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Abstract—Large pages are widely supported in modern hardware and OSes to reduce the overhead of TLB misses. However, memory
deduplication can be inefficient with large pages, leading to low memory utilization. To simultaneously enjoy the benefits of high
performance by accessing memory with large pages (e.g., 2 MB pages) and high deduplication rate by managing memory with base
pages (e.g., 4 KB pages), we propose Smart Memory Deduplciation (SmartMD), which is an adaptive and efficient memory
management scheme via mixed pages. Specifically, we propose lightweight schemes to periodically monitor pages’ access frequency
and repetition rate, and present an adaptive conversion scheme to selectively split or reconstruct large pages. We further optimize
SmartMD by developing SmartMDþ, which dynamically adjusts the page scanning cycle by monitoring the TLB miss cost, and
reconstructs the split large pages in an on-demand way so as to reduce the CPU overhead of SmartMD. We further implement a
prototype system and conduct extensive experiments with various workloads under different system settings. Experiment results show
that SmartMD and SmartMDþ can simultaneously achieve high access performance similar to systems using large pages, and achieve
a deduplication rate similar to that applying aggressive deduplication scheme (i.e., KSM) on base pages.

Index Terms—Memory management, virtual memory, memory deduplication, large pages, virtualization
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1 INTRODUCTION

IN modern operating systems, processor accesses to mem-
ory typically use page tables to translate virtual addresses

to physical addresses. To accelerate the translation, TLB
was introduced to cache virtual-to-physical address map-
pings. TLB has a critical impact on system performance, its
misses hinder performance by causing significant latency
and additional memory accesses to page tables [2], [3], [4].
For example, TLB misses may increase memory accesses for
page table walks by 20-40% [5], or even increase the execu-
tion time of some applications by 50% [6], [7].

Furthermore, in a hypervisor-based virtualization sys-
tem, the hypervisor and guests maintain separate page
tables, and TLB misses will lead to high-latency two-dimen-
sional (virtual machine/guest dimension and host dimen-
sion) page table walks. Previous works [8], [9] show that
this is often the primary contributor to the performance dif-
ference between virtualized and bare-metal systems, for
example, two-dimensional address translation increases the
TLB misses penalty up to 6" compared to native execu-
tion [10], [11]. In fact, the overhead of TLB misses has
become one of the primary bottlenecks of memory access [4].

Moreover, while memory size becomes increasingly larger,
TLB’s capacity cannot grow at the same rate as DRAM [4],
[12]. To reduce TLB miss ratio, large pages are introduced
in many modern hardware platforms to reduce the number
of page table entries required to cover a large memory
space. For example, X86 architectures provide the support
of 4 KB, 2 MB, and 1 GB pages, and ARM architectures also
support 4 KB, 1 MB, and 16 MB pages [13].

It is important to note that different VMs on the same
host machine often run similar operating systems (OSes) or
applications. It is highly likely that there exists a great deal
of redundant data among different VMs [14]. Thus, we can
save memory space by removing redundant data and shar-
ing only a single copy of the data among different VMs
(also known as memory deduplication). However, for mem-
ory systems with large pages (e.g., 2MB-pages), our experi-
ments show that it is hard to find duplicate large pages
even the memory contains a large amount of redundant
data (see Table 2). In other words, memory deduplication in
the unit of large page is ineffective and usually saves only a
small amount of memory space.

To enable more effective deduplication, current OSes
exploit an aggressive deduplication approach (ADA), which
aggressively splits large pages (e.g., 2 MB-pages) to base
pages (e.g., 4KB-pages) and performs deduplication among
base pages [15]. However, after the splitting, the memory
space covered by translation entries in the TLB can be sig-
nificantly reduced. Although ADA saves more memory
space, accessing the split large pages significantly increases
last level TLB miss ratio and the amount of page table
walks, thus degrading memory access performance. More-
over, the reconstruction of split large pages is not well sup-
ported in current OSes. In a system that keeps running,
there are increasingly more split pages, leading to continu-
ous degradation of memory access performance.
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In this paper, our objective is to maximize memory sav-
ing with deduplication while keeping high memory access
performance on a server hosting multiple VMs. In particu-
lar, we propose SmartMD, which aims for maximizing
memory saving while keeping high performance of memory
access. The main idea is to scan pages periodically and split
cold large pages with high repetition rate to save memory
space by memory deduplication, and at the same time, to
reconstruct split large pages when they become hot to
improve memory access performance. Due to the need of
scanning memory periodically, SmartMD may incur extra
CPU overhead. To address this issue, we further extend
SmartMD by developing an optimized version SmartMDþ.
SmartMDþ supports monitoring the cost of TLB misses,
which is defined as the percentage of page table walks, for
each VM and the host system, and these information are
used to dynamically adjust the page scanning cycle so as to
balance the VMs’ performance and memory saving. It also
uses an on-demand policy to reconstruct large pages so as
to reduce CPU overhead brought by SmartMD. The key
challenges are how to efficiently monitor repetition rate and
access frequency of pages and how to dynamically conduct
conversions between large pages and base pages so as to
achieve both high deduplication rate and high memory
access performance. The main contributions of this work
can be summarized as follows.

# We propose two lightweight schemes to monitor
pages on their access frequency and repetition rate.
Specifically, we introduce counting bloom filters and
sampling into the monitor such that it can accurately
track pages’ status with very low overhead. Addi-
tionally, we propose a labeling method to identify
duplicate pages during the monitoring, which
greatly accelerates the deduplication.

# We propose an adaptive conversion scheme which
selectively splits large pages to base pages, and also
selectively reconstructs split large pages according
to the access frequency and repetition rate of these
pages and memory utilization. With this bidirec-
tional conversion, we can take both benefits of high
memory access performance with large pages and
high deduplication rate with base pages.

# We implement a reconstruction facility by selectively
gathering scattered subpages of a split large page,
and then carefully re-create descriptor and page
table entry of the split large page. As a result, the
memory access performance can be improved by
reconstructing split large pages which turn hot.

# We design two flexible adjustment strategies based
on TLB miss ratio. Specifically, we propose a
dynamic adjustment of the page scanning cycle
according to the monitoring results of the TLB miss
ratio of the whole system. Furthermore, we recon-
struct large pages on-demand based on the moni-
tored TLB miss ratio of each VM so as to guarantee
the performance of VMs while reducing SmartMD’s
CPU overhead.

# We implement a prototype and conduct extensive
experiments to show the efficiency of SmartMD and
SmartMDþ. Results show that both of them can

simultaneously achieve high memory access perfor-
mance similar to that of large page-based systems,
and high deduplication rate similar to that produced
by aggressive deduplication schemes. Meanwhile,
SmartMDþ further reduces the CPU overhead of
SmartMD. We release the source code of SmartMD
at https://github.com/ustcadsl/SmartMD.

2 BACKGROUND AND MOTIVATION

2.1 Memory Virtualization
To efficiently utilize limited memory space, a high-perfor-
mance server hosting virtual machines (VMs) usually
dynamically allocates its memory pages to VMs on demand.
Because of the dynamic allocation, physical addresses of the
memory pages allocated to a VM are often not contiguous.
So in a hypervisor-based virtualized system, a VM uses
guest’s virtual addresses (GVA) and guest’s physical
addresses (GPA) for its memory access. GPA are logical
addresses on the host and they are mapped to host physical
addresses (HPA). To improve the address translation per-
formance from GPA to HPA, extended page tables (named
by Intel) or nested page tables (named by AMD) [16] have
been introduced. In this paper, we focus on Intel’s extended
page tables, while the design and conclusions are also appli-
cable to systems using nested page tables. With the
extended page tables, a VM will carry out a two-dimen-
sional page walk to access its data with two steps. First,
GVA are translated to their corresponding GPA using
guest’s page tables. Second, GPA are translated to their cor-
responding HPA using extended page tables.

