
IEEE TRANSACTIONS ON COMPUTERS 1

Analysis of Reliability Dynamics of SSD RAID
Yongkun Li, Member, IEEE Patrick P. C. Lee, Member, IEEE John C. S. Lui, Fellow, IEEE

Abstract—Solid-state drives (SSDs) have been widely deployed in desktops and data centers. However, SSDs suffer from bit errors,

and the bit error rate is time dependent since it increases as an SSD wears down. Traditional storage systems mainly use parity-based

RAID to provide reliability guarantees by striping redundancy across multiple devices, but the effectiveness of traditional RAID schemes

in SSDs remains debatable. In particular, an open problem is how different parity distributions over multiple devices influence the

reliability of an SSD RAID array. That is, should we evenly distribute parties as suggested by conventional wisdom, or unevenly distribute

parties as recently proposed for SSD RAID? To address this fundamental problem, we propose the first analytical model to quantify

the reliability dynamics of an SSD RAID array as it ages. Specifically, we develop a “non-homogeneous” continuous time Markov chain

model, and derive the transient reliability solution. We validate our model via trace-driven simulation and conduct numerical analysis to

analyze the reliability dynamics of SSD RAID arrays subject to different parity distributions, error rates, and SSD array configurations.

Our model enables system practitioners to decide the appropriate parity distribution based on their reliability requirements.

Index Terms—Solid-state Drives, RAID, Reliability, CTMC, Transient Analysis

✦

1 INTRODUCTION

SSDs emerge to be the next-generation storage medium.
Today’s SSDs mostly build on NAND flash memories,
and provide several enhancements over hard disks in-
cluding better I/O performance, lower energy consump-
tion, and higher shock resistance. As SSD prices continue
to drop nowadays, they have been widely deployed in
desktops and large-scale data centers [10, 14].

Even though enterprise SSDs provide multiple en-
hancements over hard disks, they are susceptible to
wear-outs and bit errors. First, SSDs can only write data
to clean pages, and so they necessitate erase operations
to reset flash blocks back to the clean state (see §2.1 for
details). However, each flash block can only tolerate a
limited number of erasures before wearing out. Second,
bit errors are very common in SSDs due to read dis-
turbs, program disturbs, and retention errors (see §2.1
for details). Moreover, bit error rates of SSDs are time-
varying, and in particular, increase as SSDs issue more
erase operations [5, 12, 27, 35, 38]. Last, bit errors of
SSDs become more severe when the density of flash cells
increases and the feature size decreases [13]. Thus, SSD
reliability remains a legitimate concern

RAID (redundant array of independent disks) [32]
provides an option to improve reliability of SSDs. Using
parity-based RAID (e.g., RAID-4, RAID-5), the original
data is encoded into parities, and the data and parities

• Yongkun Li is with the School of Computer Science and Technol-
ogy, University of Science and Technology of China. (Email: yongkun-
lee@gmail.com)

• Patrick P. C. Lee and John C. S. Lui are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong
Kong. (Emails: {pclee,cslui}@cse.cuhk.edu.hk)

• An earlier conference version of the paper appeared in IEEE SRDS 2013
[23]. In this journal version, we extend the prior work for general error
rates. We also propose a new optimization technique to speed up the model
computation. Finally, we include additional evaluation results.

are striped across multiple SSDs to provide storage re-
dundancy against device failures. RAID has been widely
used in tolerating hard disk failures. However, tradi-
tional RAID introduces a different reliability problem
to SSDs. Conventional wisdom suggests that parities
should be evenly distributed across multiple drives to
achieve better load balancing, such as in RAID-5. Balakr-
ishnan et al. [2] find that RAID-5 introduces the problem
of correlated device failures, in which all SSDs wear at
the same rate and fail simultaneously, thereby causing
data loss. To address this problem, they propose Diff-
RAID as a RAID-5 variant that enhances the SSD RAID
reliability by keeping uneven parity distributions.

One open problem is how different parity distribu-
tions generally influence the reliability of an SSD RAID
array subject to different error rates and array configu-
rations. In other words, should we distribute parities evenly
or unevenly across multiple SSDs with respect to the SSD
RAID reliability? This motivates us to characterize the
SSD RAID reliability using analytical modeling, which
enables us to readily tune different input parameters and
determine their impact on reliability. However, analyzing
the SSD RAID reliability is challenging. Unlike hard disk
drives in which error arrivals are commonly modeled as
a constant-rate Poisson process (e.g., see [29, 34]), SSDs
have an increasing error arrival rate as they wear down
with more erase operations.

In this paper, we formulate a continuous time Markov
chain (CTMC) model to analyze the effects of different
parity placement strategies, such as traditional RAID-
5 and Diff-RAID [2], on the reliability dynamics of an
SSD RAID array. To capture the time-varying bit error
rates in SSDs, we formulate a non-homogeneous CTMC
model, and conduct transient analysis to derive the
reliability metric (which we formally define in §2) at any
specific time instant. Thus, the model characterizes how
the reliability of an SSD RAID array changes over time

IEEE TRANSACTIONS ON COMPUTERS 2

throughout its whole lifespan. To the best of our knowl-
edge, this is the first analytical study that quantifies the
reliability dynamics of an SSD RAID array.

This paper makes two key contributions:
• We formulate a non-homogeneous CTMC model

to characterize the reliability dynamics of an SSD
RAID array. We use the uniformization technique
[8, 17, 33] to derive the transient reliability of the ar-
ray. Since the state space of our model increases with
the SSD size, we develop optimization techniques to
reduce the computational cost of transient analysis.
We also quantify the corresponding error bounds
of the uniformization and optimization techniques.
Using the SSD simulator [1], we validate our model
via trace-driven simulation.

• We conduct extensive numerical analysis to com-
pare the reliability of an SSD RAID array under
RAID-5 and Diff-RAID [2]. We observe that Diff-
RAID, which places parities unevenly across SSDs,
only improves the reliability over RAID-5 when the
error rate is not too large, while RAID-5 is reliable
enough if the error rate is sufficiently small. On
the other hand, when the error rate is very large,
neither RAID-5 nor Diff-RAID can provide high
reliability, so increasing fault tolerance (e.g., RAID-6
or a stronger ECC) becomes necessary.

The rest of this paper proceeds as follows. In §2, we
formulate our model that characterizes the reliability
dynamics of an SSD RAID, and formally define the reli-
ability metric. In §3, we derive the transient system state
using uniformization and optimization techniques. In §4,
we validate our model via trace-driven simulation. In
§5, we present numerical results on how different parity
placement strategies influence the RAID reliability. In §6,
we review related work, and finally in §7, we conclude
the paper.

2 SYSTEM MODEL

In this section, we formulate a non-homogeneous
continuous-time Markov chain (CTMC) model to char-
acterize the reliability dynamics of an SSD RAID array
for different parity distributions across multiple SSDs.
We focus on two parity-based RAID schemes: RAID-5
[32], which distributes parties evenly across all drives
and achieves load balancing, and Diff-RAID [2], a RAID-
5 variant which operates by (i) distributing parties un-
evenly across all drives and (ii) redistributing parities
each time when a worn-out SSD is replaced so that the
oldest SSD always has the most parities and wears out
first. Note that we can adapt our analysis of Diff-RAID
for any uneven parity distribution (see §2.2). For exam-
ple, we can apply our analysis to RAID-4, which places
all parities in a single SSD, or WeLe-RAID [39], which
chooses a parity distribution that balances the aging
rates of all SSDs. Thus, our analysis mainly focuses on
RAID-5 and Diff-RAID. Our primary goal is to provide a
comprehensive study on the reliability dynamics of SSD
RAID arrays under different parity distributions.

2.1 Background on Flash Memory and SSD

Flash memory is composed of flash cells, each of which
is a CMOS transistor with a floating gate between the
control gate and the channel. Flash cells store data by
trapping charge on the floating gate, and each gate may
store one or more bits. Flash memory supports three
primary operations: program, erase, and read, and data
can only be programmed to erased flash cells.

Flash memory can be classified as two types accord-
ing to the organization of flash cells: NAND flash and
NOR flash. Today’s SSDs mainly build on NAND flash
memory. An SSD is composed of multiple chips, each
of which is organized in multiple blocks. Each block
typically has 64 or 128 fixed-size pages of size 4KB or 8KB
each. Both read and write operations are performed in
units of pages. Data can only be written (done by flash-
level program operations) to clean pages. SSDs perform
an erase operation in units of blocks to reset all pages of
a block into clean pages. To improve write performance,
SSDs use out-of-place writes, i.e., to update a page, the
new data is written to a clean page while the original
page is marked as invalid. We refer readers to [1] for a
more detailed description about the SSD organization.

Flash memory is not error-free, and may fail in various
ways. In particular, bits stored in flash cells may become
corrupted due to program disturbs and read disturbs.
Almost all errors appear due to cells with unintended
voltage. For example, programing one page may make
all the pages in the block experience weak programming
voltage, which causes data errors. Similarly, reading data
from a page may also have a weak programming effect
on other pages in the same block, which again leads to
data corruption. In addition to program disturbs and
read disturbs, bit errors may also happen due to data
retention, mainly due to charge loss in flash cells. Finally,
other factors like quantum-level noise effects and erratic
tunneling may also lead to bit errors in flash memory.
Bit errors in flash memory have been well studied by
the literature (e.g., [5, 12, 27, 35, 38]). Therefore, both
bit-level protection like ECC and device-level protection
like RAID are necessary for SSDs.

