
Single Disk Failure Recovery for
X-Code-Based Parallel Storage Systems

Silei Xu, Runhui Li, Patrick P.C. Lee, Yunfeng Zhu, Liping Xiang, Yinlong Xu, and John C.S. Lui

Abstract—In modern parallel storage systems (e.g., cloud storage and data centers), it is important to provide data availability

guarantees against disk (or storage node) failures via redundancy coding schemes. One coding scheme is X-code, which is double-
fault tolerant while achieving the optimal update complexity. When a disk/node fails, recovery must be carried out to reduce the

possibility of data unavailability. We propose an X-code-based optimal recovery scheme called minimum-disk-read-recovery (MDRR),
which minimizes the number of disk reads for single-disk failure recovery. We make several contributions. First, we show that MDRR

provides optimal single-disk failure recovery and reduces about 25 percent of disk reads compared to the conventional recovery
approach. Second, we prove that any optimal recovery scheme for X-code cannot balance disk reads among different disks within a

single stripe in general cases. Third, we propose an efficient logical encoding scheme that issues balanced disk read in a group of
stripes for any recovery algorithm (including the MDRR scheme). Finally, we implement our proposed recovery schemes and conduct

extensive testbed experiments in a networked storage system prototype. Experiments indicate that MDRR reduces around 20 percent
of recovery time of the conventional approach, showing that our theoretical findings are applicable in practice.

Index Terms—Parallel storage systems, coding theory, data availability, recovery algorithm

Ç

1 INTRODUCTION

A fundamental requirement of building large-scale par-
allel storage systems is to make sure information is

reliable and available for a long period of time. To achieve
high reliability and availability in the face of component
failures, redundancy techniques have been widely used in
modern parallel/distributed storage systems, such as cloud
storage, data centers, and peer-to-peer storage. For example,
GFS [1] and Dynamo [2] use replication, while OceanStore
[3], Total Recall [4], and Wuala [5] use erasure codes (e.g.,
one form of Reed-Solomon code [6]).

Full replication is the simplest way to generate redun-
dant data. Exact copies of the original data are stored in
multiple disks (or storage nodes), each of which keeps one
copy. However, replication comes with a substantially high
storage cost. Another form of redundancy is to use Maxi-
mum Distance Separable (MDS) codes, defined by parameters
n and k. An ðn; kÞ MDS code (e.g., Reed-Solomon code [6]
and optimal erasure codes) is to divide the original file of
size M into k equal-size fragments of size M=k each, and
then encode the k data fragments into n fragments, each of
which also has the same sizeM=k. The MDS property states

that any k out of the n encoded data fragments can be
used to reconstruct the original file. The main advantage
of MDS codes is that one can achieve optimal tradeoff
between storage cost and data reliability. Compared with
full replication, MDS codes can achieve orders of magni-
tude higher reliability with similar storage and bandwidth
requirements [7]. Furthermore, full replication implies
deploying more disks and that energy cost is one of the
major concerns for data center [8], [9]. Thus, we expect that
MDS codes are more preferred over full replication in
many practical scenarios.

A special family of MDS codes is called MDS array
codes, which are designed to provide fault-tolerant storage
for RAID systems against double-disk failures (e.g., RDP
code [10], EVENODD code [11], X-code [12]) or triple-
disk failures (e.g., STAR code [13]). MDS array codes
have an attractive property that they are computationally
efficient, since their encoding and decoding processes use
only XOR operations. In this work, we focus on RAID-6
array codes (e.g., RDP, EVENODD, X-code), which toler-
ate any two concurrent disk failures.

RAID-6 array codes can be categorized into two classes
[14]. The first class is the horizontal codes, such as RDP and
EVENODD, where original data fragments are stored in
data disks while encoded fragments (known as parities)
are stored in dedicated parity disks (also known as P and
Q disks). Another class is vertical codes, such as X-code,
where parities are distributed across all disks.

When a disk failure occurs in a parallel storage sys-
tem, it is important to recover (or repair) the erased data
in the failed disk as quickly as possible to maintain the
system reliability guarantees [15]. It is challenging to
repair a failed disk when MDS codes, or specifically MDS
array codes, are used. A conventional approach is to
download the entire file and reconstruct the original
data, and then regenerate the data fragments of the failed

S. Xu is with the School of Computer Science and Technology, University
of Science and Technology of China, China.
E-mail: xusilei@mail.ustc.edu.cn.

R. Li, P.P.C. Lee, and J.C.S. Lui are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Shatin,
N.T., Hong Kong. E-mail: xusilei@mail.ustc.edu.cn, {rhli, pclee,
cslui}@cse.cuhk.edu.hk.

Y. Zhu, L. Xiang, and Y. Xu are with School of Computer Science and
Technology, University of Science and Technology of China, China.
E-mail: {zyfl, xlping}mail.ustc.edu.cn, ylxu@ustc.edu.cn.

Manuscript received 11 Feb. 2012; revised 25 Nov. 2012; accepted 21 Dec.
2012; date of publication 11 Jan. 2013; date of current version 5 Mar. 2014.
Recommended for acceptance by R. Figueiredo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.8

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014 995

0018-9340 ! 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

disk. The conventional approach will cost a great deal of
data transmission [16]. The total amount of data that
must be processed during recovery plays a crucial role in
recovery time and affects the system service performance
[10], [17]. This is particularly important in parallel stor-
age systems, where network transmission bandwidth is a
potential performance bottleneck.

1.1 Related Work
Recent research studies (see survey in [18]) propose a new
class of MDS codes called the regenerating codes to reduce
the amount of data needed to recover a failed disk/node
in a parallel/distributed storage system. Authors of [19],
[20] derive the cut-set lower bound of the amount of data
needed for recovery based on the network coding theory
[21]. Authors of [22], [23] propose the constructions of
new MDS codes that can achieve improved recovery per-
formance. Hu et al. [24] further consider cooperative
recovery for multi-node failures. However, regenerating
codes have yet to see practical deployment, possibly due
to several constraints. Most regenerating codes (e.g., [25])
require storage nodes be programmable to support the
encoding capability for recovery, thereby limiting the
deployable platforms for practical storage systems. Some
regenerating codes (e.g., [26]) can be implemented without
the encoding capability of a storage node, but generally
introduce higher storage overhead than traditional erasure
codes. Note that their encoding operations involve linear
computations on finite fields, and are more computation-
ally expensive than XOR-based MDS array codes.

Only few research studies (e.g., [27], [28], [29], [30]) con-
sider the recovery problem of RAID-6 array codes.
Authors of [27] give lower bounds of repair bandwidth for
single disk failure recovery with different codes, and they
show that the lower bound is ð3p2 $ 2pþ 5Þ=4 for X-code.
However, they do not present a formal proof for the tight
lower bound of X-code. Also, they do not consider the
load balancing problem among different disks and pro-
vide experimental evaluation. Our work addresses all the
above issues. Authors of [28] consider the single-disk
recovery problem for a particular type of MDS array codes
called the RDP code. By using double parities for single-
disk failure recovery, they propose an optimal recovery
algorithm that reduces almost 25 percent of disk reads for
recovery. In [28], an optimal recovery algorithm is also
proposed for the EVENODD code. However, X-code has
some advantages over the RDP and EVENODD codes (see
below). Authors of [29] experimentally evaluate the online
recovery performance of single disk failure of RAID-6
codes, but they do not present any new recovery algo-
rithm. Authors of [30] propose an efficient recovery
scheme called the Path Directed Recovery Scheme (PDRS),
which can decrease the disk I/O complexity by up
to 25 percent for all vertical RAID-6 codes like P-code and
X-code when recovering a single failed disk. However,
they do not formally derive the lower bound of disk reads.
Also, PDRS cannot consider the load balancing problem
among different disks during recovery. Its performance
decreases greatly as the size of storage system increases as
their experiments indicated.

Authors of [31] propose an enumeration approach to
solve the optimal recovery problem for MDS array codes
that tolerate a general number of failures. They also show
that the problem is NP-hard. Authors of [32] propose effi-
cient recovery heuristics for general MDS array codes, and
authors of [33] propose recovery heuristics for RDP and
EVENODD codes in a heterogeneous environment. In this
work, we focus on theoretically studying the optimal
recovery problem of X-code, which is a RAID-6 array code.

Apart from optimizing the recovery performance based
on encoding/decoding-related schemes, other studies
propose different techniques on the failure recovery of
storage systems, such as exploiting filesystem semantics
[34], optimizing reconstruction sequence [35], outsourcing
users’ workloads during recovery [36], and exploring bet-
ter cache utilization [37], [38], etc.