When using base pages (i.e., 4 KB pages in X86-64 sys-
tem), both the guest’s page table and extended page table
are composed of four levels. Accessing each level of the
guest’s page table will trigger the traversal of the extended
page table. In the worst case, a two-dimensional page walk
will require 24 memory references [16], [17], which is appar-
ently unacceptable. A common practice to accelerate the
address translation is to cache frequently used global map-
ping from GVA to HPA in the TLB [18]. However, the page
tables consistently grow as memory capacity increases, and
this exacerbates the reduction of the TLB hit ratio, and
finally degrades memory access performance.

2.2 Advantage of Using Large Pages
To increase the hit ratio of TLB and speedup the address
translation in a system with a large amount of memory,
large pages have been widely adopted in today’s systems.
Specifically, a large page is composed of a fixed number of
contiguous base pages. For example, in a X86-64 system, OS
uses one 2 MB-page entry to cover a contiguous 2 MB region
of memory for its address translation, instead of using 512 4
KB-page entries to cover it. In a virtual environment, large
pages can be supported in both guest’s page tables and
extended page tables [16]. With large pages, the page table
becomes significantly smaller, and much larger memory
space can be covered by a TLB of the same size. In this way,
using large pages helps to increase TLB hit ratio, e.g., it
reduces maximum number of memory references in a 2D
page walk after a TLB miss from 24 to 15 [16].
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To show the improvement of memory access perfor-
mance with large pages, we run experiments with various
benchmarks (see Section 4 for detailed configurations of the
experiments). We present the experimental results in
Table 1. We can see that the performance can be signifi-
cantly improved for most of the benchmarks even if we use
large pages only in guest’s OS or in host’s OS. In particular,
if we use large pages in both OSes, the performance of
Graph500 is improved by up to 68% over the baseline sys-
tem in which only base page is used.

2.3 Memory Deduplication
It is common to have redundant data (i.e., same OSes or
similar applications) residing in the memory of a virtualized
machine [14]. For example, Difference Engine [19] reported
that it can achieve up to 50% memory saving and
VMware [20] also reported about 40% memory saving.
Memory deduplication among different VMs is an efficient
way to lower the memory demand and keep memory from
being overcommitted, and many modern OSes enable this
feature, e.g., Kernel Samepage Merging (KSM) in Linux [21]
and Transparent Page Sharing (TPS) in VMware ESX
server [20].

Memory deduplication schemes mainly adopt content-
based page sharing (CBPS). Its key idea is to deduplicate
multiple pages of the same content and keep only one phys-
ical copy, and make multiple virtual addresses point to this
copy for sharing by modifying the page table entries. Taking
KSM as an example, its core process is to periodically scan
the memory area marked as deduplicable to find out and
deduplicate redundant pages. As shown in Fig. 1, the work-
flow of KSM is as follows: (1) Scan pages. The KSM thread
sequentially scans the memory area with the MADV_MERGE-
ABLE tag starting from the first page. (2) Search pages with
the same content from the stable tree. KSM maintains a red-
black tree, called stable tree, for pages that have been dedu-
plicated and are shared by multiple processes. For each
scanned page, KSM first searches the same content page
from the stable tree by comparing with each page in the tree
in a byte-by-byte manner, and the scanned page is a dupli-
cate page once the comparison matches. For pages with the
same content, KSM will merge them. If a page with the
same content is not found in the stable tree, KSM keeps
searching in the unstable tree. (3) Search pages with the same
content from the unstable tree. KSM also maintains a red-black
tree named unstable tree, which keeps the candidate pages
whose contents have not been changed in the previous two

consecutive scans. Before searching the unstable tree, KSM
hashes the whole page content to get a 32-bit checksum or
signature. If the signature differs from the calculated hash
in the last scan period, then the page content must have
changed recently and it is skipped for deduplication. Other-
wise KSM will look for the same page in the unstable tree, if
it finds the identical page then perform the next step and
inserts the scanned page into the unstable tree if not.
(4) Merge same pages. After finding the same page from the
stable tree or unstable tree, KSM first determines whether
the scanned page is a large page. For each large page, it will
be split into base pages first before subsequent process-
ing [15], even in the recent 5.17-rc5 kernel release, which we
call the aggressive deduplication approach (ADA). Next,
KSM locks the scanned page and adds write protection to it,
then the pages are compared byte by byte to confirm that
their contents are identical. Finally, KSM calls the repla-

ce_page function to replace the scanned page with a page
from the stable or unstable tree to realize page merge. In
addition, if the merged page comes from an unstable tree, it
is moved from the unstable tree to the stable tree.

2.4 Impact of Large Pages on Memory
Deduplication

Unfortunately, using large pages has a significant impact on
memory deduplication, and in particular, there is a trade-
off between memory access performance and deduplication
rate. Specifically, even though there are plenty of redundant
data in the memory, there are few duplicate large pages. As
a result, if deduplication is performed in unit of a large
page, it may not be effective in removing redundant data
and saving memory.

To further demonstrate the inefficiency of memory dedu-
plication with large pages, we run experiments to show the
amount of memory saving of two policies: deduplication in
the unit of large pages and deduplication with only base
pages via ADA. Our experiments show that ADA can save
13.7% - 47.9% of used memory for the benchmarks we stud-
ied, but deduplication in the unit of large page saves only
0.8% - 5.9% of used memory (see Table 2). That is, dedupli-
cation using large pages limits memory saving.

Besides the impact on memory saving, the above two
deduplication policies also have a significant impact on
memory access performance, or particularly, the TLB hit
ratio. Specifically, by using ADA, large pages are all split
into base pages, and this makes the page table become
much larger, which finally reduces the hit ratio of TLB and
increases the page table walks. To illustrate this, we also
compare the percentage (abbreviated PCT) of page table
walks with and without ADA of four VMs by running
Graph500 and SPECjbb2005 (the detailed experiment

TABLE 1
Performance Improvement With Large Pages

Benchmark Host: Base
Guest: Large

Host: Large
Guest: Base

Host: Large
Guest: Large

SPECjbb2005 1.06 1.12 1.30
Graph500 1.26 1.34 1.68
Liblinear 1.13 1.14 1.37
Sysbench 1.07 1.09 1.20
Biobench 1.02 1.18 1.37

The performance is normalized to the case of running the benchmark on the
system using base pages in both guest and host OSes. Details of the benchmark
programs are described in Section 4.

Fig. 1. Searching same content pages in KSM.
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configuration is described in Section 4). Note that the PCT of
page table walks is defined as the percentage of CPU cycles
for page table walks normalized to the total CPU cycles of
running each application over a period of time. Note that
we have similar conclusions for other benchmarks and we
chose these two applications as examples. We record the
PCT of page table walk of an application every five seconds
and the results are shown in Fig. 2,we can see that the PCT
of page table walks without ADA is always less than 1%,
while the PCT of page table walks with ADA increases dur-
ing the execution of deduplication, as more pages are split
into base pages. In addition, ADA causes a dramatic
increase in Graph500’s page table walk percentage (i.e., up
to 60%), thus having larger performance degradation. In the
worst case, if ADA splits a large page that has high access
frequency and low repetition rate, then it must compromise
memory access performance, but brings limited memory
saving.

2.5 Motivation
As analyzed in the above subsection, there is a trade-off
between memory access performance and memory dedupli-
cation rate when using large pages. Specifically, as shown in
Table 2, with ADA (i.e., deduplication with base pages), we
can save 13.7%-47.9% of memory space, but the memory
system is slowed down by up to 30.5% due to increased
TLB misses and page table walks after splitting large pages.
Specifically, the percentage of large pages drops to 16% on
average. On the other hand, retaining large pages preserves
high memory access performance, but it loses opportunities
of reducing memory usage.