2.2 SSD RAID Basics

We now describe the organization of an SSD RAID.
Table 1 lists the main notation used in this paper.

Figure 1 shows an SSD RAID organization. We con-
sider the device-level RAID organization where the array
is composed of N+1 SSDs numbered from 0 to N . In
this paper, we focus on single-fault tolerance, in which
the array can tolerate against a single SSD failure, as
assumed in RAID-5 and Diff-RAID [2] Each SSD is
divided into multiple non-overlapping chunks, each of
which can be mapped to one or multiple physical pages.
The array is further divided into stripes, each of which is
a collection of N+1 chunks from the N+1 SSDs. Within
a stripe, there are N data chunks, and one parity chunk
encoded from the N data chunks. We call a chunk an

IEEE TRANSACTIONS ON COMPUTERS 3

Specific Notations of SSD

M : Erasure limit of each block (e.g., 10K)

B : Total number of blocks in each SSD

λi(t) : Error rate of a chunk in SSD i at time t

Specific Notations of RAID Array

N : Number of data drives (i.e., an array has N + 1 SSDs)

S : Total number of stripes in an SSD RAID array

pi : Fraction of parity chunks in SSD i, and
∑N

i=0 pi = 1

k : Total number of erasures performed on SSD RAID array
(i.e., system age of the array)

ki : Number of erasures performed on each block of SSD i
(i.e., age of SSD i)

T : Average inter-arrival time of two consecutive erase op-
erations on SSD RAID array

πj(t) : Probability that the array has j stripes that contain
exactly one erroneous chunk each, (0 ≤ j ≤ S)

πS+1(t) : Probability that at least one stripe of the array contains
more than one erroneous chunk, so

∑S+1
j=0 πj(t) = 1

R(t) : Reliability at time t, i.e., probability that no data loss
happens until time t, R(t) =

∑S
j=0 πj(t)

TABLE 1: Main notation used in this paper.

Fig. 1: Organization of an SSD RAID array.

erroneous chunk when uncorrectable bit errors appear in
that chunk; or a correct chunk otherwise. Since we focus
on single-fault tolerance, we require that each stripe
contains at most one erroneous chunk without data loss
so that it can be recovered from other surviving chunks
in the same stripe.

Suppose that each SSD contains B blocks, and the
array contains S stripes (i.e., S chunks per SSD). For
simplicity, we assume that all S stripes are used for data
storage, although in practice an SSD is usually over-
provisioned [1]. To generalize our analysis, we organize
parity chunks in the array according to some probability
distribution. Let SSD i contain a fraction pi of parity
chunks (where 0 ≤ i ≤ N and 0 ≤ pi ≤ 1). In the special
case of RAID-5, parity chunks are evenly placed across
all devices, so pi = 1

N+1 for all i if the array consists
of N + 1 drives. For Diff-RAID, pi’s can be arbitrarily
defined subject to the condition

∑N
i=0 pi = 1.

Each block in an SSD can only sustain a limited
number of erasures, and it is worn out after the limit. We
denote the erasure limit by M . To enhance the durability
of an SSD, efficient wear-leveling techniques are often
deployed in the flash translation layer so as to balance
the number of erasures across all blocks within the SSD.

To simplify our analysis, we assume in this paper that
each SSD achieves perfect wear-leveling such that every
block within an SSD has exactly the same number of
erasures. Let ki (≤ M) be the number of erasures that
have been performed on each block in SSD i, where
0 ≤ i ≤ N . We denote ki as the age of each block in
SSD i, or equivalently, the age of SSD i as perfect wear-
leveling is assumed. When an SSD reaches its erasure
limit, we assume that it is replaced by a new SSD. For
simplicity, we treat ki as a continuous value. Let k be the
total number of erase operations that the whole array has
processed, and we call k the system age of the array.

2.3 Age Characterization

In this subsection, we characterize the age of each SSD
for a given RAID scheme. In particular, we derive ki,
denoting the age of SSD i, when the whole array has
already performed a total of k erase operations. This
characterization enables us to model the error rate in
each SSD accurately (see §2.4).

We first quantify the aging rate of each SSD in an array.
Let ri be the aging rate of SSD i. Note that updating a
data chunk also has the parity chunk updated. We first
suppose that each data chunk has the same probability
of being accessed. On average, the ratio of the aging rate
of SSD i to that of SSD j can be expressed as [2]:

ri
rj

=
piN + (1− pi)

pjN + (1− pj)
. (1)

Equation (1) states that the parity chunk ages N times
faster than each data chunk. Given ri’s, we can quantify
the probability of SSD i being the target drive for each
erase operation, which we denote by qi. We model qi by
making it proportional to the aging rate of SSD i, i.e.,

qi =
ri

∑N
i=0 ri

=
piN + (1− pi)

∑N
i=0(piN + (1− pi))

. (2)

We first characterize the age of Diff-RAID, which
places parities unevenly and redistributes parity chunks
after the worn-out SSD is replaced. Diff-RAID aims to
maintain the age ratios and always wear out the oldest
SSD first. To mathematically characterize the system
age of Diff-RAID, define Ai as the remaining fraction
of erasures that SSD i can sustain right after an SSD
replacement. Clearly, Ai = 1 for a brand-new drive and
Ai = 0 for a worn-out drive. Without loss of generality,
we assume that the drives are sorted by Ai in descending
order, i.e., A0 ≥ A1 ≥ · · · ≥ AN , and we have A0 = 1 as it
is the newly replaced drive. Diff-RAID performs parity
redistribution after each drive replacement to guarantee
that the aging ratio in Equation (1) remains unchanged.
Therefore, the remaining fraction of erasures for each
drive will converge, and the values of Ai’s in the steady
state are given by [2]:

Ai=

∑N
j=i rj

∑N
j=0 rj

=

∑N
j=i(pjN+(1−pj))

∑N
j=0(pjN+(1−pj))

, 0≤ i≤N. (3)

IEEE TRANSACTIONS ON COMPUTERS 4

In this paper, we study Diff-RAID at the steady state,
i.e., after the age distribution right after each drive
replacement converges. Thus, the remaining fractions
of erasures of SSDs in Diff-RAID always follow the
distribution of Ai’s in Equation (3).

We now characterize ki for Diff-RAID. Recall that each
SSD has B blocks. Due to perfect wear-leveling, every
block of SSD i has the same probability qi/B of being
the target block for an erase operation. Thus, if the array
has processed k erase operations, the age of SSD i is:

Diff-RAID: ki =
(kqi
B

mod
qi
qN

(M−kN0)
)

+ki0, (4)

where ki0 = M(1−Ai) is the initial number of times that
each block of SSD i has been erased right after a drive
replacement, and the operator mod denotes the modulo
operation. The rationale of Equation (4) is as follows.
Since we sort the SSDs by Ai in descending order, SSD N
always has the highest aging rate and will be replaced
first. Thus, after each block of SSD N has performed
(M−kN0) erasures, SSD N will be replaced, and each
block of SSD i has just been erased qi

qN
(M−kN0) times.

Therefore, for SSD i, a drive replacement happens when
each block has been erased every qi

qN
(M − kN0) times.

Moreover, the initial number of erasures on each block
of SSD i right after a drive replacement is ki0. Thus, the
age of SSD i is derived as in Equation (4). Since ki0 =
M(1−Ai) and AN = qN , ki can be rewritten as:

Diff-RAID: ki = ((kqi/B) mod Mqi)+M(1−Ai). (5)

We now characterize the age of RAID-5. RAID-5 keeps
parity chunks intact, and will not redistribute them dur-
ing a drive replacement. So after the array has performed
k erasures, each block of SSD i has just performed kqi/B
erasures, and an SSD will be replaced every time when
each block performed M erasures. Thus,

RAID-5: ki = (kqi/B) mod M. (6)

Note that Equations (5) and (6) are general enough
to characterize the age of SSD i for any given aging
ratio ri

rj
’s. Thus, the age characterizations for both Diff-

RAID and RAID-5 (with Equations (5) and (6)) are also
applicable to non-uniform workload as long as the aging
ratio is given, which can be measured by replaying
workload with a simulator. In particular, the aging ratio
of Diff-RAID is mainly governed by the parity distri-
bution, while that of RAID-5 depends on the workload.
In other words, SSDs in a RAID-5 array may also have
different aging rates under non-uniform workload. We
will further study the impact of non-uniform workload
on RAID reliability in §5.4 via numerical analysis.

2.4 Reliability Characterization

We model the error rate of an SSD as a function of
the SSD age. We assume that the error arrival processes
of different chunks in an SSD are independent. Since
different chunks in an SSD have the same age, they must

have the same error rate. We let λi(t) represent the error
rate of each chunk in SSD i at time t, and model it as a
function of the number of erasures on SSD i at time t,
which is denoted by ki(t) (the notation t may be dropped
if the context is clear). Furthermore, to reflect that bit
errors increase with the number of erasures, we model
the error rate based on a Weibull distribution [36], which
has been widely used in reliability engineering. Formally,

λi(t) = cα(ki(t))
α−1, α>1, (7)

where α is called the shape parameter and c is a constant.
We assume that the error rate of an SSD varies with the

number of erasures on the SSD only, and the error rate
between two adjacent erasures is constant. Specifically,
let tk be the time point of the kth erasure on the array.
Then during the time period (tk, tk+1) (i.e., between
the kth and (k + 1)th erasures), the error rate remains
unchanged and is determined by the value of k. Thus,
we can express ki(t) = ki(k) if t ∈ (tk, tk+1), and the
function ki(k) is determined by Equation (5) and (6). We
further assume that the error arrivals are modeled as a
Poisson process with the error rate λi(t).

