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Boosting Information Spread:
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Abstract— The majority of influence maximization (IM) studies
focus on targeting influential seeders to trigger substantial infor-
mation spread in social networks. Motivated by the observation
that incentives could “boost” users so that they are more likely to
be influenced by friends, we consider a new and complementary
k-boosting problem which aims at finding k users to boost so
as to trigger a maximized “boosted” influence spread. The k-
boosting problem is different from the IM problem, because
boosted users behave differently from seeders. Boosted users
are initially uninfluenced, and we only increase their probability
to be influenced. This paper also complements the IM studies,
because we focus on triggering a larger influence spread on
the basis of given seeders. Both the NP-hardness of the prob-
lem and the nonsubmodularity of the objective function pose
challenges to the k-boosting problem. To tackle the problem
on general graphs, we devise two efficient algorithms with the
data-dependent approximation ratio. To tackle the problem on
bidirected trees, we present an efficient greedy algorithm and a
dynamic programming that is a fully polynomial-time approx-
imation scheme. Experiments using real social networks and
synthetic bidirected trees verify the efficiency and effectiveness
of the proposed algorithms. In particular, on general graphs,
boosting solutions returned by our algorithms achieves boosts of
influence that are up to several times higher than those achieved
by boosting intuitive solutions with no approximation guarantee.
We also explore the “budget allocation” problem experimentally,
demonstrating the benefits of allocating the budget to both seeders
and boosted users.

Index Terms— Influence maximization (IM), information
boosting, social networks, viral marketing.

I. INTRODUCTION

W ITH the popularity of online social networks, viral
marketing has become a powerful tool for companies to

promote sales. In viral marketing campaigns, companies target
influential users by offering free products or services with the
hope of triggering a chain reaction of adoption. These targeted
users are often called initial adopters or seeds. Motivated by
the need for effective viral marketing strategies, influence max-
imization (IM) has become a fundamental research problem
in the past decade. The goal of IM is usually to identify
influential initial adopters [1]–[8].
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In practical marketing campaigns, companies often consider
a mixture of promotion strategies.

Besides targeting influential users as initial adopters, we list
some others as follows.

1) Incentive Programs: Companies offer incentives, such
as coupons or free trials, to attract potential customers.
Targeted customers are more likely to be influenced by
their friends.

2) Social Media Advertising: Companies reach intended
audiences via advertising. According to the “Global
Trust in Advertising” survey [9], owned online channels
are the second most trusted advertising formats, sec-
ond only to recommendations from family and friends.
We believe that customers targeted by advertisements are
more likely to follow their acquaintances’ purchases.

3) Referral Marketing: Companies encourage customers to
refer others to use the product by offering rewards, such
as cash back. In this case, targeted customers are more
likely to influence their friends.

These marketing strategies are able to “boost” the influence
transferring through customers. Furthermore, for companies,
the cost of “boosting” a customer (e.g., the average redemption
and distribution cost per coupon, or the advertising cost
per customer) is much lower than the cost of nurturing an
influential user as an initial adopter and a product evangelist.
Although identifying influential initial adopters has actively
been studied, a very little attention has been devoted to
studying how to utilize incentive programs or other strategies
to further increase the influence spread of initial adopters.

In this paper, we study the problem of finding k boosted
users so that when their friends adopt a product, they are
more likely to make the purchase and continue to influence
others. Motivated by the need for modeling boosted cus-
tomers, we propose a novel influence boosting model. In our
model, seed users generate influence which is the same as
in the classical independent cascade (IC) model. In addition,
we introduce the boosted user as a new user type. They
represent customers with incentives, such as coupons. They
are uninfluenced at the beginning of the influence propagation
process. However, they are more likely to be influenced by
their friends and further spread the influence to others. In other
words, they “boost” the influence transferring through them.
Under the influence boosting model, we study how to boost
the influence spread given initial adopters. More precisely,
given initial adopters, we are interested in identifying k users
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among other users, so that the expected influence spread upon
“boosting” them is maximized. Because of the differences in
behaviors between seed users and boosted users, this paper is
very different from IM studies focusing on selecting seeds.

This paper also complements the studies of IM problems.
First, compared with nurturing an initial adopter, boosting a
potential customer usually incurs a lower cost. For example,
companies may need to offer free products to initial adopters,
but only need to offer coupons to boost potential customers.
With both our methods that identify users to boost and
algorithms that select initial adopters, companies have more
flexibility in allocating their marketing budgets. Second, initial
adopters are sometimes predetermined. For example, they may
be advocates of a particular brand or prominent bloggers in
the area. In this case, this paper suggests how to effectively
utilize incentive programs or similar marketing strategies to
take the influence spread to the next level.

A. Contributions

We summarize our contributions as follows.
1) We formulate a k-boosting problem that asks how to

maximize the boost of influence spread under a novel
influence boosting model. The k-boosting problem is
NP-hard. Computing the boost of influence spread is
#P-hard. Moreover, the boost of influence spread does
not possess the submodularity, meaning that the greedy
algorithm does not provide performance guarantee.

2) We present approximation algorithms PRR-Boost and
PRR-Boost-LB for the k-boosting problem. For the
k-boosting problem on bidirected trees, we present
a greedy algorithm Greedy-Boost based on a
linear-time exact computation of the boost of influ-
ence spread and a fully polynomial-time approximation
scheme (FPTAS) DP-Boost that returns near-optimal
solutions. 1 DP-Boost provides a benchmark for the
greedy algorithm, at least on bidirected trees, since it
is very hard to find near-optimal solutions in general
cases. Moreover, the algorithms on bidirected trees may
be applicable to situations where information cascades
more or less follow a fixed tree architecture.

3) We conduct extensive experiments using real social
networks and synthetic bidirected trees. Experimental
results show the efficiency and effectiveness of our
proposed algorithms and their superiority over intuitive
baselines.

B. Paper Organization

Section II provides the background. We describe the influ-
ence boosting model and the k-boosting problem in Section III.
We present the building blocks of PRR-Boost and
PRR-Boost-LB for the k-boosting problem in Section IV
and the detailed algorithm design in Section V. We present
Greedy-Boost and DP-Boost for the k-boosting problem

1An FPTAS for a maximization problem is an algorithm that given any
ϵ > 0, it can approximate the optimal solution with a factor 1 − ϵ, with
running time polynomial to the input size and 1/ϵ.

on bidirected trees in Section VI. We show experimental
results in Sections VII and VIII. Section IX concludes this
paper. Due to the space limit, we omit most of the proofs
in this paper. The full analysis can be found in our technical
report [10].

II. BACKGROUND AND RELATED WORK

In this section, we provide backgrounds about IM problems
and related works.

A. Classical Influence Maximization Problems

Kempe et al. [1] first formulated the IM problem that asks to
select a set S of k nodes so that the expected influence spread
is maximized under a predetermined influence propagation
model. The IC model is one classical model that describes
the influence diffusion process [1]. Under the IC model, given
a graph G = (V , E), influence probabilities on edges, and
a set S ⊆ V of seeds, the influence propagates as follows.
Initially, nodes in S are activated. Each newly activated node
u influences its neighbor v with probability puv . The influence
spread of S is the expected number of nodes activated at the
end of the influence diffusion process. Under the IC model,
the IM problem is NP-hard [1] and computing the expected
influence spread for a given S is #P-hard [4]. A series of
studies has been done to approximate the IM problem under
the IC model and other models [3], [4], [6]–[8], [11]–[14].