1.2 Contributions
In this paper, we consider the recovery problem of a sin-
gle-disk failure for parallel storage systems using a well-
known MDS array code called X-code [12], which can tol-
erate double-disk failures. It has been proven that X-code
is optimal in computational complexity, update complex-
ity, and space efficiency among all the RAID-6 codes
(note that B-code [39] is also shown to be update optimal).
Unlike RDP and EVENODD codes, both of which are hor-
izontal codes, X-code is a vertical code that has a different
geometrical structure where parities are placed in rows
rather than columns. Thus, X-code has an advantage of
achieving load balancing for data updates within a stripe
among different disks, instead of aggregating parities in
dedicated parity disks as in RDP and EVENODD codes.
Due to the different geometrical structure, the recovery
algorithms previously proposed for RDP and EVENODD
codes are no longer applicable for X-code.

We observe that during the recovery process, the
accessed data from different disks will be transmitted to a
disk to generate the failed data. Thus, the transmission
overhead is determined by the amount of disk reads. This
poses the following open questions: In X-code-based paral-
lel storage systems, is there a way to reduce the amount of
data transmission for recovery (or the number of disk
reads for recovery)? What is the lower bound of disk reads
for recovering a single-disk failure in X-code? According
to the specific row-based parity structure of X-code, can
we design a recovery algorithm that matches this lower
bound? Can the proposed recovery algorithm maintain a
load balancing property, such that each disk is issued the
same number of reads during recovery? Such questions
motivate us to fill the void of achieving optimal recovery
performance for an optimal RAID-6 code such as X-code.
Thus, the motivation of this work is to minimize the data trans-
mission in single-disk failure recovery and hence optimize the
recovery performance of X-code. Existing optimal recovery
solutions for RAID-6 are designed for the horizontal codes.
To the best of our knowledge, this is the first work that
addresses the optimal recovery problem for a vertical code
in the RAID-6 family.

We show that the amount of disk reads for single-disk
failure recovery of X-code can be reduced by carefully

996 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

designing the recovery approaches for the failed disk/node.
The main contributions of this paper are:

1. We formally derive the tight lower bound of disk
reads and data transmission for a single-disk failure
recovery of X-code-based parallel storage systems
and propose a recovery algorithm called Minimum-
Disk-Read-Recovery (MDRR), which matches the the-
oretical lower bound and reduces about 25 percent
of disk reads compared with the conventional
approach.

2. We formally prove that in general, disk read cannot
be balanced while matching the lower bound of disk
reads within a stripe, and cannot be balanced among
different disks by simply rotating disks.

3. We propose a leap rotation scheme which balances
disk reads among different disks within a groups
of p$ 1 stripes, where p is the number of disks in
a storage system, while matching the lower
bound of disk reads. We call this group-based
scheme GMDRR.

4. To evaluate our proposed recovery schemes, we
conduct extensive testbed experiments on a net-
worked storage system called NCFS [40]. Instead
of using a disk simulator as in [28], our testbed
experiments capture the behavior of actual read/
write operations on real storage devices during
failure recovery. Our experimental results conform
to our theoretical findings. For example, when
NCFS is used with heterogeneous types of storage
nodes, MDRR and GMDRR reduce the recovery
time of the conventional recovery approach by
18.0 percent and up to 22.0 percent, respectively.

The paper proceeds as follows. Section 2 provides an
overview of X-code and the conventional recovery
scheme of single-disk failure. Section 3 presents a new
hybrid recovery scheme which can reduce the amount of
data needed for recovery. In Section 4, we theoretically
prove the lower bound for the number of disk reads to
recover data in a failed disk. Section 5 presents a recov-
ery algorithm which is read-optimal and load balanced.
Section 6 presents experimental results and Section 7
concludes the paper.

2 BACKGROUND OF X-CODE

2.1 How X-Code Works?
We consider a storage system that consists of p disks (or
storage nodes),1 where p is a prime number greater than
or equal to 5. X-code [12] takes a p& p two-dimensional
array. The first p$ 2 rows in the array store information
symbols2 and the last two rows store the coded symbols,
which are often termed as parity symbols, generated from
information symbols. A parity symbol in row p$ 2 (row
p$ 1) is generated by XOR-summing all the information
symbols along the same diagonal of slope $1 (slope 1).

Fig. 1 shows how X-code stores symbols for p ¼ 5, i.e.,
we have d3;0 ¼ d0;2 (d1;3 (d2;4 and d4;0 ¼ d0;3 (d1;2 (d2;1.

X-code was originally proposed to tolerate two disk
failures in disk array systems. Each disk in the system is
divided into strips of fixed size and each strip is divided
into p segments (denoted as symbols). A stripe consists of
p strips, one in each disk. X-code is implemented within a
stripe. Fig. 1 is an example, where each column is a strip
in a disk and a symbol di;j is the i-th segment in disk Dj.
Note that in X-code, each parity symbol is only a function
of information symbols and does not depend on other
parity symbols. Thus, each update of an information sym-
bol affects only the minimum number of two parity sym-
bols, thus achieving optimal encoding complexity.

2.2 Single-Disk Failure Recovery
X-code aims to tolerate failures of any two disks. How-
ever, in practice, single-disk failure occurs much more fre-
quently than simultaneously having two disks failed. This
motivates us to design efficient recovery schemes for sin-
gle-disk failure in X-code-based storage systems. In [12],
only the recovery for a double-disk failure is considered,
but no recovery algorithm is considered specifically for a
single-disk failure. A conventional recovery approach for
single-disk failure is: (1) the parity symbol of slope $1 in
row p$ 2 can only be recovered by XOR-summing all
symbols along the same diagonal of slope $1; (2) other
symbols are recovered by XOR-summing all symbols
along the same diagonal of slope 1.

Fig. 2 shows an example of the conventional recovery
approach when disk D0 fails in an X-code-based system
with seven disks. In Fig. 2, the symbols marked “&” are
erased symbols. The parity symbol d5;0 marked “tu” is
recovered by the parity of slope $1, while other erased
symbols marked “)” are recovered by the parities of
slope 1. A surviving symbol marked “tu” (or/and “)”) is
used for the recovery as a symbol in a diagonal of slope
$1 (or/and slope 1).

If we use the conventional approach to recover a single
failed disk Dk, the total number of disk reads is calculated
as: (1) The recovery of the parity symbol dp$2;k reads p$ 2
symbols along a diagonal of slope $1; (2) The recovery of
each of the other symbols in Dk reads p$ 2 symbols along
a diagonal of slope 1, totally ðp$ 2Þ & ðp$ 1Þ symbols.
Thus, the conventional approach issues a total of
p$ 2þ ðp$ 2Þðp$ 1Þ = pðp$ 2Þ disk reads (per stripe).

Fig. 1. An example of the encoding strategy of X-code when p ¼ 5.

1. We use the terms “disks” and “nodes” interchangeably in this
paper.

2. We use the term “symbols” to represent device blocks or data
chunks. A symbol can also correspond to a set of consecutive sectors of
a disk.

XU ET AL.: SINGLE DISK FAILURE RECOVERY FOR X-CODE-BASED PARALLEL STORAGE SYSTEMS 997

However, we note that there are p$ 3 overlapping sym-
bols among the p$ 2 symbols read along the diagonal of
slope $1 and the ðp$ 2Þ & ðp$ 1Þ symbols along the diago-
nals of slope 1. So the number of different symbols read
from all disks can be reduced. In Fig. 2a, ð7$ 2Þ&
ð7$ 1Þ þ 1 ¼ 31 different symbols are read from disks.
There are 4 overlappingsymbols marked both “tu” and “)”,
which are the common symbols read along the diagonal of
slope $1 and along the diagonals of slope 1. In the conven-
tional approach, these four symbols are read twice from
disks, each for the recovery of two erased symbols. The
issue is that the conventional approach seeks to recover
each symbol individually, without considering other
erased symbols in the same stripe being also recovered.

Typically memory read is significantly faster than disk
read. If we store a symbol marked both “tu” and “)” in
memory after it is read from disk for the recovery of an
erased symbol, it can be read from memory for the recov-
ery of another erased symbol. Thus, we can reduce the
number of symbols to be read directly from disk so as to
speed up recovery.

Apart from the two parity symbols, each of the other
erased symbols can be recovered from a parity of either
slope 1 or slope$1. Thus, there are many choices to recover a
single failed disk. Fig. 2b shows another recovery choice for
the case in Fig. 2a. In Fig. 2b, there are nine overlapping
symbols marked both “tu” and “)”, so only 26 different
symbols are read from disks, which is less than 31 in Fig. 2a.

The motivation of this work is to use both parities of
slope 1 and slope $1 for single-disk failure recovery so as
to maximize the number of overlapping symbols of parities of
slope $1 and slope 1. This allows us to maximize the num-
ber of symbols read from memory and minimize the num-
ber of symbols to be read directly from disks for recovery.

