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Abstract—There is a growing interest to understand the
fundamental principles of how epidemic, ideas or information
spread over large networks (e.g., the Internet or online social
networks). Conventional approach is to use SIS model (or its
derivatives). However, these models usually are over-simplified
and may not be applicable in realistic situations. In this paper,
we propose a generalized SIS model by allowing intermediate
states between susceptible and infected states. To analyze the
diffusion process on large graphs, we use the “mean-field
analysis technique” to determine which initial condition leads
to or prevents information or virus outbreak. Numerical results
show our methodology can accurately predict the behavior of
the phase-transition process for various large graphs (e.g., com-
plete graphs, random graphs or power-law graphs). We also
extend our generalized SIS model to consider the interaction
of two competing sources (i.e., competing products or virus-
antidote modeling). We present the analytical derivation and
show experimentally how different factors, e.g., transmission
rates, recovery rates, number of states or initial condition, can
affect the phase transition process and the final equilibrium.
Our models and methodology can serve as an essential tool in
understanding information diffusion in large networks.

I. Introduction
The spread of viruses, ideas or behaviors in networks has

been widely studied using mathematical models of conta-
gion [1], [2], [3]. Understanding these dynamical processes
is of fundamental importance if we want to control and
prevent the spread of diseases, or to maximize the influence
of a product in online social networks [4]. One of the
most studied contagion model is the Susceptible-Infected-
Susceptible (SIS) model. In this model, each node in the
network can be in one of these two states: “susceptible” or
“infected”. Using this model, one can describe the spread
of contagions like flu or idea. When a node is in the “sus-
ceptible” state, it is subjected to influence by its neighboring
nodes in the “infected” state, while only nodes in the infected
state can influence their neighboring nodes.

However, the SIS model is often too restrictive. To illus-
trate, consider the case that a diffusion model is used to
describe a product adoption [5], [6]. At some point of time
after the product release, some people may have purchased
the product while some may not. The consumer purchase
decision process theory [7] suggests that there are five stages

until a consumer makes a purchase and influences oth-
ers. The states include “product recognition”, “information
search”, “alternative evaluation”, “purchase decision”, and
“post-purchase behavior”. This implies that one needs to
further divide the susceptible state into more states according
to the degree of interest.
Contributions: We make several contributions in this paper.
First, we propose a generalization of the SIS model by
allowing the number of states to adoption (or infection) be
more than one (or k � 2). In particular, the states can be
from state 0 to state k�1, where the state k�1 is the active
state: the node is infected and can influence its neighboring
nodes. Nodes whose state is in 0 to k�2 can be promoted to
a higher state if they are exposed to its infected neighbor. We
analyze the influence spreading dynamics in complete and
general graphs, according to which initial condition leads
to or prevents a disease outbreak. Specifically, we use the
multidimensional mean-field method to analyze our model
and determine the condition of phase transition.

Our second contribution is to model the behavior and
dynamics of competing sources. For instance, when there
are more than one contagions, ideas or behaviors spreading
in the network, how the interaction may affect the final
state of the network? We use the generalized SIS model
with two sources, one being dominant and the other being
recessive, and they compete with each others at the same
time. We formulate the dynamic process and show how
different factors, such as different transmission rates or
initial condition, may affect the phase transition results and
final equilibrium.

Last but not least, we show how our methodology can
predict the behavior of the diffusion accurately, and we
illustrate several applications to show how to design a simple
and effective vaccination or advertisement strategy.

II. Generalized SIS Model and Analysis
Let us present our multi-state SIS model. We first model

the network as a fully connected undirected graph G =
(V,E). Any node v 2 V can be in one of k � 2 states:
{0, 1, ..., k�1}. Only nodes in state k�1 (which we call
the infected or active state) can increase the state value of



its neighbors, say node s, from state j 2{0, 1, . . . , k � 2},
to state j + 1 with an infection rate of �

j+1. Each node
can recover with a recovery rate of �. Figure 1 depicts our
generalized SIS model.
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Figure 1. The generalized SIS model with k � 2 states.

