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Abstract—Content distribution via network coding has re-
ceived a lot of attention lately. However, direct application of
network coding may be insecure. In particular, attackers can
inject “bogus” data to corrupt the content distribution pro cess
so as to hinder the information dispersal or even deplete the
network resource. Therefore, content verification is an important
and practical issue when network coding is employed. When
random linear network coding is used, it is infeasible for the
source of the content to sign all the data, and hence the traditional
“hash-and-sign” methods are no longer applicable. Recently, a
new on-the-fly verification technique is proposed by Krohn et
al. (IEEE S&P ’04), which employs a classical homomorphic
hash function. However, this technique is difficult to be applied
to network coding because of high computational and commu-
nication overhead. We explore this issue further by carefully
analyzing different types of overhead, and propose methodsto
help reducing both the computational and communication cost,
and provide provable security at the same time.

Keywords: Content distribution, security, verification, network
coding.

I. Introduction

For the past few years, there has been an increasing interest
on the application of network coding on file distribution. Var-
ious researchers have considered the benefit of using network
coding on P2P networks for file distribution and multimedia
streaming (such as [1]–[5]), while other researchers have
considered using network coding on millions of PCs around
the Internet for massive distribution of new OS updates and
software patches (e.g., the Avalanche project from Microsoft).
What we are interested in is thesecurityof content distribution
schemes using network coding, and how to achieve the security
efficiently.

An important issue in practical large content delivery in a
fully distributed environment is how to maintain the integrity
of the data, in the presence of link failures, transmission errors,
software and hardware faults, and even malicious attackers. If
malicious attackers are able to modify the data in transmission,
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or inject arbitrarybogusdata into the network, they may be
able to greatly slow down the content distribution, or even
prevent users from getting correct data entirely. In classical
content distribution scenarios, data integrity can be checked
using a “hash-and-sign” paradigm, where the source employs
a collision resistant hash functionh to compute hash values
of the original dataX and signs the hash valueh(X) using a
digital signature schemeS with a signing keyk. The signature
Sk(h(X)) is then used to verify received dataY . However, as
we can see later, such methods are not applicable in practical
network codingbased content distribution schemes.

It is first showed, in the seminal work by Ahlswede et al. [6],
that if the nodes in the network can perform coding instead of
simply forwarding information, multiple sinks in a multicast
session can achieve their maximum network flow simultane-
ously. This technique is referred to asnetwork coding. Since
then, the topic has been intensively studied, including both
theoretical analysis (such as [7]–[9]) and practical discussions
(such as [2], [10]–[12]). More details on the literature canbe
found in Section II-A.

Some classical theoretical results (such as [9]), although
provide important insights, would be difficult to apply in
practice since they require the knowledge of the network
topology during code construction, and require the link failures
to follow certain predefined pattern for the code to be reliable.
In practice, however, a content distribution network can be
very dynamic in terms of the topology, membership, and
failures.

Random linear network coding [13] provides a solution to
those problems by allowing each node in the network to make
local decisions. In their setting, the originalX is divided inton
blocksx1,x2, · · · ,xn, and each node computes and forwards
some random linear combinationp =

∑n

i=1
cixi for each

of its downstream nodes, together with the coefficientsc =
〈c1, · · · , cn〉. We call the pair(p, c) a packet. When sufficient
linearly independent packets are received, a node would be
able to decode the originalX. It is clear that data integrity is
even more important in this setting, since, without verification,
a nodeT could combine a damaged (or maliciously modified)
packet into all the packets thatT generates, and hence all its
downstream nodes would received only corrupted data.

Unfortunately, traditional “hash-and-sign” techniques can-
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not be easily applied with random linear network coding.
In classical digital signature schemes, only the sender can
produce the correct signature of any random combination
of data. Hence, the sender would have to pre-compute and
distribute the signatures for all possible linear combinations,
which is infeasible.

This problem of detecting malicious modifications at inter-
mediate nodes, especially when it is infeasible for the sender
to sign all the data being transmitted, is sometimes referred
to as on-the-fly Byzantine fault detection. Krohn, Freedman
and Mazières [14] considered the problem in the context
of large content distribution using rateless erasure codes(or
fountain codes), and proposed a technique using homomorphic
cryptographic hash functions [15]. Hereafter we will referto
this scheme as the KFM scheme. It is noted by Gkantsidis
and Rodriguez [10] that the same technique can be adapted in
network coding based content distribution. However, both the
computational and communication overhead is high.

A simpler and more efficient verification method called
secure random checksumwas proposed by Gkantsidis et
al. [16], which comes at the price of weaker security that
depends on the secrecy of user-specific parameters. Although
computationally efficient, this scheme poses certain limitations
on the distribution scenarios, as we will see in Section II-C.

We make a few observations on the differences between the
scenarios using erasure code and the network coding. These
differences makes the adoption of the KFM scheme [14] very
challenging.

Observation 1.The parameters in the KFM scheme allows
binary coefficients. Furthermore, the weight of each coefficient
vector is a small constant. However, in random linear network
coding, it is not clear if there can be too many zero coef-
ficients. Furthermore, the sizes of the coefficients cannot be
too small, since otherwise the network coding cannot achieve
the theoretical capacity with high probability, and it would be
insecure against attacks.

Observation 2.The security of the KFM scheme relies on
the size of a security parameter in the hash function (e.g., it
should be at least 1024 bit long). In random linear network
coding, the size of the modulus will be the same as the size
of the smallest data unit as well as that of the coefficients.

Observation 3. The parameters of the hash functions and
the hash values of each data block have to be distributed
in advance in both settings. Also, during transmission, the
coefficient vector has to be transmitted together with each
combined data block. However, the binary constant weight
vectors in the KFM scheme can be easily compressed, whereas
in network coding this is not the case.

These observations give rise to a few challenging issues that
need to be addressed to achieve secure and efficient network
coding.