B. Influence Maximization on Trees

Under the IC model, the tree structure makes the influence
computation tractable. To devise greedy “seed-selection” algo-
rithms on trees, several studies presented methods to compute
the “marginal gain” of influence spread on trees [4], [15].
Our computation of the “marginal gain of boosts” on trees
is more advanced than the previous methods. It runs in linear
time, it considers the behavior of “boosting,” and we assume
that the benefits of “boosting” can be transmitted in both the
directions of an edge. On bidirected trees, Bharathi et al. [16]
described an FPTAS for the classical IM problem. Our FPTAS
on bidirected trees is different from theirs, because “boosting”
a node and targeting a node as a “seed” have significantly
different effects.

C. Boost the Influence Spread

Several works studied how to recommend friends or inject
links into social networks in order to boost the influence
spread [17]–[22]. Lu et al. [23] studied how to maximize the
expected number of adoptions by targeting initial adopters of
a complementing product. Chen et al. [24] considered how
to select a subset of seed content providers and a subset of
seed customers so that the expected number of influenced
customers is maximized. Their model differs from ours in that
they consider only influence originators selected from content
providers, which are separated from the social network, and
the influence boost is only from content providers to con-
sumers in the social network. Yang et al. [22] studied how
to offer discounts assuming that the probability of a customer
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Fig. 1. Example of the influence boosting model (S ={s}).

being an initial adopter is a function of the discounts. Different
from the above-mentioned studies, we study how to boost the
spread of influence when seeds are given. This paper is an
extended version of our conference paper [25] that formulated
the k-boosting problem and presented algorithms for it. We add
two new algorithms that tackle the k-boosting problem in
bidirected trees and report new experimental results.

III. MODEL AND PROBLEM DEFINITION

In this section, we first define the influence boosting model
and the k-boosting problem. Then, we highlight the challenges.

A. Model and Problem Definition

The traditional studies of the IM problem focus on how
to identify a set of k influential users (or seeds) who can
trigger the largest influence diffusion. In this paper, we aim to
boost the influence propagation assuming that seeds are given.
We first define the influence boosting model.

Definition 1 (Influence Boosting Model): Suppose that we
are given a directed graph G = (V , E) with n nodes and m
edges, two influence probabilities puv and p′uv (with p′uv >
puv) on each edge euv , a set S ⊆ V of seeds, and a set B ⊆ V
of boosted nodes. Influence propagates in discrete time steps
as follows. If v is not boosted (resp. is boosted), each of its
newly activated in-neighbor u influences v with probability
puv (resp. p′uv ).

In Definition 1, we assume that “boosted” users are more
likely to be influenced. This paper can also be adapted to
the case where boosted users are more influential. If a newly
activated user u is boosted, she influences her neighbor v with
probability p′uv instead of puv . To simplify the presentation,
we focus on the influence boosting model in Definition 1.

Let σS(B) be the expected influence of S upon boosting
nodes in B . We refer to σS(B) as the boosted influence spread.
Let #S(B) = σS(B)−σS(∅). We refer to #S(B) as the boost
of influence spread of B or simply the boost of B . Consider the
example in Fig. 1. We have σS(∅) = 1.22, which is essentially
the influence of S in the IC model. When we boost node v0,
we have σS({v0}) = 1 + 0.4 + 0.04 = 1.44, and #S({v0}) =
0.22. We now formulate the k-boosting problem.

Definition 2 (k-Boosting Problem): Given a directed graph
G = (V , E), influence probabilities puv and p′uv on every edge
euv , and a set S ⊆ V of seed nodes, find a boost set B ⊆ V
with k nodes, such that the boost of influence spread of B is
maximized. That is, find B∗ = arg maxB⊆V ,|B|≤k #S(B).

By definition, the k-boosting problem is very different
from the classical IM problem. Moreover, boosting nodes
that significantly increase the influence spread when used as
additional seeds could be extremely inefficient. For example,

in Fig. 1, if we are allowed to select one more seed, we should
select v1. However, if we can boost a node, boosting v0
is much better than boosting v1. Section VII provides more
experimental results.

B. Challenges of the Boosting Problem

We now analyze the k-boosting problem and show the
challenges. Theorem 1 summarizes the hardness results.

Theorem 1 (Hardness): The k-boosting problem is NP-
hard. Computing #S(B) given S and B is #P-hard.

Proof: The NP-hardness is proved by a reduction from the
NP-complete set cover problem [26]. The #P-hardness of the
computation is proved by a reduction from the #P-complete
counting problem of s-t connectedness in directed graphs [27].
The full analysis is in our technical report [10].

1) Nonsubmodularity of the Boost of Influence: Because of
the above-mentioned hardness results, we explore approxima-
tion algorithms to tackle the problem. In most IM problems,
the influence of the seed set S (i.e., the objective function) is
a monotone and submodular function of S.2 Thus, a natural
greedy algorithm provides an approximation guarantee [1],
[6]–[8], [14], [28]. However, the objective function #S(B)
in our problem is neither submodular nor supermodular on
the set B of boosted nodes. On the one hand, when we
boost several nodes on different parallel paths from seeds,
their overall boosting effect exhibits a submodular behavior.
On the other hand, when we boost several nodes on a path
starting from a seed, their boosting effects can be cumulated,
generating a larger overall effect than the sum of their individ-
ual boosting effect. This is in fact a supermodular behavior.
The nonsubmodularity of #S(·) indicates that the boosting set
returned by the greedy algorithm may not have the (1− 1/e)-
approximation guarantee. Therefore, the nonsubmodularity of
the objective function poses an additional challenge.

IV. BOOSTING ON GENERAL GRAPHS: BUILDING BLOCKS

In this section, we present three building blocks for solv-
ing the k-boosting problem: 1) a state-of-the-art IM frame-
work; 2) the potentially reverse-reachable graph (PRR-graph)
for estimating the boost of influence spread; and 3) the
sandwich approximation (SA) strategy [23] for maximizing
nonsubmodular functions. Our algorithms PRR-Boost and
PRR-Boost-LB integrate the three building blocks. We will
present their detailed algorithm design in Section V.

A. State-of-the-Art Influence Maximization Techniques

One state-of-the-art IM framework is the IM via martin-
gale (IMM) method [8] based on the idea of reverse-reachable
sets (RR-sets) [6]. We utilize the IMM method in this paper,
but other RR-set-based frameworks such as the Stop-and-Stare
Algorithm (SSA) and the Dynamic Stop-and-Stare Algorithm
(D-SSA) [14] could also be applied.

2A set function f is monotone if f (S) ≤ f (T ) for all S ⊆ T ; it is
submodular if f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T ) for all S ⊆ T
and v ̸∈ T , and it is supermodular if − f is submodular.
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Fig. 2. Example of a PRR-graph.

1) RR-Sets: An RR-set for a node r is a random set R
of nodes, such that for any seed set S, the probability that
R ∩ S ̸= ∅ equals the probability that r can be activated by S
in a random diffusion process. Node r may also be selected
uniformly at random from V , and the RR-set will be generated
accordingly with r . One key property of RR-sets is that the
expected influence of S equals to n · E[I(R ∩ S ̸= ∅)] for all
S ⊆ V , where I(·) is the indicator function and the expectation
is taken over the randomness of R.

2) General IMM Algorithm: The IMM algorithm has two
phases. The sampling phase generates a sufficiently large
number of random RR-sets such that the estimation of the
influence spread is “accurate enough.” The node selection
phase greedily selects k seed nodes based on their estimated
influence spread. If generating a random RR-set takes time
O(E PT ), IMM returns a (1 − 1/e − ϵ)-approximate solution
with probability at least 1− n−ℓ and runs in O(E PT /O PT ·
(k + ℓ)(n + m) log n/ϵ2) expected time, where O PT is the
optimal expected influence.

