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Abstract—Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from
various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends
with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-
world OSNs, leading to low detection accuracy. To address this challenge, we explore users’ activities to assist sybil detection. The
intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social
and activity network (SAN), a two-layer hyper-graph that unifies users’ friendships and their activities, to fully utilize users’ activities. We
also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design
Sybil_SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil_SAN. We
develop an efficient iterative algorithm to compute the detection metric for Sybil_SAN, and derive the number of rounds needed to
guarantee the convergence. We use “matrix perturbation theory” to bound the detection error when sybils launch many friendship
attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil_SAN is highly robust
against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low
accuracy. Lastly, we present two extensions of Sybil_SAN to further improve its accuracy.

Index Terms—Sybil detection, social-activity networks, random walk
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1 INTRODUCTION

ONLINE social network (OSNs), such as Twitter and Face-
book, are becoming increasingly popular. They serve as

essential platforms for people to make new friends, share
their experiences, and diffuse social influence, etc. How-
ever, due to the innate openness, i.e., allowing users to cre-
ate new identities readily, OSNs are particularly vulnerable
to sybil attacks, where an attacker can create multiple pseu-
donymous identities (we call sybils here), to subvert the sys-
tem. For example, a sybil may distribute spam or phishing
attacks [1], harvest personal user information [2], gain dis-
proportionate influence/voting [3], [4], etc. Twitter reported
that 10% of Twitter users are fake [5]. Similarly, Facebook
estimated that about 83 millions of its users are fake [6].
Thus, it is important to detect sybils in OSNs.

Among various methods, the graph-based sybil detection
is themainstream one, due to its computational efficiency and
generality to detect sybils with different activity behavior.
Typically, the graph-based sybil detection can be described

as: (1) Model an OSN as a graph, in which nodes represent
user accounts and edges represent users’ friendships. (2) The
objective is to exploit the graph structure to identify those
sybil users given a small set of users with known labels (hon-
est or sybil). The underlying assumption is that honest users
seldommake friends with sybils, i.e., there are a limited num-
ber of friendship links between honest users and sybil users
(a.k.a. the limited-attack-edges assumption), where an attack
edge means a link between an honest user and a sybil. Under
this assumption, a large number of algorithms have been pro-
posed, e.g., [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], just
to name a few. However, recent works [17], [18], [19] found
that sybils are able to create a larger number of attack edges,
i.e., the limited-attack-edges assumption does not hold in
real-world OSNs. Breaking down this assumption does lead
to a very low detection accuracy [20], [21]. This motivates us
to explore practical sybil attack models and design effective
sybil detection algorithms.

Our idea is to explore user activities to refine the attack
model and design new detection algorithms. The intuition
is that luring an honest user to conduct some daily activi-
ties, e.g., replying a tweet, is far more difficult than luring
an honest user to establish friendship links. This intuition is
supported by some experimental studies in Twitter [22]. Let
us use a simple example to illustrate benefits of exploring
activities.

Example 1 (Benefits of exploring activities). Consider the
friendship graph in Fig. 1a, where v1; v2; v3 are honest nodes
and v4; v5 are sybil nodes. Each undirected link, e.g., ðv1; v2Þ,
indicates a friendship relationship. Given that v2; v3 are honest
nodes, it is difficult to detect the sybils out, i.e., v4; v5, because
their connectivity to v2 and v3 are as good as the honest node
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v1. Fig. 1b shows the historical activities of the users in Fig. 1a.
Given v2; v3 are honest, we can easily see that v4; v5 are more
suspicious to be sybils than v1, because the honest nodes v2; v3
did not initiate any activity to v4 and v5, while v3 actively
interacted with v1 twice.

Example 1 uses a simple case to highlight that exploring
users’ activities canhelp us todetect sybils out,which are diffi-
cult to be detected from the friendship graph (i.e., the limited-
attack-edges assumption does not hold). The challenge is that
in practice, sybils may also lure some honest users to conduct
some daily activities with them. Furthermore, many users in
real-world OSNs are not very active in interactingwith others,
e.g., by analyzing a subnetwork of Twitter, we found that
113,214 out of 409,694 users (around 28% of users) interact
with others at most once only. This increases the risk of classi-
fying such inactive users as sybils since they also seldom inter-
act with other honest users, similar with sybils. This paper
aims to explore such general settings and answer:

# How to fully utilize users’ friendships and their activities
to detect sybils and do away with the limited-attack-edges
assumption?

# How to practically model sybils’ attacking behavior on
both friendships and activities, and design effective sybil
detection algorithms with theoretical guarantees?

Our contributions are:

# We develop a two-layer hyper-graph model to fully
utilize users’ friendships and their activities in an
OSN. We propose a new sybil attack model in which
sybils can launch both friendship attacks and activity
attacks. Our attack model relies on empirical find-
ings on real-world user and sybil behavior.

# We design the Sybil_SAN to detect sybils, which
propagates the trust (distrust) from given honest
(sybil) nodes to other user nodes via coupling three
random walks on SAN, with convergence guarantee.
Computing the converged trust (distrust) score is
expensive, we also design an iterative algorithm to
calculate it.

# We apply “Markov chain mixing time” to derive the
number of rounds needed to guarantee that the itera-
tive algorithm terminates. We also apply “matrix per-
turbation theory” to bound the error in the detection
metric (i.e., normalized trust scores), when sybils
launch more friendship attacks and activity attacks.

# Experiments on both synthetic and real-world sybil
datasets show that under practical scenarios with large
attacks in friendships and activities, Sybil_SAN can still
detect sybils accurately, while the compared algorithms
have very low accuracy. Experimental results further

verify that our Sybil_SAN is highly robust (in terms of
the detection metric) against sybil attacks on both
friendships and activities. Lastly, we present two exten-
sions of Sybil_SAN to further improve its accuracy.

This paper organizes as follows. Section 2 presents the
background and intuition of our design. Section 3 presents
the social-activity graphmodel and the attackmodel. Section 4
presents the design of sybil detection algorithm on the social-
activity graph. Section 5 presents the experimental results on
synthetic data. Section 6 presents the experimental results on
real world data. Section 7 presents two extension of the sybil
detection algorithm. Section 8 presents the related work and
Section 9 concludes.

2 BACKGROUND AND INTUITION

In this section, we first introduce the current state-of-the-art
approaches on sybil detection, i.e., graph-based sybil detec-
tion, for online social networks, as well as state the funda-
mental limitations of such approaches. Then we highlight
our intuition to develop a practical sybil attack model,
which enables us to design effective detection algorithms to
address these fundamental limitations.

2.1 Graph-Based Sybil Detection and Limitations
Graph-based sybil detection (or defense) in online social net-
works (OSNs) has been an active area of research. The canoni-
cal formulation is that users in an OSN are classified either
into honest nodes and sybil nodes, and the objective is to identify
these sybil nodes by simply relying on the friendship graph.
The mainstream methodologies, e.g., [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], assume an attack model that sybils
can establish only a limited number of links (or friendships)
with honest nodes (in this work, we call such links as “attack
edges”). We refer to this assumption the “limited-attack-edges
assumption”, which leads to the following fundamental limita-
tion: to guarantee an accurate detection of sybil nodes, each sybil
node can launch at most Oð1=log ðjVjÞÞ attack links on average,
where V is the set of all nodes in the network [7].

However, recent studies revealed that the limited-attack-
edges assumption does not hold in real-world OSNs. In par-
ticular, Yang et al. [17] found that in RenRen, a popular
online social network in China, each sybil node could
launch many friend requests to honest users. More impor-
tantly, around 26% of such requests were accepted. In other
words, the number of attack edges is much higher than pre-
viously assumed. Sridharan et al. [18] also found that in
Twitter, a large number of spam accounts could attract hon-
est nodes to be their followers, and these spam accounts (or
nodes) become deeply embedded in Twitter. Moreover,
attack edges can be established automatically. For example
in Facebook, socialbots managed to get an average request
acceptance of up to 80% [19]. Furthermore, as shown by
results in recent studies [20], [21], if one relaxes the limited-
attack-edges assumption, it will lead to low detection accu-
racy. All the above evidences point to the fact that sybil
attack model based on the limited-attack-edges assumption
is not practical, and purely exploiting the friendship graph
to detect sybils is quite limited in real-world OSNs. This
motivates us to investigate practical sybil attack models and
design effective sybil detection algorithms.