Problem 1: The cryptographic hash function used in [14]

is computationally very expensive, even in their probabilistic
batch verification variant. This is made worse when the KFM
scheme is adopted for random linear network coding, since
the random combination coefficients have to be much larger.

Problem 2: The communication overhead in network cod-
ing context can be much more significant and cannot be
ignored due to the large sizes of the parameters, hash values
and coefficient vectors.

We address the first problem by substituting the underlying
homomorphic hash function to a recently proposed alternative
called VSH, which is much faster [17]. This hash function has
an additional advantage that most of the system parameters are
fixed, which do not need to be transmitted over the network.
Furthermore, we analyze carefully the required sizes of the
system parameters, and study how to choose system parame-
ters to avoid unreasonably large communication overhead.

In Section II, we survey previous work on network cod-
ing and error detection techniques (II-A), and give detailed
descriptions of the KFM scheme (II-B). We observe certain
limitations of the secure random checksum scheme [16] in
Section II-C. A homomorphic hash function based on VSH is
given in Section III, and a basic verification scheme based on
this new hash function is given in Section IV. We analyze
how to apply the batch verification in Section V. A more
efficient sparsevariant of the random linear network coding
is proposed in Section VI, and communication overhead is
carefully analyzed in Section VII. We also verify our results
with experiments in Section VIII.

II. Background

A. Related Work

It is a well-known graph-theoretic result that the maximum
capacity between a source and a sink connected through a
network is the same as the maximum network flowf between
them. When the network can be viewed as a directed acyclic
graph with unit capacity edges,f is also the min-cut of the
graph between the source and the sink. However, when there is
a single source and multiple sinks, the maximum network flow
f may not be achieved. A seminal work ofnetwork coding[6]
reveals that if the nodes in a network can perform coding on
the information they receive, it is possible for multiple sinks
to achieve their max-flow bound simultaneously through the
same network. This elegant result provides new insights into
networking today since it now becomes possible to achieve the
theoretical capacity bound if one allows the network nodes on
the path to perform coding, instead of just the conventional
tasks of routing and forwarding.

Later, Li et al. [7] showed that, although the coding per-
formed by the intermediate nodes does not need to be linear,
linear network codes are indeed sufficient to achieve the max-
imum theoretical capacity in acyclic synchronous networks. In
their settings, each node computes some linear combinationof
the information it receives from its upstream nodes, and passes
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the results to its downstream nodes. However, to compute the
network code (i.e., the correct linear combinations) that is
to be performed by the nodes, the topology of the network
has to be known beforehand, and has to be fixed during the
process of content distribution. Furthermore, their algorithm
is exponential in the number of edges in the network.

Koetter and Médard [8], [18] also considered the problem of
linear network coding. They improved and extended the results
by Li et al. [7], and considered the problem of link failures.
They found that a static linear code is sufficient to handle
link failures, if the failure pattern is known beforehand. How-
ever, as mentioned by Jaggi et al. [9], the code construction
algorithm proposed by Koetter et al. still requires checking a
polynomial identity with exponentially many coefficients.

Jaggi et al. [9] proposed the first centralized code construc-
tion algorithm that runs in polynomial time in the number
of edges, the number of sinks, and the minimum size of
the min-cut. They also noted that, although the results of
Edmonds [19] shows that network coding does not improve the
achievable transmission rate when all nodes except the source
are sinks, finding the optimal multicast rate without coding
is NP-hard. They also showed that if there are some nodes
that are neither the source nor the sinks, then multicast with
coding can achieve a rate that isΩ(log |V |) times the optimal
rate without coding, where|V | is the number of nodes in the
network. It is also shown in [9] that their method of code
construction can handle link failures, provided that the failure
pattern is known a priori.

Random network coding was proposed by Ho et al. [13] as
a way to ensure the reliability of the network in a distributed
setting where the nodes do not know the network topology,
which could change over time. In their setting, each node
would perform a random linear network coding, and the
probability of successful recovery at the sinks can be tightly
bounded. Chou et al. [2] proposed a scheme for content
distribution based on random network coding in a practical
setting, and showed that it can achieve nearly optimal rate
using simulations. Recently, Gkantsidis and Rodriguez [3]
proposed another scheme for large scale content distribution
based on random network coding. They show by simulation
that when applied to P2P overlay networks, using network
coding can be 20 to 30 percent better than server side coding
and 2 to 3 times better than uncoded forwarding, in terms of
download time.

With the recent popularity of P2P networks [20], [21],
researchers are beginning to consider the problem of on-
the-fly Byzantine fault detection in content distribution using
random network coding. Authors in [10] noted that the verifi-
cation techniques proposed by Krohn, Freedman and Mazières
[14] can be employed to protect the integrity of the data
without the knowledge of the entire content. The verification
techniques were originally developed for content distribution
using rateless erasure codes and were based on homomorphic
cryptographic hash functions [15].

Another simple and efficient on-the-fly verification scheme
was proposed by Gkantsidis et al. [12]. Although it may
be suitable for certain application scenarios, there are some
limitations when it is put under a generic setting, as we will
see in Section II-C.

B. The KFM Scheme

1) Basic Verification Scheme:The overall picture of the on-
the-fly detection technique presented in [14] (which we refer
to as the KFM scheme) is illustrated in Fig. 1.

In this scheme, the contentX is divided into n blocks
x1, · · · ,xn, and each blockxi is further divided intom sub-
blocksxi,1, · · · , xi,m, where eachxi,j can be represented by
an element in the multiplicative groupZ∗

p for some large prime
p.

A hash functionH is then applied on each block to obtain
the hash valuesh1, · · · , hn. In particular, the hash function
usesm generatorsg1, · · · , gm ∈ Z

∗

p, and the hash valuehi of
the i-th block is computed ashi =

∏m

j=1
g

xi,j

j mod p.