B. Potentially Reverse-Reachable Graphs

We now describe how we estimate the boost of influence.
The estimation is based on the concept of the PRR-graph

defined as follows.
Definition 3 (Potentially Reverse-Reachable Graph): Let r

be a node in G. A PRR-graph R for a node r is a random
graph generated as follows. We first sample a deterministic
copy g of G: each edge euv is “live” in g with probability puv ,
“live-upon-boost” with probability p′uv − puv , and “blocked”
with probability 1− p′uv . The PRR-graph R is the minimum
subgraph of g containing all paths from seed nodes to r
through nonblocked edges in g. We refer to r as the “root
node.” When r is also selected from V uniformly at random,
we simply refer to the generated PRR-graph as a random PRR-
graph (for a random root).

Fig. 2 shows an example of a PRR-graph R. Node r is the
root node. Shaded nodes are seed nodes. Solid, dashed, and
dotted arrows with crosses represent live, live-upon-boost, and
blocked edges, respectively. The PRR-graph R is the subgraph
in the dashed box. Nodes and edges outside the dashed box
do not belong to the PRR-graph, because they are not on any
paths from seed nodes to r that only contain nonblocked edges.
By definition, a PRR-graph may contain loops. For example,
in Fig. 2, R contains a loop among nodes v1, v5, and v2.

1) Estimating the Boost of Influence: Let R be a given PRR-
graph with root r . By definition, every edge in R is either
live or live-upon-boost. We say that a path in R is live if and
only if it contains only live edges. We say that a path is live
upon boosting B if and only if the path is not a live one,
but every edge euv on it is either live or live-upon-boost with
v ∈B . For example, in Fig. 2, the path from v3 to r is live, and
the path from v7 to r via v4 and v1 is live upon boosting {v1}.
Define fR(B) : 2V→{0, 1} as: fR(B) = 1 if and only if, in R:
1) there is no live path from seed nodes to r and 2) a path from
a seed node to r is live upon boosting B . In Fig. 2, if B = ∅,
there is no live path from the seed node v7 to r upon boosting
B . Therefore, we have fR(∅) = 0. There is a live path from the
seed node v7 to r if we boost v1, thus we have fR({v1}) = 1.
Similarly, we have fR({v3}) = fR({v2, v5}) = 1. Based on the
above-mentioned definition of fR(·), we have the following
lemma.

Lemma 1: For any B ⊆ V , we have n ·E[ fR(B)] = #S(B),
where the expectation is taken over the randomness of R.

Proof: For a random PRR-graph R, Pr[ fR(B) = 1] equals
the difference between probabilities that a random node in G
is activated given that we boost B and ∅.

Let R be a set of independent random PRR-graphs, and
define

#̂R(B) = n
|R| ·

∑

R∈R
fR(B), ∀B ⊆ V . (1)

By the Chernoff bound, #̂R(B) closely estimates #S(B) for
any B ⊆ V if |R| is sufficiently large.

C. Sandwich Approximation Strategy

To tackle the nonsubmodularity of function #S(·), we apply
the SA strategy [23]. First, we find submodular lower and
upper bound functions of #S , denoted by µ and ν. Then,
we select node sets B#, Bµ, and Bν by greedily maximizing
#S , µ, and ν under the cardinality constraint of k. Ideally,
we return Bsa = arg maxB∈{Bµ,Bν ,B#} #S(B) as the final
solution. Let the optimal solution of the k-boosting problem
be B∗ and let O PT = #S(B∗). Suppose that Bµ and Bν are
(1− 1/e− ϵ)-approximate solutions for maximizing µ and ν;
then, we have

#S(Bsa) ≥
µ(B∗)
#S(B∗)

· (1− 1/e− ϵ) · O PT (2)

#S(Bsa) ≥
#S(Bν)

ν(Bν)
· (1− 1/e− ϵ) · O PT . (3)

Thus, to obtain a good approximation guarantee, at least one
of µ and ν should be close to #S . In this paper, we derive
a submodular lower bound µ of #S using the definition of
PRR-graphs. Because µ is significantly closer to #S than any
submodular upper bound we have tested, we only use the
lower bound function µ and the “lower bound side” of the
SA strategy with approximation guarantee in Inequality (2).

1) Submodular Lower Bound of #S: Let R be a PRR-graph
with the root node r . Let CR = {v| fR({v}) = 1}. We refer
to nodes in CR as critical nodes of R. Intuitively, the root
node r becomes activated if we boost any node in CR . For
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Fig. 3. Generation of a PRR-graph (solid and dashed arrows represent live
and live-upon-boost edges, respectively). (a) Results of phase I. (b) Results
of phase II.

any B ⊆ V , define f −R (B) = I(B ∩ CR ̸= ∅) and µ(B) = n ·
E[ f −R (B)] where the expectation is taken over the randomness
of R. Lemma 2 shows the properties of function µ.

Lemma 2: We have µ(B) ≤ #S(B) for all B ⊆ V .
Moreover, µ(B) is a submodular function of B .

Proof: For all B⊆V , we have µ(B)≤#S(B), because we
have f −R (B) ≤ fR(B),∀R. Moreover, µ(B) is submodular on
B , because f −R (B) is submodular on B for any PRR-graph R.

Our experiments show that µ is close to #S especially for
small k (e.g., less than a thousand). Define

µ̂R(B) = n
|R| ·

∑

R∈R
f −R (B) ∀B ⊆ V .

Because f −R (B) is submodular on B for any PRR-graph R,
µ̂R(B) is submodular on B . Moreover, by the Chernoff bound,
µ̂R(B) is close to µ(B) when |R| is sufficiently large.

V. BOOSTING ON GENERAL GRAPHS:
ALGORITHM DESIGN

In this section, we first present how we generate random
PRR-graphs. Then, we obtain the overall algorithms by inte-
grating all building blocks.

A. Generating Random PRR-Graphs

We classify PRR-graphs into three categories. Let R be a
PRR-graph with root node r .

1) Activated: If there is a live path from a seed node to r .
2) Hopeless: There is no path from seeds to r with at most

k nonlive edges.
3) Boostable: Not the above two categories.
If R is not boostable [i.e., case 1) or 2)], we have fR(B) =

f −R (B) = 0 for all B ⊆ V . Therefore, for “nonboostable”
PRR-graphs, we only count their occurrences and we terminate
the generation of them once we know that they are not boost-
able. Algorithm 1 depicts the generation of a random PRR-
graph in two phases. The first phase (Lines 1–19) generates a
PRR-graph R. If R is boostable, the second phase compresses
R to reduce its size. Fig. 3 shows the results of two phases,
given that the status sampled for every edge is the same as
that in Fig. 2.

Phase I (Generating a PRR-Graph): Let r be a random
node. We include into R all nonblocked paths from seed nodes

Algorithm 1 Generating a Random PRR-Graph (G, S, k)

1 Select a random node r as the root node;
2 if r ∈ S then return R is activated
3 Create a graph R with a singleton node r ;
4 Create a double-ended queue Q with (r, 0);
5 Initialize dr [r ]← 0 and dr [v]← +∞,∀v ̸= r ;
6 while Q is not empty do
7 (u, dur )← Q.dequeue_front();
8 if dur > dr [u] then continue; // we’ve

processed u
9 for each nonblocked incoming edge evu of u do

10 dvr ← I(evu is live-upon-boost) + dur ;
11 if dvr > k then continue; // pruning
12 Add evu to R;
13 if dvr < dr [v] then
14 dr [v]← dvr ;
15 if v ∈ S then
16 if dr [v] = 0 then return R is activated

17 else if dvr =dur then Q.enqueue_front((v, dvr))
18 else Q.enqueue_back((v, dvr))