Fig. 1. A motivating example.
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2.2 Main Intuition
Our intuition is that the social activities (e.g., tweets or
retweets) among users contain rich information, which can
enable us to differentiate the sybil nodes from honest nodes.
For instance, in real life one may exchange business cards
with strangers but people will also be more cautious in select-
ing whom to further interact with. This behavior is in line
with users in OSNs, i.e., honest users may be willing to estab-
lish links with sybils, however, they seldom interact with syb-
ils. In fact, this user behavior in OSNs has been justified by an
analysis of a dataset containing thousands of sybils in Twitter
by Zhang et al. [22], which showed that non-sybil users tend
to be more selective in retweeting/replying to, and mention-
ing other users. These observations enable us to develop a
practical sybil attack model, or the “social-and-activity-based
sybil attack model”, whichwill be presented in Section 3.

One naive approach to detect sybils in our social-and-
activity-based sybil attack model is composed of two steps:
(1) First, one can address the limited-attack-edges assump-
tion by using the social activities among users to adjust the
weights or even delete some links on the friendship graph.
For example, one can delete the friendship link between
two users when they interact less than a given number (usu-
ally small) of times. (2) Then, apply the existing graph-
based sybil detection algorithm to detect sybils. However,
the drawback of this naive approach is that in real-world
OSNs, there are many users who are not very active in inter-
acting with others. In particular, by analyzing a sub-net-
work of Twitter, we found that 113,214 out of 409,694 users
(or around 28% of users) interact with others at most only
one time. These users may be misclassified as sybils, since
they also seldom interact with other honest users, leading to
low accuracy of the detection algorithms [23] (we will fur-
ther justify this in our experiments). The reason is that com-
pressing social activities to friendship graph can not fully
utilize the activity data. This motivates us to explore an
interesting and fundamental question: How to fully utilize the
advantages of both users’ friendship graph and their activities to
detect sybils? We aim to address this question, and refer to
our approach as the social-and-activity-based sybil detection.

3 SYBIL ATTACK MODEL

In this section, we first formulate a SAN to characterize the
friendships and historical social activities in an online social
network. Then, based on the SAN, we present our sybil
attack model. Finally, we introduce our main objective.

3.1 The Social and Activity Network Model
We formulate a two-layer hyper-graph to unify users’ friend-
ships and historical activities. These two layers are:

Layer 1: Friendship Graph. We use an undirected1 graph
G , ðV; EÞ to characterize the friendship between users. The
setV , fv1; . . . ; vjVjg denotes all users (or nodes) in a social net-
work. The node set can be partitioned into a subset of honest
nodes, which is denoted by Vh, and a subset of sybil nodes Vs,
where Vh \ Vs ¼ ; and V ¼ Vh [ Vs: For example, Fig. 2a

depicts a social network of 5 nodes, i.e., V ¼ fv1; . . . ; v5g, three
honest nodes Vh ¼ fv1; v2; v3g and two sybil nodes Vs ¼
fv4; v5g. The set E % fðvi; vjÞjvi; vj 2 V; vi < vjg denotes all
the undirected edges in a social network, where ðvi; vjÞ 2 E
represents friendship between node vi and vj. For each edge
ðvi; vjÞ, we assume vi < vj for the purpose of eliminating the
redundancy that ðvi; vjÞ and ðvj; viÞ represent the same undi-
rected edge. For example, Fig. 2a shows a social network with
eight edges. The edge ðv1; v2Þ represents a friendship between
honest nodes v1 and v2, and ðv2; v5Þ shows a friendship
between an honest node v2 and a sybil v5.

Layer 2: Activity Graph.We use a mixed graph (containing
both directed and undirected edges) eG , ðV;A; C;M;F Þ to
characterize the historical activities. The set

A , faiji ¼ 1; . . . ; jAjg;

denotes a set of all activity nodes. An activity node can be
interpreted as a tweet (or retweet, etc.) in Twitter, or a post
(or a comment, etc.) in Facebook. Fig. 2b shows 4 activity
nodes A ¼ fa1; . . . ; a4g. Each activity node is associated
with only one creator, i.e., a node in the friendship graph.
We use an undirected edge ðv; aÞ, where v 2 V and a 2 A, to
represent that the user v creates the activity a. The set

C , fðv; aÞjv 2 V; a 2 Ag;

denotes a set of edges which reflect the creator-activity rela-
tionships. For example, in Fig. 2b, the edge ðv1; a1Þ means
that user v1 creates the activity a1. We use a directed edge
from an activity to a user ða; vÞ, where a 2 A and v 2 V, to
represent that the activity a mentions the user v. In Fig. 2b,
the directed edge ða2; v1Þ can be interpreted as that user v1
was mentioned in the tweet a2. Note that an activity can
mention multiple users. The set

M , fða; vÞja 2 A; v 2 Vg;

denotes a set of all directed edges indicating mention rela-
tionships. We use a directed edge from ai 2 A to aj 2 A, i.e.,

Fig. 2. An example in Twitter for constructing a SAN.

1. For directed OSNs like Twitter, we can transform it to an undi-
rected one via keeping an edge between two nodes only if they follow
each other.
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ðai; ajÞ, to represent that the activity ai follows the activity
aj. Here, the following behavior can be interpreted as reply-
ing or retweeting in Twitter, or commenting one’s post in
Facebook, etc. In Fig. 2b, the edge ða2; a1Þ can be interpreted
as that the tweet a2 is a retweet of the tweet a1. The set

F , fðai; ajÞjai; aj 2 Ag;

denotes a set of all directed edges indicating following
relationships.

Definition 1 (Interaction). We define each directed edge inM
or F as an interaction.

Namely, each directed edge in M or F corresponds to
one interaction, and the set of all interactions is M[F :
Note that an activity may involve multiple interactions. For
example, In Fig. 2b, the activity a2 involves two interactions,
i.e., ða2; a1Þ and ða2; v1Þ.

3.2 The Sybil Attack Model
In the social-and-activity-based sybil attack model, sybils
can launch both friendship attacks and activity attacks.

Friendship Attacks. Let Gh , ðVh; EhÞ denote the honest region,
which is the subgraph induced by honest nodes Vh in G. Like-
wise, we refer to the subgraph induced by sybil nodes Vs in G
as the sybil region, denoted by Gs , ðVs; EsÞ. In Fig. 2a, we have
Vh ¼ fv1; v2; v3g, Eh ¼ fðv1; v2Þ; ðv1; v3Þ; ðv2; v3Þg, Vs ¼ fv4; v5g
and Es ¼ fðv4; v5Þg.

Definition 2. We define friendship attack edges as the friendship
links between the honest region and the sybil region, i.e., E n
ðEh [ EsÞ, and define the number of friendship attack edges as

NA , jE n ðEh [ EsÞj:
In Fig. 2a, we haveNA ¼ 4.

Property 1. NA can take any value in f0; 1; . . . ; jVhj& jVsjg.

Note that we do not restrict sybils’ capabilities in estab-
lishing friendship attack edges. Property 1 is practical and
addresses the fundamental limitation (as described in Sec-
tion 2) of the previous graph-based sybil attack model [7],
[8], [9], [10], [11], [12], [13], [14].

Activity Attack. Let Ah % A and As % A denote a set of all
activities created by honest users (i.e., nodes in Vh), and cre-
ated by sybils (i.e., nodes in Vs) respectively, where Ah \
As ¼ ; and Ah [ As ¼ A. In Fig. 2b, we have Ah ¼ fa1; a2g
and As ¼ fa3; a4g. Let eGh , ðVh;Ah; Ch;Mh;FhÞ denote the
subgraph induced by Vh [ Ah in eG. Namely, eGh is the activ-
ity graph restricted to the honest region. In Fig. 2b, we have
Ch ¼ fðv1; a1Þ; ðv3; a2Þg;Mh ¼ fða2; v1Þ; ða1; v2Þg, and F h ¼
fða2; a1Þg: Based on this activity graph, define

Wh , jMhjþ jF hj;

as the number of interactions among honest users. In Fig. 2b,
we haveWh ¼ 1þ 2 ¼ 3. The larger theWh is, the more active
the honest users are in interactingwith other honest users. Sim-
ilarly, let eGs , ðVs;As; Cs;Ms;F sÞ denote the subgraph
induced by Vs [ As in eG. Namely, eGh is the activity graph
restricted to the sybil region only. In Fig. 2b, we have Cs ¼
fðv5; a4Þ; ðv4; a3Þg;Ms ¼ ;, and F s ¼ fða4; a3Þg: We further
define

Ws , jMsjþ jF sj;

as the number of interactions among sybils. In Fig. 2b, we
haveWs ¼ 1þ 0 ¼ 1.