Clearly, the hash functionH is homomorphic in the sense
that for any two blocksxi andxj , it holds thatH(xi)H(xj) =
H(xi + xj). These hash values are distributed to all the
nodes reliably in advance. It is suggested in [14] that the
same technique can be used recursively on the hash values
until the final hash value is small enough to be distributed
without coding. After receiving a coded blockx, which is a
linear combination of the originaln blocks with coefficients
C = 〈c1, · · · , cn〉, a node will be able to verify the integrity
of x usingx, C, and the hash valuesh1, · · · , hn, making use
of the homomorphic property ofH. In particular, the node
checks if the following holds

H(x) =

n∏

i=1

hci

i mod p. (1)

2) Limitations: There are two inherentlimitations in the
above scheme. First, it is computationally expensive to com-
pute the underlying hash functionH. Secondly, all parameters
of the scheme, including all the hash values, must be dis-
tributed in advance, even to verify a single data packet.

In [14], the first problem of expensive computation is dealt
with by using two techniques. On one hand, the parameters are
chosen such that all coefficients inC are very small, and many
of them are actually zeros. On the other hand, verification of
multiple data packets can be done in batches to reduce the
overall computational cost. The second problem, however, is
tackled by choosing the parameters carefully such that the
overhead due to the hash values is less than 1%, which is
acceptable in many practical scenarios. Nevertheless, when
the original data is relatively large (say, 1GB), the start-up
delay caused by the transmission of the hash values may
not be tolerable, especially in dynamic networks where nodes
frequently join and leave.
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Fig. 1. On-the-fly Byzantine fault detection [14].

3) Challenges:It is worth to note that the KFM scheme is
intended to be applied on rateless erasure codes, where only
the source of the content performs the coding, which is in
contrast with the idea of network coding, where all interme-
diate nodes can participate in the coding. The difference in
these settings leads to challenging problems when adopting
this scheme in random network coding.

Basically, to allow intermediate nodes freely combine data
blocks, the combination coefficients has to be chosen from
the same group as the sub-blocks (which is the smallest unit
in combination). Hence, for a randomly combined block, the
size of the coefficients will ben|p| (where| · | denotes the bit
length). Clearly,|p| cannot be small (e.g., at least 1024), since
otherwise the hash function can be easily broken. Furthermore,
if the size of the content is large,n cannot be too small either,
since otherwisem would be too large to make the distribution
of parametersg1, · · · , gm prohibitively expensive.

As a result, this not only introduces extra communication
overhead due to either the hash parameters or the coefficients,
but also makes the computation of (1) (hence the verification)
much more expensive.

C. The Secure Random Checksum Scheme

An alternative to the expensive cryptographic hash function
as used in [14] is proposed in [16], which is called the
Secure Random Checksum (SRC). Their main idea is as the
following. Before the actual downloading commences, each
node retrieves achecksumfor each block of data from the
source via a secret channel. Each checksum is computed as
a random combination of all the sub-blocks in a block, and
the coefficients are different for each node. These checksums
are also homomorphic, so that they can be used to check
the integrity of any received packet in a way similar to
homomorphic hash functions. Since only linear combinations
are involved in the computation of these checksums, the
verification can be very efficient.

We note that in this scheme, every node needs to download a
set of distinct checksums directly from the source. This creates
a centralized downloading scenario with a smaller content
size (which is the size of the checksums), which may lead
to two problems. First, this poses limits on the scalability
of the scheme, since the source could be overwhelmed by
the requests to download checksums. Whereas in the case of
homomorphic hashes, although the hash values have larger
sizes, it is not necessary to download them directly from the
source but they can be instead obtained from peers, and no
additional secure channel is required. Secondly, the source
is required to be online until all the nodes have received
checksums from it, which makes it difficult for dynamic
networks where nodes are frequently leaving and joining the
network. To some extent, the use of such checksums weakens
the potential advantages one could expect from a distributed
content distribution scheme.

H A homomorphic hash function based on VSH.
Z
∗

p A multiplicative group with large prime modulusp.
G A subgroup ofZ∗p of prime orderq. p = αq + 1.
λ Bit length of prime modulusp (λ = |p|).
γ Bit length of prime orderq (γ = |q|).
X Original content to be distributed.
n Number of blocks ofX. That is,X = (x1, · · · , xn).
m Number of subblocks per block. Each subblock is an element ofG.
hi The hash value of thei-th block.
x A block of data, or a combination of blocks.
c A coefficient vector of lengthn.
p A packet, consisting of a combined block and a coefficient vector.
b The number of packets in one batch.
θ Number of packets to combine in the sparse random linear network

coding.
H1 Hash value computed from a data block (H1 = H(x)).
H2 Hash value computed from hash valueshi’s using the homomorphic

property of the hash function.

TABLE I
SYMBOLS USED IN THIS PAPER
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III. A Homomorphic Hash Function Based on VSH

The proposed basic scheme is based on the non-trapdoor
variant (VSH-DL) of the Very Smooth Hash (VSH) function
due to Contini et al. [17]. The rationale behind VSH and its
variants is that using smaller primes as group generators would
greatly improve the computational efficiency of hash func-
tions that involve many exponentiations. The VSH functions,
however, do not have the homorphic property that would be
required by the on-the-fly verification process.

In this paper, we propose a homomorphic hash function
based on the same idea of VSH-DL, which we will describe
in detail in the next subsection. The homomorphic property
is obtained by re-arranging the order of the bits in the input
message blocks before applying VSH-DL. For readability, all
symbols used are presented in Table I.

A. A Homomorphic VSH-DL

Let p be a large strong prime, such that there is another large
prime q dividesp − 1. That is, there is an positive integerα
such thatp = αq + 1. As a result, there exist a multiplicative
subgroupG in Z

∗

p with orderq. Furthermore, for anyx ∈ Zp,
let y = xα mod p, if y 6= 1 mod p, y must be inG. For
convenience, let|p| = λ and |q| = γ, where| · | denotes the
bit length.

