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Enhancing Reputation via Price Discounts in E-Commerce
Systems: A Data-Driven Approach
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Reputation systems have become an indispensable component of modern E-commerce systems, as they help
buyers make informed decisions in choosing trustworthy sellers. To attract buyers and increase the transac-
tion volume, sellers need to earn reasonably high reputation scores. This process usually takes a substantial
amount of time. To accelerate this process, sellers can provide price discounts to attract users, but the under-
lying difficulty is that sellers have no prior knowledge on buyers’ preferences over price discounts. In this
article, we develop an online algorithm to infer the optimal discount rate from data. We first formulate an
optimization framework to select the optimal discount rate given buyers’ discount preferences, which is a
tradeoff between the short-term profit and the ramp-up time (for reputation). We then derive the closed-form
optimal discount rate, which gives us key insights in applying a stochastic bandits framework to infer the
optimal discount rate from the transaction data with regret upper bounds. We show that the computational
complexity of evaluating the performance metrics is infeasibly high, and therefore, we develop efficient ran-
domized algorithms with guaranteed performance to approximate them. Finally, we conduct experiments on
a dataset crawled from eBay. Experimental results show that our framework can trade 60% of the short-term
profit for reducing the ramp-up time by 40%. This reduction in the ramp-up time can increase the long-term
profit of a seller by at least 20%.
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1 INTRODUCTION
E-commerce services are integral parts of our modern society. In general, E-commerce systems
serve as online shopping markets, where buyers can purchase products from online stores, each
of which is operated by a seller. Large scale E-commerce systems include Alibaba [1], Amazon [2],
eBay [8], and Taobao [26], which have generated tremendous economic values for the society.
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According to the latest Fortune 500 ranking in the total revenue, Amazon and eBay were ranked
29th and 172nd, respectively [10], and the sales of Alibaba for 2014 were estimated at $420
billion [20].

Reputation system has become an indispensable component of modern E-commerce systems, as
it helps buyers make informed decisions in choosing trustworthy sellers [23]. It is critical for buyers
to know whether a seller is trustworthy or not because it is quite common for buyers to purchase
products from sellers whom they have never transacted with before in an E-commerce system [23].
In fact, reputation systems are needed not only to reflect the trustworthiness of sellers, but also to
incentivize sellers to be honest [8, 26]. Consequently, the reputation system differentiates sellers
in a way that a reputable seller attracts more buyers while a poor-reputation seller discourages
buyers [23].

One inefficiency of real-world reputation systems is that new sellers may need to spend a sub-
stantial amount of time to attain a trustworthy reputation [27], and we call this the “ramp-up time.”
More concretely, it was found in [27] that sellers in eBay need to spend around 800 days (on av-
erage) to get ramped up. One major reason for this inefficiency is that new sellers are initialized
with a low reputation score, i.e., zero, and buyers are usually not willing to purchase products from
sellers with low reputation scores. This forms a negative loop, and as a consequence, it is difficult
for new sellers to increase their reputation scores.

Reducing the ramp-up time is highly desirable for sellers in real-world E-commerce systems.
For example, more than 11,000 sellers in Taobao were found to increase their reputation scores
via illegitimate methods, i.e., fake transactions [32]. Another evidence is the emergence of profes-
sional fake-transaction services, such as Lantian, Shuake, Kusha, and so on [32]. These companies
create a large volume of fake transactions, e.g., the number of fake transactions created one of
such companies is estimated to be 6,700,000 [32]. Since fake transactions may cause a reputation
system losing the functionality of maintaining the trustworthy of sellers, they are prohibited in
E-commerce systems. It is also highly risky for sellers to misbehave via creating fake transactions
because once detected the seller will be heavily penalized.

In this work, we propose a legitimate way for sellers to accelerate the reputation accumulating
process through price discounts. The idea is that by providing price discounts, a new seller can
attract more buyers even when this seller has a low reputation score. The challenge is to determine
the appropriate price discount. The larger the discounts, the more buyers a new seller can attract.
However, it also reduces his profits, which is critical for a new seller to survive in a competitive
E-commerce market. Therefore, the first challenge we need to address is quantifying the tradeoffs
in selecting the appropriate price discount. Furthermore, sellers usually have no prior knowledge
on buyers’ preferences over price discounts, i.e., for some buyers, a small discount is sufficient to
attract them to purchase a product, while other buyers may need to have a higher price discount
to lure them for a transaction. The second challenge we want to address is learning (or inferring)
the buyers’ preferences from the transaction data and set the appropriate price discount in an online
manner. Our contributions are

—We formulate an optimization framework to select the optimal discount rate given buyers’
discount preferences, which trades the short-term profit against the ramp-up time (for rep-
utation). We also derive the closed-form optimal discount rate. Through this we gain key
insights to infer the optimal discount rate from data when sellers have no prior knowledge
on buyers’ discount preferences.

—Based on these insights, we first extract the features from a seller’s historical transaction
data and then we apply a stochastic bandits framework to design an online discount algo-
rithm, which infers the optimal discount rate with regret upper bounds.
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—We show that the computational complexity of evaluating the performance metrics (e.g.,
ramp-up time, regret upper bounds) is infeasibly high. We develop efficient randomized
algorithms to approximate them and use the Chebyshev and the Hoeffding inequality to
provide the guaranteed performance.

—We conduct extensive experiments on an eBay’s dataset to evaluate the efficiency and ef-
fectiveness of our online discount algorithm. Experimental results show that our algorihtm
can trade 60% of the short-term profit for reducing the ramp-up time by 40%. This reduction
in ramp-up time increases sellers’ long-term profits by at least 20%.

This article organizes as follows. Section 2 presents the system model. Section 3 presents the
design objective. Section 4 presents the baseline online discount algorithm. Section 5 extends it
to allow multiple reputation levels. Section 6 extends it to capture human factors like biases in
assigning ratings. Section 7 presents the experimental results on a dataset from eBay. Section 8
presents related work, and we conclude in Section 9.

2 SYSTEM MODEL
A typical E-commerce system is composed of five elements: sellers, buyers, products, online stores,
and a reputation system. Sellers post products in their online stores. The price of a product is
denoted by p ∈R+. In this article, we assume that the standard price p is known to all sellers.
Each product is associated with a cost (i.e., manufacturing cost, transaction fee charged by the
e-commerce operator) of c ∈R+. A buyer pays the seller p to purchase a product and then the seller
ships the product to the buyer. Let u ! p − c be the profit to a seller by selling one product. Sellers
can advertise their products (i.e., claiming that their products are of high quality) in their online
stores. In fact, many such E-commerce systems like eBay [8] or Taobao [26] provide this advertise-
ment feature. Not all sellers are honest in their advertisements. Thus, E-commerce systems need to
have some mechanisms to reflect the reputation of sellers. Table 1 summarizes the key notations.

2.1 Reputation System Model
We consider an eBay-like reputation system, which is composed of a “feedback rating system” and
a “rating aggregation policy.” After receiving a product, a buyer assigns a rating to indicate the
quality of the transaction, i.e., the product quality and the shopping experience. To be consistent
with the eBay-like reputation system [8], we consider a three-level feedback rating system, i.e.,
{1 (positive), 0 (neutral),−1 (negative)}. A positive rating indicates that a buyer is satisfied with the
transaction, while a negative rating indicates that a buyer is unsatisfied with the transaction. For
the ease of presentation, we first focus on that buyers are unbiased and provide accurate ratings.
In Section 6, we capture personal biases in assigning ratings.