Property 2.Ws can be arbitrarily large.

Namely, we consider the general scenario that sybils can
create an arbitrary number of interactions among them-
selves so as to reduce the chance to be detected.

One type of attack which can be launched by sybil nodes
is the “incoming interaction attack”.

Definition 3. We define the incoming interaction attack as the
directed edges from the honest activity graph eGh to the sybil
activity graph eGs, i.e., Fh!s [Mh!s , where Fh!s;Mh!s

denote the following edges and mentioning edges respectively:

F h!s , fðah; asÞjah 2 Ah; as 2 As; ðah; asÞ 2 Fg;
Mh!s , fðah; vsÞjah 2 Ah; vs 2 Vs; ðah; vsÞ 2Mg:

Namely, F h!s [Mh!s contains all the interactions that
are initiated from honest users to sybils. In Fig. 2b, we have
Fh!s ¼ ; and Mh!s ¼ ;. We also define the intensity that
honest nodes initiate interactions to sybil nodes as

a , jF h!s [Mh!sj=Wh:

The smaller the a is, the less willing the honest nodes are in
initiating interactions to sybil nodes. As we have discussed
in Section 2 that honest users are quite selective in initiating
interactions to sybil users. We use the following assumption
to capture this observation.

Assumption 1. The value a is usually small, i.e., a < < 1.

According to the experiments in [22], a ( 4:2& 10)5.
Another activity attack is the “outgoing interaction attack”.

Definition 4. We define the outgoing interaction attack as the
directed edges from the sybil activity graph eGs to the honest
activity graph eGh, i.e., F s!h [Ms!h, where F s!h;Ms!h

denote the following edges and mentioning edges respectively:

F s!h , fðas; ahÞjas 2 As; ah 2 Ah; ðas; ahÞ 2 Fg;
Ms!h , fðas; vhÞjas 2 As; vh 2 Vh; ðas; vhÞ 2Mg:

Namely, F s!h [Ms!h contains all the interactions that
are initiated from sybils to honest users. In Fig. 2b, we have
F s!h ¼ fða4; a2Þg;Ms!h ¼ ;. Similarly, we define the inten-
sity that sybils initiate interactions to honest nodes as

b , jF s!h [Ms!hj=Ws:

The larger the b is, the more aggressive the sybils are in ini-
tiating interactions to honest users.

Property 3. The value of b can be arbitrarily large.

Namely, we consider the general case that sybils can ini-
tiate arbitrarily number of interactions to honest users.
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3.3 Our Objective
Given G, eG and a small set of labeled seed nodes S, design an algo-
rithm to detect the sybil nodes. The S can contain both honest
nodes and sybil nodes, or only one type of them.

4 SYBIL DETECTION ALGORITHM DESIGN

Here, we present our Sybil_SAN algorithm, which propa-
gates the trust (distrust) from honest (sybil) seed nodes to
other nodes through social and activity network via cou-
pling three random walks [24]. We also design an iterative
algorithm to compute the trust scores and distrust scores.

4.1 Design Overview
We first consider the case that S contains honest nodes only.
Then we extend to consider that S contains sybil nodes
only, and finally the both honest nodes and sybil nodes case.

Given a small set S of known honest users, our objective
is to evaluate the trustworthiness (i.e., numerical trust
scores) of other user nodes, which may be honest or sybil
nodes, based on the seeds S and the SAN graph G, eG. We
rank the user nodes according to their trustworthiness in a
descending order, and take users with low rank as suspects
of sybils. In particular, we apply the “random walk frame-
work” to evaluate the trust score for each node, because this
framework is easy to implement, computationally efficient
and easy to interpret. More precisely, at the beginning of
the random walk, the total trust score for the seeds S is nor-
malized to be one, and each seed evenly shares the trust
score, i.e.,

si ¼
1=jSj; if vi 2 S;
0; otherwise.

!
(1)

where i ¼ 1; . . . ; jVj and si denotes the trust score for node
vi 2 V. Here si ¼ 0; 8vi =2 S models that we assign the mini-
mum trust score for the users outside the seed set. Let sjVjþi,
where i ¼ 1; . . . ;A, denote the trust score of activity ai. Ini-
tially, we set sjVjþi ¼ 0; for all i ¼ 1; . . . ;A, capturing that
the initial trust score for each activity is zero. We denote the
initial trust score vector as s , ½s1; . . . ; sjVjþjAj+T : From the
random walk perspective, the initial trust score vector s cor-
responds to initial probability distribution, i.e., the walk
starts from user node vi with probability si. Walking on the
SAN graph corresponds to the propagation of trust.

Definition 5 (Trust score). We define the stationary probabil-
ity distribution (or landing probability) of the random walk,
which starts from seeds nodes, as nodes’ trust score.

There are two challenges: (1) How to design the walking
strategy to capture the trust propagation on SAN graph? (2) How
to prove the convergence of the random walk and derive the num-
ber of rounds needed to converge?

Our design of random walk strategy is motivated by the
mutual reinforcement relationship between users and activ-
ities: the activities of a trusted user can be trusted, while an
activity with high trust score can certify the trustiness of its
creator. Thus, we first decompose the SAN into three sub-
networks. For each subnetwork, we design a random walk
to propagate trust independently on it. Finally, we present a
unified algorithm to couple these three random walks to

capture the mutual reinforcement relationship between
users and activities.

4.2 Decomposed RandomWalk
We decompose the SAN network into three subgraphs: (1)
the friendship graph ðV; EÞ; (2) the activity-following graph
ðA;F Þ; (3) the user-activity graph ðV;A; C;MÞ. For example,
Fig. 3 presents a decomposition of the SAN network in
Fig. 2b. Fig. 3 also presents the one-step transition probabili-
ties, which correspond to the random walk strategies in
each subgraph (presented in Algorithm 1).

Algorithm 1. Decomposed RandomWalks

1 ProcedureWalkOnFriendGraph V; E; s; g; vi:
2 Given the walker is at the node vi

3 Walk to vj with prob. ð1)gÞ
1fðvi;vjÞ2EgP
v‘2V

1fðvi;v‘Þ2Eg
þ gsj

4 Procedure
WalkOnActivityFollowingGraph A;F ; SA; g; ai:

5 Given the walker is at the activity ai
6 OutdegðaiÞ jfajjðai; ajÞ 2 Fgj
7 If OutdegðaiÞ , 1, walk to activity aj with probability

ð1) gÞ
1fðai;ajÞ2Fg
OutdegðaiÞ

þ g
1faj2SAg
jSAj

,

8 else walk to aj with probability 1faj2SAg=jSAj
9 Procedure

WalkOnUserActivityGraph V;A; C;M:
10 if The walker is at user node vi then
11 degðviÞ jfajjðvi; ajÞ 2 Cgj
12 if degðviÞ ¼ 0, stays at node vi, else walks to aj with

probability 1fðvi;ajÞ2Cg=degðviÞ
13 if The walker is at activity node ai then
14 degðaiÞ jfvjjðvj; aiÞ2Cgjþjfvjjðai; vjÞ2Mgj
15 Walks to vj with probability

1fðvj;aiÞ2Cg=degðaiÞ þ 1fðai;vjÞ2Mg=degðaiÞ

Random Walk on the Friendship Graph ðV; EÞ. Note that we
need to make a balance between exploiting the trust seeds
and exploring nodes with unknown trust score, i.e., vi =2 S.

Fig. 3. Decomposed random walks in toy example.
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We use the naive random walk to do the exploration, i.e.,
the walker jumps to one of its neighbor with equal probabil-
ity, i.e., 1fðvi;vjÞ2Eg=

P
v‘2V 1fðvi;v‘Þ2Eg: The physical interpreta-

tion is that each node distributes its trust score equally to its
neighbors. To exploit the trust of the seeds, the walker
jumps to one of the seed nodes with equal probability, i.e.,
1=jSj. This captures that the node distributes all its trust
score to one of the seeds, which can be further used to
assign more credits to those nodes that the seed trusts more.
With probability 1) g the walker walks according to the
naive random walk, and with probability g the walker
jumps to one of the seeds, where g 2 ½0; 1+. We present the
detail of this walking strategy in Algorithm 1. Fig. 3a illus-
trates the one-step transition probability of the walker on
node v1 with one seed node v3.