Let p1, · · · , pm be m prime numbers, such thatm < γc

for some constantc. In other words,m is bounded by some
polynomial in γ. In practice, we can choose those primes to
be them smallest prime numbers, such thatpα

i 6= 1 mod p.
That is, we can choosep1 = 2, p2 = 3, and so on, and skip
those primes whose order is notq. Whenq is much larger than
α (e.g.,α = 2), the probability that a random small primepi

satisfies the conditionpα
i 6= 1 mod p is high.

Assume that amessageis a vector of the form:x =
(x1, · · · , xm) wherexi ∈ Zq for 1 ≤ i ≤ m. The hash of
x is computed as

H(x) =

m∏

i=1

pαxi

i mod p. (2)

It is worth to note that the original VSH-DL function is
equivalently computing the same function withalpha = 2,
but explicitly using the parallel exponentiation algorithm due
to Bellare et al. [22] and used in [14]1.

Homomorphic Property: For any two messagesx =
(x1, · · · , xm) andy = (y1, · · · , ym), it is not difficult to see
that

H(x)H(y) = H(x + y). (3)

In other words, the hash functionH is (+,×)-homomorphic.

1There is an off-by-one error in the algorithm due to Bellare et al. [22],
which is corrected in [14]

B. Security of the Hash Function

The security ofH is defined in terms of the difficulty
in finding collisions. To precisely define the security, we
follow the commonly used notions of negligible functions and
computational feasibility in cryptography.

Definition 1 A function f(n) is called negligible w.r.t.n if
for any positive polynomialpoly(·), for all large enoughn, it
holds thatf(n) < 1/poly(n).

Furthermore, we are mainly interested in the collision resis-
tance of the hash function.

Definition 2 A hash functionH is collision resistant if for
any polynomial-time probabilistic algorithmA, the probability
Pr[A(p, q) = (x,y)s.t.H(x) = H(y)] is negligible w.r.t.|q|.

In other words,H is collision resistant if it is computationally
infeasible to find two messagesx andy that produce the same
hash value.

Next, we define a generalized version of the VSDL problem
as in [17].

Definition 3 (GVSDL) Letp be a large prime, and letq be
a large prime such thatp = αq + 1 for some positive integer
α. Let p1, · · · , pm be the m smallest prime numbers such
that pα

i 6= 1 mod p for 1 ≤ i ≤ m, where m ≤ γc for
some constantc. GVSDL is the following problem: Given the
aforementioned parameters, computee1, · · · , em ∈ Zq, such
that at least one of theei’s is non-zero, and

m∏

i=1

pαei

i = 1 mod p. (4)

When α = 2, the above definition reduces to the VSDL
problem. We say that an algorithmA solvesa given GVSDL
problem instance(p, q) if A(p, q) = (e1, · · · , em) such that
some ei is non-zero, and (4) holds. Note thatp1, · · · , pm

are implicitly specified oncep andq are given, and they can
be computed efficiently. Furthermore, we say that GVSDL is
computationally hardif for any polynomial-time probabilistic
algorithmA, the probability thatA solves a random GVSDL
problem instance(p, q) is negligible w.r.t. γ = |q|. The
probability is taken over the random choices ofp, q and the
internal coin tosses made byA.

Following the result in [17], we can see that that the hash
function H is collision resistant if the GVSDL problem is
computationally hard.

Lemma 4 The hash functionH is collision resistant if GVSDL
is computationally hard w.r.t.γ = |q|.

Proof: Suppose on the contrary that there exists an
attackerA that can compute a collision ofH with a probability
that is not negligible, we show that we can build another



6

algorithmB that makes use ofA to solve the GVSDL problem
also with a probability that is not negligible.

In particular, given(p, q), which is an instance of a GVSDL
problem, and an attackerA, we useA to find two messages
x = (x1, · · · , xm) andy = (y1, · · · , ym) such thatx 6= y but
H(x) = H(y). In this case, according to (2), we have

m∏

i=1

pαxi

i =
m∏

i=1

pαyi

i mod p.

Let zi , xi − yi mod q, the above is equivalent to
m∏

i=1

pαzi

i = 1 mod p.

This is exactly a solution to the GVSDL problem instance.
Note that at least somezi’s are non-zero becausex 6= y. If
A succeeds with probabilitypa, then we can also find the
solutionzi’s with probabilitypa.

IV. The Basic Integrity Verification Scheme

A. The Basic Scheme

Our proposed scheme consists of two algorithms, namely
the encodingalgorithm where the original data are prepared
for distribution, and theverificationalgorithm, which is used
by individual nodes to verify the integrity of the received data.

1) Encoding:Let the parametersp, q, m andp1, · · · , pm be
chosen as in Section III-A. Given any binary stringX , let n
be the smallest positive integer such that|X | < mn(γ−1)−1.
Assume thatn < poly(γ) for some positive polynomialpoly.
We also assume thatX is compressed, such that the bits are
random.

In this way, we can always pad the originalX properly
(e.g., with a one followed by zeros) such that the result can be
divided into small pieces ofγ−1 bits each. In other words, we
can always encode the data into the formX = (x1, · · · ,xn),
wherexi = (xi,1, · · · , xi,m)T and eachxi,j is of lengthγ−1,
and can be considered as an element inZq for all 1 ≤ i ≤ n
and1 ≤ j ≤ m.

We will call xi as thei-th block, and eachxi,j as thej-
th sub-blockof the i-th block. Now, givenX, the encoder
computes

hi = H(xi) =

m∏

j=1

p
αxi,j

j mod p (5)

for each1 ≤ i ≤ n.

2) Basic Verification Algorithm:During verification, each
network node is given a packet〈x, c〉 and system param-
eters. In the case where this packet is not tampered with,
c = (c1, · · · , cn) are the coefficients where eachci ∈ Zq,
x is the linear combinationx =

∑n

i=1
cix̂i mod Zq.