3 HYBRID RECOVERY OF SINGLE DISK FAILURE

In this section, we formally define the different choices for
single-disk failure recovery. First, we give some definitions.

Definition 1. We define the following:

For 0 * i * p$ 1, define the i-th parity set of slope 1 as
Li ¼ fdm;njhmþ nip ¼ hi$ 2ip; 0 * m * p$ 3 and
0 * n * p$ 1g [fdp$1;ig. (Note: hxip ¼ x mod p.)

For 0 * j * p$ 1, define the j-th parity set of slope
$1 as Rj ¼ fdm;njhm$ nip ¼ hp$ 2$ jip; 0 * m *
p$ 2 and 0 * n * p$ 1g.

Li consists of parity symbol dp$1;i and all symbols along
the i-th diagonal of slope 1 which are used to generate
dp$1;i. Rj consists of parity symbol dp$2;j and all symbols
along the j-th diagonal of slope$1 which are used to gener-
ate dp$2;j. One can refer to Fig. 1 to understand Li and Rj.
From the encoding of X-code, the following lemma states
how an erased symbol can be reconstructed.

Lemma 1. Given an erased symbol d,

1. If d 2 Li, it can be reconstructed by XOR-summing all
the symbols in Li $ fdg.

2. If d 2 Rj, it can be reconstructed by XOR-summing all
the symbols in Rj $ fdg.

3. d can only be recovered by 1) or 2).

For the ease of discussion, we always let Dk be the
failed disk, i.e., all symbols in column k are lost and need
to be recovered. The following lemma shows the possible
recovery choices for each erased symbol in Dk.

Lemma 2. Given a failed disk Dk,

1. Symbol di;k ð0 * i * p$ 3Þ can be recovered either by
XOR-summing all symbols in Lhiþkþ2ip $ fdi;kg or by
XOR-summing all symbols in Rhki2ip $ fdi;kg.

2. Symbol dp$2;k can only be recovered by XOR-summing
all symbols in Rk $ fdp$2;kg.

3. Symbol dp$1;k can only be recovered by XOR-summing
all symbols in Lk $ fdp$1;kg.

Proof. According to the encoding scheme of X-code, an
information symbol di;kð0 * i * p$ 3Þ belongs to
Lhiþkþ2ip and Rhki2ip . Thus, di;k can be recovered by
either XOR-summing all symbols in Lhiþkþ2ip $ fdi;kg or
XOR-summing all symbols in Rhki2ip $ fdi;kg accord-
ing to Lemma 1. However, the parity symbol dp$2;k

only belongs to Rk, it can only be recovered by XOR-
summing all symbols in Rk $ fdp$2;kg. Similarly, 3) of
Lemma 2 holds. tu
In the following, we use a recovery sequence of Li and

Rj of length p to represent a possible recovery choice.
For example, suppose that a disk array of seven disks
with disk D0 being failed. R5L3L4R2L6R0L0 is a recovery

Fig. 2. Two recovery approaches for p ¼ 7.

998 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

choice which recovers symbols d1;0, d2;0, d4;0 and d6;0 with
parities of slope 1 and recovers d0;0, d3;0 and d5;0 with
parities of slope $1, as illustrated in Fig. 3. Since dp$2;0

and dp$1;0 are parity symbols of slope $1 and slope 1,
respectively, the last two of a recovery sequence must be
R0 and L0, respectively. Our goal is to find a recovery
sequence with maximum number of overlapping symbols in
the parity sets of slope $1 and in the parity sets of slope 1 to
reduce the symbols read from disks.

4 A LOWER BOUND OF DISK READS

We now derive a lower bound of the number of disk reads
and propose a recovery algorithm which matches this
lower bound. We first give a necessary and sufficient con-
dition for two parity sets to share an overlapping symbol.

Lemma 3. We have

1. For any i; j, 0 * i; j * p$ 1; i 6¼ j, jLi
T
Ljj ¼ 0 and

jRi
T
Rjj ¼ 0.

2. For any i; j, 0 * i; j * p$ 1, if hi$ jip ¼ 0 or 2,
jLi
T
Rjj ¼ 0; otherwise jLi

T
Rjj ¼ 1.

Proof. Because any two diagonals along slope 1 (or slope
$1) are parallel, there is no overlapping symbol in a
pair of parity sets of slope 1 (or slope $1). So 1) of
Lemma 3 concludes.

Now we prove 2) of Lemma 3. Let dm;n be an overlap-
ping symbol of Li and Rj, i.e., dm;n 2 Li

T
Rj. From the

definitions of Li and Rj, hmþ nip ¼ hi$ 2ip and
hm$ nip ¼ hp$ 2$ jip. So

h2mip ¼ hp$ 4þ i$ jip: (1)

From Definition 1, a parity symbol only belongs to one
parity set. So an overlapping symbol must be an informa-
tion symbol. From dm;n 2 Li

T
Rj, 0 * m * p$ 3 holds.

Notice that p is a prime number greater than or equal to
5, therefore

1. If hi$ jip ¼ 0, hp$ 4þ i$ jip ¼ hp$ 4ip. Since p is
greater than or equal to 5, hp$ 4ip ¼ p$ 4. If
2m < p, h2mip ¼ 2m is even and Equation (1) does
not hold because p$ 4 is odd. Otherwise 2m > p,
and h2mip ¼ 2m$ p. If Equation (1) holds,
2m$ p ¼ p$ 4 and m ¼ p$ 2. It contradicts to

0 * m * p$ 3. So Equation (1) does not hold, and
Li
T
Rj ¼ ;. jLi

T
Rjj ¼ 0.

2. If hi$ jip ¼ 2, hp$ 4þ i$ jip ¼ hp$ 2ip. Similar to
1), jLi

T
Rjj ¼ 0.

3. If hi$ jip ¼ 1 or 3, hp$ 4þ i$ jip ¼ p$ 4þ hi$ jip
is even. Let m ¼ ðp$ 4þ hi$ jipÞ=2 and n ¼ ðiþ
jÞ=2. dm;n is the only symbol in Li

T
Rj. jLi

T
Rjj ¼ 1.

4. If hi$ jip is no smaller than 4, hp$ 4þ i$ jip ¼
hi$ jip $ 4. If hi$ jip $ 4 is even, let m ¼ ðhi$ jip
$4Þ=2; otherwise let m ¼ ðhi$ jip þ p$ 4Þ=2. Let
n ¼ ðiþ jÞ=2. dm;n is the only symbol in Li

T
Rj.

jLi
T
Rjj ¼ 1.

So Lemma 3 concludes. tu
Suppose that RS ¼ S0S1 + + +Sp$1 is a recovery sequence

for Dk, where Si is to recover symbol di;k. From Defini-
tion 1, if di;k is recovered by a parity set of slope 1,
Si ¼ Lhiþkþ2ip ; otherwise, di;k is recovered by a parity set
of slope $1, Si ¼ Rhk$i$2ip . Since dp$2;k and dp$1;k are par-
ity symbols of slope $1 and slope 1 respectively, Sp$2 is
Rk and Sp$1 is Lk. From Lemma 3, we can conclude that:

1. jLk
T
Rkj ¼ 0; i.e., there is no overlapping symbol of

parity set Rk for recovering dp$2;k and parity set Lk
for recovering dp$1;k,

2. For 1 * i * p$ 3, whether Si ¼ Lhiþkþ2ip or Si ¼
Rhki2ip , jðLk

S
RkÞ

T
Sij ¼ 1,

3. Whether S0 ¼ Lhkþ2ip or S0 ¼ Rhk$2ip , jðLk
S
RkÞ

T

S0j ¼ 0.
Apart from dp$2;k and dp$1;k which must be recovered by

Rk and Lk respectively, there are still p$ 2 symbols d0;k,
d1;k; . . . ; dp$3;k in Dk to be recovered. The above three conclu-
sions show that there are p$3 overlapping symbols in
Lk
S
Rk and the union of parity sets for the recovery of d0;k,

d1;k; . . . ; dp$3;k. The following lemma formally states the
number of overlapping symbols in the recovery.

Lemma 4. If a recovery sequence RS recovers x symbols of
d0;k; d1;k; . . . ; dp$3;k with parity sets of slope 1 and other
p$ 2$ x symbols with parity sets of slope $1,RS has

Nðx;OÞ ¼ ðp$ 2$ xÞ & xþ ðp$ 3Þ $ jOj; (2)

overlapping symbols, where O ¼ fðm;nÞj0 * m < n *
p$ 3, Sm and Sn are parity sets, but not both of slope 1 (or
slope $1), and share no overlapping symbol}.