We first briefly review the analysis of the classical SIS
(or k = 2) model. For the classical SIS model, state 0
corresponds to susceptible (S) while state 1 corresponds to
infected (I). The infection rate and the recovery rate are �

and � respectively. Let x0(t) and x1(t) be the fraction of
nodes in state S and state I at time t � 0, respectively.
Define (x0, x1) be an equilibrium for this model (i.e.,
lim

t!1 x

i

(t), i= 1, 2). Given that G is a fully connected
graph, we have dx1

dt

= �x0x1 � �x1 and x0(t) + x1(t) = 1.
For this model, there are two possible equilibria, one is
(x0, x1) = (1, 0) and the other is (x0, x1) = ( �

�

, 1� �

�

).
For an arbitrary graph G, let A be the adjacency matrix of

G. Let x(i)
0 (t) and x

(i)
1 (t) be the probability of node i in state

S and state I at time t, where i 2 V , respectively. Let (x(i)
0 ,

x

(i)
1 )

i2V

be an equilibrium for this model. Then, dx

(i)
1

dt

=

�x

(i)
0

P
j

A

ij

x

(j)
1 � �x

(i)
1 = 01. It can be shown that the

condition for infection to die out over time is �/� < 1/�1

where �1 is the largest eigenvalue of A. For detail, please
refer [2], [8].

A. Ternary model for Generalized SIS
For the clarity of presentation, let us first consider a

generalized SIS model with k = 3 states. Here, the state
1 represents that a node is exposed but not infected yet. For
each state s 2 {0, 1, 2}, let x

s

(t) be the fraction of nodes
with state s at time t. Let (x0, x1, x2) be an equilibrium for
the model. Note that x0(t) + x1(t) + x2(t) = 1 8t. Using
the mean-field analysis, we derive a system of differential
equation that describes the system dynamics:

dx2

dt

= �2x1x2 � �x2, (1)

dx1

dt

= ��2x1x2 + �1x0x2 � �x1. (2)

Setting dx2
dt

= 0, we have (x2 = 0) or (x2 6= 0 and
x1 =

�

�2
). We want to find the condition for the non-trivial

1Note that this is a mean-field approximation. The right-hand side of
the equation contains two average quantities, x(i)

0 (t) and x

(j)
1 (t), and in

multiplying these quantities we are implicitly assuming that the product of
the average is equal to the average of their product. For a large graph G,
this mean-field approximation is accurate. But for small networks, this may
not hold since probabilities are not independent.

equilibrium which is the second case. Setting dx1
dt

= 0, we
have ��2x1x2 + �1x0x2 � �x1 = 0. This implies that

x0 =

✓
�2x2 + �

�1x2

◆
x1. (3)

Thus, if x2 6=0, then x1 =
�

�2
and x0 = (�2x2+�

�1x2
) �

�2
. SinceP2

i=0 xi

= 1, we have 1 = (�2x2+�

�1x2
) �

�2
+ �

�2
+ x2, or

�1�2x
2
2 + [�(�1 + �2)� �1�2]x2 + �

2 = 0 (4)

Theorem 1: Eq. (4) has real solution iff (1)� 6= �1 and
�2 � ��1

(
p
��

p
�1)2

; (2)� = �1 and �2  �1/4.

Proof: The discriminant of this quadratic equation is D =
[�(�1+�2)��1�2]2�4�2

�1�2. Let us derive the conditions
for D � 0. First, we could write D = 0 as a quadratic
equation of �2, then we can express D=0 as:

D = (�(�1 + �2)� �1�2)
2 � 4�2

�1�2

= (���1)
2
�

2
2+[2��1(� � �1)�4�2

�1]�2+�

2
�

2
1 =0.

If � = �1, the condition for D � 0 is

�2  �1/4. (5)

If � 6= �1, the discriminant of this quadratic equation of �2,
denoted by D

0
�2

, is the following.

D

0
�2

=[2��1(� � �1)� 4�2
�1]

2 � 4(� � �1)
2
�

2
�

2
1

=16�3
�

2
1 [� � (� � �1)] = 16�3

�

3
1 .

It is easy to see that D0
�2

> 0. Thus the equation D = 0 has
two solutions, and we denote them by ⇢1 and ⇢2.

⇢1,2 =
�[2��1(� � �1)� 4�2

�1]± 4�2
�

2
1

p
��1

2(� � �1)2

=
��1

(
p
� ±

p
�1)2

.

If � 6= �1, D � 0 is equivalent to �2 � ��1

(
p
��

p
�1)2

or

�2  ��1

(
p
�+

p
�1)2

. Since x1 =
�

�2
, it implies that �2 � �.