Each node can verify the integrity of the packet as the
following.

1) Compute the hash valueH1 = H(x).
2) ComputeH2 =

∏n

i=1
hci

i mod p.
3) Verify that H1 = H2.

It is worth to note that once an intermediate node has
received the parametersp, q andm, it will be able to compute
α andp1, · · · , pm locally. Therefore, those prime bases do not
need to be distributed. The hash values, however, still needto
be distributed. Nevertheless, we will see that in any reasonable
setting the communication overhead is low.

B. Security Analysis

Intuitively, an attack is considered as successful if the at-
tacker, with the full knowledge of the content being distributed
and all the public parameters, can generate a packet(p, c) such
thatp is not a linear combination of the original data specified
by c but the packet still passes the verification. Hence, we have
the following definitions of integrity attackers and the security.

Definition 5 An integrity attacker A is a probabilistic
polynomial-time algorithm, such that given parameters
p, q, m, p1, ·, pm and the encoded contentX = (x1, · · · ,xn),
the attackerA finds y and c = (c1, · · · , cn) so that for
x ,

∑n

i=1
cixi, we havey 6= x yetH(x) = H(y).

Definition 6 The basic scheme is secure if there does not exist
any integrity attacker that can succeed with a probability that
is not negligible w.r.t.γ.

We show that the basic scheme is secure, since otherwise
we can solve the GVSDL problem.

Theorem 7 The basic scheme is secure if GVSDL is compu-
tationally hard w.r.t.γ.

Proof: Essentially, we need to show that if there exists an
integrity attackerA that succeeds with probabilityP that is
not negligible inγ, we can construct a probabilistic algorithm
B that solves the GVSDL problem with the same probability
P , which contradicts with the assumption that GVSDL is hard.
In particular, we construct an algorithmB as follows. Given
input p, q, m, p1, · · · , pm as in Definition 3, the algorithmB
does the following steps.

1) Randomly selectn ∈ [2, poly(γ)], for some positive
polynomialpoly.

2) Randomly selectxi,j ∈ Zq for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. Denotexi , (xi,1, · · · , xi,m) and X ,

(x1, · · · ,xn).
3) InvokeA with p, q, m, p1, · · · , pm and X as inputs. If

A fails, halt and declare failure. IfA succeeds, lety =
(y1, · · · , ym) andc = (c1, · · · , cn) be the output.

4) Output e1, · · · , em, where ei = yi −
∑n

j=1
xi,jcj

mod q for 1 ≤ i ≤ m.

Clearly, algorithmB runs in polynomial time. WhenA
succeeds in Step 3, we know thaty 6=

∑n

j=1
cjxj , hence at



7

least one of theei’s is non-zero. Therefore,B succeeds if and
only if A succeeds. In other words,B succeeds with the same
non-negligible probabilityP , hence creating a contradiction.

V. Batch Verification

A. The Baseline Batch Verification Scheme

To reduce the computational cost of the verification, a batch
of packets can be verified at the same time. In particular, after
a node has receivedb packets((y1, c1), (y2, c2), · · · , (yb, cb))
(not necessarily from the same source), the node can verify
all the packets as follows.

1) Randomly chooseb numbersr1, · · · , rb ∈ Zq.
2) Computew =

∑b

i=1
riyi mod q.

3) Computev =
∑b

i=1
rici mod q.

4) Verify the integrity of the packet(w,v) using the basic
integrity verification scheme.

Due to the homomorphic property of the hash function, we can
see that if the verification in Step 4 fails, then at least one of the
packets is corrupted. However, if the batch of packets pass the
verification, it is still possible that some packets are corrupted
but could not be detected by the verification algorithm. Hence
we need to analyze the security more carefully.

B. Security Analysis

We first extend the definition of an integrity attacker to work
on a batch of packets.

Definition 8 A successful batch integrity attackerA is a
probabilistic polynomial-time algorithm, such that given
parameters p, q, m, p1, ·, pm and the encoded content
X = (x1, · · · ,xn), the attacker A computesb packets
((y1, c1), (y2, c2), · · · , (yb, cb)), where at least for some
yi and ci = (c1, · · · , cn), we haveyi 6=

∑n

i=1
cixi, but

the packets pass the batch verification algorithm with a
probability that is not negligible.

We can show that, to come up with a batch of packets that
pass the verification above is not easier than breaking the basic
verification scheme itself.

Corollary 9 The batch verification scheme is secure (i.e., no
successful batch integrity attacker exists) if the basic scheme
is secure.

Proof: Suppose a successful batch integrity attackerA ex-
ists. We construct another attack algorithmB as the following.
Given parametersb, p, q, m, p1, ·, pm and the encoded content
X = (x1, · · · ,xn), the attackerB performs the following
steps.

1) Invoke A to obtain b packets((y1, c1), · · · , (yb, cb)).
Let Y , {(yi, ci) | yi 6=

∑n

j=1
ci,jxj}, where we

denoteci = (ci,1, · · · , ci,n). That is, Y is the set of
corrupt packets.

2) For every packet(yi, ci) in Y , check if it passes the ba-
sic integrity verification. If a packet(y′, c′) in Y passes
the verification, output(y′, c′) and halt. Otherwise do
the following.

3) Randomly chooseb coefficientsr1, · · · , rb ∈ Zq.
4) Computew =

∑b

i=1
riyi mod q.

5) Computev =
∑b

i=1
rici mod q.

6) Output packet(w,v).

If the algorithm halts at Step 2, clearly it has already success-
fully attacked the basic verification scheme. Otherwise, bythe
definition of the attackerA, the packet(w,v) passes the basic
verification with a probabilitypa that is not negligible.