Proof. In Equation (2), p$ 3 is the number of overlapping
symbols of Lk

S
Rk and the union of other parity sets

of RS. If each pair of a parity set of slope 1 and a par-
ity set of slope $1 in RS (excluding Rk and Lk) has an
overlapping symbol, there are totally ðp$ 2$ xÞ & x of
these overlapping symbols. So Lemma 4 concludes. tu
In Equation (2), Nðx;OÞ ¼ p2$9

4 is maximized when
x ¼ p$1

2 or p$3
2 , and jOj ¼ 0. In the following, we prove

that Nðx;OÞ ¼ p2$9
4 cannot be matched, and show that

some recovery sequences match Nðx;OÞ ¼ p2$9
4 $ 1: We

firstly introduce Lemma 5.

Lemma 5. Define A: a½0-, a½1-; . . . ; a½p$ 3- with

a½i- ¼ i; i is even;
a½i- ¼ p$ 3$ i; i is odd:

!
(3)

Then A satisfies that

Fig. 3. Recovery sequence for the failed Disk 0 of p ¼ 7.

XU ET AL.: SINGLE DISK FAILURE RECOVERY FOR X-CODE-BASED PARALLEL STORAGE SYSTEMS 999

1. fa½i-j0 * i * p$ 3g=fij0 * i * p$ 3g;
2. Given a pair of parity sets, Sm and Sn (m 6¼ n), sup-

pose that one of them is of slope 1 and the other is of
slope $1. Then Sm

T
Sn ¼ ; if and only if there is i,

0 * i * p$ 3, such that a½i- ¼ m, and a½iþ 1- ¼ n or
a½i$ 1- ¼ n.

Proof. According to the definition of A, if i is odd, a½i- is
odd; otherwise a½i- is even. So 1) of Lemma 5 con-
cludes from a½i- 6¼ a½j- for i 6¼ j and 0 * a½i- * p$ 3.

Now we prove 2) of Lemma 5. Suppose that
Sm
T
Sn ¼ ;. Without loss of generality, suppose that Sm

is of slope 1 and Sn is of slope $1, i.e., Sm ¼ Lhkþmþ2ip
and Sn ¼ Rhkn2ip . Since Sm

T
Sn ¼ ;, i.e., Lhkþmþ2ipT

Rhkn2ip ¼ ;, we can conclude from Lemma 3 that

hðkþmþ 2Þ $ ðk$ n$ 2Þip ¼ hmþ nþ 4ip ¼ 0 or 2:

(4)

Because 0 * m;n * p$ 3, 4 * mþ nþ 4 * 2p$ 2. So
mþ nþ 4 ¼ p or mþ nþ 4 ¼ pþ 2 from Equation (4),
therefore n ¼ p$ 2$m or n ¼ p$ 4$m.

Because p is an odd number, one of m and n is odd
number also and another is even. If m is odd and n is
even, we know that a½p$ 3$m- ¼ m, a½n- ¼ n from the
definition of A. Let i ¼ p$ 3$m. If n ¼ p$ 2$m,
n ¼ iþ 1; otherwise n ¼ p$ 4$m and n ¼ i$ 1. So
there is i, 0 * i * p$ 3, such that a½i- ¼ m, and
a½iþ 1- ¼ n or a½i$ 1- ¼ n. The proof of case of n being
odd and m being even is similar.

If there is i, 0 * i * p$ 3, such that a½i- ¼ m, and
a½iþ 1- ¼ n or a½i$ 1- ¼ n in A. Without loss of general-
ity, suppose that m is odd and n is even, then
a½p$ 3$m- ¼ m, a½n- ¼ n from the definition of A. So
i ¼ p$ 3$m, and n ¼ iþ 1 ¼ p$ 2$m or n ¼ i$
1 ¼ p$ 4$m. We have

1. n ¼ p$ 2$m: then hmþ nþ 4ip ¼ 2. Note that
one of Sm and Sn is a parity set of slope 1, and
the other is of slope $1. If Sm is of slope 1 and
Sn is of slope $1, i.e., Sm ¼ Lhkþmþ2ip and Sn ¼
Rhkn2ip , hðkþmþ 2Þ $ ðk$ n$ 2Þip ¼ 2; other-
wise, Sm is of slope $1 and Sn is of slope 1, i.e.,
Sm ¼ Rhkm2ip and Sn ¼ Lhkþnþ2ip , hðkþ nþ 2Þ$
ðkm 2Þip ¼ 2. From Lemma 3, Sm

T
Sn ¼ ;.

2. n ¼ p$ 4$m: then hmþ nþ 4ip ¼ 0, the proof is
similar to case of n ¼ p$ 2$m.

From above, 2) of Lemma 5 concludes. tu
We are now ready to give a lower bound of disk reads so

as to recover a single failed disk.

Theorem 1. We have

1. A lower bound of disk reads for the recovery of single
disk failure is 3p2$8pþ13

4 .
2. There are four recovery sequences which match the

lower bound of disk reads to recover a single failed
disk.

Proof. Since it needs p$ 2 symbols to recover each of
the erased symbols, the number of disk reads is
ðp$ 2Þ & p$Nðx;OÞ. Using the sequence A defined
in Lemma 5, we analyze the upper bound of Nðx;OÞ
in Lemma 4.

If jOj ¼ 0, Sa½i- \ Sa½iþ1- 6¼ ; for 0 * i * p$ 4 from the
definition of O and the definition of A in Lemma 5. From
2) of Lemma 5, both of Sa½i- and Sa½iþ1- are parity sets of
slope 1 (or slope $1). So all of Sa½0-, Sa½1-; . . . ; Sa½p$3- are
parity sets of slope 1 (or all of slope $1). From 1) of
Lemma 5, all of S0, S1; . . . ; Sp$3 must be parity sets of
slope 1 (or all of slope $1), which means that all informa-
tion symbols must be recovered by parity sets of slope 1
or all by parity sets of slope $1, i.e., x ¼ p$ 2 or 0 in
Equation (2). Therefore Nðx;OÞ < p2$9

4 :
We now show that some recovery sequences match

Nðx;OÞ ¼ p2$9
4 $ 1 overlapping symbols, which maxi-

mize Nðx;OÞ.
If jOj ¼ 1, from the proof of case jOj ¼ 0, there is only

one l such that one of Sa½l- and Sa½lþ1- is a parity set of
slope 1, and the other is of slope $1. To satisfy the condi-
tion that x ¼ ðp$ 1Þ=2 or ðp$ 3Þ=2 (so as to maximize
Nðx;OÞ) in Equation (2), l must be p$5

2 or p$3
2 . So we can

divide A into two successive subsequences a½0-; . . . ; a½l-
and a½lþ 1-; . . . ; a½p$ 3-, such that all of Sa½0-; . . . ; Sa½l- are
parity sets of slope 1 (or all of slope $1), while all of
Sa½lþ1-; . . . ; Sa½p$3- are parity sets of slope $1 (or all of
slope 1) correspondingly. There are only four recovery
sequenceswhich have p2$9

4 $ 1 ¼ p2$13
4 overlapping sym-

bols. They are

1. RS1: Sa½i- ¼ L<a½i-þkþ2>p , 0 * i * p$3
2 ; Sa½i- ¼

R<k$a½i-$2>p ,
p$1

2 * i * p$ 3;
2. RS2: Sa½i- ¼ R<k$a½i-$2>p , 0 * i * p$3

2 ; Sa½i- ¼
L<a½i-þkþ2>p ,

p$1
2 * i * p$ 3;

3. RS3: Sa½i- ¼ L<a½i-þkþ2>p , 0 * i * p$5
2 ; Sa½i- ¼

R<k$a½i-$2>p ,
p$3

2 * i * p$ 3;
4. RS4: Sa½i- ¼ R<k$a½i-$2>p , 0 * i * p$5

2 ; Sa½i- ¼
L<a½i-þkþ2>p ,

p$3
2 * i * p$ 3.

RSi(1 * i * 4) maximize the number of overlapping
symbols, and minimize disk read with ðp$ 2Þ&
p$Nðx;OÞ ¼ ðp$ 2Þ & p$ p2$13

4 ¼ 3p2$8pþ13
4 symbols. tu

Authors of [19] derive the information theoretic lower
bound of the amount of data needed for recovery based
on a linear network code defined over a sufficiently
large finite field. This lower bound approaches to a fac-
tor of 50 percent for double-fault tolerant codes as the
size of the storage system increases. Authors of [41],
[42] design new codes which match the information the-
oretic lower bound. However, the size of the field to
realize the codes must be no less than 3, which implies
that the codes cannot be implemented only with XOR
operations and their computational complexities will be
higher than those of the popular XOR-based RAID-6
codes. Authors of [42] also prove that to match the
information theoretic lower bound of repair bandwidth,
the size of the field to realize the code must be no less
than 3. Authors of [43] design a vector code with a
repair bandwidth of 50 percent of the survived data
amount, where repair bandwidth is the data amount
transmitted in the storage system for the repair, not the
data amount read from the disk. The repair scheme in
[43] reads all data from each surviving node in the sys-
tem, encodes the data at each node to an encoded one
with 50 percent of size and then transmits the encoded
one to the back-up node.