Random Walk on the Activity-Following Graph ðA;F Þ. The
trust can be propagated from ai to aj only if ai follows aj, i.e.,
aj is an outgoing neighbor of ai. Recall that ai follows aj can
be interpreted as that ai is a retweet of aj in Twitter. Then
propagating trust from ai to aj captures the behavior that a
user retweets aj only when he trusts the tweet aj. For the
activities having at least one outgoing neighbors, thewalking
strategy is the same as that on the friendship graph. The
activity a4 in Fig. 3b illustrates this case, where a2 is the trust
seed, i.e., created by the seed node v3. It may happen that an
activity does not have any outgoing neighbor. For such activ-
ities, the walker jumps to one of the activity seeds with equal
probability, i.e., 1=jSAj, where SA denotes the activities cre-
ated by the seed nodes, i.e., SA , faja 2 A; ðv; aÞ 2 C; v 2 Sg:
The activity a3 and a1 in Fig. 3b illustrate this case. We pres-
ent the detail of this walking strategy in Algorithm 1.

Walking on the User-Activity Graph ðV;A; C;MÞ. This is a
mixed graph, i.e., containing directed edges and undirected
edges. The trust can be propagated from a user node to an
activity node only if this user creates this activity, i.e., there
is an undirected edge between them. The trust can be prop-
agated from an activity node to a user node only if the user
is its creator or there is a directed edge from the activity to
the user (capturing that the activity mentions the user out
of trust). Thus, we interpret each undirected edge as two
directed edges. If a node (user or activity) has at least
one outgoing neighbors, the walker walks to one of these
neighbors uniformly at random. The node v4 and node
a2 in Fig. 3c illustrate this case. If a node (user or activ-
ity) does not have any outgoing neighbor, the walker
remains at this node. The node v2 in Fig. 3c illustrates
this case. We present the detail of this walking strategy
in Algorithm 1.

4.3 Coupling the Random Walks
Now,we couple these three randomwalks together to capture
the mutual reinforcement relationships between users and
activities. Recall that the walker starts with node vi with prob-
ability si. Then at each step, we couple the random walk as
Algorithm 2. We will show in supplementary file, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2022.3151701,
the coupled random walk converges to a unique landing
probability distribution, or the trust scores converge.

Algorithm 2. Coupling RandomWalk

1 The walker starts with node vi with probability si.
2 repeat
3 if The walker is at a user node vi 2 V then
4 With probability !i it walks one step on the friend-

ship graph according to the WalkOnFriendGraph
algorithm.

5 With probability ð1) !iÞ, it walks 2kþ 1 steps on the
user-activity graph according to the WalkOnUserAc-
tivityGraph algorithm.

6 if The walker is at an activity node ai 2 A then
7 With probability !jVjþi, the walker walks n steps on

the activity-following graph according to the Wal-
kOnActivityFollowingGraph algorithm.

8 With probability ð1) !jVjþiÞ it takes 2kþ 1 steps on
the user-activity graph according to the WalkOnU-
serActivityGraph algorithm.

9 untill converge

Let s- denote the converged trust score. To compute it,
we need to derive the transition matrix associated with the
coupled random walk. Let the square matrix P ¼ ½Pi;j+ with
order jVj denote the one-step transition matrix associated
with the random walk on the friendship graph, where the
ith column (or row) corresponds to user node vi. For exam-
ple, in Fig. 3a, P1;2 ¼ ð1) gÞ=2. Let the square matrix eP ¼
½ ePi;j+ with order jAj denote the one-step transition matrix
associated with the random walk on the activity-following
graph, where the ith column (or row) corresponds to activ-
ity ai. In Fig. 3b, eP4;2 ¼ 1þg

2 . Let bP ¼ ½ bPi;j+ denote the one-
step transition matrix associated with the random walk on
the user-activity graph, which is a square matrix of order
ðjVjþ jAjÞ. We index the element of bP such that in each col-
umn (and each row) the indexes from 1 to jVj correspond to
users, i.e., index i corresponds to vi, and the indexes from
jVjþ 1 to ðjVjþ jAjÞ correspond to activities, i.e., index i cor-
responds to ai)jVj. For example, in Fig. 3c, we have bP2;2 ¼
1; bP7;3 ¼ 1=2; bP4;8 ¼ 1: Note that from Algorithm 1 one can
easily write down the closed form of Pi;j; ePi;j; bPi;j. Here we
omit them for brevity. Let Pcr denote the transition matrix
associated with the coupled random walk. Then,

Pcr ¼
PT 0
0 ðePT Þn

" #
Lþ ðbPT Þ2kþ1ðI)LÞ;

where L ¼ diagð!1; . . . ;!jVjþjAjÞ. As we will show in supple-
mentary file, available online, the converged trust score s- is
a unique solution of the following linear system: Pcrs- ¼
s-; jjs-jj1 ¼ 1: Note that we will set !i; i ¼ 1; . . . ; jVj as a
small number, since users’ activities are more trustful than
users’ friendships. More details can be seen in Section 5.

Solving the linear system is computationally expensive,
thus we develop an iterative algorithm to calculate s- (step
4 to 9 in Algorithm 3). We need to normalize the trust score
of users. This design tries to prevent from mistaking honest
users with few sources as sybils, and also mistaking sybils
with large sources as honest users. LetN i denote vi’s friend-
ships, i.e., N i ¼ fðu; viÞjðu; viÞ 2 E or ðvi; uÞ 2 Eg. And let I i
denote paths where user vi receives interactions, i.e., I i ¼
fða; viÞjða; viÞ 2 Mg [ fðam; aj; viÞjðam; ajÞ 2 F ; ðvi; ajÞ 2 Cg.
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Apparently, I i and N i forms the sources where vi receives
trust. We normalize the trust score for each user by the
number of sources, i.e., by jN ijþ jI ij. Finally, we rank users
according to the normalized trust in a descending order,
and take users with low rank as suspects of sybils. In the fol-
lowing theorem we state the computational complexity of
Algorithm 3.

Algorithm 3. Sybil_SAN

Input: G, eG, S, P; eP; bP; "
Output: users’ normalized trust scores

1 ŝ CoupleWalk P; eP; bP; s
2 Get q: qi ¼ ŝi=ðjN ijþ jI ijÞ, 8i ¼ 1; . . . ; jVj
3 return q

4 Procedure CoupleWalk P; eP; bP; s:
5 sð0Þ  s; t ¼ 0
6 repeat
7 sðtþ1Þ ¼ PcrsðtÞ

8 until jjsðtþ1Þ ) sðtÞjj . "
9 return sðtþ1Þ

Lemma 1. The computational complexity of Algorithm
OðtTermð"ÞðjVj2 þ jAj2ÞÞ, where tTermð"Þ denotes the round
that Algorithm 3 terminates.

Remark. Lemma 1 states that the computational complex-
ity of Algorithm 1 is quadratic in the number of users and
quadratic in the number activities. It implies that when the
number of users and the number of activities are at the
same order, the computational complexity of Algorithm 1
has the same order as that without activities, otherwise, the
activities incurs a significant amount of extra computation.
The extra computation incurred by activities is not a bur-
den, because the core part of Algorithm 1 is a matrix multi-
ply a vector, which can be parallelized.

4.4 Extensions to Sybil Seeds
Recall that for an honest user u, if he actively initiates activi-
ties to user v, we say that u trusts v, so Sybil_SAN distrib-
utes trust from u to v. However, given a known sybil, we
should not punish (i.e., propagate distrust score to) who he
sends activities to, but rather who actively sends activities
to the sybil. Thus, for the case that S contains sybil nodes
only, we assign a score of 1=jSj to each sybil, and apply
Algorithm 3 on reversed SAN (i.e., reverse the link direc-
tions of SAN), to get the distrust vector sdis. For the case that
S contains both honest nodes and sybil nodes, we decom-
pose it into two disjoint subsets each containing only one
type of nodes. We then compute the corresponding s and
sdis for these subsets accordingly. Finally, we compute the
trust score vector as ðs) sdisÞ. Note that the calculation of s
and sdis can be easily paralleled to reduce computational
cost. Due to page limit, we present theoretical analysis on the con-
vergence and sensitivity analysis of Algorithm 2 and Algorithm 3
in our supplementary file, available online.