19 if there is no seed in R then return R is hopeless
20 Compress the boostable R to reduce its size;
21 return a compressed boostable R

to r with at most k live-upon-boost edges via a backward
breadth-first search (BFS) from r . The status of each edge (i.e.,
live, live-upon-boost, and blocked) is sampled when we first
process it. The detailed backward BFS is as follows. Define
the distance from u to v as the minimum number of nodes
we have to boost so that at least a path from u to v becomes
live. For example, in Fig. 3(a), the distance from v7 to r is
1. We use dr [·] to maintain the distances from nodes to the
root node r . Initially, we have dr [r ] = 0 and we enqueue
(r, 0) into a double-ended queue Q. We repeatedly dequeue
and process a node–distance pair (u, dur ) from the head of Q,
until the queue is empty. Note that the distance dur in a pair
(u, dur ) is the shortest known distance from u to r when the
pair was enqueued. Thus, we may find dur > dr [u] in Line 8.
Pairs (u, dur ) in Q are in the ascending order of the distance
dur , and there are at most two different values of distance
in Q. Therefore, we process nodes in the ascending order of
their shortest distances to r . When we process a node u, for
each of its nonblocked incoming edge evu , we let dvr be the
shortest distance from v to r via u. If dvr > k, all paths from
v to r via u are impossible to become live upon boosting at
most k nodes; therefore, we ignore evu in Line 11. This is in
fact a pruning strategy, which is effective especially for small
values of k. If dvr ≤ k, we insert evu into R, update dr [v], and
enqueue (v, dvr ) if necessary. If we find out that the distance
from a seed node to r is zero, we know that R is activated,
and we terminate the generation (Line 16). If we do not visit
any seed node during the backward BFS, R is hopeless and
we terminate the generation (Line 19).



LIN et al.: BOOSTING INFORMATION SPREAD: AN ALGORITHMIC APPROACH 349

Remarks: At the end of phase I, R may include extra nodes
and edges (e.g., nonblocked edges not on any nonblocked
paths from seeds to the root). For example, Fig. 3(a) shows
the results of the first phase, given that we are constructing a
PRR-graph according to the root node and sampled edge status
in Fig. 2. There is an extra edge from v8 to v2. All extra nodes
and edges will be removed in the compression phase.

Phase II (Compressing the PRR-graph): When we reach
Line 20, R is boostable. In practice, we observe that we can
remove and merge a significant fraction of nodes and edges
from R while keeping the values of fR(B) and f −R (B) for all
|B| ≤ k the same as before. Therefore, we compress boostable
PRR-graphs to prevent the memory usage from becoming a
bottleneck. Fig. 3(b) shows the compressed result. The com-
pression phase contains two steps. First, observing that nodes
v4 and v7 are activated without boosting any node, we merge
them into a single “superseed” node. Then, we remove nodes
v6 and v8 and their incident edges, because they are not on
any paths from the superseed node to the root node r . Next,
observing that there are live paths from nodes v0, v1, v2, and
v3 to root r , we remove their outgoing edges and directly link
them to r . After doing so, we remove node v0, because it
is not on any path from the superseed node to r . It is easy
to see that the compression phase could be done by several
passes of forward BFS from seeds or backward BFS from the
root node. Thus, the compression phase runs in time linear
to the number of uncompressed edges. Due to space limit,
we omit the detailed description of the compression phase
here and refer interested readers to our previous conference
paper [25] or our technical report [10].

B. PRR-Boost Algorithm

Algorithm 2 depicts PRR-Boost. It integrates PRR-graphs,
the IMM algorithm, and the SA strategy.

Algorithm 2 PRR-Boost(G, S, k, ϵ, ℓ)

1 ℓ′ = ℓ · (1 + log 3/ log n);
2 R← SamplingLB(G, S, k, ϵ, ℓ′) ; // sampling in
IMM [8] using the PRR-graph generation
of Algo. 1

3 Bµ← NodeSelectionLB(R, k) ; // maximize µ
4 B#← NodeSelection(R, k) ; // maximize #S

5 Bsa = arg maxB∈{B#,Bµ} #̂R(B);
6 return Bsa

Lines 1–3 utilize the IMM algorithm [8] with the PRR-
graph generation to maximize the lower bound µ of #S under
the cardinality constraint of k. Lines 4 greedily selects a set
B# of nodes with the goal of maximizing #S , and we reuse
PRR-graphs in R to estimate #S(·). Ideally, we should return
Bsa = arg maxB∈{Bµ,B#} #S(B). Because evaluating #S(B) is
#P-hard, we select Bsa between Bµ and B# with the larger
estimated boost of influence in Lines 5.

Theorem 2 summarizes the theoretical result of
PRR-Boost.

Theorem 2: With a probability of at least 1 − n−ℓ,
PRR-Boost returns a (1 − 1/e − ϵ) · µ(B∗)

#S(B∗) -approximate
solution. Moreover, it runs in O(E PT /O PTµ · k · (k +
ℓ)(n+m) log n/ϵ2) expected time, where E PT is the expected
number of edges explored for generating a random PRR-graph.

Due to space limit, we omit the detailed analysis, and we
refer interested readers to our previous paper [25] or our
technical report [10]. The approximation ratio in Theorem 2
depends on (µ(B∗)/#S(B∗)), which should be close to 1 if the
lower bound function µ(B) is close to the boost of influence
#S(B), when #S(B) is large. Section VII demonstrates that
µ(B) is indeed close to #S(B) in real data sets.

C. PRR-Boost-LB Algorithm

PRR-Boost-LB is a simplification of PRR-Boost where
we return the node set Bµ as the final solution. Recall that the
estimation of µ only relies on the critical node set CR of
each boostable PRR-graph R. In the first phase of the PRR-
graph generation, if we only need to obtain CR , there is no
need to explore incoming edges of a node v if dr [v] > 1.
Moreover, in the compression phase, we can obtain CR right
after computing dS[·] and we can terminate the compression
earlier. The sampling phase of PRR-Boost-LB usually runs
faster, because we only need to generate CR for each boostable
PRR-graph R. In addition, the memory usage is significantly
lower than that for PRR-Boost, because the average number
of “critical nodes” in a random boostable PRR-graph is
small in practice. In summary, compared with PRR-Boost,
PRR-Boost-LB has the same approximation factor but runs
faster than PRR-Boost. We will compare PRR-Boost and
PRR-Boost-LB by experiments in Section VII.

D. Discussion: Budget Allocation Problem

A question that one may raise is what is the best strategy
if companies could freely decide how to allocate budget on
both seeding and boosting. A heuristic method combining
IM algorithms and PRR-Boost is as follows. We could
test different budget allocation strategies. For each allocation,
we first identify seeds using any IM algorithm, then we
find boosted user by PRR-Boost. Finally, we could choose
the budget allocation strategy leading to the largest boosted
influence spread among all tested ones. In fact, the budget allo-
cation problem could be much harder than the k-boosting
problem itself, and its full treatment is beyond the scope of
this paper and is left as a future work.

VI. BOOSTING ON BIDIRECTED TREES

In this section, we study the k-boosting problem where
influence propagates on bidirected trees.

On bidirected trees, the computation of the boost of influ-
ence spread becomes tractable. We are able to devise an
efficient greedy algorithm and an approximation algorithm
with a near-optimal approximation ratio. This demonstrates
that the hardness of the k-boosting problem is partly due to
the graph structure, and when we restrict to tree structures,
we are able to find near-optimal solutions. Moreover, using
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Fig. 4. Bidirected tree with four nodes and six directed edges.

near-optimal solutions as benchmarks enables us to verify that
a greedy node selection method on trees in fact returns near-
optimal solutions in practice. Besides, our efforts on trees will
help to designing heuristics for the k-boosting problem on
general graphs or for other related problems in the future.