1000 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

In an X-code-based storage system, any failed symbol
can only be recovered by XOR-summing all other symbols
in its parity of slope 1 (or slope $1). Given a failed disk
Dk, suppose that di;k and dj;k (i 6¼ j) are two lost symbols
in disk Dk. Because the diagonals of slope $1 which di;k
and dj;k lie at are parallel (the diagonals of slope 1 are also
parallel), di;k does not lie at the two diagonals of slope 1
and slope $1 which dj;k lies at, which means that di;k can
not be used to recover dj;k. So any recovered symbol can
not be used to recover other lost symbols. Therefore the
above four recovery sequences are with the minimal disk
reads. Theorem 1 is tight for X-code.

In the following, we select RS4 as an example to pres-
ent our recovery algorithm, MDRR (Minimum Disk Read
Recovery), for single-disk failure which minimizes disk
read. RS4 reduces p2$13

4 symbols read from disks. Com-
pared with pðp$ 2Þ disk reads of the conventional recov-
ery algorithm, MDRR reduces approximately 1/4 of disk
reads. Fig. 4 gives a comparison of the number of disk
reads between the conventional recovery and MDRR
with different p.

5 DISK READ BALANCING

In the previous section, we derived a lower bound of disk
reads and presented the MDRR algorithm to match the
lower bound. But MDRR does not possess the disk read
balancing property, i.e., it reads different number of sym-
bols from different disks. In case of unbalanced disk read,
a disk with a heavier load will slow down the recovery
and degrade the availability of the system. Here, we prove
that disk read cannot be balanced in a stripe while matching
the lower bound in general cases. Furthermore, it cannot be
balanced by disk rotation. We then present a method
which balances disk read in a group of p$ 1 stripes while
matching the lower bound.

Theorem 2. If a single disk failure recovery algorithm matches
the lower bound of disk reads, then it cannot balance disk
read from different disks for the recovery within a stripe in
any cases except p ¼ 7.

Proof. Only four recovery sequences RSi (1 * i * 4) read
minimum number of symbols for the recovery. We
prove Theorem 2 with RS1. The proofs of RS2, RS3,
RS4 are similar. We say that disk read is balanced
within a stripe if the numbers of disk reads of each disk
differ by at most one.

First, RS1 matches the lower bound of disk reads, i.e.,
3p2$8pþ13

4 . On average, it reads r ¼ 3p2$8pþ13
4&ðp$1Þ symbols from

each disk. However, it reads p$ 3 symbols from disk
Dhkþ1ip . When jðp$ 3Þ $ rj ¼ j ðp$4Þ2$17

4&ðp$1Þ j is no more than 1,
it is possible to balance disk read.

If p > 7, jðp$ 3Þ $ rj > 1, and disk read cannot be bal-
anced within a stripe. By enumerating all four recovery
sequences with minimal disk read, when p ¼ 5, Algo-
rithm 1 cannot balance disk read because the numbers of
disk read on different disks differ by two; but when
p ¼ 7, disk read is balanced. tu

Note that ðp$ 3Þ $ r increases rapidly with the increase
of p when p > 7. Unbalanced disk read becomes more
serious as p increases. Fig. 5 gives the ratios of the maxi-
mum to the minimum number of disk reads among differ-
ent disks. From Theorem 2, we know that in general, it is
impossible to balance disk reads while matching the
lower bound within a stripe. One may think that disk
read can be balanced by simply rotating disks in different
stripes. In the following, we show that simply rotating
disks cannot balance disk read and present a method
which balances disk read in a group of p$ 1 stripes. We
will firstly introduce the notion of logical disk.

Definition 2. Given a disk array system with p disks D0,
D1; . . . ; Dp$1, which are called physical disks. Let PDs ¼
f0; 1; 2; . . . ; p$ 1g and T : t0t1 + + + tp$1 be a permutation of
PDs, define the logical disk of Dj to T as LDtj ¼ Dj,
0 * j * p$ 1:

X-code can be understood using the notion of logical
disks where di;j is the symbol stored at row i of logical
disk LDj. Fig. 6 shows an example of p ¼ 5, where the log-
ical disks correspond to a permutation, 02413. The logical

Fig. 4. Numerical comparison of number of disk reads between conven-
tional and hybrid recovery approaches.

Fig. 5. Numerical comparison of disk reads from different disks.

XU ET AL.: SINGLE DISK FAILURE RECOVERY FOR X-CODE-BASED PARALLEL STORAGE SYSTEMS 1001

disks of D0, D1; . . . ; D4 are LD0 ¼ D0, LD2 ¼ D1,
LD4 ¼ D2, LD1 ¼ D3, LD3 ¼ D4, respectively. For exam-
ple, d2;3 is the symbol at row 2 of logical disk LD3, which
is physically stored in disk D4 because LD3 ¼ D4. Simi-
larly, d4;1 is physically stored in disk D3 because
LD1 ¼ D3.

Rotating the physical disks once corresponds to a per-
mutation 12 . . . ðp$ 1Þ0 of PDs with LDj ¼ Dhj$1ip ,
0 * j * p$ 1. We will show that recovery sequences RSi
(1 * i * 4) cannot balance disk reads by simply rotating
the disks.

Lemma 6. X-codes implemented on the following two groups of
logical disks are equivalent:

1. Group 1: LDj ¼ Dj; j ¼ 0; 1; . . . ; p$ 1.
2. Group 2: LDj ¼ Dj$1; j ¼ 0; 1; . . . ; p$ 1.

Proof. Group 2 is a rotation of all the physical disks of
Group 1. From the definition of X-code, we have the fol-
lowing two equations:

dp$2;j ¼
Xp$3

k¼0

dk;hjþkþ2ip ;

dp$1;j ¼
Xp$3

k¼0

dk;hjk2ip ;

8
>>>><

>>>>:

(5)

where di;j is the symbol at row i of logical disk LDj. Sup-
pose that d

0
i;j, d

00
i;j are the symbols at row i of logical disk

LDj of Group 1 and Group 2 respectively. From the defi-
nition of the two groups, symbols d

0
i;hj$1ip

and
d
00
i;jð0 * i * p$ 3Þ store at row i of the same physical

disk, i.e., d
0
i;hj$1ip

¼ d00i;j. So we have the following equali-

ties from the definition of X-code.

d
00
p$2;j ¼

Xp$3

k¼0

d
00
k;hjþkþ2ip

¼
Xp$3

k¼0

d
0
k;hðj$1Þþkþ2ip

¼ d0p$2;hj$1ip
:

d
00
p$1;j ¼

Xp$3

k¼0

d
00
k;hjk2ip ¼

Xp$3

k¼0

d
0
k;hðj$1Þ$k$2ip

¼ d0p$1;hj$1ip
:

8
>>>>>>>>>><

>>>>>>>>>>:

(6)

From Equation (6), two parity symbols also satisfy
d
00
i;j ¼ d

0
i;hj$1ip

, i ¼ p$ 2 and p$ 1. So X-codes based on

logical disks of Group 1 and Group 2 are exactly the
same. tu

Definition 3. Given two logical disks LDj1 and LDj2 , the logi-
cal distance from LDj1 to LDj2 is defined as LDIðj1; j2Þ ¼
hj2 $ j1ip.
Note that logical distance is asymmetric, i.e., it is possible

that LDIðj1; j2Þ 6¼ LDIðj2; j1Þ. For example, when p ¼ 7,
LDIð2; 4Þ ¼ 2, but LDIð4; 2Þ ¼ 5.

Theorem 3. If a recovery sequence RS for X-code system
matches the lower bound of disk read, it cannot balance disk
reads by simply rotating disks.

Proof. If LDIðj1; j2Þ ¼ LDIðl1; l2Þ, there is t such that
l1 ¼ hj1 $ tip and l2 ¼ hj2 $ tip from Definition 3. From
Lemma 6, we know that the number of symbols read
from LDl2 when LDl1 fails equals to the number of
symbols read from LDj2 when LDj1 fails by t times of
rotation. This implies that the number of symbols to be
read in a stripe from physical disk Dj when physical
disk Dk fails depends on the logical distance from the
logical disk of Dj to the logical disk of Dk in the stripe.
Because rotation does not change the logical distance
from a physical disk to the failed physical disk, RS
reads the same number of symbols from a physical
disk in different stripes by simply rotating. The disk
read of RS is not balanced in a stripe, and it cannot be
balanced by simply rotating disks. tu
In the following, we will provide a method, Leap Rotation,

to logically number physical disks. Leap rotation will bal-
ance disk reads in a group of successive p$ 1 stripes, which
are numbered 1; 2; . . . ; p$ 1.