If (w,v) is indeed corrupted (i.e.,w is not the linear
combination ofX with coefficients inv), such a packet would
be considered as a successful attack on the basic integrity
verification scheme, and the attackerB would be successful.
Otherwise, when(w,v) appears to be not corrupted (e.g.,
when the coefficientsri’s chosen for the corrupted packets
happen to be0), the attack would fail. However, since the
coefficientsri’s are randomly chosen, the probability that the
second case happens is exponentially small.

Therefore the algorithmB can successfully attack the basic
verification scheme with probabilitypb that is not negligible
(sincepb − pa is negligible). Hence the corollary follows.

When the batch verification technique is used, it is clear that
the computational cost can be reduced roughly by a factor of
b, since we perform verification onb packets at a time, and the
additional cost introduced by the random linear combination
of the packets is not significant compared with the cost of
the basic verification on the combined packet. Nevertheless,
it should be noted thatb cannot be too large for typical
applications since it will introduce additional delay in the
content distribution process, since a node needs to wait until
b packets to arrive before the verification can be done.

C. An Enhanced Scheme

The cost of verification in the batch verification can be
further reduced. Recall that to verify the a packet(w,v) using
the basic verification scheme, we must computeH1 and H2

as below and check if they are the same.

H1 =

m∏

j=1

p
αwj

j , H2 =

n∏

j=1

h
vj

j (6)

where w = (w1, · · · , wm), v = (v1, · · · , vn), and hj is
the hash value of thej-th block. Intuitively, if we can make
the exponents in the computation as small as possible, the
computation cost can be reduced.
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To see how we can makewj ’s small, let us consider the
batch verification process more carefully in matrix form. Let us
denote a batch of packets by(Y,C), whereY = (y1, · · · ,yb)
is the actual data (when not corrupted), andC = (c1, · · · , cb)
are the coefficient vectors. During the batch verification,
another random vectorr = (r1, · · · , rb)

T is used, where
w = Yr and v = Cr. Hence, if we instead choosew (or
part of w) and find the correspondingr, we may be able to
greatly reduce the computation cost. In particular, ifb ≥ m,
we can randomly choosew and find a solution tow = Yr

provided that the rank ofY is m. Even if the rank ofY is
not m or b < m, we can still choose the values of some of
the components ofw, remove some rows inY and solve the
reduced system to findr, and finally compute the rest of the
components inw. If b is not too small compared withm, this
method could save a large portion of the computation cost.

A similar method can also be applied on the computation
of H2 to makev very small. This can be useful whenb is not
small compared withn. However, clearly it cannot be used
simultaneously with the first method. The actual method to
apply would be determined by the choice of the parameters
m, n andb.

It is worth to note that the effects of reducingw andv are
not the same. This is becausepj ’s are in general much smaller
thanhj ’s, hence the computation ofH1 is much more efficient
than H2 when m = n. As a result, the overall computation
cost has to be considered when deciding which function is to
be optimized.

VI. Sparse Random Linear Network Coding

The computation overhead involved in the content distribu-
tion consists of two parts. The first part is the cost due to the
verification of the packets, and the second part is the due to
the need to compute random combinations of the data blocks.
The preceding sections of this paper focus on the first part
of the cost, which can be reduced through the use of more
efficient hash functions and batch verification techniques as
we have discussed. Nevertheless, the second part of the cost
also plays a very important role in practice, especially when
the content is large (e.g., in the order of gigabytes), and ithas
a significant impact on the choice of parameters.

In some previous work (such as [2], [3]), it is proposed
to divide the content to be distributed into smaller trunks
(sometimes referred to asgenerations), and random linear net-
work coding is applied to each trunk of content independently.
Although this method works in certain application scenarios,
it does not address the problem directly but instead avoids
high computation overhead by applying random linear network
coding to smaller problem instances. Hence, this strategy may
lose certain benefits from network coding. For example, when
a node sends data to its downstream nodes, it has to decide
which trunk to send. If the algorithm to make such decisions
is not designed properly, it may result in a situation where a
certain trunk cannot be reconstructed after a few key nodes

have left the network.

Here we propose a simple yet powerful alternative to
avoid high computation cost when computing the random
combinations. We will refer to this method asSparse Random
Linear Network Coding. The idea is that, instead of computing
a random combination of all then data blocks, we can
instead randomly select onlyθ of them and compute a random
combination of only thoseθ blocks. More precisely, when a
nodeA needs to send a packet(x, c) to its downstream node,
it performs the following steps.

SPARSERANDOM L INEAR NETWORK CODING

1) Randomly chooseθ packets from the random com-
binations received byA so far. Let these packets be
(x1, c1), · · · , (xθ, cθ).

2) Randomly chooser1, · · · , rθ ∈ Zq.
3) Compute packet(x, c) as

x =

θ∑

i=1

rixi, c =

θ∑

i=1

rici.

Also, we require the source node to be more powerful
than other nodes and still sends random combinations of
all n blocks. It is clear that each packet being sent over
the network would still be quite random, and allow high
probability of reconstruction at the receivers. We confirm this
intuition through experiments in Section VIII-B.

It is worth the note that the probability of successful
delivery is very high even with small constantθ. Therefore,
the computation overhead due to the computation of random
combinations can be made independent of the number of
blocks, which greatly relaxes the constraints that need to be
considered for practical systems.

In addition, the sparse coding variant is just as secure as
the basic scheme. The proof of security of the basic scheme
can be applied for sparse coding without modifications, since
the proof does not require the coefficients to be of any special
properties.

VII. Communication Overhead

The communication overhead of the content delivery
scheme involves three parts, namely the cost of distributing
the parameters, the hash values, and the random coefficients
used in the combinations.