Furthermore, we have ��1

(
p
�+

p
�1)2

< � for �1 > 0. Thus, if
� 6= �1, �1 > 0 and �2 � � > 0, D � 0 is equivalent to

�2 � ��1

(
p
� �

p
�1)2

. (6)

Using this result, we can determine the region for the
phase transition (i.e., Figure 2). The infection survives if
(�1,�2) is in this region for � 6= �1. In Section II-B, we
extend this condition to a general case of k � 2.
Stability analysis: Let us present the stability condition of
the ternary model. Let f1(x1, x2)=

dx1
dt

=��2x1x2+�1(1�
x1�x2)x2��x1 and f2(x1, x2) =

dx2
dt

= �2x1x2 � �x2.
Define the Jacobian matrix J = ( df

i

dx

j

)
i,j=1,2. Then, it can
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Figure 2. The phase transition region for the ternary model when �=1.

be shown that a fixed point (or an equilibrium) of the system
of differential equation defined by Eq. (1) and (2) is stable
if the determinant (Det) of J is positive and the trace (Tr)
of J is negative.
Theorem 2: We have Tr < 0 if x1 = �

�2
and Det > 0 if

x2 >

1
2 (1�

�

�1
� �

�2
).

Proof: First, we show that Det > 0 if x2 >

1
2 (1�

�

�1
� �

�2
).

We express differential of f
i

:

df1

dx1
=��2x2��1x2��,

df1

dx2
=��2x1+�1��1x1�2�1x2,

df2

dx1
= �2x2,

df2

dx2
= �2x1 � �,

If x1 = �

�2
, the Jacobian matrix J is

J=


��2x2 � �1x2 � � �� + �1 � �1�

�2
� 2�1x2

�2x2 0

�
.

Thus, Det=��2x2(��+�1��1�

�2
�2�1x2)>0 is equivalent

to 0 > �� + �1 � �1�

�2
� 2�1x2, or

x2 >

1

2
(1� �

�1
� �

�2
). (7)

Therefore, a non-trivial equilibrium (x1, x2) is stable if
x2 >

1
2 (1 � �

�1
� �

�2
), or a saddle point elsewhere. Note

that (x1, x2) = (0, 0) is a stable equilibrium since the
eigenvalues of J are less than zero.

Application 1: Let us illustrate how one can apply the results
of our ternary SIS model. Assume there is a large-scale
computer virus spreading, the detection rate of an anti-virus
software � need to be high enough in order to prevent the
spreading for the given (�1,�2). This leads to the following
vaccination strategy: the value of � need to guarantee that
(1) Eq. (4) has no feasible solution of x2 in (0, 1]; (2) Or, all
feasible solutions x2 are not stable, i.e., x2  1

2 (1�
�

�1
� �

�2
).

B. Generalized Multi-state SIS model for complete graphs

We first analyze the general SIS model for k � 2 and
the underlying network is a complete graph. Extension for
general will follow. For each s 2 {0, 1, . . . , k � 1}, let
x

s

(t) be the fraction of nodes in state s at time t. Let
(x0, x1, . . . , xk�1) be an equilibrium for the model. Then,

we obtain the following system of differential equation.

dxk�1

dt

=�k�1xk�2xk�1 � �xk�1, (8)

dxs

dt

=��s+1xsxk�1+�sxs�1xk�1��xs 8s2{1, .., k�2}, (9)

dx0

dt

= ��1x0xk�1 + �(1� x0). (10)

Setting dx

k�1

dt

= 0, we have (x
k�1 = 0) or (x

k�1 6= 0 and
x

k�2 = �

�

k�1
). We set dx

s

dt

= 0 for any 1  s  k�2, or
��

s+1xk�1xs

+ �

s

x

k�1xs�1 � �x

s

= 0. This implies that

x

s�1=

✓
�

s+1xk�1+�

�

s

x

k�1

◆
x

s

=

0

@
k�2Y

j=s

�

j+1xk�1+�

�

j

x

k�1

1

A
x

k�2.

(11)
Thus, if x

k�1 6=0, the condition
P

k�1
i=0 x

i

=1 is equiva-
lent to 1 = x

k�1+
�

�

k�1
+
P

k�2
s=1 (

Q
k�2
j=s

�

j+1xk�1+�

�

j

x

k�1
) �

�

k�1
,

which is a (k�1)-dimension equation of x
k�1. Multiplying

�1�2 . . .�k�1x
k�2
k�1 on both sides, we have

�1�2 . . .�k�1x
k�2
k�1 = (�1xk�1 + �) . . . (�k�1xk�1 + �). (12)

This holds for any k � 2, and one can check that this
argument holds via mathematical induction on k.