A. Bidirected Trees

A directed graph G is a bidirected tree if and only if its
underlying undirected graph (with directions and duplicated
edges removed) is a tree. For simplicity of notation, we assume
that every two adjacent nodes are connected by two edges, one
in each direction. We also assume that nodes are activated with
probability less than 1, because nodes that will be activated
for sure could be identified in linear time and they could be
treated as seeds. Fig. 4 shows an example of a bidirected
tree. The existence of bidirected edges brings challenges to
the algorithm design, because the influence may flow from
either direction between a pair of neighboring nodes.

In this section, we first present how to compute the exact
boosted influence spread on bidirected trees and a greedy
algorithm Greedy-Boost based on it. Then, we present
a rounded dynamic programming DP-Boost, which is an
FPTAS. Greedy-Boost is efficient but does not provide the
approximation guarantee. DP-Boost is more computationally
expensive but guarantees a near-optimal approximation ratio.

B. Computing the Boosted Influence Spread

We first present how to compute the boosted influence
spread in a bidirected tree. It serves as a building block for
the greedy algorithm that iteratively selects nodes with the
maximum marginal gain of the boosted influence spread.

We separate the computation into three steps.
1) We refer to the probability that a node gets activated (i.e.,

influenced) as its “activation probability.” For every
node u, we compute the increase of its activation prob-
ability when it is inserted into B .

2) If we regard node u as the root of the tree, the remaining
nodes could be categorized into multiple “subtrees,” one
for each neighbor of u. For every node u, we com-
pute intermediate results that help us to determine the
increase of influence spread in each such “subtree” if
we insert u into B .

3) Based on the previous results, we compute σS(B) and
σS(B ∪ {u}) for every node u. If necessary, we are able
to obtain #S(B ∪ {u}) from σS(B ∪ {u})− σS(∅).

1) Notations: Let pB
u,v be the influence probability of an

edge euv given that we boost nodes in B . Similarly, let pb
u,v

be the influence probability of euv , where b ∈ {0, 1} indicates
whether v is boosted. We use N(u) to denote the set of
neighbors of node u. Given neighboring nodes u and v, we use

Algorithm 3 Computing Activation Probabilities

1 Initialize apB(u\v),∀u, v ∈ N(u) as “not computed”;
2 foreach u ∈ V do
3 foreach v ∈ N(u) do
4 ComputeAP(u, v); // compute apB(u\v)

5 foreach u ∈ V do
6 if u ∈ S then apB(u)← 1 else

apB(u)← 1−∏
v∈N(u)(1− apB(v\u) · pB

v,u)

7 if we have not computed apB(u\v) then
8 if u ∈ S then apB(u\v)← 1
9 else if we have not computed apB(u\w) for any

w ∈ N(u)\{v} then
10 foreach w ∈ N(u)\{v} do ComputeAP(w, u)

apB(u\v)←1−∏
w∈N(u)\{v}(1−apB(w\u)pB

w,u);

11 else
12 Suppose we know apB(u\w) for w ∈ N(u)\{v};
13 ComputeAP(w, u);

14 apB(u\v)← 1− (1− apB(u\w)) · 1−apB(w\u)·pB
w,u

1−apB(v\u)·pB
v,u

;

Gu\v to denote the subtree of G obtained by first removing
node v and then removing all nodes not connected to u.
To avoid cluttered notation, we slightly abuse the notation and
keep using S and B to denote seed users and boosted users in
Gu\v , although some nodes in S or B may not be in Gu\v .

Step I (Activation Probabilities): For node u, let apB(u) be
the activation probability of u when we boost B . For v ∈ N(u),
let apB(u\v) be the activation probability of node u in Gu\v
when we boost B . For example, in Fig. 4, suppose B = ∅,
we have apB(v0) = 1 − (1− p)2 = 0.19 and apB(v0\v1) =
p = 0.1. We have the following lemma.

Lemma 3: Given a node u, if u is a seed node (i.e., u ∈ S),
we have apB(u) = 1 and apB(u\v) = 1 for all v ∈ N(u).
Otherwise, we have

apB(u) = 1−
∏

v∈N(u)

(
1−apB(v\u) · pB

v,u
)

(4)

apB(u\v) = 1−
∏

w∈N(u)\{v}

(
1−apB(w\u) · pB

w,u
)

∀v ∈ N(u) (5)

apB(u\v) = 1−
(
1−apB(u\w)

)
· 1−apB(w\u) · pB

w,u

1−apB(v\u) · pB
v,u

∀v,w ∈ N(u), v ̸= w.

(6)

Algorithm 3 depicts how we compute activation proba-
bilities. Lines 1–4 initialize and compute apB(u\v) for all
neighboring nodes u and v. Lines 5–7 compute apB(u) for
all nodes u. The recursive procedure ComputeAP(u, v) for
computing apB(u\v) works as follows. Lines 9 avoids the
recomputation. Lines 10 handles the trivial case where node
u is a seed. Lines 11–13 compute the value of apB(u\v)
using (5). Lines 14–17 compute apB(u\v) more efficiently
using (6), taking advantages of the known apB(u\w) and
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apB(v\u). Note that in Line 17, the value of apB(v\u) must
have been computed, because we have computed apB(u\w),
which relies on the value of apB(v\u). For node u, given
the values of apB(w\u) for all w ∈ N(u), we can compute
apB(u\v) for all v ∈ N(u) in O(|N(u)|). Then, for node
u, given the values of apB(w\u) for all w ∈ N(u), we can
compute apB(u) in O(|N(u)|). Therefore, the time complexity
of Algorithm 3 is O(

∑
u |N(u)|) = O(n), where n is the

number of nodes in the bidirected tree.
Step II (More Intermediate Results): Given that we boost B ,

we define gB(u\v) as the gain of the influence spread in Gu\v
when we add node u into the current seed set S. Formally,
gB(u\v) is defined as gB(u\v) = gma

Gu\v
S∪{u}(B)−gma

Gu\v
S (B),

where gma
Gu\v
S (B) is the boosted influence spread in Gu\v

when the seed set is S and we boost B . In Fig. 4, we have
Gv0\v1 = G\{e01, e10}. Suppose B = ∅, when we insert v0
into S, the boosted influence spread in Gv0\v1 increases from
1.11 to 2.1, thus gB(v0, v1) = 0.99. We compute gB(u\v) for
all neighboring nodes u and v by the following lemma.

Lemma 4: Given node u, if it is a seed node, we have
gB(u\v) = 0. Otherwise, for any v ∈ N(u), we have

gB(u\v) = (1− apB(u\v))

·

⎛

⎝1+
∑

w∈N(u)\{v}

pB
u,w · gB(w\u)

1−apB(w\u) · pB
w,u

⎞

⎠.

(7)

Moreover, for v,w ∈ N(u) and v ̸= w, we have

gB(u\v) = (1− apB(u\v)) ·
(

gB(u\w)

1− apB(u\w)

+ pB
u,w · gB(w\u)

1−apB(w\u) · pB
w,u
− pB

u,v · gB(v\u)

1−apB(v\u) · pB
v,u

)

.

(8)

Equation (7) shows how to compute gB(u\v) by definition.
Equation (8) provides a faster way to compute gB(u\v), taking
advantages of the previously computed values. Using similar
algorithm in Algorithm 3, we are able to compute gB(u\v)
for all u and v ∈ N(u) in O(n).

Step III ( Final Computation): Recall that σS(B) is the
boosted influence spread, we have σS(B) = ∑

v∈V apB(v).
The following lemma shows how we compute σS(B ∪ {u}).