A rating aggregation policy is applied to quantify sellers’ trustworthiness from their past feed-
back ratings. Formally, a seller’s reputation is quantified by the total sum of all his feedback ratings.
Let r ∈Z denote the reputation score of a seller. A new seller who joins an E-commerce system is
initialized with r =0. The reputation score r will be increased (or decreased) by one if a seller earns
a positive (or negative) feedback rating, and will remain unchanged if he earns a neutral feedback
rating. We use a continuous time system to characterize the reputation update dynamics. Let r (t )
denote a seller’s reputation score at time t ∈ [0,∞). When a seller joins an E-commerce system (at
time t = 0), his reputation profile is initialized as r (0) = 0. The reputation score is updated in a
real-time manner, i.e., update the reputation score once a feedback rating is assigned.

E-commerce systems usually classify sellers into different types based on their reputation scores.
For example in eBay, sellers are classified into thirteen types [9], i.e., no star (r ≤ 9), one star
(r ∈ [10, 49]), two stars (r ∈ [50, 99]), . . . , twelve stars (r ≥ 1,000,000). The star ratings are public
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Table 1. Main Notations

p, c,u The price, cost and unit profit of a product
r , s The reputation score and the number of stars of a seller
t The time horizon
S The reputation score map
S The maximum number of stars
ni The classification threshold
M The number of positive price discount levels
λs The buyers’ arrival rate
Pm The probability of buying a product under the level m discount
T (s ) The ramp-up time for attaining s stars
M A mechanism to set the price discount level

T (s,M) The ramp-up time under the mechanismM
R (s,M) The ramp-up time reduction
L (s,M) The short-term profit loss
z (s,M) The objective function of the optimal mechanism design problem

α The factor to balance the ramp-up time and shot-term profit
dm The price discount rate corresponds to the level m discount

D∗,D∗of The optimal price discount level set and optimal fixed discount level set
m∗,m∗of An optimal discount level and an optimal fixed discount level
O (t ) The observed transaction data up to time t

ti ,wi , ri The arrival time, waiting time and reputation score
associated with the ith transaction

M∗, M̂ The optimal mechanism and online discount algorithm
R̂i The reward in the ith round for the multi-armed bandit interpretation
Nm The number of times that armm has been pulled

P+, P0, P− The probability of receiving a positive, neutral and negative rating
N (s ) The number of products sold in the ramp-up process
δ ,G∞ The discounting factor and long-term profits
ϵ, ξ The approximation error and fail probability of a randomized algorithm
K , I The number of simulation round and truncation threshold

Rerr ,Lerr The ramp-up time reduction error and the short-term profit loss gap

accessible by all buyers and sellers, and they serve as a first hand reputation indicator to buyers.
Formally, our model classifies sellers into S + 1 types, i.e., {0 star, 1 star, . . . , S stars}, where S ∈ N+.
Let

S : Z→ {0, 1, . . . , S }
denote a map, which prescribes a number of stars for each reputation score, i.e., S (r ) = 0, if r <
n1 and S (r ) = S if r ≥ nS . For i = 1, . . . , S − 1, S (r ) = i if ni ≤ r < ni+1. Here n1, . . . ,nS denote
classification thresholds, which satisfy n1< · · ·<nS . For example, for the eBay system we have S =
12, n1=10,n2=50, . . . ,n12=1,000,000.

2.2 Buyers’ Arrival Model
Reputation is crucial to a seller. On the one hand, buyers tend to trust sellers who have sufficiently
large number of stars. If the number of stars is small, buyers may not even click into the store
at all because buyers do not trust such sellers and do not care what this store is selling. One the
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other hand, a seller who has a large number of stars would be more likely to be ranked higher in
either product searching or recommendation. As a result, this store will be visible to more potential
buyers. To model the impact of reputation, we use a Poisson process to characterize the buyers’
arrival process. One can vary the arrival rate of the Poisson process to differentiate sellers in terms
of their reputation scores. More concretely, the larger the number of stars, the higher the arrival
rate. Via empirical analysis of a historical transition data of eBay, Xie et al. [28] found that the
arrival of sellers follows a Poisson process. Let λs denote the buyers’ arrival rate to a seller who
has s stars, where s ∈ {0, 1, . . . , S }. In general, λi ≤λj for all 0≤ i ≤ j ≤S . For example, for the eBay
system, we have S =12 and 13 types arrival rates: λ0, λ1, . . . , λ12.

A seller can set one of M + 1 potential price discount levels {0, 1, . . . ,M }, where M ∈N+. Here,
level 0 corresponds to that a seller does not provide any discounts. The higher the discount level,
the larger the discount rate on the price. For example, consider M = 2, then we have three dis-
count levels. One possible choice for the price discount rate can be level 0=0%, level 1=10%, and
level 2=20%. The price discount attracts buyers to purchase products, which in turn increase the
transactions’ arrival rate.

Definition 2.1. Let Pm ,m = 0, 1, . . . ,M , denote the probability that a buyer who clicks into an
online store eventually purchases a product if the seller sets a level m price discount.

We assume P0<P1< · · · <PM to model that the higher the price discount level, the higher the
probability that a buyer purchases a product. We refer to Pm as buyers’ preferences over discount
levels. One technical challenge is that sellers do not know buyers’ preferences over discount levels. In
other words, the values of Pm ,∀m = 0, 1, . . . ,M , are unknown to sellers. Note that the transactions’
arrival process is still a Poisson process (via the Poisson thinning argument) and the transactions’
arrival rate is λsPm when a seller has s stars and sets a levelm discount.

2.3 Ramp-Up Time
Reputation significantly influences buyers’ arrival rate to an online store. Therefore, it is vital for
new sellers to ramp up their reputation as quickly as possible. Recall that new sellers are initialized
with 0 star, with which it is quite difficult to attract buyers. Hence, one critical metric for sellers is
the minimum time to earn a high enough reputation score.

Definition 2.2. Let
T (s ) ! inf {t |S (r (t ))≥s}

denote the minimum time to earn a number of s ∈ {0, 1, . . . , S } stars. We call T (s ) the ramp-up
time to attain an s-star label.

Note that sellers can set a target on the number of stars to be earned. The value of s is determined
by sellers’ self-assessment and investment budgets. If a seller has a large budget and aims for a high
reputation score, he sets a large s . If a seller has a limited budget and aims for a medium reputation
score, he could choose a medium value of s .

Our objective is to reduce the ramp-up time (via the price discount) for new sellers in the prac-
tical scenario that sellers have no prior knowledge on buyers’ preferences over discount levels,
i.e., P0, P1, . . . , PM are unknown. We focus on that sellers are honest in advertising the product
quality. We achieve our objective in two steps: (1) formulate an optimization framework to select
the optimal discount level given full preferences (i.e., P0, P1, . . . , PM ); (2) when these preferences
are unknown, we develop online algorithms to infer the optimal discount level based on sellers’
historical transaction data.
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3 DESIGN OBJECTIVE
We define two metrics, namely the ramp-up time reduction and short-term profit loss, to quantify
the tradeoffs in selecting discount levels given full preferences (i.e., P0, P1, . . . , PM ). We formulate
an optimization framework to select the optimal discount level subject to different tradeoffs.