To address the above trade-off, we first carry out experi-
ments to show the statistics of memory pages for all of our
benchmarks. Our observation is that a large amount of large
pages usually have high access frequency, but they have
very few duplicate subpages, and vice versa.

Fig. 3 shows the distributions of large pages with high
access frequency or high repetition rate of a VM which runs
SPECjbb2005 for example in the interest of space. From
Fig. 3a, we can see that the SPECjbb2005 benchmark con-
stantly accesses some large pages throughout its entire run
time while other large pages are rarely accessed. Fig. 3b
shows that majority of large pages with high repetition rate
appears only in few memory regions. Comparing Fig. 3a
with Fig. 3b, we find that many large pages have high access
frequency but few duplicate subpages. In the meantime,
there exist large pages with many duplicate subpages and
low access frequency. Note that ADA ignores the status of
pages, but simply splits large pages without considering
page access frequency and repetition rate. We emphasize
that we have also conducted experiments with other bench-
marks and the results show similar trends. We also test
other repetition rates, and the results show that SmartMD
can achieve good results for all benchmarks we studied by
setting the repetition rate as 1/8.

To this end, our idea is to leverage the above observation
and develop a memory system with mixed pages so as to
simultaneously achieve high memory access performance
and also high memory saving. To realize it, we propose a
deduplication scheme which leverages the access frequency
and repetition rate of pages. Specifically, we split only large

TABLE 2
Memory Saving and Performance of Large-Page-Based Systems With/Without ADA

Policy Benchmark Memory Saving Performance

Dedup. with Huge Pages Graph500 0.37 GB(3.4%) $ 1
SPECjbb2005 0.40 GB(5.9%) $ 1
Liblinear 0.32 GB(2.0%) $ 1
Sysbench 0.09 GB(0.8%) $ 1
Biobench 0.20 GB(1.4%) $ 1

Dedup. with Small Pages Graph500 5.18 GB(47.9%) 0.695
SPECjbb2005 1.83GB(26.9%) 0.922
Liblinear 3.79 GB (23.7%) 0.846
Sysbench 2.83 GB(18.0%) 0.867
Biobench 1.88 GB(13.7%) 0.910

Memory saving is normalized to the memory demand in the system without using any deduplication. The performance is normalized to
that of the system using large pages without ADA.

Fig. 2. The percentage of page table walks with (w/) and without (w/o)
ADA in every 5 seconds. Fig. 3. Memory usage of SPECjbb2005.
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pages with high repetition rate and low access frequency
and perform deduplication among their subpages to save
more memory while maintaining high access performance.

2.6 Challenges
Lightweight Monitoring of Pages’ Status. To allow mixed
pages, we need to track the access frequency and repetition
rate of all pages, which are not directly disclosed by current
OSes. Monitoring these parameters will introduce addi-
tional overheads, so we need to design efficient mechanisms
with low overhead to track pages’ status.

Adaptive Page Conversion. Incorrect page splitting will
increase the TLB miss ratio and inappropriate page recon-
struction will produce considerable useless page copies.
Therefore, splitting large pages into base pages and recon-
structing base pages into large pages may have significant
negative impact on memory access performance. Thus, we
must carefully select right pages to split and reconstruct for
maximal efficacy and minimal side effect. Furthermore,
applications’ demands on memory and CPU may change
dynamically, so we need to identify current performance
bottleneck and resource constraint and to provide an adap-
tive conversion mechanism between large pages and base
pages to alleviate the situation.

Efficient Reconstruction of Large Pages. Note that major
OSes support splitting large pages into base pages to pro-
duce more opportunities for deduplication. However, they
do not support the reconstruction of broken large pages
which have been split and whose subpages are shared with
subpages of other large pages [15], [22]. When a split large
page turns to be hot and exhibits few redundant data, OSes
cannot reconstruct it to obtain a better access performance.
Furthermore, the locking operations during the reconstruc-
tion of large pages may substantially compromise system
performance. Thus, we need to propose an approach to effi-
ciently reconstruct large pages to improve memory access
performance. However, the implementation of such an
approach can be challenging, because it not only changes its
descriptor and page table entries of its subpages, but also
breaks the contiguity of its subpages. Even worse, some
subpages might have been freed after splitting, which
imposes difficulty on the reconstruction process.

3 DESIGN OF SMARTMD AND SMARTMDþ

To achieve both high access performance and high dedupli-
cation rate, we design an efficient memory management
system, SmartMD, which maintains mixed pages by
dynamically converting between large pages (i.e., 2M-
pages) and base pages (i.e., 4K-pages) according to the
access frequencies and repetition rates of memory pages. In

this section, we first present the design details of SmartMD,
and then introduce its design optimizations, SmartMDþ.

3.1 Overview of SmartMD
As shown in Fig. 4, SmartMD has three modules, Monitor,
Selector, and Converter. In the Monitor, we periodically scan
all large pages and base pages to record their access charac-
teristics. Specifically, we provide two lightweight schemes
to track the access frequency of pages and the number of
duplicate subpages, or the repetition rate for large pages.
This information will be used by the Selector to select candi-
date large pages for splitting or candidate base pages for
reconstruction. In particular, we propose an algorithm
which dynamically performs the selection according to the
current system memory utilization, data access frequency,
and large-page repetition rate. Finally, the Converter per-
forms the conversion between large pages and base pages.

3.2 The Monitor
The Monitor uses a thread to periodically scan pages to
measure memory utilization as well as page access fre-
quency and repetition rate. Fig. 5 illustrates the techniques
used in the Monitor and its workflow.

Monitoring Memory Utilization and Page Access Frequency.
We note that the OS already provides a utility to monitor
and disclose the size of free memory space in a system.
However, it does not provide a utility to directly monitor
and disclose page access frequency. To address this issue,
SmartMD periodically scans access bit of each page to gauge
pages’ access frequency. It clears the access bits of all pages
at the beginning of a monitoring period, and checks each of
them after check interval seconds. If the access bit of a page
is one, which is set due to a reference to the page in the
period, SmartMD will increment its access frequency by
one. Otherwise, the page was not accessed in the last period
and its access frequency is decremented by one. If a large
page has been split, we check the frequencies of its subpages
and see if any of them is larger than zero. If yes, we incre-
ment frequency of the original large page by one. However,
we keep the frequency value always in the range from 0 to
N, where N is a positive integer, and will not change it
beyond the range. We initialize the frequency of a page to
N=2when the system starts.

Detecting Repetition Rate of Pages. As mentioned before,
SmartMD takes into account memory savings and memory
access performance by splitting large pages with low access
frequency and high repetition rate. Therefore, the percent-
age of duplicate base pages in a large page (denoted by repe-
tition rate) is an important performance metric for potential

Fig. 4. Illustration of SmartMD’s architecture.

Fig. 5. Design of the monitor.
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memory savings. To measure the repetition rate of a large
page, existing approaches (e.g., KSM) use comparison trees
to identify duplicate pages [21]. However, these approaches
are mainly used in deduplication and they carry high CPU
overhead due to extensive page comparisons. For repetition
rate measurement, we only need to determine whether the
subpages in a large page are duplicates or not. Therefore,
SmartMD uses a counting bloom filter for approximate
identifications to reduce overhead.