Now let us consider a special case in which the infection
rates are increasing geometrically with a growth rate ↵>1
so that �

k�1 = ↵�

k�2 = . . . = ↵

k�2
�1. Then, for nonzero

�1, Eq. (12) is equivalent to 1
x

k�1
= (1 + �

�1xk�1
) . . . (1 +

�

�

k�1xk�1
). For simplicity, we take � = �1. Substituting y

with 1
�x

k�1
, we have �y = (1+�y)(1+ �

↵

y) . . . (1+ �

↵

k�2 y).
Let g1(y) = �y and g2(y) = (1 + �y)(1 + �

↵

y) . . . (1 +
�

↵

k�2 y). Then, these two functions of y are positive, mono-
tone increasing, and convex for y > 0 since g2(y) = 0 has
only negative solutions y = ��,��↵, . . . ,��↵

k�2. Thus,
g1(y) = g2(y) has at most two solutions. Moreover, for a
fixed ↵, there is a tipping point �

t

(or equivalently epidemic
threshold) so that the equation has no solution if � < �

t

and
has two solutions if � > �

t

.
For instance, for the case that ↵ = 1 (i.e., the infection

rates are homogeneous), g1(y) = g2(y) is equivalent to
�y = (1 + �y)k�1. Note that the slopes of g1(y) and
g2(y) are the same at the tipping point with � = �

t

.
Since d

dy

�y = � and d

dy

(1 + �y)k�1 = �(k � 1)(1 +

�y)k�2, y = 1
�

{( �

�(k�1) )
1/(k�2) � 1} at the intersecting

point. Substituting y with 1
�

⇣
( �

�(k�1) )
1/(k�2) � 1

⌘
, we

have �

�

{( �

�(k�1) )
1/(k�2)�1} = ( �

�(k�1) )
(k�1)/(k�2). When

� is nonzero, we can derive the value of � as:

�

�

"✓
�

�(k � 1)

◆1/(k�2)

� 1

#
=

✓
�

�(k � 1)

◆(k�1)/(k�2)

�

�

"
�

1
k�2

�

1
k�2 (k � 1)

1
k�2

� 1

#
=

�

�

"
�

1
k�2

r

1
k�2 (k � 1)

k�1
k�2

#



�

1
k�2

"
1

�

1
k�2 (k � 1)

1
k�2

� 1

�

1
k�2 (k � 1)

k�1
k�2

#
= 1

� = �

(k � 1)(k�1)

(k � 2)(k�2)
. (13)

Application 2: Consider a computer virus outbreaks in a
network which is represented by G. We can devise an effec-
tive vaccination strategy from Eq. (8)-(10). For example, we
can provide an anti-virus software with a suitable detection
rate of �. When � > �

(k�2)(k�2)

(k�1)(k�1) , the fraction of nodes at
the infected state converges to zero for large t. Furthermore,
when k increases (i.e., it takes more phases to activate a
virus), the threshold for � decreases. Thus it is easier to
control the outbreak when k is larger. On the other hand, if
we want to promote a product in an online social network,
then decreasing k is crucial.

C. Generalized Multi-state SIS Model in General Graphs

Let us consider a general graph G = (V,E) with a
generalized SIS model of k � 2. Let A be the adjacency
matrix of G. For each s 2 {0, 1, ..., k�1}, let hx(i)

s

(t)i be
the average probability that node i is in state s at time t.
Let hx(i)

s1 (t), x
(j)
s2 (t)i be the average probability that node i

is in state s1 and node j is in state s2. In general graph,
the transmission rate is the rate at which infection will be
transmitted between an infected individual and a susceptible
individual. We denote the transmission rate by �

0
i

for each
i2{0, 1, ..., k�1}. Then, for each node i2V , we obtain the
following differential equation via mean-field analysis.

dhx(i)
k�1i
dt

= �

0
k�1

X

j

A

ij

hx(i)
k�2, x

(j)
k�1i � �hx(i)

k�1i, (14)

dhx(i)
s

i
dt

= ��

0
s+1

X

j

A

ij

hx(i)
s

, x

(j)
k�1i

+�

0
s

X

j

A

ij

hx(i)
s�1, x

(j)
k�1i��hx(i)

s

i

8s 2 {1, . . . , k � 2}. (15)

Note that we have x

(i)
0 = 1�

P
k�1
s=1 x

(i)
s

for each node i.
Now we give an approximation to the above true

equation in which we assume that hx(i)
s1 (t), x

(j)
s2 (t)i =

hx(i)
s1 (t)ihx

(j)
s2 (t)i. Let xs be a column vector containing x

(i)
s

for all nodes i, i.e. xs = (x(1)
s

, ..., x

(|V |)
s

). We write the
approximation equations in matrix form. For simplicity, we
omit the angle brackets.