3.1 Metrics
Our objective is to reduce the ramp-up time by providing price discounts in the ramp-up process.
We refer to the ramp-up process as the process that a new seller earns s stars for the first time. For
the simplicity of presentation, we define a mechanismM to represent one selection of discount
levels for each product sold in the ramp-up process.

Definition 3.1. Let M denote a mechanism, which prescribes a price discount level for each
product sold in the ramp-up process.
Thus, selecting the optimal discount levels in the ramp-up process corresponds to selecting the
optimal mechanismM. Before showing how to select the optimalM, let us define some metrics
to quantify the tradeoffs.

One benefit of the mechanismM is in reducing the ramp-up time, since setting a price discount
can attract more buyers. To quantify this benefit, we define a metric that we call the ramp-up time
reduction. When a seller sets no discounts at all, the expected ramp-up time is simply denoted as
E[T (s )].

Definition 3.2. Let T (s,M) denote the ramp-up time under the mechanismM. We define

R (s,M) ! E[T (s )] − E[T (s,M)]
E[T (s )]

as the ramp-up time reduction achieved by the mechanismM.
Notice that we consider a normalized ramp-up time reduction, i.e., R (s,M) ∈ [0, 1]. The larger

the reductionR (s,M), the shorter the ramp-up time. To illustrate, assume a seller aims for one star
s = 1, with a classifying threshold n1 = 3 and a unit profit u = 0.2p. Consider a simple mechanism
which sets the highest discount levelM (assume levelM = 20%) for each product. Suppose P0 = 0.1
and PM = 0.5. Then without price discounts the ramp-up time is E[T (1)] = n1

λ0P0
= 3

0.1λ0
. With the

mechanismM, the ramp-up time becomes E[T (1,M)] = n1
λ0PM

= 3
0.5λ0

. Hence, the ramp-up time
reduction is R (1,M) = 0.8. This is achieved at the price of losing an amount of 0.2p × 3 = 0.6p in
profits.

Notice that the mechanismM achieves the ramp-up time reduction at the “cost” of losing some
short-term profits. LetG (s ) andG (s,M) denote the short-term profits earned in the ramp-up pro-
cess when a seller sets no discounts at all and uses the discount mechanismM, respectively. This
short-term profits are critical to the survivability of a new seller. Sellers open online stores with
certain investment budgets, a small short-term profit may force the seller to drop out of the E-
commerce system, or they may get discouraged and change to another E-commerce system. We
define a metric called the short-term profit loss to quantify the “cost” of the mechanismM.

Definition 3.3. We define

L (s,M) ! E[G (s )] − E[G (s,M)]
E[G (s )]

as the short-term profit loss due to the mechanismM.
Again, here we consider a normalized profit loss. It quantities the amount of profits that a mech-
anism trades to quickly attain a desirable reputation (or reduce the ramp-up time). Consider the
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above example that illustrates the ramp-up time reduction. Note that the unit profit is u=0.2p.
Then the short-term profits without price discounts is E[G (1)]=n1u=0.6p. The short-term profits
with mechanismM is E[G (1,M)]=n1 (u − 0.2p)=0. Hence, L (1,M)=1. This means that a seller
does not earn profit in the ramp-up process withM.

3.2 Design Tradeoffs
Our objective is to design a mechanism M, which trades price discounts for reputation subject
to different tradeoffs between the ramp-up time reduction and the short-term profit loss. The opti-
mization formation is

Problem 3.1. Selecting the optimal discount level for each product in the ramp-up process, given
buyers’ discount preferences.

max
M

z (s,M) ! αR (s,M) − (1 − α )L (s,M)

s . t . M selects discount levels for products sold in the ramp-up process,
Given P0, P1, . . . , PM ,

(1)

where α ∈ [0, 1] denotes a balance factor, which can be controlled by a seller. The value of α reflects
the aggressiveness of a seller in reducing the ramp-up time. For example, α =1 implies that a seller
is extremely aggressive in reducing the ramp-up time. This case occurs when a seller has a large
investment budget and he does not care about the short-term profit loss. While α =0 implies that
a seller is very keen about the short-term profits. This occurs when a seller has a small investment
budget and wants to accumulate profits as soon as possible so that his online store can survive.

We next solve problem 3.1 to obtain the closed-form optimal discount level given buyers’ dis-
count preferences. The optimal discount level gives us key insights in developing online discount
algorithms to infer them from sellers’ transaction data when buyers’ discount preferences are
unknown to sellers. There are several challenges in designing and analyzing online discount al-
gorithms. Thus, in the following of this article, we start from a simplest case. Then, we generalize
our results step by step, and in each step we show how new challenges arise and how we address
them.

4 RAMPING UP ONE STAR
Let us start with a simple case that sellers aim to ramp up one star. We will extent the results to
ramp up multiple stars in next section. We first derive the closed-form optimal discount level given
buyers’ preferences over discounts, i.e., P0, P1, . . . , PM . The optimal discount level gives us insights
to extract key features of the transaction data and apply a stochastic bandit framework to infer the
optimal discount level online with regret upper bounds when these preferences are unknown.

4.1 Optimal Mechanism With Full Information
We consider the full information scenario, i.e., P0, P1, . . . , PM are known to a seller. Our objective
is to derive the closed-form optimal discount level. Throughout this section, we focus on that sell-
ers aim to ramp up one star s = 1, i.e., they aim to improve their reputation from 0 star to one star.
This case simplifies the problem in that buyers’ arrival rate to a seller who has zero star (i.e., before
gets ramped up) are homogeneous, which is equal to λ0. Note that sellers are honest and each prod-
uct earns one positive rating (In Section 6, we address errors in assigning ratings.). Hence, a seller
needs to collect n1 ratings to get ramped up. Let dm ∈ [0, 1] denote the price discount rate (in terms
of percentage) corresponds to levelm discount. A tight upper bound for z (1,M) can be derived as

z (1,M) ≤ max
m
{α + Z (m)} . (2)
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where Z (m) denotes

Z (m) = −α 1
λ0Pm

1
E[T (1)] − (1 − α )

pdm

E[G (1)] , (3)

E[T (1)] = n1
λ0P0
, E[G (1)] = n1u . (4)

Inequality (2) is obtained by the linearity of expectation and that the arrival rate of buyers to the
seller in the ramp-up process is homogeneous, i.e., equals λ0. More concretely, these two properties
imply that the maximum value of the objective function can be attained by setting the same dis-
count level for each product. The right side of Inequality (2) enumerates all the possible discount
levels to locate the maximum objective function value. Observe that 1/(λ0Pm ) and dmp correspond
to the expected waiting time and profit loss of a transaction with a level m price discount. This
means that if we focus on one product, the optimal discount level aims to attain a balance
between the waiting time and profit loss. The optimal discount set is the same for each product
(or invariant of the reputation score). We can then express the closed-form optimal discount level.

Lemma 4.1. Let D∗ denote a set of optimal discount levels. We derive it as

D∗ ! arg max
m

Z (m). (5)

There can be multiple optimal discount levels, namely |D∗ | > 1. An optimal mechanism selects
one of the optimal discount levels for a transaction. Let m∗ ∈ D∗ be an optimal discount instance
and letM∗ denote an optimal mechanism. We outlineM∗ in Algorithm 1.