A. Parameters

The first part is the cost of distributing the parameters for the
delivery. Here we are mainly concerned about the parameters
related to the hash function, which includesn the number of
blocks,m the number of subblocks per block, and primesp
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andq. Since the algorithm to find the small prime basespi’s is
public and deterministic, all nodes in the network can compute
thosepi’s locally after receiving the above parameters. Note
that the first part of the overhead is independent of the content
size, and can be regarded as constant. On the other hand, if
the scheme proposed in [14] is used instead, this part of the
overhead would be at least the same size of a data block, which
may be significant, since the number of blocksn cannot be
too large (as we will show later in Section VII-C).

B. Hash Values

The second part is the cost of distributing the hash values
of the data blocks before the actual delivery of the data. Since
each hash value is an element inZp, the total size of the hash
values isn|p| = nλ. This part of the cost is proportional to
the number of data blocks, and it is a one-time cost for any
node in the network for the entire content distribution session.
The ratio of the cost over the total size of content isλ/(mγ),
which is typically very small. For instance,λ = |p| is typically
at most 2k bits, andmγ = m|q| is roughly the size of one data
block, which is typically at least32k bytes. In this case the
overhead ratio is about 0.78%. When the data blocks are of a
few megabytes in size, as suggested in some of the previous
work, such overhead would be quite insignificant.

C. Coefficients

Recall that each packet transmitted over the network con-
sists of a pair(x, c), hence the overhead due to the need to
transmit the coefficient vectorc has to be examined closely.
Since each coefficient is in the same finite field as each
subblock of the content, the size of one coefficient isγ. Hence
the total size of the coefficient vector isnγ. Considering that
the size of each data block ismγ, the overhead ratio due to
coefficient vectors isn/m.

Since this part of the overhead is re-occurring in the sense
that it will happen each time some data is transmitted, it is
desirable to make the ration/m as small as possible. Hence,
as we mentioned earlier,n can not be too large. For instance, if
the size of the data is100 megabytes,γ = 800 (say, with|p| =
λ = 1024), and we want to maken/m < 0.01, we must have
n ≤ 210/10 ≈ 100. When the equality holds,m = 100n =
10×210 ≈ 10000 and each block is of size1 megabyte. If the
original data is of size1 gigabyte, with the sameγ, roughly
we can have at most320 blocks of3.2 megabytes each.

For dynamic networks where nodes frequently join and
leave the network, or in scenarios where nodes have slow
connections to each other, it may be desirable to have data
blocks as small as possible. One way to achieve that is to
reduceγ, at the cost of reduced security. For example, when
γ = 400 (say, with |p| = λ = 512), and n/m < 0.01, we
haven ≤ 144 for 100 megabyte data, and each block is at
least about700 kilobytes.

D. Trade-offs

Besides trade-offs within the two categories of overhead,
we can actually trade-off between the communication and
computation overhead.

The main idea is that we can divide the original content
X into smaller trunks and re-use the coefficient vector for
different trunks. This is similar to some previous work (e.g.,
[2], [3]), but the difference is that we divideX “horizontally”
(versus “vertically” as in previous work) if we view the
original content in the matrix form. In particular, each trunk
containsmt rows of X, and during each transmission from
a node to one of its downstream nodes, all them/mt trunks
share the same coefficient vectors. As a result, we can send
only one coefficient vector form/mt trunks.

In this way, we can remove the dependency betweenmt

and n to some extent, so that the computation overhead can
be reduced when we apply the enhanced batch verification
scheme in Section V-C, since nowmt and b can be made
closer.

The price of doing this is twofold. First, we need to
distribute hash values for each trunk independently. As a
result, the one-time communication cost due to the hash values
increases by a factor ofm/mt. On the other hand, during
the verification, we need to computeH2 as in Equation (6)
exactly m/mt times for a batch, instead of only one-time.
As we analyzed earlier, when we require small re-occurring
communication overhead,n/m should be small. Hence, such
increase may be offset by the effect of the enhanced batch
verification.

VIII. Experiments

A. Computation Overhead

As we mentioned in Section VI, the computation cost
involves both the computation of random combinations and
the hash values. When sparse random linear coding is ap-
plied, for each combined block we only need to compute
the combination ofθ blocks, which makes the computation
of combinations much more efficient than that of the hash
values. Hence we only analyze the computation cost of the
hash function.

Since we obtain the efficiency by using small prime bases
in the hash function, the computation ofH1 is much more
efficient thanH2 as in Equation (6), whenm = n. However, in
typical cases,m may be much larger thann (say,n < 0.01m),
hence the overall computation cost ofH1 could be more than
that of H2.

We implement the proposed hash function and conduct
experiments to evaluate the efficiency of the computation of
H1 and H2 with various parameter combinations. We use
GNU C/C++ compiler with open source Crypto++ library, and
the experiments are done on a laptop computer with an Intel
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Core 2 Duo T7300 CPU. Only one of the two cores is utilized
during the experiments.
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Fig. 2. Computation Efficiency ofH1.

In Fig. 2, we show the throughput of the computation of
H1, which is computed as the size of a data block divided
by the average time it takes to compute a hash value for
the block. The values are taken as the average of 25 random
instances. In general, we can see that the throughput increases
when the number of subblocks per block (i.e.,m) is increased.
Nevertheless, such increment will not be very obvious afterm
exceeds a certain value.

We can also see that even with relatively small values ofλ
and γ (say,λ = 512 and γ = 400), the computation ofH1

cannot be very efficient (about40 KB per second) compared
with common hash functions such as SHA-1. With carefully
designed pre-computation methods (such as that in [14]), the
throughput can be increased by a small constant factorr at the
price of a storage requirement that is2r times that without pre-
computation. Furthermore, by performing batch verification,
and ignoring the cost to compute the linear combination during
batch verification, the throughput can be increased by a factor
of b, which is number of blocks in a batch. However, in typical
applications, it is not desirable to have a too largeb, since
otherwise a node needs to wait for too long to receive a batch.