Lemma 5: Given node u, if it is a seed node or a boosted
node, we have σS(B ∪ {u}) = σS(B). Otherwise, we have

σS(B ∪ {u}) = σS(B) + #apB(u)

+
∑

v∈N(u)

pB
u,v · #apB(u\v) · gB(v\u) (9)

where #apB(u) := apB∪{u}(u)− apB(u) = 1−∏
v∈N(u)

(
1−

apB(v\u)· p′v,u
)
−apB(u) and #apB(u\v) := apB∪{u}(u\v)−

apB(u\v) = 1 − ∏
w∈N(u)\{v}

(
1 − apB(w\u) · p′w,u

)
−

apB(u\v).
The intuition behind (9) is as follows. Let Vv\u ⊆ V be

the set of nodes in Gv\u ⊆ G. When we insert a node u into
B , #apB(u) is the increase of the activation probability of u
itself, and pB

u,v · #apB(u\v) · gB(v\u) is the increase of the

number of influenced nodes in Vv\u . The final step computes
σS(B) and σS(B ∪ {u}) for all nodes u in O(n).

2) Putting It Together: Given a bidirected tree G and a set
of boosted nodes B , we can compute σS(B) and σS(B ∪ {u})
for all nodes u in three steps. The total time complexity of all
three steps is O(n), where n is the number of nodes.

3) Greedy-Boost: Based on the linear-time computation of
σS(B ∪ {u}) for all nodes u,
Greedy-Boost iteratively inserts into set B a node u that

maximizes σS(B ∪ {u}), until |B| = k. Greedy-Boost runs
in O(kn).

C. Rounded Dynamic Programming

In this section, we present a rounded dynamic programming
DP-Boost, which is an FPTAS. DP-Boost requires that the
tree has a root node. Any node could be assigned as the root
node. Denote the root node by r . For ease of presentation,
we assume here that every node has at most two children. We
leave details about DP-Boost for general bidirected trees in
our technical report [10].

1) Bottom-Up Exact Dynamic Programming: For notational
convenience, we assume that r has a virtual parent r ′ and
pr ′r = p′r ′r = 0. Given a node v, let VTv be the set of nodes
in its subtree. Define g(v, κ, c, f ) as the maximum expected
boost of nodes in VTv under the following conditions.

1) Assumption: The parent of node v is activated with
probability f if we remove VTv from G.

2) Requirement: We boost at most κ nodes in VTv , and node
v is activated with probability c if we remove nodes not
in VTv .

It is possible that for some node v, the second condition
could never be satisfied (e.g., v is a seed but c < 1). In that
case, we define g(v, κ, c, f ) := −∞.

By definition, maxc g(r, k, c, 0) is the maximum boost of the
influence upon boosting at most k nodes. However, the exact
dynamic programming is infeasible in practice, because we
may have to calculate g(v, κ, c, f ) for exponentially many
choices of c and f . To tackle this problem, we propose a
rounded dynamic programming and call it DP-Boost.

2) High Level Ideas: Let δ ∈ (0, 1) be a rounding para-
meter. We use ⌊x⌋δ to denote the value of x rounded down
to the nearest multiple of δ. We say that x is rounded if and
only if it is a multiple of δ. For simplicity, we consider 1 as a
rounded value. In DP-Boost, we compute a rounded version
of g(v, κ, c, f ) only for rounded values of c and f . Then,
the number of calculated entries would be polynomial in n and
1/δ. Let g′(v, κ, c, f ) be the rounded version of g(v, κ, c, f ),
DP-Boost guarantees that g′(v, κ, c, f ) ≤ g(v, κ, c, f ) and
g′(v, κ, c, f ) gets closer to g(v, κ, c, f ) when δ decreases.

Definition 4 defines DP-Boost. An important remark is
that g′(·) is equivalent to the definition of g(·) if we ignore
all the rounding (i.e., assuming

⌊
x
⌋
δ

= x,∀x).
Definition 4 (DP-Boost): Let v be a node. Denote the

parent node of v by u.
1) Base Case: Suppose v is a leaf node. If c ̸= I(v ∈ S),

let g′(v, κ, c, f ) = −∞; otherwise, let g′(v, κ, c, f ) =
max{1−(1−c)(1− f · pI(κ> 0)

u,v )− ap∅(v), 0}.
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2) Recurrence Formula: Suppose that v is an internal node.
If v is a seed node, we let g′(v, κ, c, f ) = −∞ for
c ̸= 1, and otherwise, let

g′(v, κ, 1, f ) = max
κ=∑

κvi

∑

i

g′(vi , κvi , cvi , 1).

If v is a nonseed node, we use C ′(v, κ, c, f ) to denote
the set of consistent subproblems of g′(v, κ, c, f ).
Subproblems (κvi , cvi , fvi ,∀i) are consistent with
g′(v, κ, c, f ) if they satisfy the following conditions:

b = κ −
∑

i

κvi ∈ {0, 1},

c = ⌊
1−

∏

i

(1− cvi · pb
vi ,v

)⌋
δ

fvi =
⌊

1− (1− f · pb
u,v)

∏

j ̸=i

(1− cv j · pb
v j ,v

)
⌋
δ, ∀i.

If C ′(v, κ, c, f ) = ∅, let g′(v, κ, c, f ) = −∞; other-
wise, let

g′(v, κ, c, f ) = max
(κvi , fvi ,cvi ,∀i)
∈C ′(v,κ,c, f ),
b=k−∑

i κvi

(
∑

i g′(vi ,κvi ,cvi , fvi )

+ max{1−(1−c)(1− f · pb
u,v)−ap∅(v), 0}

)
.

3) Rounding and Relaxation: Because we compute
g′(v, κ, c, f ) only for rounded c and f , in order to find
consistent subproblems of g′(v, κ, c, f ) for an internal node
v, we slightly relax the requirements of c and fvi as shown
in Definition 4.

Our relaxation guarantees that g′(v, κ, c, f ) is at most
g(v, κ, c, f ). The rounding and relaxation may result in a loss
of the boosted influence spread of the returned boosting set.
However, as we shall show later, the loss is bounded.

4) DP-Boost: We first determine the rounding parameter δ
by

δ = ϵ · max(L B, 1)∑
u∈V

∑
v∈V p(k)(u ! v)

(10)

where LB is a lower bound of the optimal boost of influence,
and p(k)(u ! v) is defined as the probability that node u
can influence node v given that we boost edges with top-k
influence probability along the path. The value of L B could
be obtained by Greedy-Boost in O(kn). The denominator
of (10) could be computed via depth-first search starting from
every node, each takes time O(kn). Thus, we can obtain δ
in O(kn + kn2) = O(kn2). With the rounding parameter δ,
DP-Boost computes the values of g′(·) bottom-up. For a
leaf node v, it takes O(k/δ2) to compute entries g′(v, κ, c, f )
for all κ , rounded c, and rounded f . For internal node v,
we enumerate over all combinations of f , b ∈ {0, 1}, and κvi ,
cvi for children vi . For each combination, we can uniquely
determine the values for κ , c, and fvi for all children vi ,
and update g′(v, κ, c, f ) accordingly. For internal node v,
the number of enumerated combinations is O(k2/δ3); hence,
we can compute all k/δ2 entries g′(v, . . .) in O(k2/δ3). The
total complexity of DP-Boost is O(kn2 + n · k2/δ3) =
O(k2n7/ϵ3). To conclude, we have the following theorem

TABLE I

STATISTICS OF DATA SETS AND SEEDS (ALL DIRECTED)

about DP-Boost. The approximation guarantee is proved
in our technical report.

Theorem 3: Assuming that the optimal boost is at least 1,
DP-Boost is an FPTAS, and it returns a (1−ϵ)-approximate
solution in O(k2n7/ϵ3).

5) Refinements: We compute possible ranges of c and f for
every node v. And we only compute g′(v, k, c, f ) for c and
f within those ranges. For each node, the lower bound (resp.
upper bound) of possible values of c and f are computed
assuming that we do not boost any node (resp. we boost all
nodes).