ALGORITHM 1: Optimal MechanismM∗ for Ramping Up One Star
1: for i = 1 to n1 do
2: Compute one optimal discount levels, i.e., m∗ ∈ D∗
3: Set level m∗ discount for the ith transaction
4: end for

So far, we have assumed the full information scenario. However, the values of P0, P1, . . . , PM are
unknown in fact, which means that the optimal discount setD∗ cannot be determined in advance.
We next design an online discount algorithm to infer the optimal discount level (instances of D∗)
from historical transaction data. This involves two steps: (1) extracting features of the transaction
data; (2) designing online algorithms based on these features.

4.2 Extracting Features of the Transaction Data
We present a model to extract features of the transaction data and specify the appropriate time to
update the price discount.

The data model. Since a seller has access to his own historical transaction data, he can use these
data to infer buyers’ preferences to discounts and estimate the optimal discount level. Each transac-
tion item corresponds to one product. More precisely, the ith transaction item carries the following
meta-information: (1) the waiting time (or interarrival time) denoted by wi , (2) the price discount
level denoted by mi , and (3) the reputation score of the seller who conducts the transaction de-
noted by ri . Then, wi =ti − ti−1, where ti ∈ [0,∞) denotes the arrival time of the ith transaction
and t0=0. For example, consider that a new seller does not set any price discounts at all and sells
two products at time t1=1 and t2=3.5, respectively. Then, for the first transaction item we have
w1=1,m1=0, r1=0, and for the second transaction item we have w2=2.5,m2=0, r2=1.
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A seller at time t can only observe the the data of all transactions up to time t only. Let Ñ (t )
be the cumulative number of products that a seller has sold up to time t . We formulate a seller’s
observed transaction data as follows.

Definition 4.2. Let
O (t ) ! {(ti ,mi , ri ) |i = 1, . . . , Ñ (t )}

denote the observed transaction data of a seller up to time t .

Each seller has full access to its own transaction data O (t ), as it contains the meta-information
of each transaction only.

The discount updating model. A mechanismM updates the price discount level when we observe
some new transaction data. This article focuses on deterministic mechanismsM which prescribes
a unique price discount level for each observed data O (t ), namely

O (t ) = O (t ′) ⇒M (O (t )) =M (O (t ′)). (6)

Note that the observed dataO (t ) is updated when a transaction is completed. Namely, a mechanism
updates the discount when a transaction is completed, i.e., at time t1, t2, . . . ,∞. Hence, we have
mi =M (O (ti−1)).

4.3 Online Algorithms To Infer the Optimal Discount Level
We apply a stochastic bandit framework to infer optimal discount level online from a seller’s trans-
action data. A stochastic bandit problem can be characterized by four elements: arms, rewards, a
forecaster, and the number of rounds to be played. Typically, the number of arms is finite, and each
arm is associated with a reward, which is a random variable with an unknown parameter (i.e.,
mean) to the forecaster. The forecaster realizes a reward after pulling an arm. The forecaster plays
a finite number of rounds, and in each round the forecaster can pull only one arm and realizes a
reward from that arm. The objective is to develop an arm pulling policy to maximize the expected
total rewards. The key idea is that the forecaster must strike a balance between the exploitation
(i.e., arms that realized large rewards in the past) and the exploration (i.e., arms that might realize
large rewards in the future). One representative algorithm is the upper confidence bound (UCB)
algorithm [3]. The basic version of the UCB algorithm can be expressed by the following index
policy:

IN ∈ arg max
m

"#
$
R̄m +

√
2 ln(N − 1)

Nm

%&
'
, (7)

where IN denotes the index of the arm pulled in round N , R̄m denotes the average reward realized
by arm m, Nm denotes the number of times that arm m has been pulled so far. In this policy, the
term R̄m corresponds to the exploitation and the term

√
2 ln(N−1)

Nm
corresponds to the exploration.

The UCB algorithm has sound theoretical performance guarantees, and we refer readers to [3] for
details.

The bandit interpretation. Based on the optimal discount levels expressed in (5), we now derive an
equivalent formulation (i.e., stochastic bandit formulation) for our optimization problem expressed
in (1), which connects the observed data O (t ). With some basic algebraic arguments, we have
z (1,M) = α + 1

n1
E[∑n1

i=1 R̂i ], where

R̂i = −αλ0P0wi − (1 − α )
pdmi

u
, (8)
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and the optimal discount level maximizes the expectation of R̂i , i.e., arg maxmi E[R̂i ] = D∗,∀i =
1, . . . ,n1. This implies that the optimal mechanism stated in Algorithm 1 is also an optimal solution
for the following optimization problem:

max
M

E
⎡⎢⎢⎢⎢⎣

n1∑

i=1
R̂i

⎤⎥⎥⎥⎥⎦
s .t . R̂i satisfies (8),

wi ∼ Exp (λ0Pmi ),

M satisfies (6).

(9)

This optimization problem can be interpreted as the following stochastic bandit problem. All the
potential discount levels {0, 1, . . . ,M } correspond to M + 1 arms. The seller corresponds to the
forecaster and he will play n1 rounds. An algorithm updates a discount level can be viewed as
pulling an arm. A reward R̂i (expressed in (8)) will be realized by pulling arm mi (or setting an
mi level discount) in ith round. As a seller, she sets her own aggressive parameter α and observes
the waiting time wi and discount rate dmi from her transaction data. One challenge here is that
in the reward R̂i the values of λ0 and P0 are unknown to sellers. The multi-armed bandit (MAB)
framework requires that the reward realized by pulling an arm must be known to the forecaster. We
can address this via data mining techniques because the value of λ0P0 is the transactions’ arrival
rate in the ramp-up process when a seller does not provide any discounts. We propose to infer it
from real-world E-commerce system datasets (in Section 7).

An UCB based online discount algorithm. We now apply the UCB algorithm to infer the optimal
discount level online. Let us first outline our online discount algorithm in Algorithm 2. We use
M̂ to denote it. In Algorithm 2, step one to step five correspond to initialization, where the seller
tries each discount level once. Step seven is the key step, which sets the appropriate discount level
based on the historical transaction data. It is obtained by applying Equation (7) to our setting with
some modifications. We state the regret bound in Theorem 4.3. The regret bound is a measure of
performance as compare with the optimal mechanismM∗.

ALGORITHM 2: Online Discount Algorithm M̂ for Ramping Up One Star
1: for i = 1 to M + 1 do
2: mi ← i − 1
3: Realize reward R̂i of the ith transaction via Equation (8)
4: Rmi ← R̂i , Nmi ← 1
5: end for
6: for i = M + 2 to n1 do
7: mi←arg maxm

{
Rm
Nm
+max

{
4 ln(i−1)

Nm
,
√

4 ln(i−1)
Nm

}}

8: Realize reward R̂i of the ith transaction via Equation (8).
9: Rmi ←Rmi + R̂i , Nmi ←Nmi + 1

10: end for

Theorem 4.3. Consider s = 1. Algorithm 2 has the following regret upper bound:

|z (1, M̂) − z (1,M∗) | ≤ 6
n1

∑

m!D∗
(µm∗ −µm )+

lnn1
n1

∑

m!D∗
max

{
8
α
,

16
α2

1
µm∗ −µm

}
,
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where µm !E[R̂i |mi =m]=−α P0
Pm
− (1 − α ) pdm

u denotes the expected reward by pulling arm m (or
levelm discount).