The counting bloom filter is a one-dimensional vector,
and each of its entries is a 3-bit counter. As shown in Fig. 6,
when scanning a large page, SmartMD uses the counting
bloom filter to check whether its subpages are duplicates or
not. Specifically, when checking a subpage, SmartMD first
generates a 32-bit signature, which is produced by applying
a hash function (i.e., Hash1 in Fig. 6) on its content and
recorded to represent the page (see Section 2.3). Next,
SmartMD applies three hash functions (i.e., Hash2-Hash4)
on the subpage’s 32-bit signature to calculate the indexes of
its corresponding counters. Compared with the method of
directly hashing the entire subpage (e.g., 4 KB), our scheme
of hashing the signature of the subpage (i.e., 32-bit) is able
to save the CPU overhead and mark the access characteris-
tics of the subpages more instantly. After the above two
steps, SmartMD can get the three corresponding indexes of
a page in the counting bloom filter and increase the corre-
sponding counters/entries by one. Since each entry in the
bloom filter has 3 bits, the maximum count can be 8. If a
page is checked for the first time (i.e., its recorded signature
is not found), SmartMD will increase its corresponding
counters in the bloom filter by one. Otherwise, if all of the
counters are greater than one, we consider this page as a
duplicate one. For example, Page2 in Fig. 6 has all three
counters in the counting bloom filter greater than one, so
Page2 is a duplicate page, while Page1 has one counter
whose value is one, so it is a unique page. If a page is modi-
fied, SmartMD decrements each of its current counters by
one and increments each of its new counters by one. In addi-
tion, if a page is released, SmartMD also decrements each of
its counters by one.

To make a trade-off between memory overhead and
identification accuracy, SmartMD sets the size of the count-
ing bloom filter, in terms of counters in it, as eight times of
the number of base pages in the system. With this configura-
tion, SmartMD can ensure that the false positive of the
bloom filter is less than 3.06% [23], [24].

Despite using a secondary hashing strategy to speed up
the calculation of the repetition rate of a large page, we still
need to apply hashing to all subpages of a large page. This
hinders further acceleration of the duplicate identification.
Moreover, SmartMD adopts a sampling-based approach to
further accelerate the identification. Specifically, the Moni-
tor first samples some subpages in a large page and

calculates their hash values. It then checks whether these
sampled subpages have been modified during the previous
monitoring time period by comparing their current signa-
tures with the ones on record. If a large page has been modi-
fied or is scanned for the first time during the sampling
process, the Monitor will scan all the subpages to update
their signatures and insert them into the counting bloom fil-
ter. Meanwhile, SmartMD calculates the repetition rate of
the large page. Otherwise, the Monitor calculates the repeti-
tion rate only among the sampled subpages, instead of all
subpages in the large page, so as to reduce the overhead.
For the subpages identified by the Monitor as duplicates,
SmartMD labels them as a hint to the deduplication compo-
nent to improve its efficiency. Specifically, when a large
page is being split, SmartMD uses KSM to deduplicate
redundant pages. KSM searches the labeled pages in the
comparison trees to speed up the deduplication process.
SmartMD organizes each large page’s metadata about its
access frequency and repetition rate in a linked list. More-
over, SmartMD does not allocate extra memory space to
store signature and duplicate label of each base page, and
store them in the metadata maintained by KSM.

SmartMD’s sampling-based detecting algorithm can help
to substantially reduce the CPU overhead for most work-
loads. Experiments show that the ratio of mis-identification
of duplicate pages is less than 5% by sampling only 25%
subpages in a large page. In particular, the counting bloom
filter improves the efficiency of SmartMD in three aspects.
First, it helps SmartMD to obtain approximate repetition
rate of large pages with a small overhead. By using the repe-
tition rate, we can avoid splitting large pages with low repe-
tition rate. Second, it labels identified duplicate pages to
speed up the deduplication process of SmartMD. Third, it
reduces the number of nodes in the deduplication trees by
only splitting large pages with high repetition rate.

3.3 The Selector
To improve memory access performance, the Selector choo-
ses candidate large pages for splitting based on two metrics,
namely access frequency and repetition rate.

Identifying Cold and Hot Pages. Upon knowing pages’
access frequency from the Monitor module, the Selector
divides all pages into three categories, cold, warm, and hot,
with two thresholds, Threscold and Threshot. If a large page’s
frequency value is smaller than Threscold, it is designated as
cold. If its frequency value is greater than Threshot, it is a hot
page. All other pages are designated as warm. We denote
the gap between the two thresholds (Threshot % Threscold) as
lengthwarm. Note that the state of warm is a transition one
between the cold and hot states. We introduce it to avoid
switching between the hot and cold states too often.

Identifying Duplicate Pages.We set a repetition rate thresh-
old, Thresrepet, for the Selector to select candidate pages. In
particular, the Selector only selects large pages whose per-
centages of duplicate subpages are more than Thresrepet for
splitting, and we name these pages as duplicate large pages or
simply duplicate pages. It is important to set Thresrepet prop-
erly so as to obtain a high deduplication rate with minimal
number of split large pages. In our experiments, we find
that by setting Thresrepet ¼ 1=8, SmartMD can deduplicate

Fig. 6. Identification of duplicate pages by using a counting bloom filter.
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more than 95% of duplicate subpages and split 40% fewer
large pages than traditional aggressive deduplication
approach.

Selector Workflow. When scanning a large page, the Selec-
tor first reads its access frequency. If this page has been des-
ignated as cold, the Selector will further determine whether
its repetition rate is greater than Thresrepet. If yes, this page
is ready for splitting. On the other hand, when selecting
split large pages for reconstruction, the Selector chooses
only hot pages as candidates.

3.4 The Converter
The converter is responsible for the conversion between
large pages and base pages, including the splitting of large
pages and the reconstruction of split pages. The splitting
process can be realized by calling a system API, while OSes
do not well support the reconstruction functionality [15],
[22]. We implement a utility in SmartMD to reconstruct split
large pages. Fig. 7 illustrates this process, which consists of
the following three steps. (1) Gathering subpages. To recon-
struct a split large page, we need to ensure that all of its sub-
pages currently reside in a contiguous memory region and
are not deduplicated with other pages. If some subpages
have been deduplicated, we generate a duplicate copy for
each of these subpages, and migrate all subpages to a con-
tiguous memory space before reconstructing. (2) Writing
page descriptor. Once all subpages of a split large page have
been gathered, we re-create the page descriptor of the large
page from the page descriptors of all subpages. (3) Writing
page table. We use a single page entry to map the recon-
structed large page, and invalidate old entries about the
original subpages.

As the cost of gathering subpages for reconstruction of
large pages can be high, we propose two gathering mecha-
nisms to reduce the number of subpages that have to be
migrated. Specifically, if most of the subpages of a large
page still stay in their original physical memory locations,
we conduct in-place gathering, in which we migrate the sub-
pages that have been relocated back to their original mem-
ory locations after migrating pages currently occupying the
locations elsewhere. Otherwise, if most subpages of a split
large page have been relocated from their original memory
locations, we conduct out-of-place gathering, in which a con-
tiguous memory space of the size of a large page is allocated
and all of the large page’s subpages are migrated into the
space. Because of existence of spatial locality in the memory
access, it is expected that for a particular workload either a
high percentage of subpages of a split large page stay in the
original locations or a high percentage of them do not. Our
experiments show that for most benchmarks we tested, the

percentages are larger than 90%. By adaptively applying the
gathering mechanisms, we can significantly reduce gather-
ing cost and the reconstruction overhead.

Adaptive Page Conversion. To reduce the cost of conver-
sion between large pages and base pages, we develop an
adaptive conversion scheme to improve performance of
SmartMD based on the ratio of allocated memory size to
total memory size, i.e., utilization of the memory space. The
idea is that if the system has sufficient free memory space,
we use only large pages for high memory access perfor-
mance. On the other hand, if memory utilization becomes
high and memory page swapping may occur, we split large
pages into base pages for a high deduplication rate. Specifi-
cally, the adaptive page conversion scheme uses four
parameters to guide its conversion decision, including two
thresholds about memory utilization (memlow and memhigh)
and two thresholds about access frequency (Threscold and
Threshot). In each monitoring period, we first check the
memory utilization, and then tune the parameter Threscold
accordingly so as to dynamically identify pages to be split.
In particular, if the memory utilization is less than memlow,
we decrement Threscold by one to make more pages stay in
the warm or hot states and keep them from being split for
high memory access performance. If the memory utilization
is greater than memhigh, indicating that memory is in high
demand, we increase Threscold by one to allow more large
pages to be considered as cold pages and be eligible for
being split so as to achieve higher deduplication rate. Simi-
lar to a page’s frequency value, we also keep Threscold in the
range from 0 to N.