We now formulate a continuous-time Markov chain
(CTMC) model to characterize the reliability dynamics
of an SSD RAID array. Recall that the array provides
single-fault tolerance for each stripe. We say that the
CTMC is at state i if and only if the array has i stripes
that contain exactly one erroneous chunk each, where
0≤ i≤ S. Data loss happens if any one stripe contains
more than one erroneous chunk, and we denote this
state by S+1. Let X(t) be the system state at time t.
Formally, we have X(t) ∈ {0, 1, ..., S + 1}, ∀t ≥ 0. To
derive the system state, we let πj(t) be the probability
that the CTMC is at state j at time t (0 ≤ j ≤ S+1),
so the system state can be characterized by the vector
π(t) = (π0(t),π1(t), ...,πS+1(t)).

Let us consider the state transition of the CTMC, as
depicted in Figure 2. For each stripe, if it contains one
erroneous chunk, then the erroneous chunk can be recon-
structed from the surviving chunks in the same stripe.
We assume that only one stripe can be reconstructed
at a time, and that the reconstruction time follows an
exponential distribution with rate µ. To elaborate, sup-
pose that the RAID array is currently at state j, if an
erroneous chunk appears in one of the (S−j) stripes that
originally have no erroneous chunk, then it will move
to state j+1 with rate (S−j)

∑N
i=0 λi(t); if an erroneous

chunk appears in one of the j stripes that already have
another erroneous chunk, then the system will move to
state S+1 (the state of data loss) with rate j

∑N
i=0 λi(t).

We now define the reliability of an SSD RAID array at
time t, and denote it by R(t). Formally, we define it as
the probability that the array has not encountered data
loss until time t, and we have

R(t) =
∑S

j=0
πj(t). (8)

Note that our model captures the time-varying nature

IEEE TRANSACTIONS ON COMPUTERS 5

Fig. 2: State transition of the non-homogeneous CTMC.

of reliability over the lifespan of the SSD array. The
CTMC is non-homogeneous, because the error arrival rate
λi(t) is time-varying depending on the system age. Next,
we show how to analyze this non-homogeneous CTMC.

3 TRANSIENT ANALYSIS OF CTMC

In this section, we describe how to derive π(t), the
system state of an SSD RAID array at any time t, and
then compute the instantaneous reliability R(t) based on
Equation (8). There are three major challenges in deriv-
ing π(t). First, it involves transient analysis, which is dif-
ferent from conventional steady state analysis. Second,
the underlying CTMC {X(t), t ≥ 0} is non-homogeneous
as the error arrival rate λi(t) is time-varying. Third, the
CTMC can have a very large state space, thereby making
the derivation computationally expensive.

In the following, we present the mathematical frame-
work for analyzing the non-homogeneous CTMC so
as to compute the transient system state. We construct
an algorithm based on the mathematical analysis. We
also develop optimization techniques to speed up our
analysis when the CTMC has a large state space.

3.1 Mathematical Analysis Framework

Note that error rates within a period (tk, tk+1) (k =
0, 1, 2, ...) are assumed to be constant. If we only focus
on a particular time period of the CTMC, i.e., {X(t), tk <
t ≤ tk+1}, then it becomes time-homogeneous. Therefore,
an intuitive way to derive the transient solution of the
CTMC {X(t), t ≥ 0} is to divide it into multiple time-
homogeneous CTMCs {X(t), tk < t ≤ tk+1} (k =
0, 1, 2...). Then we leverage the uniformization technique
[8, 17, 33] to analyze these time-homogeneous CTMCs
one by one in time ascending order. Uniformization is a
well-established technique to solve the transient solution
of a CTMC. Therefore, to derive π(tk+1), we first derive
π(t1) from the initial state π(0). We then take π(t1) as
the initial state and derive π(t2) from π(t1), and so on.

However, this intuitive approach may take a pro-
hibitively long time to derive π(tk+1) when k is very
large. Recall that k denotes the number of erasures
performed on an SSD RAID array. It can grow up to
(N + 1)BM , where both B (the number of blocks in
an SSD) and M (the erasure limit) can be huge, say,
B =100K and M=10K (see §5). Therefore, applying
the uniformization technique directly is computationally

infeasible to derive the reliability, especially when the
array performs a lot of erasures.

Thus, we propose an optimization technique for our
analysis by aggregating multiple time periods and fixing
the duration of the aggregated periods. Our observation
is that the difference of the generator matrices at two
consecutive periods is generally very small. Thus, we
combine s consecutive periods together into an epoch,
where s is called the step size. Furthermore, we fix the
epoch length as sT , where T denotes the average inter-
arrival time of two consecutive erase operations. To
analyze the non-homogeneous CTMC over s periods
{X(t), lsT < t ≤ (l + 1)sT} (where l = 0, 1, ...), we
approximate it with another time-homogeneous CTMC
denoted by {X̃(t), lsT < t≤ (l+1)sT}. The derivation of
π((l+1)sT) given π(lsT) proceeds as follows.

Step 1: Constructing a time-homogeneous CTMC
{X̃(t), lsT < t ≤ (l+1)sT} with generator matrix Q̃l.
Note that there are s periods in the epoch (lsT, (l+1)sT).
We denote the generator matrices of the original Markov
chain {X(t)} during each of the s periods by Qls, Qls+1,
... , Q(l+1)s−1. To construct {X̃(t), lsT < t ≤ (l + 1)sT},

we define Q̃l as a function of the s generator matrices.

Q̃l = f(Qls,Qls+1, ...,Q(l+1)s−1), l = 0, 1, ... (9)

We will discuss how to construct the generator matrix
Q̃l for different types of error rates in later discussion.

Step 2: Deriving the system state π̃((l + 1)sT) in the
time-homogeneous CTMC {X̃(t)}. To derive the system
state at time (l+1)sT , which we denote as π̃((l+1)sT), we
solve the Kolmogorov’s forward equation and we have

π̃((l+1)sT) = π̃(lsT)
∑∞

n=0

(Q̃lsT)
n

n!
, l = 0, 1, ... (10)

where the initial state is π̃(0) = π(0).

Step 3: Applying uniformization to solve Equa-

tion (10). We let P̃ l = I + Q̃l

Λ̃l
where Λ̃l ≥

maxls≤k≤(l+1)s−1 max0≤i≤S+1 |qi,i(k)|. Based on the uni-
formization technique [8], the system state at time (l +
1)sT can be derived as follows.

π̃((l+1)sT)=
∑∞

n=0
e−Λ̃lsT

(Λ̃lsT)n

n!
ṽl(n), l=0, 1, ... (11)

where ṽl(n) = ṽl(n − 1)P̃ l and ṽl(0) = π̃(lsT). The
system initial state is π̃(0) = π(0).

Step 4: Truncating the infinite summation in Equa-
tion (11) with a quantifiable error bound. Since Equa-
tion (11) requires an infinite summation, to make the
computation feasible, we drop the negligible terms af-
ter an appropriate point. In particular, we denote the
truncation point for the epoch (lsT, (l+1)sT) by Ul and
denote the system state at time (l+1)sT after truncation
by π̂((l+1)sT). Based on Equation (11) and the truncation
point Ul, π̂((l+1)sT) can be easily expressed as follows.

π̂((l+1)sT)=
∑Ul

n=0
e−Λ̃lsT

(Λ̃lsT)n

n!
v̂l(n),l=0,1,... (12)

IEEE TRANSACTIONS ON COMPUTERS 6

where v̂l(n) = v̂l(n − 1)P̃ l and v̂l(0) = π̂(lsT). Note
that the initial state in the current epoch v̂l(0) is the
solution obtained from the previous epoch, which also
applies truncation, and hence is different from ṽl(0) in
Equation (11). However, for simplicity, we still assume
that system starts from the same state, so π̂(0) = π(0).

To determine the truncation point in each epoch, we
quantify the error caused by truncating the infinite se-
ries. Note that truncation is performed and an error is
introduced in each epoch. Let ϵl be the (total) truncation
error until time (l + 1)sT .

ϵl = ||π̂((l + 1)sT)− π̃((l + 1)sT)||1, (13)

where π̃((l + 1)sT) and π̂((l + 1)sT) are computed
from Equations (11) and (12), respectively. Based on our
definition, we can bound ϵl in Theorem 1.

Theorem 1: Given the step size s and the truncation
point Ul for each epoch (lsT, (l + 1)sT), the truncation
error until time (l + 1)sT is

ϵl≤ϵl−1+
(

1−
∑Ul

n=0
e−Λ̃lsT (Λ̃lsT)

n/n!
)

, l=0, 1, ... (14)

where ϵ0 = ||π̂(0)− π(0)||1 = 0.
Proof: Please refer to §1 of the supplementary file.

Note that as shown in Equation (14), ϵl−1 represents
the total truncation error until time lsT , and the second
part is exactly the bound of the error introduced only in
the epoch (lsT, (l + 1)sT).

3.2 Upper and Lower Bounds of RAID Reliability

We thus far present a general process to compute the
transient system state of a non-homogeneous CTMC.
However, an open problem is how to construct the ho-
mogeneous CTMC and characterize the corresponding
error. In this subsection, we discuss how to choose the
generator matrix Q̃l for different types of error rates
(see Equation (9)). We also derive the upper and lower
bounds of the system reliability.