dxk�1

dt

= �

0
k�1xk�2 � (Axk�1)� �xk�1, (16)

dxs

dt

=(�0
sxs�1��

0
s+1xs)�(Axk�1)��xs 8s2{1, .., k�2}, (17)

x0 = 1�
k�1X

s=1

x

(i)
s . (18)

where A � B is the Hadamard product of matrix A and
matrix B, (A � B)

ij

= (A)
ij

(B)
ij

. For any given graph G

and initial fraction of nodes in each states s, i.e. x(i)
s

(0), we
can numerically calculate the probability of each nodes in
each states as a function of time.

III. Numerical results for Generalized SIS Model
We conduct a set of numerical experiments using the

generalized SIS model and study the dynamics of fractions
of states for different network datasets. Our network datasets
include (i) a complete graph K

N

with N nodes, (ii) a Erdös-
Rényi random graph G(N,M) with N nodes and M edges,
and (iii) a random power law graph P (N, ✓, d,m) with N

nodes, the exponent ✓, the expected average degree d and the
maximum degree m [9]. In our experiments, the initial state
value of each node is chosen independently and uniformly
at random from {0, 1, . . . , k�1} according to a given initial
rate.

Note that although our analysis focuses on case (i), our
results can be applied to the case (ii) with some constant
factor with respect to M . Figure 3 compares the dynamics
for the ternary model with different �1 and �2 values.
Figure 3(a) shows that if there is no non-trivial stationary
equilibrium, then (x0, x1, x2) converges to (1, 0, 0) for large
t. However, if there is a stationary equilibrium, then there
is a possibility that (x1, x2) converges to another point. In
Figure 3(b), the dotted lines represent a stationary non-trivial
equilibrium (x1, x2) = (0.05, 0.897) and (x1, x2) converges
to it. Figure 3(c) and 3(d) show the analysis holds for
�

0
1 = �1/M and �

0
2 = �2/M (M = 250). It is interesting

to note that for the case (iii), our method still succeeds
to predict the equilibrium condition with �

0
1 = �1/d and

�

0
2 = �2/d (d=250), as shown in Figure 3(e) and 3(f).

IV. General SIS Model with Competing Sources
Previous work usually consider only one contagion source

which spreads virus (or information) in a network. However,
in practice, there might be more than one kind of contagions,
ideas or behaviors spreading at the same time. In this
section, we consider two competing sources: a and b, which
simultaneously spread their influence in a network. We
extend the generalized SIS model discussed in section II
to a model with two competing sources. Without loss of
generality, we assume source b is more dominant than source
a such that even a node is on its way to become activated
by source a, this node is still possible to being influenced
by its neighbors activated by source b and become activated
by source b eventually. The converse is not true, i.e. source
a has no such power over b. One application of such model
is to consider a spreading of virus a. To eliminate such
virus spreading, an antidote (source b) is introduced into the
network. We first present the formal analysis of a ternary
model in a large complete graph. Then we formulate the
model with two competing sources under a general graph.
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Figure 3. Numerical results: The dynamics of x0, x1 and x2 over time
where � = 1. (Initial fraction of nodes in different states: x0(0) =
x1(0) = x2(0) = 1/3)

A. Ternary model in a large complete graph
Let us first consider a model with two competing sources

“a” and “b” as depicted in Figure 4. In this model, the
underlying network is a large complete graph G = (V,E).
Any node v 2 V can be in one of 5 states: {0, a1, a2, b1, b2}.
Nodes in state a2 and b2 are in activation state for a and b

respectively. Nodes activated by source a (or b) can change
the state value of its neighbors, say node s, which is in state
0 or a1 (0 or b1), to state a1 or a2 (b1 or b2). Furthermore,
to represent the dominant behavior of source b, nodes in
state b2 can change their neighboring nodes in state a1 to
state b1 with a non-zero probability. Nodes in state a1 or
a2 can independently recover with a rate �

a

(recovery rate).
Similarly, nodes in state b1 or b2 can recover with a rate �

b

.
Assume that the underlying network is a complete graph. For
each state s 2 {0, a1, a2, b1, b2}, let x

s

(t) be the fraction of
nodes in state s at time t. The dynamics of the system are:

dxa1

dt

= ↵1x0xa2 � ↵2xa1xa2 � �xa1xb2 � �axa1 , (19)

dxa2

dt

= ↵2xa1xa2 � �axa2 , (20)

dxb1

dt

= �1x0xb2 � �2xb1xb2 + �xa1xb2 � �bxb1 , (21)

dxb2

dt

= �2xb1xb2 � �bxb2 , (22)

x0(t) = 1� xa1(t)� xa2(t)� xb1(t)� xb2(t). (23)