Remark. The regret bound is asymptotically equal to Θ( ln n1
n1
+ 1

n1
) = Θ( ln n1

n1
). Namely,

|z (1, M̂) − z (1,M∗) | ≤ Θ( ln n1
n1

). It implies that as n1 goes to infinity, |z (1, M̂) − z (1,M∗) | con-
verges to zero. In other words, the online discount algorithm M̂ asymptotically converges to the
optimal mechanismM∗.

5 RAMPING UP MULTIPLE STARS
We extend our model to ramp up multiple stars. We show that the optimal discount level evolves
dynamically with the number of stars. As a result, naively repeating the online discount algorithm
(Algorithm 2) to ramp up multiple stars may have low accuracy, especially when the number of
stars increases fast with the reputation score. To address this problem, we derive and optimal fixed
discount level and bound performance gap as compared to the optimal one. We extend the online
discount algorithm developed in last section to infer the optimal fixed discount level and derive
the regret upper bound.

5.1 The Optimal Fixed Discount Level
Generalizing our model to ramp up multiple stars, buyers’ arrival rate varies with the number of
stars in the ramp-up process instead of being homogeneous. This makes the optimal discount set
D∗ varies with the number of stars. Let D∗i denote the optimal discount set for the ith product.
We generalize the closed-form optimal discount level expressed in (5) as

D∗i = arg max
m

Zi (m), (10)

where Zi (m) denotes

Zi (m) = −α 1
λS (ri )Pm

1
E[T (s )] − (1 − α )

pdm

E[G (s )] (11)

E[T (s )] =
ns∑

j=1

1
λS (r j )P0

, E[G (s )] = nsu, (12)

and 1/(λS (ri )Pm ) is the expected waiting time of the ith transaction. Now, the optimal discount
level varies with the reputation score. We still use M∗ to denote the optimal mechanism that
selects a discount level from D∗i for the ith transaction.

One possible approach to infer the optimal discount level m∗i ∈ D∗i is by repeating the online
discount algorithm outlined in Algorithm 2. More precisely, we can divide the whole ramp-up
process into several sub-processes, where each sub-process increases a seller’s star by one. Notice
that the optimal discount level m∗i varies with a seller’s star level. In each sub-process, we run
Algorithm 2 separately. However, this approach works only when the number of stars increases
flatly with the reputation score, i.e., to earn one more star a seller needs to accumulate sufficiently
large number of ratings (as indicated by Theorem 4.3). However, this may not hold in real-world
systems, especially in the early stage when a seller joins an E-commerce system. For example, in
eBay, with 10 positive ratings, a new seller earns one star, then 40 ratings can earn another star,
and 50 ratings can earn another star. Formally, when the number of stars increases fast with the
reputation scores, the transaction data in each sub-process will not be sufficient for the learning
algorithm to produce an accurate estimation. This motivates us to develop a general methodology
to set the appropriate discount instead of repeating Algorithm 2 naively.
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To address the above challenge, we propose to infer an optimal fixed discount level, i.e., the
best choice in the scenario that a seller sticks to one discount level in the ramp-up process. The
underlying tradeoff is that the optimal fixed discount level may not be globally optimal, however,
as we will show later that the seller can use the transaction data in the whole ramp-up process
(instead of a sub-process) to infer it and thus have a more accurate estimation. Formally, we proceed
to show the following: (1) the optimal fixed discount level is good enough in practice; (2) we can
infer this discount level with performance guarantees (Section 5.2). Let D∗of denote the set of
optimal fixed discount levels. With a similar analysis as Section 4.1, we have

D∗of = arg max
m

(
α

(
1 − P0

Pm

)
− (1 − α )

pdm

u

)
. (13)

In fact, 1 − P0
Pm

and dmp
u correspond to the ramp-up time reduction and the short-term profit loss,

respectively, for a given level m discount. LetM∗
of denote an optimal fixed discount mechanism,

which selects a discount level fromD∗of for each product. We next state the gap betweenM∗
of and

the optimal mechanism.

Theorem 5.1. The performance gap between the optimal fixed mechanismM∗
of and the optimal

mechanismM∗ is

|z (s,M∗
of ) − z (s,M∗) | = α

E[T (s )] ∆T (ns ) +
1 − α
E[G (s )] ∆G (ns ),

where ∆T (j ) and ∆G (j ) are defined as

∆T (j ) =
j∑

i=1

"
$

1
λS (ri )Pm∗of

− 1
λS (ri )Pm∗i

%
' , ∆G (j ) = p

j∑

i=1

(
dm∗of

− dm∗i

)
,

and m∗of ∈D∗of andm∗i ∈D∗i .

The gap is zero when sellers aim to ramp up one star. This gap reflects the dynamics of the optimal
discount level. As we will show in Section 7.3, this gap is in fact very small in practice. Note that we
can derive the closed-form z (s,M∗

of ) and z (s,M∗). The performance gap is obtained by plugging
these closed-form expressions into |z (s,M∗

of ) − z (s,M∗) | and by some basic algebra operations.

5.2 Inferring the Optimal Fixed Discount Level
We now extend Algorithm 2 to infer an optimal fixed discount level m∗of ∈M∗

of . First, we con-
nect m∗of with the transaction data. Note that E[R̂i ] = −α P0

Pmi
− (1 − α )

pdmi
u = α (1 − P0

Pmi
) − (1 −

α )
pdmi

u − α , where R̂i is derived as

R̂i = −αλS (ri )P0wi − (1 − α )
p

u
dmi . (14)

This implies thatD∗of = arg maxmi E[R̂i ], where R̂i satisfies (14). Hence, inferring the optimal fixed
discount level is equivalent to the following stochastic bandit optimization problem:

max
M

E
⎡⎢⎢⎢⎢⎣

ns∑

i=1
R̂i

⎤⎥⎥⎥⎥⎦
s .t . R̂i satisfies (14),wi ∼Exp (λS (ri )Pmi ),M satisfies (6).

(15)
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One can observe that we can use the transaction data in the whole ramp-up process to infer the
optimal fixed discount level. This optimization generalizes the transactions’ arrival rate in the op-
timization problem stated in (9) from λ0P0 to λS (ri )P0. Namely, from a homogeneous transactions’
arrival rate to a heterogeneous transactions’ arrival rate, which is sensitive to the reputation score.
One technical note is that the value of λS (ri )P0 is unknown in general. Again, we propose to infer
it from real-world E-commerce system datasets (Section 7).

We extend Algorithm 2 to infer the optimal fixed discount level. We outline it in Algorithm 3.
We still call it the online discount algorithm and use M̂ to denote it. The key difference lies in
that we generalize the transactions’ arrival rate (without discounts) in Algorithm 2 from λ0P0 to
λS (ri )P0 and generalize the number of rounds from n1 to ns . We can also derive a regret bound,
i.e., |z (s, M̂) − z (s,M∗

of ) |, which is similar with Theorem 4.3.