Without loss of generality, we focus on a particular
epoch (lsT, (l + 1)sT). Recall that each epoch contains s
time periods, and the CTMC {X(t)} in each period is
time-homogeneous. We first write down the generator
matrix of {X(t)} in each period. Precisely, each element
of the matrix Qk (ls ≤ k ≤ ls+ s− 1) is

qi,j(k)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−S
∑N

i=0
λi(t), i= j=0,

−µ−S
∑N

i=0
λi(t), 0<i≤S, j= i,

(S−i)
∑N

i=0
λi(t), 0≤ i<S, j= i+1,

i
∑N

i=0
λi(t), 0<i≤S, j=S+1,

µ, 0<i≤S, j = i−1,

0, otherwise ,

(15)

where
∑N

i=0 λi(t) can be computed based on Equa-
tions (5)-(7). Note that

∑N
i=0 λi(t) represents the error

rate of one stripe, and it changes when SSD replacement

happens. Without loss of generality, we assume that the
SSD replacement only occurs in the epoch boundaries,
which can be achieved by adjusting the step size s. Thus,
the error rate

∑N
i=0 λi(t) is a monotonically increasing

function of system age k within the epoch (lsT, (l+1)sT).
Now we can construct the generator matrix Q̃l. We

identify the corresponding upper and lower bounds of
the system reliability, as stated in Theorem 2.

Theorem 2: Let R(t) be the reliability under the original
non-homogeneous CTMC {X(t)}, and also let R1(t) and
R2(t) be the reliabilities under the homogeneous CTMC
{X̃(t)} with generator matrices Q̃l = Qls+s−1 and Q̃l =
Qls for the epoch (lsT, (l + 1)sT), respectively. We have

R1(t) ≤ R(t) ≤ R2(t).

Proof: Please refer to §2 of the supplementary file.
Remarks: The gap between the upper and lower bounds
heavily depends on the step size s. In particular, if s =
1, then there is no approximation error and the gap is
just zero, while the computational cost for deriving the
reliability becomes very high. Therefore, there is a trade-
off between accuracy and computational overhead.

Based on Theorem 2, we have the following corollary.

Corollary 1: For any generator Q̃l which is a linear com-
bination of Qk’s (ls≤k≤ ls+s−1), i.e., Q̃l =

∑ls+s−1
k=ls ckQk

where
∑ls+s−1

k=ls ck =1 and 0≤ ck ≤ 1, the approximation
error of reliability is no bigger than R2(t)−R1(t).
Proof: Please refer to §3 of the supplementary file.
Remarks: We can have better choices for constructing
Q̃l according to Corollary 1. In particular, if the error
rate λi(t) in Equation (7) is a linear function, i.e., α = 2,
then we can take Q̃l as an average over the s generator
matrices of the original CTMC. Mathematically,

Q̃l =
1

s

ls+s−1
∑

k=ls

Qk, l = 0, 1, · · · , if α = 2. (16)

Note that Equation (16) can be transformed to Q̃l =
Qls+ s−1

2

as the error rate is linear when α = 2, so the

computational cost of constructing Q̃l in Equation (16)
is O(S). This is because each generator matrix only con-
tains O(S) non-zero elements according to Equation (15).

On the other hand, if the error rate is non-linear,
then the computational cost of constructing Q̃l using
Equation (16) becomes O(Ss) as each non-zero item costs
O(s) and there are O(S) non-zero items in each generator
matrix. To reduce the computation time, for the case of
general α, one may choose Q̃l as in Equation (17) so that
the computational cost of constructing Q̃l is still O(S).

Q̃l =
Qls +Qls+s−1

2
, l = 0, 1, · · · (for ∀ α > 1). (17)

Note that when we compute the lower bound R1(t)
and upper bound R2(t) with generator matrices Q̃l =
Qls+s−1 and Q̃l = Qls, respectively, the computational
cost of constructing Q̃l is obviously O(S) as each gener-
ator matrix only contains O(S) non-zero elements.

IEEE TRANSACTIONS ON COMPUTERS 7

3.3 Algorithm for Reliability Computation

We now present a formal algorithm that computes the
reliability of an SSD RAID array. In particular, we focus
on the reliability dynamics from time zero to the time
when the Kth erase operation has been performed on
the RAID array. Without loss of generality, we assume
that K is a multiple of the step size s. Moreover, we
denote the maximum acceptable truncation error by ϵ.

Algorithm 1 Algorithm for Reliability Computation

1: Initialize: π̂(0) = π(0), R(0) = 1
2: for l = 0→ K

s
− 1 do

3: Construct generator matrix Q̃l;
4: Choose Λ̃l ≥ maxls≤k<(l+1)s max0≤i≤S+1 |qi,i(k)|;

5: Let P̃ l = I + Q̃l

Λ̃l
;

6: Let ϵl ← 0; n← 0; π̂((l + 1)sT)← 0; v̂l(0)← π̂(lsT);
7: while 1− ϵl >

sϵ
K

do

8: ϵl ← ϵl + e−Λ̃lsT (Λ̃lsT)n

n! ;

9: π̂((l + 1)sT)← π̂((l + 1)sT) + e−Λ̃lsT (Λ̃lsT)n

n! v̂l(n);
10: n← n+ 1;
11: v̂l(n)← v̂l(n− 1)P̃ l;
12: end while
13: R((l + 1)sT) =

∑S
i=0 π̂i((l + 1)sT)

14: end for

Algorithm 1 presents the pseudo-code of the algo-
rithm. Lines 3 to 12 derive the system state in one epoch
with s time periods based on the flow described in §3.1.
Lines 4 to 6 initialize the necessary parameters. Lines 7 to
12 implement Equation (12), while the truncation point
is determined based on Equation (14) and the given
maximum error tolerance. Note that the condition in
Line 7 indicates that the maximum allowable error in
one epoch is sϵ

K
as there are K

s
epochs and the aggregate

maximum allowable error is ϵ. After computing the
system state at time lsT , Line 13 computes the RAID
reliability based on the definition in Equation (8).

3.4 Speeding up the Computation of Algorithm 1

Note that the dimension of the matrix P̃ l is (S +
2) × (S + 2) (S is the number of stripes), which can
be very large for large-scale SSDs. To speed up the
computation of Algorithm 1, in addition to aggregating
multiple time periods as described in §3.1, we propose
another optimization technique by truncating the states
with large state numbers from the CTMC, so as to
reduce the dimension of P̃ l and hence the computational
cost. Intuitively, if an array contains many stripes with
exactly one erroneous chunk, it is more likely that a new
erroneous chunk appears in one of such stripes (and
hence data loss occurs) rather than in a stripe without
any erroneous chunk. We can thus remove such states
with large state numbers without losing accuracy.

Specifically, as the state number i increases, the tran-
sition rate qi,i+1(k) decreases, while the transition rate
qi,S+1(k) increases. That is, if the current state number
is higher, it is more likely to transit to the state of data
loss (i.e., state S + 1). In other words, it is unlikely for

Fig. 3: State transition after truncation.

a system to contain too many stripes with exactly one
erroneous chunk, because either some erroneous chunks
will be recovered soon, or another new error may appear
in the same stripe so that data loss happens. Therefore,
to reduce the computational cost, we can truncate the
states with large state numbers so as to reduce the state
space of the Markov chain. We truncate the states with
state number greater than E, and let E +1 represent
the case where more than E stripes contain exactly one
erroneous chunk. We take state E + 1 as an absorbing
state, and denote the state of data loss by E+2. Figure 3
depicts the truncated state transition diagram. According
to Equation (8), we define the reliability as

R(t) =
∑E

j=0
πj(t). (18)

The intuition of taking state E + 1 as an absorbing
state is that as long as the array contains more than E
stripes with an erroneous chunk, we assume that data
loss happens. That is, the computed reliability is a lower
bound. As we increase E, the computed reliability is
more accurate (i.e., the approximation error drops) at
the expense of incurring a higher computational cost.
Clearly, if E is set as S, then the transition diagram in
Figure 3 is exactly the same as that in Figure 2, and
Equation (18) gives the exact solution.

To compute the system state after state truncation, let
{X̄(t), t ≥ 0} be the new CTMC with generator matrix
Q̄k during period (kT, (k + 1)T) and π̄((k + 1)T) be the
system state at time (k + 1)T . Similar to Equation (10),
given the initial state π̄(kT), the system state at time
(k + 1)T for {X̄(t), t ≥ 0} can be derived as follows.

π̄((k + 1)T) = π̄(kT)
∑∞

n=0

(Q̄kT)
n

n!
. (19)

If we denote the error caused by truncating the states at
time kT by ϵ̄k, then ϵ̄k can be formally defined as follows.

ϵ̄k =
∑E

i=0
|π̄i(kT)− πi(kT)|,

where π̄i(kT) and πi(kT) represent the probabilities that
the system is at state i at time kT for the truncated CTMC
and the original CTMC, respectively. Clearly, ϵ̄0 = 0 as
both CTMCs start from the same initial state. The bound
of the state truncation error is

ϵ̄k ≤ π̄E+1(kT). (20)

Again, we can follow the steps in §3.1 to compute the
reliability under the truncated CTMC {X̄(t), t≥0}.

IEEE TRANSACTIONS ON COMPUTERS 8

3.5 Model Implementation

Our implementation of Algorithm 1 uses the following
inputs. We fix s = BM/20, meaning that for each SSD,
we consider at least 20 time points before it reaches
its lifetime of BM erasures. We choose this step size
because it also achieves high accuracy and only takes
small computation time, which will be justified in §4.2.
The error bound is fixed at ϵ = 10−3. We also set
π(0) = (1, 0 · · · 0) to indicate that the array has no error
initially. Finally, to configure parameter E, we note that
if E is smaller, we have a lower computation cost, while
the approximation error due to state truncation is larger.
We set E = 500 by default, as we find that the error is
very close to zero when E reaches 500.