For the above system, there exists no closed-form solution,
but one can solve it numerically so to understand the impact
and dynamics of these two competing sources. We will

illustrate our numerical results in later section.
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Figure 4. A ternary SIS model with two competing sources.

B. General Multi-state model in large complete graph
Now we proceed to analyze a general SIS with two

competing sources. Let M � 2 and N � 2 be the number
of additional states for sources a and b. Noted that there is
one additional initial state 0, so the total number of states
is M + N + 1. For example, in ternary model, we have
M = N = 2. Figure 5 depicts the state-transition diagram
of this general multi-state model.
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Figure 5. The generalized SIS model with two competing sources.

Let say a node i is activated by the dominant source b and
one of its neighboring node j is in state a

i

(1  i  M�1),
we assume that node i can change node j from state a

i

to
state b1 with probability �

i

per unit time. In some real world
cases, for a node in state a

k

(1  k  N�1), a higher value
of k implies that the node is closer to being activated by the
source a. In this case, we may have �1 � �2 � ... � �M�1.
Take consumer purchase decision process as an example,
suppose M = 3, a1 is the stage that a customer have heard
about a new product and a2 is the stage that he is planing
to make a purchase. For this example, a customer in stage
a1 is easier to change his mind if he is exposed to a more
dominant product, say b. In other word, we can assume that
�1 � �2. Note that x0 = 1 �

PM
i=1 xa

i

�
PN

j=1 xb

j

. The
dynamics of the system can be specified by:

dxa1

dt

=↵1x0xaM � ↵2xa1xaM � �1xa1xbN � �axa1 , (24)

dxa
i

dt

=↵ixa
i�1xaM�↵i+1xa

i

xaM��ixa
i

xbN ��axa
i

8i 2 {2, . . . ,M� 1}, (25)
dxaM

dt

=↵MxaM�1xaM � �axaM , (26)

dxb1

dt

=�1x0xbN ��2xb1xbN +

M�1X

l=1

�lxa
l

xbN ��bxb1 , (27)

dxb
j

dt

=�jxb
j�1xbN��j+1xb

j

xbN ��bxb
j

8j2{2, ..,N�1}, (28)



dxbN

dt

=�NxbN�1xbN � �bxbN . (29)

It is easy to verify that the ternary model discussed in Sec.
IV-A is a special case of this model, where M=N =2.

C. Multi-state model in general graph

In a complete graph, we assume that the contact is
possible with the entire population. However, for general
graphs, only an activated node can influence its neighbors.
In this model, the transmission rate is the rate that a source
being transmitted between two nodes, one activated and one
non-activated, and they are connected by an edge in the
graph. In a complete graph, the transmission rate is the
rate of contacts between an activated node and all others,
whereas in general graph it is the rate of contacts between
neighboring nodes. We denote the transmission rate here by
↵

0
i

(1 iM), �0
j

(1jN ) and �

0
l

(1 lM�1). For
example, assume node i and node j are connected. Suppose
node i is in state bN (activated by source b) and node j is in
state 0, node j can change from state 0 to b1 with rate �

0
1.

Suppose another node k is in state a1. The rate that node
k will change to state b1 is �

0
1. Noted that the transmission

rate in complete graph and general graph is slightly different
with each other.

Let G = (V,E) be the underlying general graph, where
A be the adjacency matrix of G. Let M � 2 and N � 2
be the number of additional states of sources a and b.
For each s 2 {0, a1, ..., aM, b1, ..., bN }, let x

(i)
s

(t) be the
average probability that node i is in state s at time t. Let
hx(i)

s1 (t), x
(j)
s2 (t)i be the average probability that node i is in

state s1 and node j is in state s2 at time t. And we use
approximation hx(i)

s1 , x
(j)
s2 i ⇡ x

(i)
s1 x

(j)
s2 to close the equations

at the level of one-variable average. We can express the
system dynamics in matrix form:

dxa1

dt

= ↵

0
1x0 � (AxaM)� ↵

0
2xa1 � (AxaM)