5 EXPERIMENTS ON SYNTHETIC DATA

In this section, we conduct experiments on synthetic data to
extensively evaluate the impact of various factors, e.g.,

number of attack edges, on the accuracy of our Sybil_SAN
algorithm.

5.1 Experimental Setups
Datasets. We use a real-world social network as the honest
region, while synthesizing the sybil region. This method has
been used in previous works [7], [9], [12], [13], [21]. Our
honest region is a public Twitter dataset [25] with 543,785
nodes, 28,397,413 reciprocal following edges and 214,267,09
interactions among users, i.e., Wh ¼ 214; 267; 09. Two types
of interactions exist: 1) user vi retweets user vj’s tweets; 2)
user vi mentions user vj. Given a set of configuration param-
eters ðNs;NA;a;b;MÞ, we synthesize the sybils as follows.

# Sybil region: Instead of focusing on one connected
sybil region, here we consider a more practical sce-
nariowhere sybils region is formed by several discon-
nected clusters, since in reality attackers at different
company/country create their own sybil region and
such regions may not always be connected to other
sybils region. Specifically, we createM identical clus-
ters, and all togetherNs 2 Nþ sybil nodes are created.
In each cluster, we synthesize their friendship net-
work using the Preferential Attachment (PA) model
[26], which is a widely used method to generate net-
works. The number of interactions between any two
sybils is a random number in ½0; w+, where w 2 Nþ.
And the type of each activity is randomly chosen
from two types existed in honest region.

# Attacks on friendships and activities: For each sybil
cluster, we randomly attach bNA

M c friendship attack
edges between honest region and the sybil cluster.
We also initiate baWh

M c interactions from honest region
to the sybil cluster, as well as bbWs

M c interactions from
the sybil cluster to honest region.

Unless we state otherwise, we use the following default
parameters to synthesize the data: Ns ¼ 10000; w ¼ 2; NA ¼
200000;a ¼ 0:00001;b ¼ 0:0001;M ¼ 5. We set w ¼ 2 by
default because we find that the number of interactions
between any two sybils in our crawled subnetwork of Twit-
ter is no more than 2.

Performance Metric. Following previous works [15], [16],
[21], we use Area Under the Receiver Operating Characteristic
Curve (AUC) to evaluate the generated rank of users in sybil
detection algorithms, which ranks users in a descending
order according to users’ trustworthiness (i.e., normalized
trust score). In essense, AUC is the probability that a ran-
domly selected honest user is ranked higher than a randomly
chosen sybil. Let q , ½qðviÞ : i ¼ 1 . . . ; jVj+ denote the vector of
users’ trustworthiness. Formally, the AUC is defined as

AUCðqÞ¼

P
vi2Vh;vj2Vs 1qðviÞ>qðvjÞ þ 0:5& 1qðviÞ¼qðvjÞ

$ %

jVhj& jVsj
:

Higher AUC indicates a higher accuracy of the sybil detec-
tion algorithm. The case AUC¼ 1:0 (100%) indicates a per-
fect classifier, i.e., all sybils are ranked lower than honest
users. On the other hand, AUC¼ 0 indicates that all sybils
are ranked higher than honest users. AUC¼ 0:5 means a
random ranking of honest users and sybils.
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Compared Methods. We compare Sybil_SAN algorithm
with the following five state-of-the-art detection methods:

# SR-U: SybilRank [7] on the friendship graph G ¼
ðV; EÞ.

# SR-W: The first approach that extends SybilRank to
deal with social-and-activity-based sybil attack
model via adding weights to edges: (1) Construct the
weighted friendship graph via using users’ activities to
adjust the weights of links; (2) Apply SybilRank on
the constructed weighted friendship graph to detect
sybils. To illustrate, Fig. 4a shows the weighted
friendship graph constructed from the social-and-
activity network in Fig. 2. In Fig. 2, v2 and v1 are
friends and v2 doesn’t initiate any interaction to v1,
thus in Fig. 4a, the edge v2 ! v1 has a weight of 1,
represented by the black and thinner edge. Mean-
while, since v3 and v1 are friends and v3 initiates 2
interactions to v1 (ða2; a1Þ 2 F ; ða2; v1Þ 2M), thus the
edge v3 ! v1 has a weight of 3 in Fig. 4a.

# Inter: This second approach that extends SybilRank
to deal with social-and-activity-based sybil attack
model via deleting edges: (1) Construct a strong
friendship graph via deleting some friendship links
based on users’ activities; (2) Apply SybilRank to the
constructed strong friendship graph to detect sybils.
To illustrate, Fig. 4b shows the strong friendship
graph constructed on the social-and-activity graph
in Fig. 2. Here, we use the directed version, i.e., we
take each undirected friendship link as two directed
links and determine whether to remove each
directed link. In Fig. 2, v2 initiates no interaction to
v1, thus the edge v2 ! v1 is deleted in Fig. 4b. Fur-
thermore, v3 actively initiates 2 > 0 interactions to
v1, thus the edge v3 ! v1 with a weight of 2 exists in
Fig. 4b. We like to remark that this directed version
is better than the undirected version, where we will
remove all links and get five isolated nodes, since
none of two nodes initiates , 1 interactions to each
other.

# SScar: a state-of-art belief-propagation-based detec-
tion method [16].

# SWalk: a recent robust random-walk-based detection
method [15].

Parameter Setting. Our seed selection strategy follows pre-
vious works [7], [15], [16]. And in each run, all the methods
use the same selected seed set. The parameters of SR-U and
SScar are the same as the open source code,2which is

published by the authors who propose SR-U and SScar. The
parameters of SWalk is the same as that in the previous
work [15]. For Sybil_SAN, we set the jumping constant g ¼
0:15 in walks on the friendship graph and on the activity-
following graph. For coupling the randomwalks, we set n ¼
1; k ¼ 0, since accuracy of Sybil_SAN decreases as n; k
increase. It meets our intuition, since neighbors are more
trusty than users that are several-hops far. For user vi who
does not have any activities, i.e., i 2 fjjfajðvj; aÞ 2 Cg ¼ ;g,
we set !i ¼ 1. Namely, it will distribute trust only through
friendship graph. For user vi who has some activities, i.e.,
i 2 fjjfajðvj; aÞ 2 Cg 6¼ ;g, we set !i ¼ 0:05& 0:9log2ðjNðviÞjÞ to
further restrict the trust propagated to sybils. Here NðviÞ is
a set that contains all neighbors of vi, and we choose smaller
!i since the activities are more trusty than friendships.
Meanwhile, the user with more friends should be more
active, thus we let more trust being propagated through his
activities. The !i; 8i > jVj is special because it depends on
the composition of users’ interactions. In our synthetic data-
set, the number of two types of interactions are roughly
equal, hence we set !i ¼ 0:5; 8i > jVj. The parameters
(n; k;!i) stay fixed in each run of the simulations.

To reduce the bias caused by the seed nodes, we run the
algorithms multiple times with different seeds and compute
the average AUC. In each round, we select 50 honest seeds
in all: 1 of them are chosen from the top 10 nodes with larg-
est degree, the rest are randomly chosen from remaining
honest nodes. And we also randomly select 10 sybil seeds.
We need to remark that above selected strategy follows pre-
vious works [7], [15], [16]. And in each run, all the methods
use the same selected seed set.

5.2 Impact of Friendship Attack EdgesNA

We consider the default setting as described in Section 5.1,
except that we vary the number of friendship attack edges
(NA). Fig. 5a shows the AUC for six algorithms asNA varies.
One can observe that Sybil_SAN has the highest AUC.
Namely, it has the highest accuracy. As we increase NA, the
AUC of Sybil_SAN drops slightly, while the AUC for other
algorithms drop drastically. Namely, our Sybil_SAN is
muchmore robust against friendship attack edges than other
algorithms. It is interesting to observe that when the number
of friendship attack edges is around 3& 106 (300 attack edge
per node), the AUC of our Sybil_SAN algorithm is still above
0.8 (i.e., a high accuracy), while the AUC for SWalk, SSCAR,
SR-U, SR-W are below 0.4 (i.e., a low accuracy). The accuracy
of Inter algorithm is roughly stable under different NA

around 0.7, because Inter mistakes those users, who are not
active in interacting with others as sybils. The low accuracy
of SR-W and Inter also shows that naively incorporating the
activities into state-of-the-art algorithm does not work.