4 MODEL VALIDATION

In this section, we validate via trace-driven simulation
the accuracy of our CTMC model on quantifying the
RAID reliability R(t) (see §4.1). We also study the trade-
off between model accuracy and computation time un-
der different step sizes (see §4.2).

4.1 Comparisons between Model and Simulation

We simulate the I/O behavior of an SSD using Mi-
crosoft’s SSD simulator [1], which is extended from
DiskSim [3]. Since each SSD contains multiple chips that
can be configured to be independent of each other and
handle I/O requests in parallel, without loss of accuracy,
we consider RAID at the chip level (as opposed to device
level). Specifically, we configure each chip to have its
own data bus and control bus and treat it as one drive,
and also treat the SSD controller as the RAID controller
where parity-based RAID is built.

Our validation measures the reliability of RAID-5 and
Diff-RAID. We consider N + 1 chips where N may
be configured to have different values. For traditional
RAID-5, parity chunks are evenly placed across the N+1
chips; for Diff-RAID, we place 10% of parity chunks in
each of the N chips and the remaining parity chunks in
the last flash chip. Since we set N ≤ 7 in our evaluation,
the choice of our parity distribution for Diff-RAID is
feasible.

We generate synthetic uniform workload in which
write requests access the addresses of the entire address
space with equal probability. To simulate the process
of error arrivals and recovery, we generate both error
events and recovery events and feed them into the SSD
simulator as special types of I/O requests. Specifically,
we generate an initial error event and an initial recovery
event before our simulation starts, and add them into the
event queue of the simulator. Note that the events in the
event queue, including those related to I/O requests and
the error/recovery events, are sorted according to their
arrival times, and each time the simulator will process
the event at the head of the queue. When an error event
or a recovery event is processed, we identify the error

position and change the corresponding metadata. We
then generate another error event or recovery event and
add it into the event queue. Error events are generated
based on Poisson arrivals with rate determined by the
current system age k of the array, while recovery events
are generated based on an exponential recovery time
distribution with a fixed rate µ = 1. As the array ages,
i.e., each time when an erase operation happens, we
update the error arrival rate accordingly by varying the
variable ki(t) based on Equation (7), and a new error
event is generated with the new error arrival rate.

To obtain simulation results for RAID reliability, the
workload that we generate lasts until data loss happens
or all drives in the array are worn out and replaced
at least once. Then we record the array age (i.e., the
number of erasures performed on the array) when the
simulation stops. Thus, we obtain only one number in
each simulation run, and this number represents the
least number of erasures that the array has undergone
when data loss happens. To obtain the reliability metric
defined in Equation (8), we run the simulation 1000
times for each parameter setting, and then calculate the
probability of no data loss at any array age based on
the 1000 numbers we obtain. Note that the reliability
defined in this paper is a continuous function of age,
so the more number of simulations we run for each
parameter setting, the smoother reliability curve is. For
time consideration, we only run 1000 times for each
parameter setting, which we find suffices to obtain a
smooth reliability curve.

To speed up our simulation, we consider a small-scale
array, in which each chip contains 80 blocks with 64
pages each, and the spare factor is set as 0.2. The chunk
size is set to be the same as the page size. We set a low
erasure limit of 50 for each block to avoid waiting for
too long to wear out an SSD, i.e., we let M = 50.

To validate the accuracy of our model, we consider
different configurations by varying the parameters c, N ,
α and M . In the interest of space, we here only present
the results in the case of varying the parameter c. Other
results are shown in §4 of the supplementary file. The
value of c determines the overall frequency of the error
arrivals (see Equation 7), we fix N = 3 and α = 2. We
consider three cases where c = 1.0 × 10−6, c = 0.5 ×
10−6 and c = 0.2 × 10−6, which represent three cases
in which the error rate is larger than, comparable to,
and smaller than the recovery rate, respectively. We call
them the error dominant case, comparable case, and recovery
dominant case, respectively.

Figures 4 shows the reliability results obtained from
the model and simulation for different values of c. In
each figure, the horizontal axis represents the array age,
which denotes the number of erasures performed on
the array, and the vertical axis shows the reliability,
which denotes the probability of no data loss until the
array age. We show the reliability dynamics of a RAID
array until all drives wear out. In particular, we plot
the upper bound and the lower bound obtained from

IEEE TRANSACTIONS ON COMPUTERS 9

our model, which are derived by setting Q̃l = Qls and
Q̃l = Qls+s−1, respectively. We also plot the results
with the reliability obtained from the simulator. From
the figures we observe that the gap between the upper
bound and the lower bound is generally very small, and
that the model and simulation results are very close
in all cases. We will further study the implication of
parity distributions and the impact of different RAID
parameters by using our model in §5.

4.2 Trade-off between Model Accuracy and Compu-
tation Time

Finally, we validate how our model can trade between
model accuracy and computation time by tuning the
step size s. Since the computation time is too large if
the step size is set as too small, we vary the step size s
from B to BM (note that Diff-RAID will have one drive
worn out and replaced after every BM erasures). In
this evaluation, we consider a specific set of parameters,
whose practical justifications are provided in §5.1. We
fix S = B = 131, 072, N = 9, µ = 10−3, T = 10−2,
and M = 104. We also consider different error arrival
patterns with α = 2, 3, and 1.5, which correspond to
the linear, convex, and concave error rates, respectively.
Without loss of generality, for each α, we only show one
particular error rate where the corresponding parameter
c is set as 0.4 × 10−13, 0.267 × 10−17 and 0.533 × 10−11

for α = 2, 3, and 1.5, respectively.
To characterize the accuracy of the model, we show

the gap between the upper bound and the lower bound,
i.e., R2(t) − R1(t). Note that since the error is larger
when the system age is higher, i.e., the gap becomes
larger as t increases, we focus on the gap at the time
when all drives have just been replaced once, i.e., at time
(N+1)BMT . On the other hand, the computation time is
estimated by implementing Algorithm 1 with Java. The
algorithm runs on a PC with a dual core CPU running
at 3.0 GHz and 4 GB memory. We show the results
for both traditional RAID-5 and Diff-RAID with parity
distribution computed by Equation (21) with σ = 1.

Figure 5 shows the results under different types of
error rates. The horizontal axis indicates the step size, the
left vertical axis shows the gap between the upper bound
and the lower bound, and the right vertical axis shows
the computation time. We see that the computation time
decreases as the step size increases, while the gap be-
tween the upper bound and the lower bound increases.
The gap may even reach up to 0.5 if the step size is set
as large as BM ≈ 1.3 × 109. Thus, there is a trade-off
between model accuracy and computation time when
we choose the step size. We point out that in the case of
RAID-5 with concave error rate (see Figure 5(c)), the gap
is very close to zero even for a large step size s = BM .
The reason is that the marginal increase of the error rate
decreases as SSD ages due to the concavity of the error
rate function, and the RAID reliability remains very high
when system age is small as RAID-5 is deployed with

brand-new SSDs. Thus, the variance of RAID reliability
in one computation interval is small and the gap between
the upper bound and the lower bound is very close to
zero. On the other hand, this is not the case for Diff-
RAID, as SSDs for constructing Diff-RAID are initially
consumed by a certain fraction of erasures based on the
distribution of Ai’s (see Equation (3)).

To choose an appropriate step size, note that the gap
between the upper bound and the lower bound is very
small for all cases when the step size s is smaller than
BM
20 ≈ 6.5 × 107, and the computation time is only less

than one minute if s is greater than BM
20 . Thus, setting

s = BM
20 achieves a good trade-off, and we fix s = BM

20 in
Algorithm 1. Last but not the least, according to the trend
shown in the figures, we infer that it takes a very long
time to derive the reliability if we set the step size as one.
This further shows the importance of our optimization
techniques in speeding up the computation.

5 NUMERICAL ANALYSIS

In this section, we use our proposed model to conduct
numerical analysis on the reliability dynamics of a large-
scale SSD RAID system with respect to different parity
placement strategies. We consider an SSD RAID array
with a large number of blocks in each SSD and consider
realistic erasure limit by setting a large value for M ,
and hence it is computationally infeasible to derive the
reliability from trace-driven simulation. To this end, we
summarize the lessons learned from our analysis.

5.1 Choices of Default Model Parameters

We first describe the default model parameters used in
our analysis, and provide justifications for our choices.

We consider an SSD RAID array composed of N + 1
SSDs, each being modeled by the same set of parameters.
By default, we set N = 9. Each block of an SSD has 64
pages of size 4KB each. We consider 32GB SSDs with
B = 131, 072 blocks. We configure the chunk size equal
to the block size, i.e., there are S = B = 131, 072 chunks1.
We also have each block sustain M =10K erase cycles.

We now describe how we configure the error arrival
rate λi = cαkα−1

i and the error recovery rate µ. We
employ 4-bit ECC protection per 512 bytes of data, the
industry standard for today’s MLC flash. Based on the
uncorrectable bit error rates (UBERs) calculated in [2],
we choose the UBER when an SSD reaches its rated
lifetime (i.e., the erasure limit M is reached) from the
range [10−16, 10−18]. Now the probability that a chunk
contains at least one bit error is roughly in the range
of [2 × 10−10, 2 × 10−12]. Based on the analysis on real
enterprise workload traces [30], a RAID array can have
several hundred gigabytes of data being accessed per
day. If the write request rate is set as 1TB per day (i.e., 50

1. In practice, SSDs are over-provisioned [1], so the actual number
of blocks (or chunks) that can be used for storage (i.e., S) should be
smaller. However, the key observations of our results here still hold.