ALGORITHM 3: Online Discount Algorithm M̂ for Ramping Up s Stars
1: for i = 1 to M + 1 do
2: mi ← i − 1.
3: Realize reward R̂i of the ith transaction via (14)
4: Rmi ← R̂i , Nmi ← 1
5: end for
6: for i = M + 2 to ns do
7: mi←arg maxm

{
Rm
Nm
+max

{
4 ln(i−1)

Nm
,
√

4 ln(i−1)
Nm

}}

8: Realize reward R̂i of the ith transaction via (14)
9: Rmi←Rmi + R̂i , Nmi←Nmi +1

10: end for

Our results thus far assume that buyers are unbiased and provide accurate ratings to sellers.
In practice, ratings are subject to personal biases or preferences. Such biases lead to that a buyer
assigns neutral or even negative ratings to a honest seller. We next extend our results to capture
such personal biases.

6 HUMAN FACTORS
We now extend our online discount algorithms to incorporate human factors like personal pref-
erences or biases in assigning ratings. We show that this leads to computational infeasibility in
evaluating the optimal discount level and various performance metrics (e.g., ramp-up time, re-
gret upper bounds). We design computationally efficient randomized algorithms (with theoretical
performance guarantees) to approximate them.

6.1 Online Discount Algorithm Under Human Factors
Human Factor Model. Ideally, a buyer should assign a positive rating if a seller is honest. However,
due to human factors such as personal biases (or preferences) a buyer may assign a neutral or
negative rating. We use a probabilistic model to capture the collective biases of the whole buyer
population. Let P+, P0, P− denote the probability that a seller receives a positive, neutral, and neg-
ative rating respectively, where P+ + P0 + P− = 1. One can vary the values of P+, P0, P− to reflect
different levels of personal biases. For example, P+ = 1 implies there are no personal biases, and
the smaller the P+, the higher the level of personal biases. We like to point out that P+, P0, and
P− are independent of a seller’s status, as they capture buyers’ personal biases in perceiving the
product quality. They model the overall rating bias of the whole buyer population.
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We now generalize the optimal discount set D∗i to accommodate human factors. In fact, the
human factors lead to dynamics of reputation score, i.e., the reputation score may increase or de-
crease instead of always increasing. We express the optimal discount set asD∗i = arg maxm Zi (m).
This expression looks the same as Equation (10). However, it generalizes Equation (10) to capture
human factors. More concretely, it captures human factors via generalizing E[T (s )] and E[G (s )]
nested in Equation (10) to Lemmas 6.3 and 6.4 (will be shown later). The transactions’ arrival rate
λS (r j )P0 encodes the human factors in the reputation score. As we will show later, it is compu-
tationally expensive to compute the optimal discount level, due to high complexity in evaluating
E[T (s )] and E[G (s )] (Lemmas 6.3 and 6.4). Again, we useM∗ to denote the optimal mechanism.

We extend the optimal fixed discount mechanism in Section 5 to incorporate human factors. We
express the optimal fixed discount set as D∗of = arg maxm (α (1 − P0

Pm
) − (1 − α ) dmp

u ). Compared
with Equation (13), it is important to observe that the optimal fixed discount set is invariant of
human factors. Again we useM∗of to denote the optimal fixed discount mechanism. LetN (s ) denote
the number of products sold in the ramp-up process. When we do not consider human factors,N (s )
is equal to ns . When human factors are considered, N (s ) is a random variable with a probability
mass function derived in Equation (22). We next extend Theorem 5.1 to incorporate human factors
into the performance gap and prove that it is computationally expensive to evaluate it.

Theorem 6.1. Consider human factors in assigning ratings, the performance gap betweenM∗of and
M∗ is

|z (s,M∗of ) − z (s,M∗) | =
∞∑

j=ns

P[N (s ) = j]
(

α

E[T (s )]E[∆T (j ) |N (s ) = j]

+
1 − α
E[G (s )]E[∆G (j ) |N (s ) = j]

)
,

where P[N (s )= j] is stated in (22). Evaluating the exact value for this gap is with a complexity of
Ω(

∑∞
j=ns

j ).

To infer the optimal fixed discount levelm∗of ∈ D∗of , we first generalize the optimization frame-
work stated in (15) to incorporate human factors:

max
M

E

⎡⎢⎢⎢⎢⎢⎣
N (s )∑

i=1
R̂i

⎤⎥⎥⎥⎥⎥⎦
s .t . R̂i satisfies (14),wi ∼ Exp (λS (ri )Pmi ), (16)

N (s ) has a pmf derived in (22), get ramped up after collecting N (s ) ratings,
It generalizes (15) in two aspects: (1) from collecting ns ratings to N (s ) ratings, which is a random
variable; (2) generalizing the increase of the reputation score by one after each transaction to the
case that the reputation score can increase or decrease, and it satisfies the ramp-up condition for
the first time when N (s ) ratings are collected. Note that the second generalization influences the
transactions’ arrival rate, i.e., λS (ri )P0. With these observations, we next utilize Algorithm 3 as
follows to incorporate human factors. First, we extend the stopping rule from collecting ns ratings
to the case that the reputation score hits ns for the first time. Note that the transactions’ arrival
rate λS (ri )P0 in Algorithm 3 is general enough to reflect the update dynamics of the reputation
score. We still use the M̂ to denote this online discount algorithm. We next extend Theorem 4.3
to derive the regret upper bound of this algorithm and prove that it is computationally expensive
to evaluate the regret upper bound.
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Theorem 6.2. In the presence of human factors, we have

|z (s,M̂) − z (s,M∗of ) | ≤
∞∑

j=ns

P[N (s )= j]
"##
$

ln j

j

∑

m!D∗of

max
{

8
α
,

16
α2

1
∆m

}
+

6
j

∑

m!D∗of

∆m
%&&
'
, (17)

where ∆m = µm∗of
− µm , µm is defined in Theorem 4.3 and P[N (s ) = j] is derived in (22). The com-

plexity of evaluating the exact value of this regret bound is Ω(
∑∞

j=ns
j ).

6.2 Addressing Computational Challenges
Complexity analysis. To illustrate the computational complexity in evaluating the ramp-up time,
we consider ramping up one star, i.e., s=1, and a seller sets no price discounts.

Lemma 6.3. Suppose s=1 and a seller sets no discounts. We express the ramp-up time as E[T (1)]=∑∞
i=ns
P[N (s )=i] i

λ0P0
, where P[N (s ) = i] is derived in Equation (22). The complexity of evaluating

the exact value of this expression is Ω(
∑∞

i=ns
i ).

It is computationally expensive to evaluate the ramp-up time even for ramping up one star. This
is because in the presence of human factors, the sample space for the ramp-up process is very
large and we need to enumerate all of them. As one can imagine, when sellers aim to ramp up
multiple stars, or they set some discounts, the computational complexity would be higher. Simi-
larly, in Lemma 6.4 we use a simplified case (a seller sets no discounts at all) to illustrate that it is
computationally expensive to evaluate the short-term profit.

Lemma 6.4. Suppose a seller sets no discounts. We express the short-term profit as E[G (s )] =∑∞
i=ns
P[N (s ) = i]iu, where P[N (s ) = i] is derived in Equation (22). The complexity of evaluating

the exact value of this expression is Ω(
∑∞

i=ns
i ).