3.5 SmartMDþ

SmartMD is able to achieve both considerable memory sav-
ing and high memory access performance, and it can be fur-
ther optimized. In the following, we first analyze the
limitations of SmartMD, and then present the optimizations
of SmartMDþ.

Unawareness of TLBMiss Cost. SmartMD conducts conver-
sion between large pages and base pages without consider-
ing the change of the TLB miss ratio. However, the
conversion from large pages to base pages may increase the
TLB miss ratio and the number of page table walks (see Sec-
tion 2.4), which severely degrades the performance of VMs.
To further enhance the performance of VMs, we can moni-
tor the TLB miss cost (i.e., the percentage of page table
walks) and use it as an input to intelligently adjust some set-
tings of SmartMD.

Static Configuration of Scanning Cycle.SmartMD lacks elas-
ticity in tuning the page scanning cycle. Note that SmartMD
scans pages periodically after a fixed interval (i.e.,
check interval) to determine the degree of hotness of the
pages (see Section 3.2). However, the page scanning interval
is assumed to be set manually and statically. The static scan-
ning interval may hurt the system performance in terms
of the memory savings, the memory access performance
or the CPU overhead introduced. On one hand, a large
check interval value results in lower CPU overhead and
lower memory savings owing to that there is longer sleep
time between successive scanning and there are less oppor-
tunities for the Monitor to discover short-lived and cold

Fig. 7. Process of reconstructing split large pages.
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large pages with high repetition rate. On the other hand, a
small interval means that more large pages can be split into
base pages, which incurs greater TLB contention and thus
reduces the memory access performance. We refer the read-
ers to the experiments in Section 4.2, which show the impact
of the check interval value on the access performance and
memory saving.

Coarse-Grained Reconstruction. SmartMD reconstructs large
pages without differentiating the performance of each VM. Note
that SmartMD monitors the access frequency of split large
pages and reconstructs large pages if they have high access
frequency (see Section 3.4). However, this scheme ignores
the differences among VMs (e.g., the different cache miss
ratios, the differed memory access locality). Monitoring and
reconstructing split large pages for a VM with low cache
miss ratio is unnecessary and causes extra CPU overhead.

To further improve the elasticity and reduce the overhead
of SmartMD, we propose an improved version, SmartMDþ.
SmartMDþ introduces several optimization techniques to
address the above analyzed issues in SmartMD. First,
SmartMDþ supports monitoring the TLB miss cost, which is
an important metric to measure large pages’ impact on VMs’
performance. Second, SmartMDþ dynamically adjusts the
scanning interval (i.e., check interval) to balance thememory
access performance of VMs and the memory savings. Third,
SmartMDþ supports on-demand reconstruction of split large
pages,which differentiates the performance variations of dif-
ferent VMs and then realizes fine-grained page reconstruc-
tion, so as to reduce the CPU overhead. Fig. 8 illustrates the
techniques used in the SmartMDþ, which are elaborated as
follows.

Monitoring TLB Miss Cost. To support monitoring the cost
of TLB misses of each VM, we first acquire some hardware
events from CPUs’ Performance Monitoring Units (i.e,
PMUs), including the total CPU cycles of each VM and the
CPU cycles used for handling TLB misses (i.e., the CPU
cycles spent for page table walking) in each VM. Then, we
can obtain the percentage of CPU cycles which are used for
TLB misses (denoted as TLBcost) of each VM. Using a simi-
lar approach, we can monitor and calculate the TLBcost of
the whole system. We acquire hardware events once in a
second to reduce the overhead of monitoring.

Dynamic Adjustment of Scanning Cycle. SmartMD manu-
ally sets the value of the scanning interval (i.e.,
check interval), which cannot be adjusted and thus is ineffi-
cient to meet the dynamic system demands and states. To
address this issue, SmartMDþ supports dynamic adjust-
ment of the scanning interval. Specifically, SmartMDþ sets
two thresholds about the costs of the TLB misses, i.e.,
TLBlow and TLBhigh. If TLBcost of whole system is lower
than TLBlow, indicating that many large pages can be fur-
ther split into base pages, then we decrease check interval

by 500 ms to allow more cold large pages (with high repeti-
tion rate) to be split into base pages to save more memory. If
TLBcost of whole system is larger than TLBhigh, then we
increase check interval by 500 ms to obtain more hot large
pages, such that the overall memory access performance
can be improved.

On-Demand Reconstruction of Large Pages. SmartMDþ

adopts a fine-grained reconstruction mechanism based on
the TLB miss cost (i.e., TLBcost) of each VM. It sets a thresh-
old TLBthres about the TLB miss cost, and only monitors
and reconstructs split large pages in the VMs whose TLBcost

is larger than TLBthres. For the VMs with TLBcost smaller
than TLBthres, we do not need to monitor the split large
pages and the reconstruction operations are also eliminated.
This mechanism improves the performance for VMs that
have high TLB miss costs, and at the same time, save the
CPU overhead for VMs with low TLB miss costs.

4 EVALUATION

To show the efficacy and efficiency, we implement a proto-
type of SmartMD and its improved version SmartMDþ on
Linux 3.4 and conduct experiments using QEMU to manage
KVM. As described in Section 3.5, the major difference
between SmartMDþ and SmartMD is that SmartMDþ is
more intelligent by adjusting the check interval value auto-
matically and performing page conversion on demand,
while other functions are essentially the same. Therefore,
our experiments mainly focus on evaluating SmartMD
(with fixed check interval value), while we also conduct
some evaluations on SmartMDþ to show its effectiveness.
Our experiments run on a NUMA (non-uniform memory
access) server consisting of two physical NUMA nodes with
two physical CPUs. Each NUMA node has an Intel Xeon
E5-2650 v4 2.20 GHz CPU with twelve CPU cores, 32 GB
DRAM. Our server mounts a 2 TB hard disk (WD20EFRX),
and both the host and guest OSes are Ubuntu 14.04. We
boot up four VMs in parallel, each of which is assigned one
VCPU and 4 GB RAM, and all VMs are hosted on different
CPU cores in the same NUMA node. In our experiments,
we focus only on 2 MB and 4 KB pages, which are com-
monly used in most applications. We run the following
benchmark programs in each VM.Note that their memory
demands without deduplication also include the guest OS.

# Graph500 [25]. Graph500 generates and compresses
large graphs. It also runs breadth-first search on the
graph. We run Graph500 in each guest VM with the
same scale (22) and edgefactor (16). We generate
graphs initialized differently to ensure that graphs in
different VMs are different. We use average number
of edges traversed per second as the performance
metric of the benchmark. Memory usage: 2.7 GB.

# SPECjbb2005 [26]. SPECjbb2005 is a benchmark for
evaluating performance of server-side Java business
applications. We run SPECjbb2005 in each VM and
use the average bops (business operations per sec-
ond) of all VMs as its performance metric. Memory
usage: 1.7 GB.

# Liblinear [27]. Liblinear is a suite of linear classifiers
for a data set with millions of instances and features.

Fig. 8. Architecture of SmartMDþ.
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We run SVM, one benchmark program in Liblinear,
on the urlcombined dataset. The performance metric
is average execution time of the program running in
different VMs. Memory usage: 4.0 GB.

# Sysbench [28]. Sysbench is a multi-threaded bench-
mark for database. We run sysbench on Mysql by
storing all data in the buffer pool of Mysql. We use
the average number of queries performed by a VM
per second as the performance metric. Memory
usage: 2.93 GB.

# Biobench [29]. Biobench is a suite of bioinformatics
applications. We run Mummer, a program in Bio-
bench on the human-chromosomes dataset [30], and
measure its average execution time in VMs. Memory
usage: 3.42 GB.