IEEE TRANSACTIONS ON COMPUTERS 10

0 0.8 1.6 2.4 3.2
0

0.2

0.4

0.6

0.8

1

System Age (in 104)

R
e

li
a

b
il

it
y

DiskSim
Upper Bound
Lower Bound

Diff−RAID

RAID−5

(a) c = 1.0× 10−6

0 0.8 1.6 2.4 3.2
0

0.2

0.4

0.6

0.8

1

System Age (in 104)

R
e

li
a

b
il

it
y

DiskSim
Upper Bound
Lower Bound

RAID−5

Diff−RAID

(b) c = 0.5× 10−6

0 0.8 1.6 2.4 3.2
0

0.2

0.4

0.6

0.8

1

System Age (in 104)

R
e

li
a

b
il

it
y

DiskSim
Upper Bound
Lower Bound

Diff−RAID

RAID−5

(c) c = 0.2× 10−6

Fig. 4: Model validation with respect to different values of c (N = 3 and α = 2).

10
6

10
7

10
8

10
9

0

0.05

0.1

0.15

0.2

Step size: s

G
a
p

:
R

2
−

R
1

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

s
)

0

200

400

0

100

200

300

400

Diff−RAID

RAID−5

Computation time

Gap: R
2
−R

1

(a) Linear error rate (α = 2)

10
6

10
7

10
8

10
9

0

0.1

0.2

0.3

0.4

0.5

Step size: s

G
a

p
:

R
2
−

R
1

0

100

200

300

400

500

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

)

0

200

400

 Diff−RAID

RAID−5

Computation time

Gap: R
2
−R

1

(b) Convex error rate (α = 3)

10
6

10
7

10
8

10
9

0

0.05

0.1

0.15

0.2

0.25

0.3

Step size: s

G
a

p
:

R
2
−

R
1

0

100

200

300

400

500

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

)

0

200

400

 Diff−RAID

RAID−5

Gap: R
2
−R

1
Computation time

(c) Concave error rate (α = 1.5)

Fig. 5: Trade-off between accuracy and computation time.

chunks per second), then the error arrival rate per chunk
at its rated lifetime (i.e., λi = cαMα−1) is approximately
in the range [10−8, 10−10].

To set the parameters c and µ, we consider three cases:
(1) error arrivals are dominant, (2) error arrivals are com-
parable to error recoveries, and (3) error recoveries are
dominant, which correspond to the error dominant, com-
parable, and recovery dominant cases, respectively. Note
that the aggregate error arrival rate when all N + 1
drives are going to die out is cαMα−1S(N +1), which is
roughly in the range [10−2, 10−4] if N = 9, so we first
fix µ = 10−3, and then consider three cases of error
patterns. In particular, in the case where α = 2, we set
c = 1.1 × 10−13, c = 0.4 × 10−13, and c = 0.1 × 10−13

so to represent the above three cases, respectively. Note
that when α = 2 and c = 0.4 × 10−13, the aggregate
error arrival rate of the array when all SSDs reach their
rated lifetime is around 2cMS(N+1) ≈ 10−3 = µ (where
N = 9, M =10K, and S = 131, 072).

As in §4, we also consider the cases when α = 3 and
α = 1.5, and set the corresponding coefficient c according
to the same maximum error rate cαMα−1 as in the case
where α = 2. Specifically, we set c as 0.73×10−17, 0.267×
10−17, and 0.667×10−18 when α = 3, and set it as 0.147×
10−10, 0.533× 10−11, and 0.133× 10−11 when α = 1.5.

We now configure T , the time interval between two
neighboring erase operations. Suppose that there are 1TB
of writes per day as described above. The inter-arrival
time of write requests is around 3 × 10−4 seconds for
4KB page size. Thus, the average time between two
erase operations is 1.9 × 10−2 seconds as an erase is
triggered after writing 64 pages. In practice, each erase
causes additional writes (i.e., write amplification [15]) as

it moves data across blocks, so T should be smaller. Here,
we fix T = 10−2 seconds.

We compare the reliability dynamics of RAID-5 and
Diff-RAID. For RAID-5, each drive holds a fraction 1

N+1
of parity chunks; for Diff-RAID, we choose the parity
distribution (i.e., pi’s for 0 ≤ i ≤ N) based on a truncated
normal distribution. Specifically, we consider a normal
distribution N (N+1,σ2) with mean N+1, and standard
deviation σ, and let f be the corresponding probability
density function. We then choose pi’s as follows:

pi =

∫ i+1
i

f(x)dx
∫ N+1
0 f(x)dx

, 0 ≤ i ≤ N. (21)

We can choose different distributions of pi by tuning the
parameter σ. Intuitively, the larger σ is, the more evenly
pi’s are distributed. We consider three cases: σ = 1, σ = 2,
and σ = 5. Suppose that N = 9. Then for σ = 1, SSD N
and SSD N − 1 hold 68% and 27% of parity chunks,
respectively; for σ = 2, SSD N , SSD N−1, and SSD N−2
hold 38%, 30%, and 18% of parity chunks, respectively;
for σ = 5, the proportions of parity chunks range from
2.8% (in SSD 0) to 16.6% (in SSD N). Giving pi’s, the age
of each block of SSD i (i.e., ki) can be computed.

5.2 Impact of Different Error Dynamics

We now show the numerical results of RAID reliability.
We evaluate the reliability using Equation (16) for the lin-
ear error rate and using Equation (17) for the non-linear
error rate. We assume that the drive replacement can be
completed immediately after the oldest SSD reaches its
rated lifetime. When the oldest drive is replaced, all its
chunks (including any erroneous chunks) are copied to

IEEE TRANSACTIONS ON COMPUTERS 11

the new drive. Thus, the reliability remains the same. We
use the parameters described in §5.1.

Since the reliability dynamics in the case of non-linear
error rate is similar as that in the case of linear error rate,
in the interest of space, here we focus on the linear error
rate and show the results in the case of non-linear error
rate in § 5 of the supplementary file. Figure 6 shows the
reliability for three cases: error dominant, comparable,
and recovery dominant. We elaborate the results below.

Case 1: Error dominant case. Figure 6(a) first shows
the numerical results for the error dominant case. Ini-
tially, RAID-5 achieves very good reliability. As SSDs
wear down, the bit error rate increases, and this makes
the RAID reliability decrease very quickly. In particu-
lar, the reliability drops to zero (i.e., data loss always
happen) when the array performs around 5 × 109 era-
sures. For Diff-RAID, the more evenly parity chunks
are distributed, the lower RAID reliability is. In the
error dominant case, since error arrival rate is much
bigger than the recovery rate, the RAID reliability drops
to zero very quickly no matter what parity placement
strategy is used. We note that Diff-RAID is less reliable
than traditional RAID-5 in the error dominant case.
The reason is that for Diff-RAID, the initial ages of
SSDs when constructing RAID are non-zero, but instead
follow the convergent age distribution (i.e., based on
Ai’s in Equation (3)). When error rate is very large,
the array suffers from low reliability even if the array
only performs a small number of erasures. However, for
RAID-5, since it is always constructed with brand-new
SSDs, it starts with a very high reliability.

Case 2: Comparable case. Figure 6(b) shows the re-
sults for the comparable case. RAID-5 achieves very
good reliability initially, but decreases dramatically as
the SSDs wear down. Also, all drives wear down at
the same rate, the reliability of the array is about zero
when all drives reach their erasure limits, i.e., when
the system age is around 1.3× 1010 erasures. Diff-RAID
shows different reliability dynamics. Initially, Diff-RAID
has less reliability than RAID-5, but the drop rate of the
reliability is much slower than that of RAID-5 as SSDs
wear down. The reason is that Diff-RAID has uneven
parity placement, SSDs are worn out at different times
and will be replaced one by one. When the worn-out SSD
is replaced, other SSDs perform fewer erase operations
and have small error rates. This prevents the whole array
suffering from a very large error rate as in RAID-5. Also,
the reliability is higher when the parity distribution is
more skewed (i.e., smaller σ), as also observed in [2].

Case 3: Recovery dominant case. Figure 6(c) shows the
results for the recovery dominant case. Note that the
vertical axis in Figure 6(c) starts from 0.9 but not 0.
RAID-5 shows high reliability in general. Between two
replacements (which happens every 1.3× 1010 erasures),
its data loss probability drops by within 3%. Its reliability
drops slowly right after each replacement, and its drop

rate increases as it is close to be worn out. Diff-RAID
shows higher reliability than RAID-5 in general, but
the difference is small (e.g., less than 6% between Diff-
RAID for σ = 1 and RAID-5). Therefore, in the recovery
dominant scenario, we may deploy RAID-5 instead of
Diff-RAID, as the latter introduces higher costs in parity
redistribution in each replacement and has smaller I/O
throughput due to load imbalance of parities.

5.3 Impact of Different Array Configurations

We further study via our model how different array
configurations affect the RAID reliability. We focus on
Diff-RAID and generate the parity distribution pi’s with
σ = 1. Without loss of generality, in the following, we
only focus on the case when α = 2. Our goal is to
validate the robustness of our model on characterizing
the reliability for different array configurations.