��

0
1xa1 � (AxbN )� �axa1 , (30)

dxak

dt

= ↵

0
kxak�1 � (AxaM)� ↵

0
k+1xak � (AxaM)

��

0
kxak � (AxbN )� �axak (31)

8k 2 {2, ..,M�1}, (32)
dxaM

dt

= ↵

0
MxaM�1 � (AxaM)� �axaM , (33)

dxb1

dt

= �

0
1x0 � (AxbN )� �

0
2xb1 � (AxbN )

+

M�1X

l=1

�

0
lxal � (AxbN )� �bxb1 , (34)

dxbk

dt

= �

0
kxbk�1 �(AxbN )��

0
k+1xbk �(AxbN ) (35)

��bxbk 8k 2 {2, ..,N�1}, (36)
dxbN

dt

= �

0
NxbN�1 � (AxbN )� �bxbN , (37)

x0 = 1�
MX

i=1

xai �
NX

j=1

xbj . (38)
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Figure 6. Simulation results: The dynamics of x0, x
a1 , x

a2 , x
b1 and x

b2 over
time where �

a

=�

b

=1. (Initial fraction of nodes in different states: x0(0) = 0.98,
x

a2 (0) = 0.01 and x

b2 (0) = 0.01)

In fact, the above derivation is equivalent to Eqs.(24)-(29)
for complete graphs when ↵

i

=(N�1)↵0
i

for all 1 iM,
�

l

=(N�1)�0
l

for all 1 lM�1 and �

j

=(N�1)�0
j

for
all 1jN . For detailed derivation, please refer [10].

V. Numerical Results For Competing Sources
Here, we provide numerical results when the network

has two competing sources. Similar to Sec.III, we consider
networks of (i) a complete graph K

N

, (ii) a Erdös-Rényi
random graph G(N,M) with N nodes and M edges,
and (iii) a random power law graph P (N, ✓, d,m). The
initial state value of each node is chosen independently and
uniformly according to a given initial rate.

A. Ternary model
Results for ternary model: Figure 6 shows the simulation
results of ternary model in a complete graph, an ER random
graph and a random power law graph. We can observe that
when transmission rates ↵

i

and �

i

are not sufficiently large,
the epidemic will eventually die out. In Figure 6 (b)-(d), we
have ↵=50↵0, �=50�0 and �=50�0. Thus, the expected
number of contacts of an activated nodes remain the same,
and we observe similar phase transition and equilibrium in
these three networks.

Figure 7 shows the numerical results given by solving
Eq. (19) to Eq. (23) for complete graph and Eq. (30) to
Eq. (38) for general graph. Comparing Fig. 7 with Fig.
6, we can see that the numerical results of solving the
differential equations are very close to the numerical results
given by simulation. We discussed in Sec.IV that Eq. (30)-
(38) for general graph is an approximation. However, from
the experiment results, we can see that the approximation
agrees very well with the simulation results in Fig. 6.

From now on, we show only the experiments based on
complete graph K5000. We use numerical results given by
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Figure 7. Numerical results: The dynamics of x0, x
a1 , x

a2 , x
b1 and x

b2 over
time where �

a

=�

b

=1. (Initial fraction of nodes in different states: x0(0) = 0.98,
x

a2 (0) = 0.01 and x

b2 (0) = 0.01)
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Figure 8. Numerical results: The dynamics of x0, x
a1 , x

a2 , x
b1 and x

b2 over
time where the graph is K5000 and �

a

= 1. (Initial fraction of nodes in different
states: x0(0)=0.97, x

a2 (0)=0.02 and x

b2 (0)=0.01)

Eq. (19) to Eq. (23). For ER random graph and power law
graph, the results could also be applied.
Impact of delay in deploying source b: Figure 8 shows
the numerical results for which x

a2(0)=2x
b2(0)=0.02. By

setting different initial fraction of infected nodes for sources
a and b, we can examine the impact of delay in the phase-
transition process. For example, if x

a2(0)>x

b2(0), we can
assume that source b is introduced later than a. In Fig. 8 (a),
we can see that for product b, if �1,2 and � are not large
enough, it cannot compete well with product a. Eventually,
the fraction of nodes in state b2 will approach zero. On the
other hand, for a product b, if it is far more superior than
product a (i.e., � and �1,2 are sufficiently large, or �

b

is
small), potential buyers can be easily persuaded to eventually
adopt product b. Fig. 8(b) (c) and (d) correspond to these
situations, i.e., if source b is sufficiently superior, it will be
the dominant source even if it is introduced to the network
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Figure 9. Numerical results: The dynamics of x0, x
a1 , x