6) General DP-Boost: Computing g′(v, . . . ) for general
bidirected trees is far more complicated. We list the main
results here and refer to interested readers to our technical
report [10]. Given that the optimal boost of influence is at
least 1, DP-Boost returns a (1− ϵ)-approximate solution in
O(k2n9/ϵ3). In addition, if the number of children of every
node is O(1), DP-Boost runs in O(k2n7/ϵ3).

VII. EXPERIMENTS ON GENERAL GRAPHS

We conduct extensive experiments using real social net-
works to evaluate PRR-Boost and PRR-Boost-LB and
show their superiority over intuitive baselines. Experiments
were conducted on a Linux machine with an Intel Xeon
E5620 at 2.4-GHz CPU and 30-GB memory. The generation
of PRR-graphs and the estimation of objective functions are
parallelized with OpenMP and executed using eight threads.

A. Data Sets

We use four social networks Flixster [29], Digg [30],
Twitter [31], and Flickr [32]. All data sets have directed social
connections and the actions of users with timestamps (e.g.,
rating movies, voting for stories, retweeting URLs, and mark-
ing favorite photographs). We learn influence probabilities on
edges using a widely accepted method by Goyal et al. [33].
We remove edges with zero influence probability and keep the
largest weakly connected component. Table I summaries our
data sets.

B. Boosted Influence Probabilities

To the best of our knowledge, no existing work quanti-
tatively studies how influence among people changes with
respect to different kinds of “boosting strategies.” For every
edge euv , we let the boosted influence probability p′uv be
1−(1− puv)

β (β> 1). We refer to β as the boosting parameter.
Due to the large number of combinations of parameters,
we fix β = 2 unless otherwise specified. Intuitively, β = 2
indicates that every activated neighbor of a boosted node v
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has two independent chances to activate v. We also provide
experiments showing the impacts of β.

C. Seed Selection

We use the IMM method [8] to select 50 influential nodes.
Table I summaries the influence spread of selected seeds.
We also conduct experiments with randomly selected seeds.
The setting maps to the situation where some users become
seeds spontaneously. The experimental results given influential
seeds, and random seeds provide similar insights. Due to space
limits, we leave the detailed results where seed users are
randomly selected in our technical report [10].

D. Baselines

Because there is no existing algorithm applicable to the
k-boosting problem, we compare our proposed algorithms with
several heuristic baselines listed in the following.

1) HighDegreeGlobal : Starting from an empty node set
B , we iteratively add a node with the highest weighted
degree to B , until k nodes are selected. We use four
definitions of the weighted degree. For a node u /∈ (S ∪
B), they are:

∑
euv

puv ,
∑

euv ,v /∈B puv ,
∑

evu
[p′vu− pvu]

and
∑

evu ,v /∈B[p′vu − pvu]. Each definition outperforms
others in some experiments, and we report the best
result.

2) HighDegreeLocal: HighDegreeLocal differs from High-
DegreeGlobal in that we first consider nodes close to
seeds. We first try to select k nodes among neighbors
of seeds. If we can boost more nodes, we continue to
select from nodes that are two hops away from seeds.
We repeat until k nodes are selected. We also report
the best solution selected using four definitions of the
weighted degree.

3) PageRank: We use the PageRank baseline for the IM
problems [4]. When a node u has influence on v,
it implies that node v “votes” for the rank of u. The
transition probability on edge euv is pvu/

∑
ewu

pwu . The
restart probability is 0.15. We compute the PageRank
until two consecutive iteration differ for at most 10−4

in L1 norm.
4) MoreSeeds: We adapt the IMM method to select k more

seeds with the goal of maximizing the final expected
influence spread. We return the selected k seeds as the
boosted nodes.

We do not compare our algorithms with the greedy algorithm
with Monte Carlo simulations. Because it is extremely com-
putationally expensive even for the classical IM [1], [7].

E. Settings

For PRR-Boost and PRR-Boost-LB, we let
ϵ = 0.5 and ℓ = 1 so that both algorithms return
(1 − 1/e − ϵ) · (µ(B∗)/#S(B∗))-approximate solution with
probability at least 1 − 1/n. To enforce fair comparison, for
all algorithms, we evaluate the boost of influence spread by
20 000 Monte Carlo simulations.

Fig. 5. Boost of the influence versus k. (a) Digg. (b) Flixster. (c) Twitter.
(d) Flickr.

F. Performance Evaluation

In this section, we evaluate the performance of our algo-
rithms. We report results where the seeds are 50 influential
nodes. We run each experiment five times and report the
average results.

1) Quality of Solution: Fig. 5 compares the solutions
returned by different algorithms. Both PRR-Boost and
PRR-Boost-LB outperform other baselines. PRR-Boost
always return the best solution, and PRR-Boost-LB returns
solutions with slightly lower but comparable quality. In addi-
tion, MoreSeeds returns solutions with the lowest quality. This
is because nodes selected by MoreSeeds are typically in the
part of graph not covered by the existing seeds so that they
could generate larger marginal influence. In contrast, boosting
nodes are typically close to seeds to make the boosting result
more effective. Thus, our empirical result further shows that
k-boosting problem differs significantly from the IM problem.

2) Running Time: Fig. 6 shows the running time. The
running time of both PRR-Boost and PRR-Boost increases
when k increases. This is mainly because the number of ran-
dom PRR-graphs required increases. Fig. 6 also shows that the
running time is in general proportional to the number of nodes
and edges for Digg, Flixster, and Twitter, but not for Flickr.
This is mainly because of the significantly smaller average
influence probabilities on Flickr, and the accordingly lower
cost for generating a random PRR-graph (i.e., EPT) as we will
show shortly in Table II. In Fig. 6, we also label the speedup of
PRR-Boost-LB compared with PRR-Boost. Together with
Fig. 5, we can see that PRR-Boost-LB returns solutions with
quality comparable with PRR-Boost but runs faster. Because
our algorithms consistently outperform heuristic methods with
no performance guarantee in all the tested cases, we do not
compare the running time of our algorithms with heuristic
methods to avoid cluttering the results.

3) Effectiveness of the Compression Phase: Table II shows
the compression ratio of PRR-graphs and memory usages of
our algorithms, demonstrating the importance of compress-
ing PRR-graphs. The compression ratio is the ratio between
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Fig. 6. Running time. (a) PRR-Boost. (b) PRR-Boost-LB.

TABLE II

MEMORY USAGE AND COMPRESSION RATIO. NUMBERS IN PARENTHESES
ARE MEMORY USAGE FOR STORING PRR-GRAPHS

the average number of uncompressed edges and the average
number of edges after compression in boostable PRR-graphs.
Besides the total memory usage, we also show in parenthesis
the memory usage for storing boostable PRR-graphs. It is
measured as the additional memory usage starting from the
generation of the first PRR-graph. The compression ratio is
high in practice for two reasons. First, many nodes visited in
the first phase cannot be reached by seeds. Second, among the
remaining nodes, many of them can be merged into the super-
seed node, and most nonsuperseed nodes are to be removed,
because they are not on paths from the superseed node to the
root node.

The high compression ratio and the memory used for storing
compressed PRR-graphs show that the compression phase is
indispensable. For PRR-Boost-LB, the memory usage is
much lower, because we only store critical nodes of boostable
PRR-graphs and most boostable PRR-graph only has a few
critical nodes in our experiments with β = 2.