Definition 4. Given physical disk D0, D1; . . . ; Dp$1, the logical
disk of Dk with l-th Leap Rotation LPl is LDhk&lip ,
k ¼ 0; 1 . . . ; p$ 1; l ¼ 1; 2; . . . ; p$ 1.

Fig. 7 is an example of leap rotation within p$ 1 succes-
sive stripes with p ¼ 5, where the l-th stripe is implemented
with the l-th leap rotation LPl. To show that leap rotation
balances disk read in p$ 1 stripes while matching the lower
bound of disk read, we first present some properties of a
prime number in Lemma 7.

Lemma 7. Given a prime number p, we have

1. for 1 * l * p$ 1, fhl& jipjj ¼ 0; 1; . . . ; p$ 1g ¼ f0;
1; . . . ; p$ 1g:

2. for any x; y with 0 * x; y * p$ 1, x 6¼ y, fhx& l$
y& lipjl ¼ 1; 2; . . . ; p$ 1g ¼ f1; 2; . . . ; p$ 1g:

Fig. 7. Logical disks in different stripes when p ¼ 5.

Fig. 6. An example of X-code encoding based on logical disks.

1002 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

Proof. If hl& j1ip ¼ hl& j2ip for some 0 * j1; j2 * p$ 1, we
can conclude that hl& ðj1 $ j2Þip ¼ 0. Because p is a prime,
this equation implies pjl or pjðj1 $ j2Þ. Because 1 * l * p$
1 and 0 * j1; j2 * p$ 1, j1 ¼ j2. So 1) of Lemma 7 is
proved. Similarly, 2) of Lemma 7 concludes. tu

Theorem 4. A recovery sequence reads the same number of
symbols from different disks in a group of p$ 1 stripes if
the l-th stripe is X-coded with the logical disks numbered
by l-th leap rotation LPl.

Proof. 1) of Lemma 7 ensures that LPl is reasonable, i.e.,
the logical numbers of all disks in l-th stripe are
0; 1; . . . ; p$ 1 respectively. So X-code can be imple-
mented based on the logical disks.

From 2) of Lemma 7, for any two physical disks Dx

and Dy (x 6¼ y), the logical distances from Dx to Dy in dif-
ferent stripes are different. So the logical distances from
Dx to Dy in p$ 1 stripes are 1; 2; . . . ; p$ 1 respectively.
Suppose that physical disk Dk fails, for any surviving
physical disk Dj (j 6¼ k), the logical distances from Dj to
Dk in p$ 1 stripes are 1; 2; . . . ; p$ 1 respectively. So the
number of symbols read from Dj in p$ 1 stripes is
exactly the sum of the number of symbols read from all
surviving disks in one stripe, or the number of symbols
read from all surviving disks for the recovery of a stripe,
3p2$8pþ13

4 . So disk read can be balanced in p$ 1 successive
stripes with leap rotations. tu

Remark. Usually the size of the data in a stripe is much
smaller than the memory size of a disk system. So the
data in a group of p$ 1 stripes can be read from the disks
to the memory in one round of disk reads. Hence, the
disk read of a recovery sequence can be balanced in a
group of p$ 1 stripes.

With the Leap Rotation, we propose a recovery
approach called Group-based MDRR (GMDRR) as: (1) In
the l-th stripe, the X-code is implemented with the logical
disks based on LPl. (2) MDRR is executed in each stripe.

6 EXPERIMENTS ON A PARALLEL STORAGE

TESTBED

We empirically evaluate different recovery schemes for
X-code in a real networked storage system deployed in a
local area network. We compare three recovery algo-
rithms: (i) the conventional approach that downloads the
entire original file and recovers the lost data, (ii) the
MDRR algorithm, and (iii) the GMDRR algorithm. Our
goal is to validate our theoretical analysis in a real net-
work environment, by showing that our proposed MDRR
and GMDRR algorithms actually improve the recovery
performance of X-code in practice. Note that our experi-
ments are different from the simulations used by [28], as
we consider read/write operations on real storage devi-
ces over a networked environment so as to capture the
actual recovery performance in realistic settings.

6.1 Methodology
We implement the recovery schemes on NCFS [40], a net-
work-coding-based parallel/distributed file system. NCFS
manages all data read/write operations and transparently

stripes data across p storage nodes, each corresponding to a
disk or a storage device. In the current NCFS implementa-
tion, each symbol corresponds to a chunk. Note that NCFS
supports the recovery operation for a single-node failure.
The recovery operation consists of three steps: (i) reading
data from surviving nodes, (ii) reconstructing lost data
inside NCFS, and (iii) writing data to a new node.

Fig. 8 shows the network topology considered in our
experiments. We deploy NCFS on a Linux-based server
equipped with Intel Quad-Core 2.66 GHz, 4 GB RAM,
and a harddisk with the SATA interface. NCFS intercon-
nects multiple storage nodes via a 1-Gbps switch. There
are two types of storage nodes: (i) Pentium 4 PCs, each
equipped with a 100-Mbps Ethernet interface, and (ii) net-
work attached storage (NAS) devices, each equipped with
a 1-Gbps Ethernet interface. We consider two types of
topologies: (i) homogeneous, in which all storage nodes are
PCs, and (ii) heterogeneous, in which the storage nodes are
a mixture of PCs and NAS devices. In each topology, we
also have a spare Pentium 4 PC that serves as the new
node where the recovery operation places the recovered
data. Furthermore, we configure the storage volume of
each storage node as 1 GB in our experiments.

We first write 40 files of size 100 MB each to NCFS,
which then stripes the data across the storage nodes. We
choose to store large files to mimic the file patterns in
real-life distributed storage systems (e.g., [1]). We then
disable one node, and activate the recovery operation of
NCFS to recover the data of the failed node in a new
node. We consider both offline and online recovery modes,
i.e., no files are read and files are being read during recov-
ery, respectively. For each recovery scheme, we evaluate
the overall recovery time per megabyte of data. Our results
are averaged over five runs.

6.2 Results
Summary of results. Experiments show that MDRR and
GMDRR reduce the recovery time of the conventional
approach by around 20 percent, conforming to the theo-
retical findings. Specifically, in the heterogeneous topol-
ogy, MDRR and GMDRR can reduce the recovery time
by 18.0 and 22.0 percent, respectively, and GMDRR gen-
erally uses less recovery time than MDRR regardless of
which node (column) is failed. The improvements of
MDRR and GMDRR are similar in both offline and online
recovery modes.

Experiment 1 (Impact of chunk size on the recovery perfor-
mance). We first evaluate the impact of chunk size on the

Fig. 8. Topology used in our testbed. Each storage node corresponds to
a disk.

XU ET AL.: SINGLE DISK FAILURE RECOVERY FOR X-CODE-BASED PARALLEL STORAGE SYSTEMS 1003

recovery performance. Here, we vary the chunk size from
4 to 1,024 KB, which is configurable in the current NCFS
implementation. Fig. 9 shows the recovery times for the
conventional approach and MDRR. We observe that in
both approaches, the recovery time decreases as the chunk
size increases, mainly because the number of disk I/O
requests decreases with a larger chunk size. Note that the
rate of increase diminishes as the chunk size further
increases. Thus, we expect that the recovery time stabil-
izes for a large chunk size. Nevertheless, for all chunk
sizes that we choose, our proposed MDRR approach out-
performs the conventional approach consistently.

In the following experiments, we fix the chunk size to be
4 KB, which is the default disk block size in existing Linux
extended file systems.

Experiment 2 (Recovery in the homogeneous topology). We
now evaluate the recovery performance in the homoge-
neous topology. We consider p ¼ 5, 7, and 11 storage
nodes. Fig. 10 shows the recovery time (in offline recovery
mode) when the failure is in Column 0. We observe that
both MDRR and GMDRR reduce the recovery time of the
conventional approach, for example, by 22.3 and 22.5 per-
cent when p = 11, respectively. Note that the difference
between MDRR and GMDRR is very small in the homoge-
neous setting.

We also look into the performance breakdown (not
shown in the figure), and find that the step of reading data
from the survival nodes accounts for more than 90 percent
of the overall recovery time. This also justifies our objective
of minimizing the data reads during recovery.

We point out that our experimental results are consis-
tent with our theoretical findings. In theory, the

improvements of MDRR over the conventional approach
are 20 percent (p ¼ 5), 25.7 percent (p ¼ 7), and 27.3 per-
cent (p ¼ 11), while our experiments indicate that the
improvements are 19.5 percent (p ¼ 5), 22.6 percent
(p ¼ 7), and 22.32 percent (p ¼ 11). We observe a slight
drop in improvements in our experiments, mainly
because of the additional overhead of reconstructing data
and writing data to a new node.