We compare SmartMD with three other schemes on both
performance and memory usage. The first one is KSM,
which uses the aggressive deduplication approach to split
all large pages to achieve the best deduplication rate. The
second one is named no-splitting, which preserves all large
pages and performs deduplication in unit of large page to
achieve the best access performance. The third one is
Ingens [15], which is one of the state-of-the-art scheme using
mixed pages to make a trade-off between access perfor-
mance and memory saving. The fourth one is HawkEye [31],
which optimizes the management of huge pages, but still
adopts the origin KSM for memory deduplication. Default
values of the parameters used in the experiments are listed
in Table 3. We adopt the same rate at which for the schemes
to scan and identify duplicate pages for a fair comparison.

Note that with the adaptive page conversion scheme
described in Section 3.4, large page will not be split for
deduplication if there is a sufficient amount of free memory.
In the evaluation of SmartMD on its effectiveness and effi-
ciency (see Section 4.1, 4.2, 4.3, 4.4, and 4.5), we use fixed
non-zero Threshcold and Threshhot, instead of the adaptive
conversion scheme, to make sure that SmartMD comes into
effect even when the server has abundant free memory. Spe-
cifically, we set the range of a page’s access frequency from
0 to 4. Meanwhile, instead of allowing Threshcold to be
decremented to 0 due to low memory utilization, we fix it at
1 so that large pages eligible for splitting may still be pro-
duced even if the system has enough free memory. In addi-
tion, we set Threshhot to 3. We set initial access frequency of
each page to 2, lying between Threshcold and Threshhot, to
ensure that it has a chance to be classified as either hot or
cold page.

To evaluate effectiveness of SmartMD, we run experi-
ments in a memory-constrained system (see Section 4.6). In

particular, we limit the available memory space of the
host by running hugetlbfs [32]. Pages held by hugetlbfs can-
not be deduplicated or swapped out, so we can flexibly
adjust size of the host’s memory available for running
benchmarks.

The improvements of SmartMDþ over SmartMD are
mainly divided into two aspects. One is that SmartMDþ

reduces the CPU overhead via the fine-grained reconstruc-
tion strategy, and the other is that SmartMDþ simulta-
neously achieves the deduplication effect close to ADA and
the memory access performance close to no-splitting
method by dynamically tuning the page scanning cycle.
Thereby, to evaluate the effectiveness of SmartMDþ, we
compare it with SmartMD with manual settings. (see
Section 4.7).

4.1 Overhead of SmartMD
CPU Overhead. Since Graph500 has the highest repetition
rate of these applications and our goal is to study the CPU
overhead of SmartMD in the high repetition rate scenario.
We focus on Graph500 in this experiment and show the
CPU overhead of SmartMD with the other two memory
deduplication schemes. The results are shown in Table 4.
Both the monitoring thread and deduplication thread use
additional CPU cycles. No-splitting always scans and com-
pares pages at the granularity of large pages, and the con-
tent of large pages is more likely to be changed than base
pages, so fewer page comparisons are required and thus
less CPU is used. KSM and HawkEye uses aggressive dedu-
plication without tracking the status of the pages. However,
without knowing whether a large page contains duplicate
subpage(s), it has to scan all large pages and in each large
page determines whether each of its subpages is a duplicate,
leading to high CPU overhead in its deduplication. As
shown in Table 4, KSM spends more CPU time than No-
splitting, Ingens and SmartMD by 45%, 26% and 34%,
respectively. SmartMD takes more CPU time on monitoring
each large’s access frequency and repetition rate. In con-
trast, Ingens monitors only access frequency. Accordingly,

TABLE 3
Default Parameter Setting

Parameter Value Description

monitor period 6 s scanning period length
check interval 2.6 s interv. of checking access bits
Thresrepet 1/8 thresh. of repetition rate
memhigh 90% threshold of high mem. util.
memlow 80% threshold of low mem. util.
page to scan 1024 number of pages scanned by dedup-thread in each scan
sleep millisecs 20 ms time to sleep after each scan of the dedup-thread

TABLE 4
Average CPU Utilization Sampled in Every Second

Monitor thread Dedup thread Total

No-splitting 0 23.1% 23.1%
KSM/HawkEye 0 33.5% 33.5%
Ingens 5.3% 21.3% 26.6%
SmartMD 13.1% 11.9% 25.0%
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the monitoring thread of SmartMD induces 7.8% higher
CPU overhead than that of Ingens. With the knowledge on
access frequency and repetition rate of each large page, as
well as on which of its subpage are duplicates, SmartMD
can more efficiently and precisely locate large pages for
effective deduplication. As result, SmartMD’s deduplication
thread spends 9.4% lower CPU time than that of Ingens.
Comparison of deduplication effectiveness with Ingens will
be presented in Section 4.3. Note that for the scenarios
where the repetition rate is not high, SmartMD still has ben-
efits, for example, SmartMD uses bloom filter to filter out
many useless page comparisons.

Memory Overhead. SmartMD uses 3 bits to store each of
the eight counting bloom filters for each base page. Since
the size of a base page is 4 KB, the ratio of extra memory
space used to store the filters is only ð3bits"8Þ ) ð4 KBÞ ¼
3=212. For each large page, we use 32B to store its access fre-
quency, repetition rate and some necessary pointers. Since
the size of a large page is 2 MB, SmartMD requires addi-
tional 32B) 2 MB ¼ 1=216 of the memory space for large
pages. Since SmartMD is implemented based on KSM, it
can make full use of some metadata of KSM, such as the sta-
ble and unstable trees, the information about each scanned
page (e.g., the checksum and virtual address). SmartMD
itself requires only a small amount of metadata, e.g., the hot-
ness of each page, the information about whether a page is a
large page, etc. For example, 16 GB memory is used during
the running of Liblinear on four VMs, while SmartMD
needs only 12 MB to store bloom filers for base pages and
0.25 MB to store the metadata for large pages. Thus, the
memory overhead of SmartMD is negligible.

4.2 Performance and Memory Saving
In this section, we compare SmartMD with two commonly
used mechanisms in major OSes, which are KSM or no-split-
ting, using different benchmark programs on their perfor-
mance and memory usage. By aggressively splitting any
large pages to maximize deduplication opportunities, KSM
can achieve the highest memory saving. On the other hand,
no-splitting represents an optimization only on perfor-
mance by preserving all large pages. Here we study the
trade-off made by SmartMD between performance and
memory saving by comparing it with the KSM and no-
splitting.

We first show performance of the benchmarks by using
SmartMD, KSM and no-splitting in Fig. 9, where we nor-
malize the performance, whose metrics are introduced in

the description of the benchmarks in Section 4, against that
of the no-splitting. In the experiments, we use two different
check interval values (1.0 s and 2.6 s) in SmartMD to vary
the time period between resetting access bits and its next
reaching of the bits. Accordingly, SmartMD is named
SmartMD-1 s and SmartMD-2.6 s, respectively. Fig. 9 shows
that for the benchmarks SmartMD achieves nearly the same
performance as no-splitting by using a larger check inter-
val. In contrast, SmartMD improves KSM’s performance by
up to 42.7% by only splitting necessary large pages.

The results of memory saving are shown in Fig. 10.
Because no-splitting does not perform splitting of large
pages and conducts deduplication in the unit of large page,
it reduces memory usage by a small percentage (6% or less).
In contrast, SmartMD and KSM can reduce memory usage
by a much larger amount, which is usually 4" to 31" as
large as the saving received in no-splitting. From Fig. 10, we
can also see that SmartMD reduces about the same amount
of memory as KSM. Interestingly, in some execution periods
of some benchmarks, such as Liblinear, SmartMD reduces
more memory than KSM. By using counting Bloom filters
and labeling of duplicate pages, SmartMD can complete its
scan of memory to find duplicate pages much faster than
KSM, and carry out deduplication in a more timely manner.
For example, to reduce memory usage of Liblinear by
3.2 GB SmartMD-2.6 s and KSM take 118 s and 161 s,
respectively.