From these parameters, we can compute the throughput
from the graph. For example, when we chooseλ = 1024
and γ = 800, and m ≥ 200, the throughput without batch
verification is at least30 kilobytes per second. With batch
verification and b = 20, the throughput is increased to
600 kilobytes per second, and ifb = 100, the throughput
of computing H1 alone can reach about3 megabytes per
second. With pre-computations, the throughput can be further
improved by a small factor.

If we use smaller security parametersλ andγ, the overall
throughput can be increased. It is interesting to see that
reducingλ from 1024 to 768 does not significantly increase
the throughput, but further reduction to 512 shows more than
30% of speedup (from 30 to 40 kilobytes per second).

We further evaluate the computation efficiency ofH2 during
verification. The results are shown in Fig. 3. We can easily see
that the time it takes to computeH2 increases linearly with
the number of blocks (i.e.,n). Furthermore, the efficiency of
computingH2 is quite predictable in the sense that, when we
increase the parameters (n, λ or γ), the increment of the time
consumption is proportional ton and the difference inλ (or
γ, since we have madeλ/γ constant in our experiments).
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Fig. 3. Computation Efficiency ofH2.

Interestingly, Fig. 3 can also be used as a reference to the
computation efficiency of the original hash function proposed
in [14]. The throughput under different security parameters
are the gradient of different curves in the figure. For example,
for |p| = 512 and |q| = 400, when n = 500, the time it
takes to computeH2 is about 2 seconds. This translates to a
throughput of about12.5 kilobytes per second, which is much
lower than40 kilobytes per second as in our proposed scheme.
For |p| = 1024 and |q| = 800, similar calculations show that
the throughput is greatly reduced to about5 kilobytes per
second, whereas in our scheme the throughput is only reduced
to 30 kilobytes per second. Hence, we can see that our scheme
has the advantage that the efficiency is not reduced as much
when the parameters are increased for stronger security. The
computational advantage of our scheme is mainly due to the
use of deterministically chosen small primes as the bases for
exponentiations, which is the rationale behind the design of
the VSH scheme ( [17]).

From Fig. 2 and Fig. 3, we can compute the final throughput
of the hash verification with given parameters. For example,
using numerical examples in Section VII-C, if the original
content size is100 megabytes,m = 10× 210, n = 100, |p| =
λ = 1024 and |q| = γ = 800, the throughput of computing
H1 is at least30 kilobytes per second, and the time it takes
to computeH2 is about2 seconds. Hence, the overall time it
takes to verify a packet is roughly 36 seconds, which translates
to an overall throughput of about 28 kilobytes per second.
If b = 20, this throughput would be increased by a factor
of 20, which gives 560 kilobytes per second. For the same
λ and γ, when the size of the original data is 1 gigabyte
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with n = 320 and m = 33555 (which gives a block size
of about 3.2 megabytes), similar calculation shows that the
overall throughput without batch verification is also about28
kilobytes per second.

B. Effectiveness of Sparse Random Linear Network Coding

To evaluate the effectiveness of the sparse random linear
network coding as described in Section VI, we conduct the
following experiments.

First, we build a random directed graph withN nodes,
where we select a random root nodeR. We randomly select
the edges such that each node has at leastk incoming edges.
In this way, we can be sure that the min-cut fromR to any
other node is at leastk. Furthermore, this is similar to bit-
torrent-like peer-to-peer networks, where each peer randomly
selects a number of nodes as its upstream nodes.

Next, we assume thatR has n blocks of data to be
distributed to all other nodes in the network. The distribution
is done one step at a time. In each step, for all the nodes that
have received data from all of their upstream nodes generate
their own combinations and deliver them to their downstream
nodes. This process is repeated until no further delivery is
possible.

Lastly, we examine the data received by each node, and
determine if it is sufficient for the node to reconstruct the orig-
inal data. The effectiveness of the coding scheme is measured
by the percentage of receiving nodes that can successfully
reconstruct the data at the end of the experiments.

In our experiments, we choosen = 120, and varyk and
N to examine the reconstruction probability. We chooseq =
251, which is relatively small. Generally speaking, a largerq
would give larger reconstruction probability. However, aswe
can see later, such smallq already yields high reconstruction
probabilities. Furthermore, we chooseθ = 2, which means
we only need to compute the combination of two randomly
selected packets each time. The results of our experiments are
summarized as the table below.

k = 20 k = 40 k = 60
N = 200 0.9950 0.9950 1
N = 400 0.9975 0.9975 0.9975
N = 600 0.9866 0.9950 0.9917
N = 800 0.9962 0.9975 0.9850
N = 1000 0.9950 0.9890 0.9950

TABLE II
RECONSTRUCTIONPROBABILITIES

As we can see from Table II, the reconstruction probabilities
are very close to1, which shows that the sparse variant of the
random linear coding performs just as good as the original
random linear coding even for very smallθ.

IX. Conclusions

Researchers have shown successful application of network
coding in wireless networks [23], [24] to improve system
throughput, or P2P networks to improve overall system effi-
ciency. In this paper, we investigate the security and efficiency
issues in large content distribution based on network coding.

We consider the problem of on-the-fly verification of the
integrity of the data in transit. Although a previous scheme
based on homomorphic hash functions is applicable, it was
mainly designed for server side coding only, and will be much
less efficient when it is applied on random network coding.
We propose a new on-the-fly verification scheme based on a
faster homomorphic hash function, and proved its security.

We also consider the computation and communication cost
incurred during the content distribution process. We identify
various sources of the cost, and investigate ways to eliminate
or reduce the cost. In particular, we propose a sparse variant
of the classical random linear network coding, where only
a small constant number of blocks are combined each time.
Furthermore, we discuss some possible enhancements under
certain conditions of the parameters, and ways to trade-off
among different cost.

Experiments are conducted to examine the efficiency of the
proposed hash function, as well as the effectiveness of the
proposed sparse random linear network coding. The results
show that the new hash function is able to achieve reasonable
speed, and the sparse variant performs just as well as the
random network coding using typical parameters.
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