a2 , x
b1 and x

b2 over
time where the graph is K5000 ,↵1 = ↵2 = �1 = �2 = 16 and �

a

= �

b

= 1.
(Initial fraction of nodes in different states: x0(0) = 0.98, x

a2 (0) = 0.01 and
x

b2 (0) = 0.01)

later than source a.
Impact of �: � plays an important role for source b to be
dominant and it is shown in Figure 9. Suppose the fraction of
nodes in state a2 and state b2 are equal initially. Intuitively
speaking, a larger � means nodes in state a1 have higher
probability of being changed to state b1. From the figure, we
can observe that the larger the � is, the sooner the network
reaches its equilibrium. In addition, suppose we fix ↵1,2 and
�1,2 such that at equilibrium the fraction of nodes in state a2

is zero. In this scenario, the value of � only has impact on
the time taken to reach the equilibrium, and it has negligible
impact on the fraction of nodes in different states.
Impact of M and N : For multi-state model with one
source, as we have discussed in Sec. II, when k (i.e. the
number of steps to activate a node from state 0 increases,
the threshold for � decreases so to prevent a phase transition.
In other words, if the recovery rate � remains the same, and
if we want to maximize the influence of a source, decreasing
k is important.

For multi-state model with two competing sources, similar
conclusion can be made. Since source b is the dominant one,
we could assume that N  M (i.e. it takes less phases for
a node to be activated by dominant source b). For the ease
of presentation, we only show the fraction of nodes in state
0, state aM and state bN .

We conduct a set of experiments where M=3 and N =2.
Figure 10 shows the numerical results. Figure 10 (b) shows
even if ↵1,2,3 is larger than �1,2 and x

a3(0) = 2x
b2(0),

source a may still die out. For an application of this model,
assume source a and b are two products. If product b enters
the market later than product a, or customers who brought
product b cannot contact as much potential customers as
those who brought product a, decreasing the phase for
product b is crucial. Figure 10 (c) and (d) show that if source
a takes more phases to activate nodes, it needs to have larger
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Figure 10. Numerical results: The dynamics of x0, x
aM and x

bN over time
where the graph is K5000, M= 3, �

a

= �

b

= 1 and �

i

= 2 (1 iM�1).
(Initial fraction of nodes in different states: x

b2 (0) = 0.01)

transmission rate in order to counter the dominance of b.

VI. Related Work and Conclusion
Problem of epidemic modeling on large networks has

gained considerable attention lately. It is crucial not only
to gain the fundamental insights on how the disease, ideas
or behavior spread, but also how products get promoted in
social networks. One of the most studied epidemic models is
the Susceptible-infected-susceptible (SIS) model [11], [12],
[13]. A series of works focus on the analysis of SIS model in
different network [14], [15], [16], [17]. Some other famous
models, such as SEIR and SEIV model, that introduce the
“exposed” state have also been proposed.

However, in practice, a more general SIS model is needed.
For example, one “exposed” state between healthy and
infectious states may not be enough for modeling disease
spreading. For viral marketing, the consumer purchase deci-
sion process theory [7] suggests that there are five stages
until a consumer buys a product and influences others.
This motivates us to study and analyze a generalized SIS
model that allows multi-susceptible states before getting
infected. However, previous work cannot be easily extended
on our generalized multi-state SIS model. We use mean-
field technique to analyze our generalized model, and show
that our methodology predicts the diffusion accurately under
variety of graphs.

Recently, there is a thread of research focusing on mod-
eling and analyzing competing process. Melnik et al. [18]
proposed a model of a multi-stage complex contagion, in
which agents at different stages exert different amounts
of influence on their neighbors. Our work focused on the
generalized SIS model, in which the phase-transition process
is different from the cascade model used in [18]. Newman
[19], Aspnes el al. [20], Beutel et al. [21] and Prakash et
al. [22] studied the scenario that two sources are competing
but their models are defined differently from ours since they

did not consider intermediate stages between susceptible and
infected states. Our model considers multiple susceptible
states.

In our early research [23], we presented the idea of the
generalized SIS model. We build on that work by analyzing
more on the generalized SIS model. We also analyze two
competing sources, one dominant and one regressive, under
the generalized SIS model which allows multi-intermediate
states. And we allow the nodes being exposed to the re-
gressive source change to being influenced by the dominant
source.
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