Looking into Figs. 9 and 10, we can see that SmartMD
takes both benefits on memory saving and access perfor-
mance. Specifically, SmartMD can save 4" to 21" as much
memory as the no-splitting scheme while keeping similar
access performance. For example, with Graph500 SmartMD
can save 3.82 GB memory space, or 35.4% of the total mem-
ory, which is 9" the memory space saved by no-splitting. In
the meantime, SmartMD can achieve up to 15.8% of perfor-
mance improvement over KSM while achieving a memory
saving similar to KSM.

Additionally, SmartMD can be configured to tune the
weight of its optimization goals between access perfor-
mance and memory saving. With SmartMD, we can
improve either the access performance or memory saving
while minimally compromising the other goal. For example,
the performance of Sysbench is improved by 12.9% with
increasing checking interval from 1.0 s to 2.6 s. Meanwhile,
the memory saving only decreases by 4.3%. This is because
SmartMD splits only large pages with low access frequency
and high repetition rate. In this way, SmartMD can ensure
that each splitting can bring benefit of memory saving but

Fig. 9. Performance of the benchmarks under various deduplication policies.
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incur small negative impact on memory access perfor-
mance. Furthermore, base pages can be opportunistically
converted back to large pages to benefit the performance of
SmartMD.

In addition, we adjust the scale (23) and edgefactor (17)
of Graph500 to consume more memory in order to analyze
the effect of VMs/applications with different sizes. The
experimental results show that SmartMD can still take both
benefits of memory saving and access performance. We find
that the performance of SmartMD-1 s, SmartMD-1.5s and
SmartMD-2.6 s are very similar, and the difference in mem-
ory saving is not significant. This means that when increas-
ing the memory footprint of VMs/applications, the
check interval needs to be adjusted to better balance the
trade-off between access performance and memory saving.

4.3 Comparison With Ingens and HawkEye
Ingens [15] and HawkEye [31] aim to provide better support
for large pages in current OSes. Specifically, Ingens enables
conversion from base pages to large pages to maintain high
memory access performance. It also selectively splits large
pages for larger deduplication rate. However, in the selec-
tion of large pages, it considers only the access frequency
and does not take into account the repetition rate. Besides, it
does not consider the change of page access frequency to
reconstruct large pages. HawkEye also optimizes huge page
management using techniques like asynchronous page pre-
zeroing and deduplication of zero-filled pages. However, it
still adopts the aggressive deduplication approach. As
Ingens and HawkEye are implemented based on Linux 4.3,
for fair comparison, we also ported SmartMD to the same
kernel version (Linux 4.3). The default values of the system
parameters used in the experiments are listed in Table 3,
note that some of the parameters are not used by Ingens
and HawkEye. Table 5 shows the performance of the bench-
mark programs, and Fig. 11 shows the memory savings.
First, compared with Ingens, SmartMD saves 1.3" to 3.5"

memory, while keeping the same performance. Note that
Ingens splits all large pages that are considered to be cold,
so it has to throttle the generation of cold pages to keep the
memory access performance close to the case of no-splitting.
This is achieved by postponing the check of access bits, but
it leaves fewer pages available for deduplication. SmartMD
can more accurately identify the right large pages (with low
access frequency and high repetition rate) for splitting,
so it reduces the chance of doing unnecessary splitting.
SmartMD also performs necessary reconstruction of large
pages to keep high memory performance. Second, for
HawkEye, we see that it still shows the trade-off between
performance and memory saving, due to its use of aggres-
sive deduplication, while SmartMD realizes the balance.

4.4 Impact of Linux Kernel
Multiple optimizations on memory deduplication are made
in recent Linux kernel. For example, for the recent Linux
5.10, it has the following optimizations compared to Linux
3.4: (1) Optimization on the stable tree. In kernel 3.4, each
node in the stable tree represents a shared page and con-
tains the information required for reverse mapping from a
shared page to virtual addresses that map this page. Linux
5.10 maintains two types of nodes in the stable tree to avoid
high latency of the reverse mapping walks on shared pages.
(2) Transparent huge page (THP) management. THP also
works for tmpfs and shared memory (i.e., shmem), instead
of only the anonymous memory mappings, and it is also
supported in NUMA architectures. Besides, Linux 5.10 also
supports more defragmentation policies, such as defer

and defer+madvise.
We also port SmartMD and HawkEye to Linux 5.10, and

we point out that Ingens cannot be easily ported to Linux
5.10, because the Linux kernel makes a lot of changes for vari-
ous modules in version 5.10, such as the radix tree, memory
cgroup, memory deduplication, transparent huge page man-
agement, memory defragmentation module, etc., while the
implementation of Ingens is closely coupled with these mod-
ules. The results evaluated on Linux kernel 5.10 are shown in
Fig. 12. First, SmartMD still achieves a better trade-off
betweenmemory saving and access performance. Second, the
performance gap between No-splitting and KSM becomes
smaller (10%) compared to the results shown in Fig. 10, and
this implies that the optimizations of huge page management
and deduplication in recent kernel also improves thememory
access performance. However, by adjusting the parameters of
KSM and THP (e.g., max_page_sharing and stable_no-

de_chains_prune_millisecs in KSM and defrag in

Fig. 10. Memory saving under various deduplication policies.

TABLE 5
Performance of SmartMD, Ingens and HawkEye

Ingens SmartMD HawkEye

Graph500 0.988 0.995 0.733
SPECjbb2005 0.990 0.991 0.910
Liblinear 0.987 0.993 0.851
Sysbench 0.983 0.990 0.896
Biobench 0.977 0.985 0.921

Results are normalized to that of No-splitting.
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THP),wefind that the gap betweenNo-splitting andKSMcan
be up to 20% or even larger. Besides, by studyingmore bench-
marks, we also find that the gap between No-splitting and
KSM may still be large for some benchmarks like
SPECjbb2005, e.g., the gap is almost the same with the result
evaluated on old kernels. Thus, the optimizations in recent
kernels do not fully address the performance issues caused
by deduplication, and SmartMD is still necessary to balance
the trade-off. Finally, we find that HawkEye has a consistent
performance with KSM even for Linux 5.10 because it uses
the same aggressive deduplication strategy like KSM.

4.5 Performance in NUMA Environment
In the above experiments, all VMs are hosted on one NUMA
node in a NUMA system. However, if they are hosted on
different nodes, deduplication may make accesses of origi-
nally local pages become more expensive ones of remote
pages, causing performance degradation.

To study the performance impact of the NUMA architec-
ture, we place two VMs on one NUMA node, and another
two on a different node and re-run the benchmarks with
SmartMD. The performance results are shown in Table 6.
As shown, running SmartMD in the NUMA environment
does cause larger performance degradation. However, the
NUMA impact is very small, as SmartMD only splits large
pages into base pages and deduplicates them only for those
with low access frequency. Thus, even if many pages are
deduplicated and relocated, only a very limited number of
remote accesses are induced.

4.6 Performance in Memory Over-Committed
Systems

In this section, we evaluate the performance with different
memory loads: no-overcommitted, slight-overcommitted
and severe-overcommitted, which correspond to scenarios
where the ratios of memory demand of an application to the
usable memory size as 0.8, 1.1, and 1.4, respectively. We

compare the performance of benchmarks using KSM,
Ingens, and No-splitting. In the interest of space, we take
Graph500 and Liblinear as examples to show, and the con-
clusions also hold for other three benchmarks. The results
are shown in Fig. 13, we can see that when the system has
sufficient memory, performance of SmartMD is close to that
of No-splitting. This is because when the memory utiliza-
tion is low, SmartMD sets the cold threshold (Threshcold) to
zero to keep large pages from being split.