Experiment 3 (Recovery in the heterogeneous topology). We
now evaluate the recovery performance when the storage
nodes are of different types. We consider three setups:
(i) p ¼ 5, with 3 PCs in Columns 0-2 and 2 NAS devices in
Columns 3-4, (ii) p ¼ 7, with 4 PCs in Columns 0-3 and 3
NAS devices in Columns 4-6, and (iii) p ¼ 11, with 8 PCs in
Columns 0-7 and 3 NAS devices. Recall that the NAS devi-
ces have a higher access speed (with 1-Gbps interface) than
the PCs (with only 100-Mbps interface).

Fig. 11 shows the recovery time (in offline recovery
mode) when the failed node is in Column 0. Both MDRR
and GMDRR reduce the recovery time of the conventional
method, say, by 18.0 and 22.0 percent when p ¼ 11, respec-
tively. The advantage of GMDRR over MDRR is more obvi-
ous in this case since it seeks to balance the number of disk
reads and will not download more chunks from the nodes
that have a slower access speed (e.g., PCs in our case).

To further evaluate GMDRR, suppose now that the
failed node appears in another different column (i.e.,
aside from Column 0). Fig. 12 shows how the location of
the failed node affects the recovery time performance
when p ¼ 5. Both MDRR and GMDRR still reduce the
recovery time of the conventional approach regardless of
which node (column) is failed, while the improvement of

Fig. 10. Experiment 2: Recovery time in the homogeneous topology
(Column 0 is failed).

Fig. 11. Experiment 3: Recovery time in the heterogeneous topology.

Fig. 12. Experiment 3: Recovery time in the heterogeneous topology
when the failed node is located in another different column (p = 5).

Fig. 9. Experiment 1: Impact of chunk size.

1004 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

GMDRR is more significant than MDRR in some cases.
In particular, if the failed node is located in Column 1,
GMDRR further reduces the recovery time of MDRR by
at least 9 percent.

Experiment 4 (Online recovery). In this experiment, we
study the online recovery mode, in which we repair a
failed node while files are being read. During the recovery
process, we also independently download a number of
files (of size 100 MB each) from NCFS. This mimics a
read-intensive access pattern. Here, we focus on the het-
erogeneous topology as in Experiment 2.

Fig. 13 shows the recovery time (now in online recov-
ery mode) for different recovery schemes when the failed
node is Column 0. In general, the recovery time for each
scheme is larger than that in offline recovery mode (see
Fig. 10), yet the improvements of MDRR and GMDRR
over the conventional approach still exist. For example,
GMDRR reduces the recovery time of the conventional
approach by 16.26 percent when p ¼ 11. Note that
GMDRR outperforms MDRR (e.g., the recovery time is
reduced by 8.4 percent) by balancing the data reads
among the storage nodes.

While the emphasis of our work is on improving the
recovery performance, MDRR and GMDRR are also bene-
ficial to file downloads during recovery. We measure the
per-file download time for the files whose entire down-
loads occur during the time window of the recovery oper-
ation. Fig. 14 plots the per-file download time for different
recovery schemes. Both MDRR and GMDRR reduce the
per-file download time compared to the conventional
approach (e.g., by at least 6 percent when p ¼ 11), since
they minimize the data reads during the recovery process.
We emphasize that we here only provide a preliminary
study on how the online recovery using MDRR and
GMDRR can improve normal usage, while the actual
improvements depend on the workload of file access pat-
terns. We pose the further analysis as future work.

7 CONCLUSIONS

We study the optimal recovery problem of a single-disk/
node failure in X-code-based parallel storage systems.
Since existing optimal recovery solutions are mainly
designed for RAID-6 horizontal codes, to our knowledge,
this is the first work that addresses the optimal recovery
problem of RAID-6 vertical codes. We propose a recov-
ery algorithm MDRR which reduces the disk reads about
25 percent compared with the conventional recovery

scheme, and matches the theoretical lower bound of disk
reads for the recovery. Because MDRR issues unbalanced
disk read among different disks and its disk read cannot
be balanced by disk rotation, we present a leap rotation
scheme which makes sure that MDRR issues balanced
disk read among disks in a group of p$ 1 stripes.
The principle of leap rotation is implementing data
encoding based on logical number of disks, and this
rotation scheme can be applied to balance disk reads in
storage systems with different codes, which is one of our
future work.

ACKNOWLEDGMENTS

This work is supported by the National Nature Science
Foundation of China under Grant No. 61073038 and the
Key Science and Technology Program of Anhui Province,
China under Grant No. 1206c0805003. The corresponding
author is Yinlong Xu (ylxu@ustc.edu.cn).

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File Sys-
tem,” Proc. 19th ACM Symp. Operating Systems Principles, pp. 29-
43, 2003.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-Value Store,” Proc.
ACM Symp. Operating Systems Principle (SOSP ’07), pp. 205-220,
2007.

[3] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “Oceanstore: An Architecture for Global-Scale
Persistent Storage,” Proc. Ninth Int’l Conf. Architecture Support for
Programming Languages and Operating Systems (ASPLOS), pp. 190-
201, 2000.

[4] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M. Voelker,
“Total Recall: System Support for Automated Availability Man-
agement,” Proc. USENIX Networked Systems Design and Implemen-
tation, pp. 337-350, 2004.

[5] Wuala, http://www.wuala.com, 2014.
[6] I. Reed and G. Solomon, “Polynomial Codes over Certain Finite

Fields,” J. SIAM, vol. 8, no. 2, pp. 300-309, 1960.
[7] H. Weatherspoon and J. Kubiatowicz, “Erasure Coding vs. Repli-

cation: A Quantitative Comparison,” Proc. First Int’l Workshop on
Peer-to-Peer Systems, pp. 328-338, 2002.

[8] B. Battles, C. Belleville, S. Grabau, and J. Maurier, “Reducing Data
Center Power Consumption through Efficient Storage,” Technical
Report WP-7010-0207, NetApp, Feb. 2007.

[9] J. Hamilton, “Cost of Power in Large-Scale Data Centers,” http://
perspectives.mvdirona.com, Nov. 2009.

[10] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-Diagonal Parity for Double Disk Failure
Correction,” Proc. Third USENIX Conf. File and Storage Technologies,
pp. 1-14, 2004.

Fig. 13. Experiment 4: Recovery time in online recovery mode. Fig. 14. Experiment 4: File download time during online recovery.

XU ET AL.: SINGLE DISK FAILURE RECOVERY FOR X-CODE-BASED PARALLEL STORAGE SYSTEMS 1005

[11] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Effi-
cient Scheme for Tolerating Double Disk Failures in RAID
Architectures,” IEEE Trans. Computers, vol. 44, no. 2, pp. 192-202,
Feb. 1995.

[12] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Trans. Information Theory, vol. 45, no. 1, pp. 272-
276, Jan. 1999.

[13] C. Huang and L. Xu, “STAR: An Efficient Coding Scheme for Cor-
recting Triple Storage Node Failures,” Proc. Fourth Conf. USENIX
Conf. File and Storage Technologies (FAST ’05), 2005.

[14] C. Jin, D. Feng, H. Jiang, and L. Tian, “A Comprehensive Study on
Raid-6 Codes: Horizontal vs. Vertical,” Proc. IEEE Sixth Int’l Conf.
Networking, Architecture and Storage (NAS), 2011.

[15] M. Baker, M. Shah, D.S.H. Rosenthal, M. Roussopoulos, P. Mania-
tis, T. Giuli, and P. Bungale, “A Fresh Look at the Reliability of
Long-Term Digital Storage,” Proc. First ACM SIGOPS/EuroSys
European Conf. Computer Systems (EuroSys), pp. 221-234, 2006.

[16] A.G. Dimakis, P.B. Godfrey, M.J. Wainwright, and K. Ramchan-
dran, “The Benefits of Network Coding for Peer-to-Peer Storage
Systems,” Proc. NetCod, Jan. 2007.

[17] R.R. Muntz and J.C.S. Lui, “Performance Analysis of Disk Arrays
Under Failure,” Proc. 16th Int’l Conf. Very Large Data Bases,
pp. 162-173, 1990.

[18] A.G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on
Network Codes for Distributed Storage,” Proc. IEEE, vol. 99, no. 3,
pp. 476-489, Mar. 2011.

[19] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ram-
chandran, “Network Coding for Distributed Storage Systems,”
IEEE Trans. Information Theory, vol. 56, no. 9, pp. 4539-4551, Sept.
2010.

[20] Y. Wu, A. Dimakis, and K. Ramchandran, “Deterministic Regen-
erating Codes for Distributed Storage,” Proc. Allerton Conf. Control,
Computing, and Comm., 2007.