Impact of N . Figure 7(a) shows the impact of the RAID
size N . We fix other parameters as the same in the
comparable case shown in Figure 6(b), i.e., µ = 10−3,
c = 0.4×10−13, and M = 104. The larger the system size,
the lower the RAID reliability. Intuitively, the probability
of having one more erroneous chunk in a stripe increases
with the stripe width (i.e., N+1). Note that the reliability
drop is significant when N increases. For example, at
2.6 × 1010 erasures, the reliability drops from 0.7 to 0.2
when N increases from 9 to 19.

Impact of ECC. Figure 7(b) shows the impact of different
ECC lengths. We fix µ = 10−3, M = 104, and N = 9. We
also fix the raw bit error rate (RBER) as 1.3 × 10−6 [2],
and compute the uncorrectable bit error rate using the
formulas in [27]. Then as described in §5.1, we derive
c for different ECCs that can correct 3, 4, 5 bits per 512
byte sector, and the corresponding values are 4.4×10−11,
4.7×10−14, and 4.2×10−17, respectively. We observe that
the RAID reliability drops to zero very quickly for 3-bit
ECC at around 105 erasures, while the reliability for 5-
bit ECC starts to decrease until the array performs 1011

erasures. This shows that the RAID reliability heavily
depends on the reliability of each single SSD, or the ECC
length employed in each SSD.

Impact of M . Figure 7(c) shows the impact of the erasure
limit M , or the endurance of a single SSD, on the RAID
reliability. We fix other parameters with µ = 10−3, N = 9
and c = 0.4×10−13. We observe that when M decreases,
the RAID reliability increases. For example, at 1.3× 1010

erasures, reliability increases from 0.85 to 0.99 when M
decreases from 10K to 1K. This is mainly because the
parameter c is fixed, so the maximum error rate of SSDs
(i.e., cαMα−1) is bigger when M is larger. Recall that
error rates increase with the number of erasures in SSDs.
We now have the increase of bit error rates capped by
the small erasure limit. The trade-off is that the SSDs are
worn out and replaced more frequently with smaller M .

IEEE TRANSACTIONS ON COMPUTERS 12

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

System Age (in 1010)

R
e

li
a

b
il

it
y

 R
(t

)

Diff−RAID(σ=1)

Diff−RAID(σ=2)

Diff−RAID(σ=5)

RAID−5

(a) Error dominant case (c = 1.1× 10−13)

0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1

System Age (in 1010)

R
e

li
a

b
il

it
y

 R
(t

)

Diff−RAID(σ=1)

Diff−RAID(σ=2)

Diff−RAID(σ=5)

RAID−5

(b) Comparable case (c = 0.4× 10−13)

0 1 2 3 4
0.9

0.92

0.94

0.96

0.98

1

R
e

li
a

b
il

it
y

 R
(t

)

System Age (in 1010)

Diff−RAID(σ=1)

Diff−RAID(σ=2)

Diff−RAID(σ=5)

RAID−5

(c) Recovery dominant case (c=10−14)

Fig. 6: Reliability dynamics of SSD arrays (Linear error rate with α = 2).

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

System Age (in 1010)

R
e

li
a

b
il

it
y

 R
(t

)

N=4
N=9
N=19

(a) Impact of N

10
4

10
6

10
8

10
10

10
12

0

0.2

0.4

0.6

0.8

1

System Age

R
e

li
a

b
il

it
y

 R
(t

)

ECC=5
ECC=4
ECC=3

(b) Impact of ECC length

0 0.2 0.4 0.6 0.8 1 1.2
0.8

0.85

0.9

0.95

1

R
e

li
a

b
il

it
y

 R
(t

)

System Age (in 1010)

M=10K
M=5K
M=1K

(c) Impact of M

Fig. 7: Impact of different RAID configurations on the reliability.

5.4 Impact of Non-uniform Workload

As we stated in §2.3, our model can also be applied to
analyze non-uniform workload as long as the aging ratio
is given. To study the impact of non-uniform workload,
we let N = 9 and focus on the comparable case. Since
the aging ratio for RAID-5 depends on workload, while
it mainly depends on the parity distribution for Diff-
RAID, we fix the aging ratio for Diff-RAID and only vary
it for RAID-5. In particular, we set (r0 : r1 : · · · : rN) =
(4 : 1 : · · · : 1) for Diff-RAID. For RAID-5, we consider
two cases: (1) (r0 : r1 : · · · : rN) = (1 : 1 : · · · : 1), which
corresponds to the case of uniform workload where all
SSDs receive the same number of requests and age at
the same rate, and (2) (r0 : r1 : · · · : rN) = (4 : 1 : · · · : 1),
which corresponds to the case of non-uniform workload
where the first drive receives more requests and ages
four times faster than other drives.

Figure 8 shows the impact of workload on RAID
reliability with different error rates. Note that the aging
ratio (4 : 1 : · · · : 1) implies that the first SSD ages four
times faster than others. That is, the first SSD will be
replaced four times when other drives are just replaced
once for RAID-5. Based on parameters described before,
all drives in the array will be replaced at least once
after every 13BM ≈ 1.7× 1010 erasures, so we show the
RAID reliability until the system age reaches 1.7× 1010.
We see that the reliability of RAID-5 under non-uniform
workload is always higher than that under uniform
workload for all types of error rates. However, even
if SSDs in a RAID-5 array age at different rates under
non-uniform workload, correlated device failures may
still happen as it is still possible that all drives wear
out simultaneously, which makes the array suffer from

a low reliability. For example, in the case where the
aging ratio is (4 : 1 · · · 1), when the first SSD has been
replaced four times, all other SSDs are also worn out.
Simultaneous wearing can only be avoided by calling
parity redistribution as in Diff-RAID. In particular, the
relationship between Diff-RAID and RAID-5 we derived
from the previous analysis on uniform workload still
holds for non-uniform workload.

5.5 Discussion

Our model effectively analyzes the RAID reliability with
regard to different RAID configurations. The numerical
results presented in previous subsections address the
fundamental question of whether we should distribute
evenly or unevenly parities across multiple SSDs to
achieve high SSD RAID reliability (see §1). In particular,
our results provide several insights as follows.

• The error dominant case may correspond to the low-
end SSDs with high bit error rates, especially when
these types of SSDs have low I/O bandwidth for
RAID reconstruction. Both traditional RAID-5 and
Diff-RAID show low reliability. A higher degree of
fault tolerance becomes necessary in this case, and
both methods of using stronger ECC that can correct
more than 4-bit errors (note that we assume 4-bit
ECC in the numerical study) and deploying a RAID
that can tolerate against two or three failures may
be adequate. However, the comparison of the two
methods in improving SSD RAID reliability is out
of the scope of this paper.

• When the error arrival and recovery rates are sim-
ilar, Diff-RAID, with uneven parity distribution,
achieves higher reliability than RAID-5, especially

IEEE TRANSACTIONS ON COMPUTERS 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

System Age (in 1010)

R
e

li
a

b
il

it
y

 R
(t

)

Diff−RAID

RAID−5(Uniform)

RAID−5(Non−uniform)

(a) Concave error rate (α = 1.5)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

System Age (in 1010)

R
e

li
a

b
il

it
y

 R
(t

)

Diff−RAID

RAID−5(Uniform)

RAID−5(Non−uniform)

(b) Linear error rate (α = 2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

System Age (in 1010)

R
e

li
a

b
il

it
y

 R
(t

)

Diff−RAID

RAID−5(Uniform)

RAID−5(Non−uniform)

(c) Convex error rate (α = 3)

Fig. 8: Impact of workload on RAID reliability. For Diff-RAID, the aging ratio is fixed as (4 : 1 : · · · : 1) which
can be achieved under both uniform workload and non-uniform workload by adjusting the parity distribution. For
RAID-5, the aging ratios are (1 : 1 : · · · : 1) and (4 : 1 : · · · : 1), which correspond to the cases of uniform workload
and non-uniform workload, respectively.

when RAID-5 reaches zero reliability when all SSDs
are worn out simultaneously. This conforms to the
findings in [2].

• In the recovery dominant case, which may corre-
spond to the high-end SSDs that typically have very
small bit error rates, even if Diff-DAID provides
higher reliability than RAID-5, the improvement is
very small and RAID-5 already achieves very high
reliability. Thus, we may choose RAID-5 over Diff-
RAID as it can achieve better load balancing because
of the even distribution of parities. On the other
hand, Diff-RAID requires the operation of parity re-
distribution during each SSD replacement. This may
severely degrade the I/O performance of SSD RAID.
Parity redistribution also significantly complicates
the implementation of SSD replacement.

6 RELATED WORK

There have been extensive studies on NAND flash-based
SSDs. A detailed survey of the algorithms and data
structures for flash memories is found in [11]. Recent
papers empirically study the intrinsic characteristics of
SSDs (e.g., [1, 6]), or develop analytical models for the
write performance (e.g., [9, 15]) and garbage collection
algorithms (e.g., [24]) of SSDs.

Bit error rates of SSDs are known to increase with
the number of erasures [5, 12, 27, 35, 38]. To improve
reliability, prior studies propose to adopt RAID for SSDs
at the device level [2, 16, 21, 22, 26, 31], or at the
chip level [19, 20]. These studies focus on developing
new RAID schemes to improve the performance and
endurance of SSDs. The performance and reliability im-
plications of RAID on SSDs are experimentally studied
in [18], and authors in [28] analyzed the impact of parity
protection on the lifetime of SSD arrays. In contrast,
our work focuses on quantifying reliability dynamics
of SSD RAID under different parity distributions from
a theoretical perspective. Authors of Diff-RAID [2] also
attempt to quantify the reliability, but they only compute
the reliability at the instants of SSD replacements, while
our model captures the time-varying nature of error

rates in SSDs and quantifies the instantaneous reliability
during the whole lifespan of an SSD RAID array.