Summary of Observations.Sybil_SAN has the highest accu-
racy, and is robust against a large number of friendship
attack edges.

5.3 Impact of Incoming Interaction Attack a
We consider the default setting described in Section 5.1,
except that we vary the a from 10)6 to 10)3. Recall that
authors in [22] found that a ( 4:2& 10)5 in real-world
OSNs, thus above range can show the robustness of

Fig. 4. An illustrative example of Twitter.

2. https://github.com/binghuiwang/sybildetection/

1220 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:52:10 UTC from IEEE Xplore.  Restrictions apply. 



Sybil_SAN in amore general scenario. Remark that a larger a
means that a larger number of incoming interaction attack
edges exist. Fig. 5b shows as a increases, Sybil_SAN always
outperforms the other algorithms and its AUC drops slightly
as a increase. This shows that Sybil_SAN is also highly
robust against incoming interaction attacks. The accuracy of
Inter and SR-W drops since more trust will be propagated to
sybils as a increase. The AUC for the SR-U and SScar algo-
rithm is flat, because the a does not influence the underlying
friendship graph. SWalk is not sensitive to a, but its accuracy
is much lower than Sybil_SAN. This again shows that: (1)
Naively incorporating users’ activities doesn’t work (SR-W,
Inter); (2) Friendship based detection algorithms are quite
limited (SScar, SWalk); (3) Sybil_SANworks well to combine
the users’ friendships and their activities.

Summary of Observations. Sybil_SAN has the highest accu-
racy, and is robust against incoming interaction attacks.

5.4 Impact of Number of Sybils Ns

Similar as above, we vary the number of sybils under
default settings. One can have two main observations from
Fig. 5c: (1) Sybil_SAN has the highest AUC, i.e., it outper-
forms the other methods; (2) As NS increase, the AUC of
each algorithm increases, because the number of friendship
attack edges is fixed, and the friendship attack edges
become sparse as the number of sybils increases.

Summary of Observations.Under different number of sybils,
our Sybil_SAN algorithm always has the highest accuracy.

5.5 Impact of Outgoing Interaction Attack b
We vary the value of b to see the impacts of outgoing interac-
tion attack. Note that larger b suggests that sybils initiate

more interactions to honest users. From Fig. 5d, one can
observe that Sybil_SAN has the highest AUC, i.e., it outper-
forms other algorithms under different b. Furthermore, the
AUC for Sybil_SAN, SR-W and Inter increase in b. This is a
good property, which can prevent some sybils from sending
too many spam messages to honest users for advertising. On
the opposite, SWalkmay fail to detect such advertising sybils.

Summary of Observations. Sybil_SAN significantly outper-
forms the other algorithms under different number of out-
going interaction attacks. Meanwhile, the more spam
messages sybils send to honest users, the more easily sybils
will be detected.

5.6 Impact of Structure of Sybil Region
Fig. 5e shows that the AUC decreases in M. In other words,
it would be more difficult to detect sybils out, if the sybil
region is split into a larger number of disconnected clusters.
Note that Sybil_SAN still outperforms other algorithms.

5.7 Impact of Interactions Among Sybils
We also investigate the effect of number of interactions
among sybils (w). From Fig. 5f, we can see that all algo-
rithms stay stable under different w except SWalk. This is
because sybils in a denser sybil region will get to the extra
sybil node more quickly, thus will be more easily to be
detected out. Meanwhile, we can observe that Sybil_SAN
still outperforms other algorithms.

6 EXPERIMENTS ON REAL DATASET

In this section, we conduct experiments on a real-world
dataset (from Twitter) and show that our Sybil_SAN

Fig. 5. Experiments on synthetic datasets.
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algorithm improves the accuracy of the state-of-art algo-
rithms by at least 17.7%.

6.1 Experimental Setting
Datasets.We have 991 public fake accounts [27] in Twitter.
Based on these 991 fake accounts we extracted a friendship
graph and an activity graph from Twitter in three steps:

# First, starting from 991 public fake accounts [27], we
performed a 2-level BFS (Breadth First Search) to
crawl all the followers of above 991 fake accounts as
well as the followers of the crawled followers. We do
the 2-level BFS, because crawling friendships in
Twitter is quite limited (15 requests/per 15 minutes).
Through this we obtain a network centered around
these 991 sybils.

# Second, we used a public Twitter network dataset
[28] to enlarge the above network. We discarded the
crawled users who are not in the Twitter network
dataset in [28], leaving 6644 crawled users. We
extracted all the friendships of these 6644 crawled
users from the Twitter network dataset [28]. By com-
bining the three sources of nodes (991 known sybils,
6644 our crawled users and their friends in Twitter
network [28]) together, we obtain all the user nodes.
We removed those nodes with degree <3, since their
friendship structure may not be well captured by
this subnetwork.

# Wedeveloped a crawler to visit the profile of each user
except these known sybils using Twitter API, and
extract the status (i.e., active, suspended, deleted) of
each user. And we took suspended users as sybils,
active users as honest users, and removed deleted
users. Then we transformed this network to be an
undirected one via keeping an edge between two
nodes only if they follow each other, and extracted the
largest connected component. Finally, we extracted
the activities of all the users in network. For each user,
we extract the recent 3,000 activities.

In summary, we get a network of 450,242 users and
222,944,310 links, which contains 409,694 honest users,
40,548 sybils and 17,581,069 attack edges. And totally there
are 102,693,769 activities among user, which contains
714,392 incoming interaction attacks.

Seed Selection. Since the trust flows from seeds to others,
thus it can contribute to more accurate sybil detection to
select seeds from nodes that can reach many users. for
example, of the three honest nodes in Fig. 4b, v3 is the best
candidate to be taken as a seed. We adopted a previous
seed selection method, which has been used in [22], [29].
Formally, we first process our dataset to obtain strong
friendship graph following the method described in Sec-
tion 5.1 Then, we assign each node 1

jV j bit credits, then apply
the following credit diffusion process on the strong friend-
ship graph:

ctþ1
i ¼

X

vi!vj

ctj
indegðjÞ ; (2)

where cti denote the credit of node vi at tth iteration, and
indegðjÞ denotes the in-degree of node vj, i.e., the number of

nodes that point to vj. We perform this iteration until it con-
verges. Nodes with more outlinks will get higher credits. In
other words, the credit of each user naturally reflects his
ability to reach other users. Then starting from the user with
highest credits, we inspect user one by one, until we obtain
50 verified honest users. These verified honest users are
taken as seeds.

For sybil seeds, we randomly select 10 sybil nodes from
the public 991 sybils as sybil seeds.

Parameter Settings of Our Sybil-SAN Algorithm. For n; k; g,
and !i; 8i . jVj, we use the same settings as in synthetic
datasets. In real dataset, 70,074,436 of 102,693,769 (around
70%) interactions are links in Em, i.e., mentioning activities,
thus we set !i ¼ 0:3; 8i > jVj. Note that in setting the above
parameters, we do not need any a-priori knowledge on
sybils.

6.2 Results and Implications
We run six algorithms described in Section 5 on our real
dataset. Table 1 presents the AUC for each algorithm. One
can observe that the AUC of our Sybil_SAN algorithm is the
highest, i.e., around 0.73. The AUC of the SR-W, SR-U, SScar
and SWalk algorithm are lower or around 0.5, i.e., low accu-
racy in practice. The Inter algorithm has a higher accuracy
compared to the other four algorithms, and our Sybil_SAN
improves the AUC over the Inter by 17:7%. These results
again suggest that in practice, detecting sybils solely based
on the friendship only can have a very low accuracy, and
naively incorporating users’ activities does not work well.
One remark is that the groundtruth labels of real dataset
have some noises. We took those users that are still active in
Twitter as honest users, however, there exist some sybils
who haven’t been suspended and are still active. This may
be the possible reason that the detection accuracy in real
dataset is not as good as the one in synthetic datasets.