With the increase of the host’s memory load, the access
performance of No-splitting drops much faster than other
three schemes. With less effective deduplication, No-split-
ting has a larger memory demand. When the demands is
larger than usable memory size, it will cause more serious
swapping of the program’s working set between the mem-
ory and the disk, significantly slowing down the program’s
execution. With few pages deduplicated and larger memory
demand than SmartMD, Ingens also shows significantly
degraded performance in a memory overcommitted system.

SmartMD outperforms the other schemes in the memory
overcommitted systems. For example, forGraph500 SmartMD
achieves up to 38.6% of performance improvement over other
schemes. Using intelligently selective and adaptive conver-
sion between large pages and base pages, SmartMD canmake
a better trade-off between memory saving and access perfor-
mance under different levels ofmemory overcommitments.

4.7 Performance of SmartMDþ

In this section, we evaluate the memory saving and perfor-
mance of SmartMDþ. We compare SmartMDþ with
SmartMD which has fixed check interval value. Here, we
also use two different check interval values for SmartMD (i.
e, 1.0 s and 2.6 s) to represent the near-optimal memory sav-
ing and the near-optimal benchmark performance when
using SmartMD. The experimental results are showed in
Figs. 14 and 15.

Fig. 11. Comparing the memory saving of SmartMD with Ingens and HawkEye.

Fig. 12. Memory saving and performance of various deduplication poli-
cies when running Graph500 on Linux 5.10.

TABLE 6
Performance Impact of NUMA Architecture

Single-CPU NUMA

Graph500 0.8% 1.6%
SPECjbb2005 0.6% 2.1%
Liblinear 0.9% 1.8%
Sysbench 1.1% 2.6%
Biobench 1.8% 3.9%

The degradation ratio is calculated by comparing with No-splitting.
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From Fig. 14, SmartMDþ has the similar memory saving
to SmartMD-1.0 s which shows the optimal memory saving
effect, while it improves the memory saving of SmartMD-
2.6 s by up to 29.4%. From Fig. 15, SmartMDþ gains the sim-
ilar benchmark performance to SmartMD-2.6 s that exhibits
the optimal memory access performance, and it improves
the benchmark performance of SmartMD-1.0 s by up to
42.3%. Note that we also conduct experiments with other
three benchmarks and the results show the same conclu-
sion. But the benefits of using SmartMDþ are not obvious
for these applications, mainly because both SmartMD-1.0s
and SmartMD-2.6 s can achieve near-optimal results in
these applications. Overall, SmartMDþ can achieve near-
optimal memory saving and near-optimal benchmark per-
formance, simultaneously. The reason is that SmartMDþ is
capable of adaptively choosing the most appropriate
check interval values for different applications based on
their TLB miss costs. It not only guarantees the performance
of the benchmark programs, but also brings a lot of memory
saving.

We further evaluate the CPU overhead of SmartMDþ

with Graph500, and compare it with SmartMD-2.6 s (see
Section 4.1). The results are showed in Table 7. From the
results, we can conclude that SmartMDþ uses 3.7% fewer
CPU cycles in its monitor thread. This is because that
SmartMDþ adopts an on-demand reconstruction mecha-
nism, and only monitors and reconstructs the split large
pages of the VMs which have high TLB miss costs. As a
result, SmartMDþ can efficiently save the CPU cycles for
monitoring and reconstruction. A side effect is that
SmartMDþ uses slightly more CPU cycles in its deduplica-
tion thread, and this is because that there are more pages
that need to be deduplicated in a shorter period of time.

5 RELATED WORK

Management of Large Pages. To efficiently use large pages,
many researchers proposed schemes to manage pages of dif-
ferent sizes [11], [33], [34]. For example, Navarro et al. [35]
provide a tool for FreeBSD to support multiple page sizes
with contiguity-awareness and fragmentation reduction. Gor-
man et al. [36] propose a placement policy for physical page
allocator, which mitigates fragmentation and increases conti-
guity by grouping pages according to whether the pages can
be migrated. Their subsequent work [37] proposes an API for
applications to explicitly request huge pages. There are also
some efforts to design hugepage-friendly memory allocation
strategies [11], [33], [34], which aim to maximize hugepage
coverage and minimize fragmentation overheads. Different
from SmartMD, the above works do not consider memory
deduplication.

Memory Deduplication.Memory deduplication has attracted
a lot of attention [19], [20], [21], [38], [39]. Besides KSM [21]
and TPS [20], there are many optimizations regarding mem-
ory deduplication. Most works focus on optimizing the dedu-
plication algorithm to achieve faster deduplication speed,
lower deduplication overhead, and higher memory savings,
e.g., UKSM [40], AMT-KSM [41], CMD [42], etc. Besides,
nukSM [43] optimizes the performance and fairness impact of
memory deduplication in NUMA. The above works can be
considered as aggressive deduplication schemes whose objec-
tive is to reducememory usage and achieve higher deduplica-
tion rate. However, they do not consider the impact of large
pages.

Some recent works also investigated deduplication in
large page systems. Ingens [15] is a recently proposed mem-
ory deduplication scheme, and it provides a coordinated
transparent huge page support for the OS and hypervisor.
HawkEye [31] and MEGA [7] also support optimized dedu-
plication with huge pages. Specifically, HawkEye [31] lever-
ages a set of simple-yet-effective algorithms to address the
performance, page fault latency and memory bloat issues of
huge page management, and MEGA also tackles problems
associated with huge pages, including increased page fault
latency, memory bloating as well as memory fragmentation
by using basic tracking mechanisms and a novel memory

Fig. 13. Performance in overcommitted systems.

Fig. 14. Memory saving between SmartMD and SmartMDþ.

Fig. 15. Performance of SmartMD and SmartMDþ.

TABLE 7
Average CPU Utilization Sampled in Every Second

Monitor thread Dedup thread Total

SmartMD-2.6 s 13.1% 11.9% 25.0%
SmartMDþ 9.4% 12.4% 21.8%
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compaction algorithm. However, both HawkEye and
MEGA do not consider the tradeoffs of memory deduplica-
tion under mixed pages.

Different from the above works, SmartMD focuses on the
trade-off of memory saving and performance when
enabling deduplication in large page based systems. In par-
ticular, SmartMD differs from the above works in the fol-
lowing aspects. First, SmartMD selectively splits large
pages according to their access frequency and repetition
rate, while Ingens only considers pages’ access frequency,
HawkEye and MEGA aggressively split all large pages. sec-
ond, SmartMD reconstructs split large pages based on their
access frequency, while Ingens reconstructs a large page as
long as most of its subpages are utilized. Finally, SmartMD
adaptively selects pages for splitting and reconstruction,
and uses sampling-based counting bloom filters and dupli-
cation labels to reduce CPU overhead of deduplication.

Wealso like to point out that the effectiveness of SmartMD is
not affected by the X86 consistency model [44], which dictates
TLBprefetches to set the access bits in the page table for the pre-
fetched page table entries. Specifically, large pages that are split
by SmartMD are accessed less frequently, so inaccurate pre-
fetch has little impact on application performance. For base
pages with high access frequency, SmartMD will merge them
into large pages, which can greatly reduce TLB entries, and this
brings benefit larger than the overhead caused by inaccurate
prefetch. In addition, as the implementation of SmartMD is
based on Linux KSM, and it simply reuses the KSM interface,
SmartMDdoes not introduce new security vulnerabilities.

6 CONCLUSION

In this work, we proposed SmartMD, an adaptive and effi-
cient scheme, to manage memory with pages of different
sizes. SmartMD can simultaneously take both the benefit of
high performance by accessing memory with large pages,
and the benefit of high deduplication rate by managing
memory with base pages. We also designed SmartMDþ via
on-demand page reconstruction and tunable page scanning,
and it further improves the performance and reduces the
CPU overhead.
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