4) Approximation Factors : Recall that the approximate
ratio of PRR-Boost and PRR-Boost-LB depends on
(µ(B∗)/#S(B∗)). The closer to 1 the ratio is, the better the
approximation guarantee is. With B∗ being unknown due to
the NP-hardness of the problem, we show the ratio when the
boost is relatively large. We obtain 300 sets of k boosted
nodes by replacing a random number of nodes in Bsa by
other nonseed nodes, where Bsa is the solution returned by
PRR-Boost. For a set B , we use PRR-graphs generated
for finding Bsa to estimate (µ(B)/#S(B)). Fig. 7 shows
the ratios for generated sets B as a function of #S(B) for
varying k. Because we intend to show the ratio when the
boost of influence is large, we ignore points corresponding
to sets whose boost of influence is less than 50% of #S(Bsa).
For all data sets, the ratio is above 0.94, 0.83, and 0.74
for k=100, 1000, and 5000, respectively. The ratio is closer

Fig. 7. SA: µ(B)
#S (B) .

to one when k is smaller. In practice, most boostable PRR-
graphs have critical nodes. When k is smaller, node set B
that could result in a large boost of influence tends to contain
more nodes that are critical in many boostable PRR-graphs.
For a given PRR-graph R, if B contains its critical nodes,
we have f −R (B) = fR(B). Therefore, when k is smaller,
(µ(B)/#S(B)) = (E[ f −R (B)]/E[ fR(B)]) tends to be closer
to 1.

G. Effects of the Boosted Influence Probabilities

The larger the boosting parameter β is, the larger the
optimal boost is. Fig. 8 shows the effects of β on the
boost of influence and the running time. Fig. 8(a) shows
that PRR-Boost and PRR-Boost-LB return comparable
solutions with varying β for Flixster and Flickr. For Twit-
ter, we consider the slightly degenerated performance of
PRR-Boost-LB acceptable, because PRR-Boost-LB runs
significantly faster. Fig. 8(b) shows that the running time
of PRR-Boost increases when β increases, but the run-
ning time of PRR-Boost-LB remains almost unchanged.
Thus, PRR-Boost-LB is more scalable to larger boosted
influence probabilities on edges. In fact, when β increases,
a random PRR-graph tends to be larger. The running time
of PRR-Boost increases mainly, because the cost for PRR-
graph generation increases. However, when β increases,
we observe that the cost for obtaining “critical nodes” for a
random PRR-graph does not change much, thus the running
time of PRR-Boost-LB remains almost unchanged. We also
check the approximation ratio of the SA strategy with varying
boosting parameters. For every data set, when the boosting
parameter increases, the ratio of (µ(B)/#S(B)) for large
#S(B) remains almost the same. This suggests that both our
proposed algorithms remain effective when we increase the
boosted influence probabilities on edges.

H. Budget Allocation Between Seeding and Boosting

In this section, we explore the budget allocation problem
where a company can decide both the number of seeders and
the number of users to boost. We assume that we can target
100 users as seeds with all the budgets, and targeting a seed
user costs 100–800 times as much as boosting a user. For
example, suppose targeting a seeder costs 100 times as much
as boosting a user, we can boost 100 more users if we target
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Fig. 8. Effects of the boosting parameter (k = 1000). (a) Boost of influence.
(b) Running time.

Fig. 9. Budget allocation between seeding and boosting. (a) Flixster.
(b) Flickr.

Fig. 10. Greedy algorithm versus the rounded dynamic programming on
random bidirected trees with 2000 nodes. (a) Boost of influence. (b) Running
time.

one less seed user. We explore the expected influence spreads
with different budget allocations. Given the budget allocation,
we first identify influential seeds using the IMM method, then
we use PRR-Boost to select boosted users.

Fig. 9 shows the results for Flixster and Flickr. Spending
a mixed budget among initial adopters and boosting users
achieve a higher final influence spread than spending all budget
on initial adopters. For example, for the cost ratio of 800
between seeding and boosting, if we choose 80% budget
for seeding and 20% for boosting, we would achieve around
20% and 92% higher influence spread than pure seeding, for
Flixster and Flickr, respectively. Moreover, the best budget
mix is different for different networks and different cost ratios,
suggesting the need for specific tuning and analysis for each
case.

VIII. EXPERIMENTS ON BIDIRECTED TREES

In this section, we show the experimental results of
DP-Boost and Greedy-Boost for bidirected trees.
We show that DP-Boost efficiently approximates the

Fig. 11. Greedy algorithm versus the rounded dynamic programming on
random bidirected trees with various sizes. (a) Boost of influence. (b) Running
time.

k-boosting problem for bidirected trees with thousands of
nodes. And, Greedy-Boost returns near-optimal solutions.

For a given number of nodes n, we construct a com-
plete (undirected) binary tree with n nodes, then we replace
each undirected edge by two directed edges, one in each
direction. We assign influence probabilities on edges according
to the trivalency model. For each edge euv , puv is randomly
chosen from {0.001, 0.01, 0.1}. Moreover, for every edge euv ,
let p′uv = 1 − (1− puv)

2. For every tree, we select 50
seeds using the IMM method. We compare Greedy-Boost
and DP-Boost. The boost of influence of the returned sets
is computed exactly. We run each experiment five times
with randomly assigned influence probabilities and report the
average results.

A. Greedy-Boost Versus DP-Boost With
Varying ϵ

For DP-Boost, the value of ϵ controls the tradeoff between
the accuracy and computational costs. Fig. 10 shows that, for
DP-Boost, the running time decreases dramatically when
ϵ increases, but the boost is almost unaffected. Because
DP-Boost returns (1− ϵ)-approximate solutions, it provides
a benchmark for the greedy algorithm. Fig. 10(a) shows
that the greedy algorithm Greedy-Boost returns near-
optimal solutions in practice. Moreover, Fig. 10(b) shows
that Greedy-Boost is orders of magnitude faster than
DP-Boost with ϵ = 1 where the theoretical guarantee is
in fact lost.

B. Greedy-Boost Versus DP-Boost With Varying Tree
Sizes

Fig. 11 compares Greedy-Boost and DP-Boost (ϵ =
0.5) for trees with varying sizes. Fig. 11(a) suggests that
Greedy-Boost always return near-optimal solutions on
trees with varying sizes. Fig. 11(b) demonstrates the efficiency
of Greedy-Boost. Results for smaller values of k are
similar.

IX. CONCLUSION

In this paper, we address a novel k-boosting problem that
asks how to boost the influence spread by offering k users
incentives so that they are more likely to be influenced
by friends. For the k-boosting problem on general graphs,



356 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 2, JUNE 2018

we develop efficient approximation algorithms, PRR-Boost
and PRR-Boost-LB, that have data-dependent approxima-
tion factors. Both PRR-Boost and PRR-Boost-LB are
delicate integration of PRR-graphs and the state-of-the-art
techniques for IM problems. For the k-boosting problem on
bidirected trees, we present an efficient greedy algorithm
Greedy-Boost based on a linear-time exact computation of
the boost of influence spread, and we also repsent an FPTAS
DP-Boost. We conduct extensive experiments on real data
sets to evaluate PRR-Boost and PRR-Boost-LB. Results
demonstrate the superiority of our proposed algorithms over
intuitive baselines. Compared with PRR-Boost, experimental
results show that PRR-Boost-LB returns solution with com-
parable quality but has significantly lower computational costs.
On real social networks, we also explore the scenario where
we are allowed to determine how to spend the limited budget
on both targeting initial adopters and boosting users. Exper-
imental results demonstrate the importance of studying the
problem of targeting initial adopters and boosting users with
a mixed strategy. We also conduct experiments on synthetic
bidirected to show the efficiency and effectiveness of our pro-
posed algorithms Greedy-Boost and DP-Boost for trees.
In particular, we show via experiments that Greedy-Boost
is extremely efficient and returns near-optimal solutions in
practice.
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