RAID was first introduced in [32] and has been widely
used. Performance and reliability analysis on RAID in
the context of hard disk drives has been extensively
studied (e.g., see [4, 7, 25, 29, 37]). On the other hand,
SSDs have a distinct property that their error rates
increase as they wear down, so a new model is necessary
to characterize the reliability of SSD RAID.

7 CONCLUSIONS

We developed the first analytical model that quantifies
the reliability dynamics of SSD RAID. We built our
model as a non-homogeneous continuous time Markov
chain, and analyzed its transient state probability using
the uniformization technique. We validated the correct-
ness of our model via trace-driven simulation. With
our model, one can characterize the reliability dynamics
of SSD RAID arrays with different parity placement
distributions. To demonstrate, we compared the reliabil-
ity dynamics of traditional RAID-5 and the new Diff-
RAID scheme under different error patterns and array
configurations. Our model provides a useful tool to
characterize the reliability of an SSD RAID array with
regard to different scenarios.

ACKNOWLEDGMENTS

The work of Yongkun Li was supported in part by
National Nature Science Foundation of China under
Grant No. 61303048, and the Fundamental Research
Funds for the Central Universities under Grant No.
WK0110000040. The work of Patrick P. C. Lee was sup-
ported in part by seed grants from the CUHK MoE-
Microsoft Key Laboratory of Human-centric Computing
and Interface Technologies.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy. Design Tradeoffs for SSD Performance. In
USENIX ATC, Jun 2008.

IEEE TRANSACTIONS ON COMPUTERS 14

[2] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi.
Differential RAID: Rethinking RAID for SSD Reliability. ACM
ToS, 6(2):4, Jul 2010.

[3] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The
DiskSim Simulation Environment Version 4.0 Reference Manual.
Technical Report CMUPDL-08-101, May 2008.

[4] W. Burkhard and J. Menon. Disk Array Storage System Reliability.
In Proc. of IEEE FTCS, Jun 1993.

[5] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Error Patterns in
MLC NAND Flash Memory: Measurement, Characterization, and
Analysis. In DATE, 2012.

[6] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based
Solid State Drives. In SIGMETRICS, 2009.

[7] S. Chen and D. Towsley. A Performance Evaluation of RAID
Architectures. IEEE TC, 45(10):1116–1130, 1996.

[8] E. de Souza e Silva and H. R. Gail. Transient Solutions for Markov
Chains. Computational Probability, W. K. Grassmann (editor).
Kluwer Academic Publishers:43–81, 2000.

[9] P. Desnoyers. Analytic Modeling of SSD Write Performance. In
SYSTOR, Jun 2012.

[10] R. Enderle. Revolution in January: EMC Brings Flash Drives
into the Data Center. http://www.itbusinessedge.com/blogs/
rob/?p=184, Jan 2008.

[11] E. Gal and S. Toledo. Algorithms and Data Structures for Flash
Memories. ACM Comput. Surv., 37(2):138–163, 2005.

[12] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing Flash Memory:
Anomalies, Observations, and Applications. In MICRO, Dec 2009.

[13] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak Future of
NAND Flash Memory. In FAST, Feb 2012.

[14] K. Hess. 2011: Year of the SSD? http://www.
datacenterknowledge.com/archives/2011/02/17/
2011-year-of-the-ssd/, Feb 2011.

[15] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write
Amplification Analysis in Flash-based Solid State Drives. In
SYSTOR, May 2009.

[16] S. Im and D. Shin. Flash-Aware RAID Techniques for Dependable
and High-Performance Flash Memory SSD. IEEE TC, 2011.

[17] A. Jensen. Markoff Chains As An Aid in The Study of Markoff
Processes. Scandinavian Actuarial Journal, 3:87–91, 1953.

[18] N. Jeremic, G. Mühl, A. Busse, and J. Richling. The Pitfalls of
Deploying Solid-state Drive RAIDs. In SYSTOR, 2011.

[19] J. Kim, J. Lee, J. Choi, D. Lee, and S. Noh. Improving SSD
Reliability with RAID via Elastic Striping and Anywhere Parity.
In DSN, pages 1–12, 2013.

[20] J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh. Enhancing SSD
Reliability Through Efficient RAID Support. In APSys, Jul 2012.

[21] S. Lee, B. Lee, K. Koh, and H. Bahn. A Lifespan-aware Reliability
Scheme for RAID-based Flash Storage. In Proc. of ACM Symp. on
Applied Computing, SAC ’11, 2011.

[22] Y. Lee, S. Jung, and Y. H. Song. FRA: A Flash-aware Redundancy
Array of Flash Storage Devices. In ACM CODES+ISSS, Oct 2009.

[23] Y. Li, P. P. C. Lee, and J. C. S. Lui. Stochastic Analysis on RAID
Reliability for Solid-State Drives. In IEEE SRDS, 2013.

[24] Y. Li, P. P. C. Lee, and J. C. S. Lui. Stochastic Modeling of Large-
Scale Solid-State Storage Systems: Analysis, Design Tradeoffs and
Optimization. In SIGMETRICS, 2013.

[25] M. Malhotra and K. S. Trivedi. Reliability Analysis of Redundant
Arrays of Inexpensive Disks. J. Parallel Distrib. Comput., 17(1-
2):146–151, Jan 1993.

[26] B. Mao, H. Jiang, S. Wu, L. Tian, D. Feng, J. Chen, and L. Zeng.
HPDA: A Hybrid Parity-based Disk Array for Enhanced Perfor-
mance and Reliability. ACM ToS, 8(1):4, Feb 2012.

[27] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill. Bit Error Rate in NAND
Flash Memories. In IEEE Int. Reliability Physics Symp., Apr 2008.

[28] S. Moon and A. L. N. Reddy. Don’t Let RAID Raid the Lifetime
of Your SSD Array. In HotStorage, pages 1–12, 2013.

[29] R. R. Muntz and J. C. S. Lui. Performance Analysis of Disk Arrays
under Failure. In VLDB, Aug 1990.

[30] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron. Migrating Server Storage to SSDs: Analysis of Tradeoffs.
In EuroSys, Mar 2009.

[31] K. Park, D.-H. Lee, Y. Woo, G. Lee, J.-H. Lee, and D.-H. Kim.
Reliability and Performance Enhancement Technique for SSD
Array Storage System Using RAID Mechanism. In IEEE Int. Symp.

on Comm. and Inform. Tech., 2009.
[32] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant

Arrays of Inexpensive Disks (RAID). In SIGMOD, Jun 1988.
[33] A. Reibman and K. S. Trivedi. Transient Analysis of Cumulative

Measures of Markov Model Behavior. Communications in Statistics-
Stochastic Models, 5:683–710, 1989.

[34] M. Schulze, G. Gibson, R. Katz, and D. Patterson. How Reliable
Is A RAID? In IEEE Computer Society International Conference:
Intellectual Leverage, Digest of Papers, 1989.

[35] H. Sun, P. Grayson, and B. Wood. Quantifying Reliability of Solid-
State Storage from Multiple Aspects. In SNAPI, 2011.

[36] W. Weibull. A Statistical Distribution Function of Wide Applica-
bility. J. of Applied Mechanics, 18:293–297, 1951.

[37] X. Wu, J. Li, and H. Kameda. Reliability Analysis of Disk Array
Organizations by Considering Uncorrectable Bit Errors. In SRDS,
Oct 1997.

[38] E. Yaakobi, L. Grupp, P. Siegel, S. Swanson, and J. Wolf. Char-
acterization and Error-correcting Codes for TLC Flash Memories.
In ICNC, 2012.

[39] D. Yimo, L. Fang, C. Zhiguang, and M. Xin. WeLe-RAID: A SSD-
Based RAID for System Endurance and Performance. In Network
and Parallel Computing, volume 6985 of Lecture Notes in Computer
Science, pages 248–262. Springer Berlin Heidelberg, 2011.

Yongkun Li is currently an associate researcher
in School of Computer Science and Technology,
University of Science and Technology of China.
He received the B.Eng. degree in Computer Sci-
ence from University of Science and Technology
of China in 2008, and the Ph.D. degree in Com-
puter Science and Engineering from The Chi-
nese University of Hong Kong in 2012. After that,
he worked as a postdoctoral fellow in Institute
of Network Coding at The Chinese University
of Hong Kong. His research mainly focuses on

performance evaluation of networking and storage systems.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University
of Hong Kong in 2003, and the Ph.D. degree
in Computer Science from Columbia University
in 2008. He is now an assistant professor of
the Department of Computer Science and En-
gineering at the Chinese University of Hong
Kong. His research interests are in various ap-

plied/systems topics including cloud storage, distributed systems and
networks, operating systems, and security/resilience.

John C. S. Lui is currently a professor in the
Department of Computer Science & Engineer-
ing at The Chinese University of Hong Kong.
He received his Ph.D. in Computer Science
from UCLA. He serves in the editorial board
of IEEE/ACM Transactions on Networking, IEEE
Transactions on Computers, IEEE Transactions
on Parallel and Distributed Systems, Journal of
Performance Evaluation and International Jour-
nal of Network Security . He is an elected mem-
ber of the IFIP WG 7.3, Fellow of ACM, Fellow of

IEEE and Croucher Senior Research Fellow. His current research inter-
ests are in communication networks, network/system security, network
economics, network sciences, cloud computing, large scale distributed
systems and performance evaluation theory.