[21] R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung, “Network Infor-
mation Flow,” IEEE Trans. Information Theory, vol. 46, no. 4,
pp. 1204-1216, July 2000.

[22] Y. Wu, “Existence and Construction of Capacity-Achieving Net-
work Codes for Distributed Storage,” IEEE J. Selected Areas Comm.,
vol. 28, pp. 277-288, Feb. 2010.

[23] N.B. Shah, K.V. Rashmi, P.V. Kumar, and K Ramchandran,
“Regenerating Codes for Distributed Storage Networks,” Proc.
Int’l Conf. Arithmetic of Finite Fields, pp. 215-223, 2010.

[24] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative Recovery
of Distributed Storage Systems from Multiple Losses with Net-
work Coding,” IEEE J. Selected Areas in Comm., vol. 28, pp. 268-
276, Feb. 2010.

[25] C. Suh and K. Ramchandran, “Exact-Repair MDS Codes for Dis-
tributed Storage Using Interference Alignment,” Proc. IEEE Int’l
Symp. Information Theory, 2010.

[26] K.V. Rashmi, N.B. Shah, P.V. Kumar, and K. Ramchandran,
“Explicit Construction of Optimal Exact Regenerating Codes for
Distributed Storage,” Proc. Allerton Conf., 2009.

[27] Z. Wang, A.G. Dimakis, and J. Bruck, “Rebuilding for Array
Codes in Distributed Storage Systems,” Proc. Workshop Applica-
tion of Comm. Theory to Emerging Memory Technologies
(ACTEMT), 2010.

[28] L. Xiang, Y. Xu, J.C. Lui, Q. Chang, Y. Pan, and R. Li, “A Hybrid
Approach to Failed Disk Recovery Using RAID-6 Codes: Algo-
rithms and Performance Evaluation,” ACM Trans. Storage, vol. 7,
no. 3, pp. 11:1-11:34, Oct. 2011.

[29] Q. Cao, S. Wan, C. Wu, and S. Zhan, “An Evaluation of Two Typi-
cal Raid-6 Codes on Online Single Disk Failure Recovery,” Proc.
IEEE Fifth Int’l Conf. Networking, Architecture and Storage (NAS),
pp. 135-142, 2010.

[30] S. Li, Q. Cao, J. Huang, S. Wan, and C. Xie, “PDRS: A New Recov-
ery Scheme Application for Vertical Raid-6 Code,” Proc. IEEE
Sixth Int’l Conf. Networking, Architecture and Storage (NAS),
pp. 112-121, 2011.

[31] O. Khan, R. Burns, J.S. Plank, W. Pierce, and C. Huang,
“Rethinking Erasure Codes for Cloud File Systems: Minimiz-
ing I/O for Recovery and Degraded Reads,” Proc. 10th USE-
NIX Conf. File and Storage Technologies, p. 20, 2012.

[32] Y. Zhu, P.P.C. Lee, Y. Hu, L. Xiang, and Y. Xu, “On the Speedup of
Single-Disk Failure Recovery in XOR-Coded Storage Systems:
Theory and Practice,” Proc. IEEE 28th Symp. Mass Storage Systems
and Technologies, 2012.

[33] Y. Zhu, P.P.C. Lee, L. Xiang, Y. Xu, and L. Gao, “A Cost-Based
Heterogeneous Recovery Scheme for Distributed Storage Systems
with RAID-6 Codes,” Proc. IEEE/IFIP Int’l Conf. Dependable System
and Networks (DSN), 2012.

[34] M. Sivathanu, V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Improving Storage System Availability with D-Graid,”
ACM Trans. Storage, vol. 1, no. 2, pp. 133-170, 2005.

[35] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and
Z. Song, “PRO: A Popularity-Based Multi-Threaded Reconstruc-
tion Optimization for Raid-Structured Storage Systems,” Proc.
Fifth USENIX Conf. File and Storage Technologies, pp. 277-290, 2007.

[36] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “Workout: I/O
Workload Outsourcing for Boosting Raid Reconstruction Perform-
ance,” Proc. Seventh Conf. File and Storage Technologies, pp. 239-252,
2009.

[37] S. Wan, Q. Cao, J. Huang, S. Li, X. Li, S. Zhan, L. Yu, C. Xie, and X.
He, “Victim Disk First: An Asymmetric Cache to Boost the Perfor-
mance of Disk Arrays under Faulty Conditions,” Proc. USENIX
Conf. Ann. Technical Conf., pp. 13-13, 2011.

[38] T. Xie and H. Wang, “MICRO: A Multilevel Caching-Based
Reconstruction Optimization for Mobile Storage Systems,” IEEE
Trans. Computers, vol. 57, no. 10, pp. 1386-1398, Oct. 2008.

[39] J.B. Lihao Xu, V. Bohossian, and D.G. Wagner, “Low-Density
MDS Codes and Factors of Complete Graphs,” IEEE Trans. Infor-
mation Theory, vol. 45, no. 6, pp. 1817-1826, 1999.

[40] Y. Hu, C.-M. Yu, Y.-K. Li, P.P.C. Lee, and J.C.S. Lui, “NCFS: On
the Practicality and Extensibility of a Network-Coding-Based Dis-
tributed File System,” Proc. NetCod, July 2011.

[41] D.S. Papailiopoulos, A.G. Dimakis, and V.R. Cadambe, “Repair
Optimal Erasure Codes through Hadamard Designs,” Proc. Aller-
ton, 2011.

[42] I. Tamo, Z. Wang, and J. Bruck, “MDS Array Codes with Optimal
Rebuilding,” Proc. IEEE Int’l Symp. Information Theory, 2011.

[43] K. Shanmugam, D.S. Papailiopoulos, A.G. Dimakis, and G. Caire,
“A Repair Framework for Scalar MDS Codes,” Proc. Allerton, 2012.

Silei Xu received the BS degree from the School
of Computer Science, University of Science and
Technology of China, Anhui, China, in 2012. He
is currently working toward the Mphil degree in
computer science and engineering at the Chi-
nese University of Hong Kong. He is currently
also affiliated with the University of Science and
Technology of China as a research staff. His
research interests include distributed storage
system, data recovery, and smart phone.

Runhui Li received the BS degree from the
School of Computer Science, University of Sci-
ence and Technology of China, Anhui, China, in
2011. He is currently working toward the PhD
degree in computer science and engineering at
the Chinese University of Hong Kong. His
research interests include distributed storage
system, cloud computing, and security.

Patrick P.C. Lee received the BEng degree
(first-class honors) in information engineering
from the Chinese University of Hong Kong in
2001, the MPhil degree in computer science and
engineering from the Chinese University of Hong
Kong in 2003, and the PhD degree in computer
science from Columbia University in 2008. He is
currently an assistant professor in the Depart-
ment of Computer Science and Engineering at
the Chinese University of Hong Kong. His
research interests include various applied/sys-

tems topics including cloud computing and storage, distributed systems
and networks, operating systems, and security/resilience.

1006 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 4, APRIL 2014

Yunfeng Zhu received the BS degree from the
School of Computer Science, University of Sci-
ence and Technology of China, Anhui, China, in
2008. He is currently working toward the PhD
degree in the School of Computer Science and
Technology, University of Science and Technol-
ogy of China, Hefei, China. His research interests
include distributed storage system, cloud stor-
age, and data deduplication.

Liping Xiang received the BS degree from the
Department of Information and Computational
Science, Anhui University, China, in 2007. She is
currently working toward the PhD degree in the
School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China. Her research interests include dis-
tributed storage system, data recovery, and net-
work coding.

Yinlong Xu received the BS degree in mathe-
matics from Peking University in 1983, and the
MS and PhD degrees in computer science from
University of Science and Technology of China
(USTC) in 1989 and 2004, respectively. He is
currently a professor with the School of Com-
puter Science and Technology at USTC. Prior to
that, he served the Department of Computer Sci-
ence and Technology at USTC as an assistant
professor, a lecturer, and an associate professor.
Currently, he is leading a group of research stu-

dents in doing some networking and high performance computing
research. His research interests include network coding, wireless net-
work, combinatorial optimization, design and analysis of parallel algo-
rithm, parallel programming tools, etc. He received the Excellent PhD
Advisor Award of Chinese Academy of Sciences in 2006.

John C. S. Lui received the PhD degree in com-
puter science from the University of California,
Los Angeles. He is currently a professor with the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. He
was the chairman of the Department from 2005
to 2011. His current research interests include
data networks, system and applied security, mul-
timedia systems, network sciences and cloud
computing. He is a fellow of the ACM, a fellow of
the IEEE, a Croucher Senior Research Fellow,

and an elected member of the IFIP WG 7.3.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XU ET AL.: SINGLE DISK FAILURE RECOVERY FOR X-CODE-BASED PARALLEL STORAGE SYSTEMS 1007