Reducing the ramp-up time is at the “cost” of losing some short-term profits. It is interesting to
ask: For a survived seller, how will this mechanism influence its profits in the long run? To quantify the
long-term impact, we define a long-term discounted profit metric where the profit earned from the
ith transaction (arrival time is ti ) is discounted by a factor of δ ti , and δ ∈ (0, 1) is the discounting
factor. Let

G∞ ! E
⎡⎢⎢⎢⎢⎣
∞∑

i=1
uiδ

ti

⎤⎥⎥⎥⎥⎦ (18)

denote the long-term discounted profit, where ui denotes the profit for ith product. We also call
G∞ the long-term profit for short. We next derive its closed-form expression.

Lemma 6.5. Consider a seller sets no discounts:

G∞ =
∑∞

i=1
u
∑
{(r1, ...,ri ) }

∏i

j=1

λS (r j )P0

λS (r j )P0 − lnδ
∏i

ℓ=2

(P−I{rℓ=rℓ−1−1} + P
0I{rℓ=rℓ−1 } + P

+I{rℓ=rℓ−1+1} ) (19)
The computation complexity of evaluating exact value of G∞ is Ω(

∑∞
i=1 i ).

When sellers do not set any price discounts, it is computationally expensive to evaluate G∞. The
complexity would be higher if a seller sets price discounts due to variation in µ.

Randomized Algorithms. We develop efficient randomized algorithms with theoretical guarantees
to approximate the ramp-up time, profits (both short-term and long-term), performance gap (The-
orem 6.4), regret bounds (Theorem 17), and so on.
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One can approximate the ramp-up time via the stochastic Monte Carlo framework [22]. The key
idea is that we simulate the reputation update process for K ∈N+ rounds. We obtain one sample of
the ramp-up time T (s ) in each round via simulating the reputation accumulation process until a
seller finally get ramped up. We use the average of these K samples, which we denote as Ê[T (s )],
to estimate E[T (s )]. We present the stochastic Monte Carlo algorithm in Algorithm 4.

ALGORITHM 4: Randomized Algorithm for E[T (s )]
Require: Ramping star s , λ0, λ1, . . . , λS , P0, P1, . . . , PM ,M.

1: for i = 1 to K do
2: r ← 0,Ti ← 0,O (0) = ∅
3: while r < ns do
4: IfM = ∅,m ← 0, elsem ←M (O (Ti ))
5: w ∼Exponential (λS (r)Pm )
6: O (Ti +w ) = O (Ti ) ∪ {(Ti +w,m, r )}, Ti ← Ti +w
7: r ← r +Multinomial (P−, P0, P+) − 2
8: end while
9: end for

10: return Ê[T (s )]← ∑K
i=1Ti/K

In Algorithm 4, step 2 corresponds to the initialization. In step 4, we apply a discount mechanism
to generate a discount level, where the a level 0 discount is generated if a seller does not set
any discounts, i.e., M = ∅. Step 5 generates a waiting time of a transaction. Step 6 updates the
observed data and the ramp-up time when a transaction arrives. Step 7 generates a rating for this
transaction and uses this rating to update the reputation score. Step 10 estimates the ramp-up
time using the sample average. We next analyze the computational complexity of Algorithm 4,
and apply Hoeffding’s inequality [22] to derive the appropriate simulation rounds K to guarantee
an accurate estimation.

Definition 6.6. Let ϵ ∈ R+ denote the approximation error and let ξ ∈ [0, 1] denote the fail prob-
ability of a randomized algorithm.

Theorem 6.7. The expected computational complexity for Algorithm 4 is

O

(
K

(P+ − P−)2 +
Kns

P+ − P−
)
.

If the number of simulation rounds satisfies

K ≥ 1
ϵ2

λs−1PM

λ0P0

1
ns
,

then Algorithm 4 guarantees |Ê[T (s )]−E[T (s )]|≤ϵE[T (s )] with probability at least 1−ξ .

We can now approximate the short-term profit E[G (s )]. We can extend Algorithm 4 to esti-
mate E[G (s )] with some minor modifications. We can also derive similar theoretical performance
guarantees as Theorem 6.7. Furthermore, this idea also applies to compute the estimate for the per-
formance gap derived in Theorem 6.1 and the regret bound derived in Theorem 6.2. For brevity,
we omit the details.

We next develop a Monte Carlo algorithm to evaluate the long-term profit derived in
Equation (19). It is computationally expensive to obtain one sample of G∞, because we need to
simulate infinity number of transactions. To address this challenge, we obtain some approximate

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 3, Article 26. Publication date: January 2018.



Enhancing Reputation via Price Discounts in E-Commerce Systems 26:17

samples via truncation. That is, simulate until we obtain I ∈ N+ ratings. We outline this idea in
Algorithm 5.

ALGORITHM 5: Randomized Algorithm for G∞

Require: Ramping star s , λ0, λ1, . . . , λS , P0, P1, . . . , PM ,M.
1: for i = 1 to K do
2: r ← 0,Gi ← 0, ti = 0,O (0) = ∅
3: for j = 1 to I do
4: If has not got ramped upm←M (O (ti )), else m←0
5: w ∼ Exponential (λS (r )Pm )
6: O (ti +w ) = O (ti ) ∪ {(ti +w,m, r )}, ti ← ti +w
7: Gi ← Gi + (u − dmp)δ ti

8: r ← r +Multinomial (P+, P0, P−) − 2
9: end for

10: end for
11: return Ĝ∞ ← ∑K

i=1G j/K

In Algorithm 5, step 2 corresponds to the initialization. Step 4 generates a discount level if a
seller is in the ramp-up process, otherwise generates a level zero discount. Step 5 generates the
waiting time of a transaction. Step 6 updates the observed transaction data. Step 7 adds the profit
of the new transaction to the long profit. Step 8 generates a rating for this transaction and uses
this rating to update the reputation score. Step 11 estimates the long-term profit using the sample
average. We next analyze the complexity of Algorithm 5, and apply Chebyshev’s Inequality [22]
to derive the number of simulation rounds M and truncating threshold I to guarantee an accurate
estimation.

Theorem 6.8. The complexity for Algorithm 5 is O (KI ). If the simulation rounds satisfies

K = Θ "
$

1
ϵ2ξ

(
max{λs−1PM , λS }

(λ0P0)

)2%
'

and truncating threshold satisfies

I ≥
(
ln ϵ

2 − lnu − ln
(
1 + max{λsPM , λS }

lnδ−1

)) /
ln

(
1 + lnδ−1

max{λsPM , λS }

)
,

then |Ĝ∞−G∞ |≤ϵ with probability of at least 1 − ξ .

7 EXPERIMENTS ON EBAY DATA
We present experimental results on a dataset from eBay. In summary, our results show that a
seller needs to spend 203 days to earn one star, 426 days to earn two stars, and so on. Our optimal
fixed discount mechanism achieves at least 90% of the performance of the optimal mechanism.
Furthermore, the performance gap (in terms of the ramp-up time reduction or the short-term profit
loss) between our online discount algorithm and the optimal mechanism is at most 20%. Our online
discount algorithm can trade 60% of the short-term profit for reducing the ramp-up time by 40%.
More importantly, it also increases the long-term profit by at least 20% for survived online stores.

