Mode vs Single Transmission Mode
In this experiment, a comparison is made for HomoSprite

respectively under the persistent transmission mode and the
single one. The specific topology shown in Fig.5.1 is consid-
ered here. The expected credits variation and Lorenz curves
with corresponding Gini coefficients are shown in Fig. 5.2.
One can observe from Fig. 5.2 that the expected credits

variation of nodes under the single transmission mode is
smaller than that under the persistent transmission mode.
The difference between the expected credit variation of the

nodes on the edge of the network, e.g. node 1, 2, 3, 35 and
36, under two transmission modes, are much larger than those
in the center of the network.
The Lorenz curves in Fig. 5.2 (a) and (b) show that the ex-

pected credits variation under the persistent transmission mode
is more equal than the one under the single transmission mode.
The CCS has null credit under the persistent transmission
mode. While under the single transmission mode, the CCS has
68 credits in the shortest hop-count routing and 55 credits in
the shortest-ETX routing, where a unsolved problem for CCS
under the single transmission mode is how to redistribute those
surplus credits to each node. For the two said transmission
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(a) Shortest-path hop-counting routing
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(b) Shortest-path ETX routing

Fig. 5.2. Persistent transmission mode against single transmission mode.

modes, ETX is more appropriate than hop count as a routing
metric in evenly distributing credit among nodes.

C. Credit Inequality Measures for Expected Credits Variation
In the following experiments, we focus on HomoSprite

under the persistent transmission mode. The expected credits
variation and Lorenz curves for the linear, ring and grid
topologies under different routing metrics and different traffic
models are considered.
Experiment 1 Comparison between different routing met-
rics. Fig. 5.3 shows the expected credits variation and Lorentz
curves for the linear and ring topologies under the hop count
metric and the ETX metric, where the link loss probabilities
are uniformly generated over [0, 0.4] for ETX metric.
For the linear topology, each flow has the same routing

in the shortest path hop-count routing and the shortest ETX
routing. The expected credits variation shown in Fig.5.3 (a)
and (b) are the same under the two routing protocols, and
nodes 1 and 10, which are on the edge of the network, have the
smallest expected credits variation, while nodes 5 and 6, which
are in the center of the network, have the highest expected
credits variation.
For the ring topology, as shown in Fig.5.3 (a), each node

plays a same role and maintains credit equality under hop
count metric. From Fig.5.3 (b), we observe that the shortest
ETX routing has almost no effect on the credit distribution.
To test the effect of the ETX measure on the credit inequal-

ity in grid topology, we consider two scenarios for the shortest-
path ETX routing. One is the ETX-Edge scenario, where the
links out from the nodes on the edges of the network have
zero loss probability and others 0.3. The other is the ETX-
Cross scenario, where the links out from the nodes on the
middle cross have zero loss probability while others 0.3. The
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Fig. 5.3. Hop count metric against ETX metric for linear and ring topologies.

results are shown in Fig.5.4. Compared with the shortest-path
hop-count routing, the ETX-Edge case makes the credit more
equal because there are more opportunities for nodes on the
edge of the network to forward message for others. On the
contrary, the ETX-Cross case has credit inequality since there
are more opportunities for nodes in the center of the network
to earn more credits.
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Fig. 5.4. Hop count metric against ETX metric for grid topology.

Experiment 2 Comparison between different traffic pat-
terns.We consider a skewed traffic model, i.e., λN = ⌊N/2⌋λ
and λs = λ for all s ̸= N . In addition, hNd = 1

N−1 for all
d ̸= N , and for all s ̸= N

hsd =

{ 1
2(N−2) d ̸= s, N
1
2 d = N.

This traffic model can be regarded as the one in a hybrid WMN
with one access point N .
The expected credits variation and Lorenz curves with the

shortest-path hop-count routing are shown in Fig.5.5. From
Fig. 5.5 (a) and (b), one can conclude that the skewed traffic
in linear and ring topologies will magnify the credit inequality.
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(a) Linear topology
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(b) Ring topology
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Fig. 5.5. Uniform traffic against skewed traffic.