Summary of Observations. Our Sybil_SAN has a high accu-
racy in the real world dataset, and improves the AUC over
the state-of-art algorithms by at least 17:7%.

7 EXTENSIONS

To understand potential limitations of the Sybil_SAN algo-
rithm, we evaluate it on a carefully designed small social-
activity network. Two potential limitations of the Sybil_-
SAN algorithm are revealed, and we give fundamental
understandings on these limitations. Finally, we present
two extensions of the Sybil_SAN algorithm and use numeri-
cal results to show that they can relieve the limitation of the
Sybil_SAN algorithm significantly.

7.1 Limitations of Sybil_SAN
To gain fundamental understandings on the limitations of
the Sybil_SAN algorithm, we evaluate the AUC of Sybil_-
SAN over the simple social-activity graph shown in Fig. 2b.

TABLE 1
AUC on Real Datasets

SR-W SR-U Inter SScar SWalk Sybil_SAN

AUC 0.48 0.52 0.62 0.15 0.44 0.73
improved ratio 52.08% 40.38% 17.74% 386% 66% –
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Unless we vary them explicitly, the parameters of Sybil_-
SAN is the same as that in Section 5. Fig. 6a shows the
impact of k (recall that the number of random walks on
user-activity graph is 2kþ 1) on the AUC of Sybil_SAN.
One can observe that as k increases from 0 to 2, the AUC of
Sybil_SAN decreases significantly, and then the AUC
becomes flat when k increases from 2 to 5. It is important to
note that when k is larger than or equal to 2, the AUC is
recall 0.33. Recall that larger AUC implies a higher accuracy
of detecting the sybil and randomly sorting all the nodes
can achieve an AUC of 0.5. Namely, the accuracy of Sybil_-
SAN drops significantly when allowing more walks on the
user-activity graph and the accuracy can be even lower than
randomly sorting the nodes. It reveals one limitation of the
Sybil_SAN that its accuracy is sensitive to the number of
walks on the user-activity graph, making it difficult to tune
the parameter k and utilize the user-activity graph. One
interesting question is: is it possible to utilize the walks on the
activity-following graph to relieve this limitation? To answer
this question, Fig. 6b shows the impact of n (recall that the
number of walks on the activity-following graph is n) on
the AUC of Sybil_SAN. We consider the case of k ¼ 5,
where the AUC of Sybil_SAN is quite low, i.e., 0.33. From
Fig. 6b one can observe that as n increases from 1 to 10, the
AUC of Sybil_SAN is flat. Namely, when the accuracy of
Sybil_SAN is low, tuning the number of walks n on the
activity-following graph may not increase the accuracy of
Sybil_SAN.

To gain insights on the above limitations of Sybil_SAN, we
present part of the random walk transition probability over
the user-activity graph in Fig. 7. From Fig. 7, one can observe
that node v2 does not create any activity. When the walker
over the user-activity graph jumps to node v2, it will stay at
node v2 permanently. Furthermore, increasing the number of
walks (i.e., k) on the user-activity graph would increase the
chance that the walker over the user-activity graph moves to
node v2. Namely, a large amount of trust score from v1 and v3

will be propagated to node v2. Note from Fig. 2b that v2 has
connections to sybil node v4 and v5. Thus, eventually a large
amount of trust score will be propagated to v4 and v5 through
v2, leading to low accuracy of Sybil_SAN. Furthermore, Fig. 7
shows that the trust score does not propagates from the activ-
ity of sybil nodes to honest nodes, as once the walker over the
user-activity graph starts from the sybil region (i.e., sybil
nodes and activities of sybil nodes), it is impossible for it to
move to the honest region (i.e., honest nodes and activities of
honest nodes). We next propose extensions of Sybil_SAN to
overcome the above limitations.

7.2 Extensions to Overcome the Limitation
To overcome the above limitations of Sybil_SAN, we pro-
pose two natural extensions of Sybil_SAN, resulting in Syb-
il_SAN_VUA and Sybil_SAN_VAU respectively.

Sybil_SAN_VUA. Sybil_SAN with virtual user to activity
edge. Recall that the walker over the user-activity graph
gets trapped by node v2, due to that node v2 does not create
any activity. To relieve the limitation that v2 traps the
walker, we add some virtual edges between the nodes that
do not create any activities to the activities created by
trusted seeds. More precisely, for each node that does not
create any activity, we add an undirected edges between it
and the activities created by trusted seeds. Fig. 8 shows an
example of adding such virtual edges. After adding such
virtual edges, when the walker over the user-activity graph
moves to node v2, it will not gets trapped by node v2 as Syb-
il_SAN, but instead it will moves to a2. Through this trust
scores will be propagated to trusted activities.

Based on the above idea of adding virtual edges, Algo-
rithm 4 outlines an extension of Sybil_SAN to relieve the
limitation of Sybil_SAN. Formally, Algorithm 4 first adds
virtual edges as above. The added virtual edges expands
the edge set C, which indicates the creation relationship
among users and activities. Then, it runs Sybil_SAN on this
extended graph to compute the trust score for each node.

Algorithm 4. Sybil_SAN_VUA ( Sybil_SAN With Vir-
tual User to Activity Edge )

1 Input: G; eG
2 for v 2 V do
3 if fajðv; aÞ 2 Cg ¼ ;do
4 for a 2 fajðs; aÞ 2 C; s 2 Sg then
5 C  C [ fðv; aÞg
6 Update graph: eG  ðV;A; C;M;F Þ
7 Run Sybil_SAN, i.e., Algorithm 3, on G and eG to compute

trust score vector q;

Fig. 6. Evaluating the AUC of Sybil_SAN on Fig. 2b.

Fig. 7. The limitation of the SAN algorithm.

Fig. 8. Illustrating virtual user to activity edges.
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Sybil_SAN_VAU. Sybil_SAN with virtual activity to user
edge. Recall that as shown in Fig. 7, one potential limitation
of Sybil_SAN is that the trust score may not propagate from
the activity of sybil nodes to honest nodes. To relieve this
limitation, we add virtual edges from activities that do not
mention any user node to trusted seed user nodes. Fig. 9
shows an example of adding such virtual edges. Through
this the trust score will propagate from the activities of sybil
nodes to trusted seeds.

Based on the above idea of adding virtual edges, Algo-
rithm 5 outlines an extension of Sybil_SAN to relieve the
limitation of Sybil_SAN. Formally, Algorithm 5 first adds
virtual edges as above. The added virtual edges expands
the edge setM, which indicates the mentioning relationship
among users and activities. Then it runs Sybil_SAN on this
extended graph to compute the trust score for each node.

Algorithm 5. Sybil_SAN_VAU ( Sybil_SAN With Vir-
tual Activity to User Edge )

1 Input: G; eG
2 for a 2 A do
3 if fvjða; vÞ 2Mg ¼ ;then
4 for s 2 S do
5 M M[ fða; vÞg
6 Update graph: eG  ðV;A; C;M;F Þ
7 Run Sybil_SAN, i.e., Algorithm 3, on G and eG to compute q;

7.3 Evaluation
To reveal fundamental understandings on the limitations of
the Sybil_SAN algorithm as well as when and how our Syb-
il_SAN_VUA and Sybil_SAN_VAU are effective in mitigate
these limitations, we conduct experiments on carefully syn-
thesized data. It is difficult to reveal such fundamental
understandings on a real-world data. The reason is that we
need to test these algorithms on all possible cases systemati-
cally, but it is really difficult for one to collect real-world
data covering all these cases. In particular, we first evaluate
Sybil_SAN_VUA and Sybil_SAN_VAU on a small graph,
i.e., Fig. 2b, where we obtain explainable experiment results.
Then we evaluate them on a larger graph, showing that
findings on the small graph can be generalized to large
graphs.

Evaluation on a Small Graph. Fig. 10 shows the AUC of
both Sybil_SAN_VUA and Sybil_SAN_VAU over the
social-activity graph presented in Fig. 2b. From Fig. 10a, one
can observe that as k increases from 0 to 5, the AUC curve
of Sybil_SAN_VUA is flat. Furthermore, the AUC is 1.
Recall that the maximum possible value of AUC is 1.
Namely, Sybil_SAN_VUA has a higher accuracy and it is

stable against k. Fig. 10b shows that the AUC of Sybil_-
SAN_VAU decreases as k increases from 0 to 5. Compared
to Fig. 6a, one can observe that the AUC of Sybil_SAN_VAU
is significantly higher than that of Sybil_SAN, implying the
efficiency of Sybil_SAN_VAU.

Evaluation on Large Graphs.We first generate one hundred
copies of Fig. 2b and put these copies in a line. Then, for
each adjacent two copies, we add an edge between their
sybil nodes, i.e., v4 of each copy, and add an edge between
their seed nodes, i.e., node v3 of each copy. A copy is called
extended copy, if one activity node is added, which is cre-
ated by node v2 and mentions node v3 of the corresponding
copy. This extension of graph is motivated by that one limi-
tation of Sybil_SAN is caused by that v2 node does not cre-
ate any activities. We will vary the fraction of such
extended copy from 0% to 100% to study their impact on
the AUC of Sybil_SAN. Through the study, we aim to
answer the following two questions:

To reveal fundamental understandings on the limitations
of the Sybil_SAN algorithm, Fig. 11 shows the AUC of Syb-
il_SAN under different fraction of extended copies. Fig. 11a
shows that when the fraction of extended copies is 0%, i.e.,
there are no extended copies, the AUC of Sybil_SAN
decreases sharply when k increases. Furthermore, the AUC
of Sybil_SAN is around 0.3, i.e., a very small AUC, when k
exceeds 3. In other words, Sybil_SAN has a limitation and
sensitive to the parameter k when the fraction of extended
copies is 0%. When the fraction of extended copies is 100%,
i.e., all copies are extended, the AUC of Sybil_SAN is almost
fixed at around 1 when k increases from 0 to 5. In other
words, Sybil_SAN works well and robust against the
parameter k when the fraction of extended copies is 100%.
When the fraction extended copies increases from 0% to
100%, the AUC curve of Sybil_SAN moves from bottom to
top. In other words, Sybil_SAN gets more robust to the

Fig. 9. Illustrating virtual activity to user edges.
Fig. 10. Evaluating the AUC of Sybil_SAN_VUA and Sybil_SAN_VAU on
Fig. 2b with n ¼ 1.

Fig. 11. Impact of the fraction of extended copies on the AUC of
Sybil_SAN.
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parameter k becomes less limited in detecting sybils when
the fraction extended copies increases from 0% to 100%.
Fig. 11b shows that when the faction of extended copies is
0%, the AUC of Sybil_SAN is nearly the same as n increases
from 1 to 10. This statement also holds when the faction of
extended copies is 50% or 100%. This results shows that the
findings in Fig. 11a is reliable.

To reveal fundamental understandings on when and
how our Sybil_SAN_VUA and Sybil_SAN_VAU are effec-
tive in mitigate the limitations of Sybil_SAN, Fig. 12 shows
the AUC of Sybil_SAN_VUA and Sybil_SAN_VAU under
different fraction of extended copies. Fig. 12a shows that
when the fraction of extended copies is 0%, the AUC curve
of Sybil_SAN_VUA lie in the top while that of Sybil_SAN
lies in the bottom. The AUC curve of Sybil_SAN_VAU lies
between that of Sybil_SAN and Sybil_SAN_VUA. Further-
more, the AUCs of both Sybil_SAN_VUA and Sybil_SAN_-
VUA are significantly larger than that of Sybil_SAN. This
shows that Sybil_SAN_VUA and Sybil_SAN_VUA are high
effective in address the limitation of Sybil_SAN. When the
fraction of extended copies increases from 0% to 100%, the
AUC improvements by both Sybil_SAN_VUA and Sybil_-
SAN_VUA decreases. This implies that Sybil_SAN_VUA
and Sybil_SAN_VUA are effective in improve the AUC of
Sybil_SAN when the faction of extended copies is small.

7.4 Summary
Two extensions of Sybil_SAN are proposed to relieve the
limitations of Sybil_SAN algorithm. We also show the effi-
ciency of each extension in terms of improving the accuracy
of sybil detection. One may also combine these two exten-
sions to achieve further improvement.

8 RELATED WORK

Feature-based sybil detection uses machine learning techni-
ques to classify users into sybils and honest users according to
the features extracted from user-level activities and account
details (e.g., profiles, user logs). And this line of works are
divided into two branches: unsupervised detection and

supervised detection. Unsupervised detection usually clusters
sybils according to different features, such as loosely synchro-
nized actions [30], activity patterns [31], users’ profiles and
tweets [32], click-streams[33], etc. Supervised detection usually
uses features of labeled users (e.g., users’ profiles, fraction of
accepted requests, etc.) to train classifiers to identify sybils [17],
[34]. However, sybils can easily evade the detection by
adversely changing their behavior accordingly, since classifiers
depend on features of known sybils to identify unknown one.
Xia et al. [35] utilized the patterns friendship requests, which is
mined from a dataset with over one million labeled data from
WLink, to detectmalicious accounts viamachine learning.

Compared to feature-based detection, graph-based detec-
tion is more general to detect sybils with various behaviors.
Usually, an OSN is modelled as a graph, with nodes repre-
senting users and edges representing users’ friendships.
Given the assumption that sybils can only befriend with a
small number of honest users (i.e, establish few attack
edges), the graph is partitioned into honest region and sybil
region, with a narrow passage between two regions. A large
number of methods leveraged the narrow passage between
two regions to detect sybils, for example, [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], just to name a few. However,
recent works [17], [18], [19] found that sybils are able to
befriend with a large number of honest users in real OSNs,
which makes sybils in real OSNs easily evade the typical
graph-based detection [20], [21]. Our work in this paper is to
explore activities among users to handle the sybil detection
in real OSNswith a large number of attack edges.

Some recent works also dealt with a large number of
attack edges from other aspects. Gao et al. [36] proposed Syb-
ilfuse, which contains a local phase and global phase. In the
local phase, Sybilfuse compute local trust scores for nodes
and edges via training local classifiers. In the global phase,
Sybilfuse uses via weighted random walk and loopy belief
propagation to propagate local trust scores over the global
network. Algorithms in [37], [38] enhanced sybil detection
by detecting victims, honest users who befriend with sybils.
Effendy et al. [21] pruned attack edges by exploiting the
structure of mutual friendship in OSNs. And Cao et al. [39]
and Xue et al. [40] used acceptance and rejection of friend
requests to enhance sybil detection. Yang et al. [41] utilized
interactions among users to detect sybils. More specifically,
they formulate a signed graph to model friend requests of
users, where a directed edge with weight )1 indicates that a
user rejects a request and weight 1 indicates that a users
accepts a request. Based on this interaction graph, they detect
sybils via graph embedding. Yuan et al [42] utilized registra-
tion patterns mined from a dataset fromWeChat (the largest
online social network in China) to detect sybil accounts.
Liang et al [43] identified the cluster pattern of fake accounts
in a dataset from WeChat, which is helpful for fake account
detection. However, above methods still have their own
drawbacks. For example, sybils can evade Integro by ran-
domly selecting victims, or degenerate the other two meth-
ods by sending friend requests to already established
victims to increase mutual friends or probability of requests
to be accepted. Different from these works, our work
explores activities among users to enhance sybil detection in
OSNs. And our work can work in line with above methods
for more accurate sybil detection.

Fig. 12. Impact of the fraction of extended copies on the AUC of Sybil_-
SAN_VUA and Sybil_SAN_VAU.
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9 CONCLUSION

In this paper, we present a practical sybil attack model and
design algorithms to detect sybils with performance guaran-
tees.We first develop a SAN to characterize users’ friendships
and historical activities. Our sybil attack model is based on
the SAN and it allows sybils to launch both friendship attacks
and activity attacks. We design Sybil_SAN to detect sybils via
coupling three random walk-based algorithms on the SAN,
and prove the convergence of Sybil_SAN.We develop an iter-
ative algorithm to calculate detection metric for Sybil_SAN
and apply “Markov chain mixing time” to derive the number
of rounds needed to guarantee the termination of iteration.
We also use “matrix perturbation theory” to bound the detec-
tion error when sybils launch more attacks. Extensive experi-
ments on both synthetic and real-world datasets show that
Sybil SAN can detect sybils accurately under practical scenar-
ios, where current state-of-art sybil defenses have a low accu-
racy. Experimental results further verify that our Sybil_SAN
is highly robust against sybils’ attacks.
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