While skewed traffic in grid topology will slightly reduce the
credit inequality because there are more chances for some
nodes on the edge of the network to earn credits, as illustrated
in Fig.5.5 (c).

D. Effectiveness of Differentiated Pricing
To illustrate the effectiveness of differentiated pricing, the

uniform traffic model with the shortest-path ETX routing is
considered for the topology in Fig.5.1.
The expected credits variation and Lorenz curves for Homo-

Sprite and HeteroSprite are shown in Fig. 5.6. It can be seen
that for the HeteroSprite, most nodes that have the chance to
forward messages for others almost have zero expected credits
variation. It implies that we can achieve credit equality.
We let Cn(0) = 100K

N , n ∈ N , where K is the sum of the
expected cost of each node under the uniform traffic model.
In each time slot, each source s generates flow (s, d) with
traffic Asd(t), which is randomly chosen from the Poisson
distribution with parameter 1. If the credit balance of source
s, Cs(t), is greater than the cost of transmission traffic Asd(t),
the sending succeeds and Cs(t) and Cn(t) for all n ∈ Rsd

are updated according to the general model (3.1); Otherwise,
the sending fails. We simultaneously run the two systems 500
time slots. The goodputs of HomoSprite and HeteroSprite are
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Fig. 5.6. The expected credits variation of HomoSprite and HeteroSprite.

shown in Fig.5.7. For a source, the goodput means the ratio
of successfully sent messages to all generated ones.
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Fig. 5.7. Goodput of HomoSprite and HeteroSprite.

From Fig.5.7 (a), we observed that the goodput of almost
half the nodes in HeteroSprite are 70 percent higher at the
most than the one in HomoSprite. The scatter plot in Fig.
5.7 (b) shows more details. The fewer nodes that have no
opportunities to forward message for others and nodes that
have much opportunities to forward message for others keep
the same goodputs in HomoSprite and HeteroSprite. The
most nodes have a higher goodput in HeteroSprite than that
in HomoSprite. In addition, the mean value of goodput for
HomoSprite and HeteroSprite are 0.67 and 0.92 respectively.
The median value of goodput for HomoSprite and HeteroSprite
are 0.61 and 0.97 respectively. The standard deviation of
goodput for HomoSprite and HeteroSprite are 0.29 and 0.21
respectively. All these facts indicate that nodes in HeteroSprite
can achieve higher and more stable goodput than that in
HomoSprite. It implies that the WMN with HeteroSprite as
incentive scheme can runs more health and robust.

VI. Related Work and Conclusion
From a game theory perspective, credit-based [7]–[10] and

reputation-based [11], [12] incentive mechanisms in WMNs
have been proven effective in motivating cooperation of nodes.
For routing protocols in WMNs, Srcr [6] is a state-of-the-art
path routing protocol, where link weights are assigned based
on the ETX metric [5].
Simple models have been proposed to capture the distri-

bution of money [13] in economics. There also exist models
for study of the condensation of materials [14] in physics.
Friedman et al. [15] study the credit-based P2P system and

concludes that too large an mount of internal currency injected
into the system will cause the system to collapse. Zhao et al.
[16], [17] proposed a general analytical framework to analyze
and design a large family of incentive protocols for P2P
networks. The main difference of incentive scheme in WMNs
and P2P networks is that the peers is not directly interacting
with each other and we need to consider the interactions
between the incentive mechanisms and the routing protocols.
In this paper, we present a mathematical framework to

analyze the interaction of the credit-based incentive scheme
(e.g., such as Sprite) and path-based routing protocols such
as the shortest-path-hop-count or ETX [5]. We showed that
under some traffic workload, the WMNs can have large
credit-inequality, which can cause some nodes not able to
transmit any packet. To redeem this problem, we propose a
differentiated pricing mechanism so as to evenly distribute
credit among nodes such that the Gini coefficient of the
WMN is closed to zero (or achieving the credit equality). The
mathematical methodology we propose also opens doors to
investigate the sustainability of wireless networks that employ
different incentive mechanisms and/or routing protocols.
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