7.1 Dataset and Parameter Inference
We use a dataset from eBay, which was published by [29]. Table 2 presents its overall statistics. It
contains historical ratings of 4,362 sellers received from the first day that a seller joined the eBay
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Table 2. Overall Statistics for an eBay Dataset

total # of sellers 4,362
total # of ratings 18,533,913

maximum/minimum on the # of ratings per seller 117,100/1
mean/median on the # of ratings per seller 4,190/1,437

Fig. 1. Transactions’ arrival rate across the number of stars.

till April 2013. In eBay, buyers transact with sellers online. A buyer assigns a rating to indicate
the quality of a transaction. A rating can be one of three levels, i.e., {−1 (negative), 0 (neutral),
1 (positive)}. Each seller is tagged with a reputation score. A new seller has a reputation score of 0.
It is increased (or decreased) by one when a positive (or negative) rating is assigned. It remains
unchanged if a neutral rating is assigned. Based on the reputation score, sellers are classified into
13 types, i.e., {no star, 1 star, 2 stars, . . . , 12 stars} [9]. More specifically, no star (r ≤ 9), one star
([r ∈ 10, 49]), and so on [9].

Let us first infer the transactions’ arrival rate for the case that sellers do not set any discounts.
Consider sellers having s stars, we compute their transactions’ arrival rate, i.e., λsP0, as their to-
tal number of completed transactions divided by the total amount of time to accumulate these
transactions:

λsP0=
#[transations by sellers having s stars]

total time to accumulate these transactions . (20)

Figure 1 presents the transactions’ arrival rate inferred from the dataset. One can observe that
the transactions’ arrival rate increases with the number of stars. The transactions’ arrival rate
corresponds to zero star is very close to zero. The transactions’ arrival rate to three-star sellers is
around 0.5 per day. These results indicate that new online stores have difficulty to attract buyers.

We now infer the variation in assigning ratings, i.e., P+, P0, P−. We infer P+ as the fraction of
positive ratings across all sellers:

P+ =
#[positive ratings across all sellers]

#[ratings across all sellers] .

We have P+=0.9943. Similarly, P0=0.0034, P−=0.0023.
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Table 3. Ramp-Up Time Across Number of Stars

# of stars to ramp 1 2 3 4 5 6
Transactions’ arrival rate 0.18 0.33 0.68 1.29 2.37 4.59

E[T (s )] 202.90 425.92 578.96 1,171.41 1,561.54 3,262.58

7.2 The Ramp-Up Time Without Discounts
Let us study the ramp-up time without discounts. We input the above inferred parameters into our
model and apply Algorithm 4 to compute the expected ramp-up time. Using Theorem 6.7, we set
K = 106 for Algorithm 4. We present the ramp-up across the number of stars s in Table 3. One can
observe that on average a seller needs to spend around 202.90 days to earn one star, 425.92 days to
earn two stars, and 578.96 days to earn three stars. The transactions’ arrival rate corresponds to
three stars is 0.68 per day, which is quite small. Namely, getting ramped up to three stars may not
be sufficient, even though it take a long time. One can observe that ramping up to five stars may
be good enough, since the transactions’ arrival rate is 2.37. However, the corresponding ramp-up
time is 1,561.54 days, a very long duration. This is a clue that new sellers are difficulty to survive
and are discouraged to join. It also uncovers a reason why in practice some sellers conduct fake
transactions to increase their reputation especially in early stages [32].

7.3 Evaluating the Optimal Fixed Discount Mechanism
We show that the optimal fixed discount mechanism is a good approximation of the optimal mech-
anism. We consider

Gap ratio ! |z (M∗
of ) − z (M∗) |/z (M∗). (21)

The gap ratio quantifies the accuracy of the optimal fixed discount mechanism in approximating
the optimal mechanism. The smaller the gap ratio, the higher the accuracy.

Now, we introduce the evaluation settings. We consider six levels of discounts (or M + 1 = 6)
and the discount rate corresponds to level m is dm =m×5%. The value of P0, P1, . . . , P5 are not
known. We synthesize them to reflect the real-world scenario as accurate as possible. Without
loss of generality, we consider four representative types of buyers’ preference to discounts:

(1) Sigmoid: Pm = 0.5/(1 + e−(m−3) ), m = 0, 1, . . . , 5,
(2) Concave: Pm = 0.0237(m + 1)0.5, m = 0, 1, . . . , 5,
(3) Linear: Pm = 0.0237(m + 1), m = 0, 1, . . . , 5,
(4) Convex: Pm = 0.0237(m + 1)1.5, m = 0, 1, . . . , 5,

where the parameters 0.0237 and 0.5 are carefully selected to guarantee that the value of P0 (proba-
bility of purchasing without discounts) is the same for these four preference models. Each of these
four preference models increases in the discount level meaning that the higher the discount level
the higher the adopting probability. Furthermore, they represent four typical types of increasing
behaviors, i.e., sigmoid, concave, linear and convex, which capture buyers’ sensitivity to discount.

Figure 2 presents the experimental results on the gap ratio (defined in Equation (21)), where
Figure 2(a) corresponds to α = 0.5 and Figure 2(b) corresponds to α = 0.8. We vary the number
of stars that a seller aims to earn in the ramp-up process from one star to seven stars. We also
call it the ramp-up star. One can observe that the gap ratio is roughly at most 0.1. This means
that the optimal fixed mechanism can achieve at least 90% of the optimal mechanism. Namely our
optimal fixed mechanism is close to the optimal mechanism. When the ramping-up star is one, i.e.,
sellers aims for one star. The gap ratio is zero. This is because the buyers’ arrival rate to a seller
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Fig. 2. Performance gap ratio betweenM∗of andM∗.

Fig. 3. Performance gap ratio between M̂ andM∗.

in the ramp-up process is homogeneous, i.e., λ0. As we increase the ramp-up star, the gap ratio
increases roughly. The reason is that increasing the ramp-up star increases the heterogeneity in
the buyers’ arrival rate in the ramp-up process. As we increase the ramping up star beyond four,
the gap ratio curve becomes flat. This implies that the optimal fixed discount mechanism is robust
in approximation.

7.4 Evaluating the Online Discount Algorithm
Now we evaluate the online discount algorithm in terms of the ramp-up time reduction and the
short-term profit loss. We compare our online discount algorithm M̂ with the optimal mechanism
M∗. We study the gap in the ramp-up time reduction and the short-term profit loss. Formally,

Rerr ! |R (s, M̂) − R (s,M∗) |, Lerr ! |L (s, M̂) − L (s,M∗) |.
We adopt these two metrics because sellers are most interested in the ramp-up time reduction
and the profit loss. We adopt the experimental setting used in Section 7.3 and use the inferred
parameters in our experiments. Figure 3(a) and (b) presents Rerr and Lerr , respectively. Examining
Figure 3(a), one can observe that both Rerr and Lerr are less than 0.2. As we increase the ramp-up
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Fig. 4. Ramp-up time and short-term profits.

star,Rerr decreases. When the ramp-up star is more than three,Rerr is less than 0.1. This shows that
in terms of the ramp-up time reduction and short-term profit loss, our online discount algorithm
produces an accurate approximation.

7.5 Ramp-Up Time and Short-Term Profits
Now, we study the ramp-up time and short-term profit under our online discount algorithm. We
adopt the experimental setting used in Section 7.3 and use the inferred parameters in our ex-
periments. Without loss of generality, sellers aim to earn five stars in our experiments. Figure 4
presents the experimental results on the ramp-up time reduction and the short-term profit loss,
respectively. Figure 4(a) shows that as the α increases, the ramp-up time reduction increases. In
other words, as a seller becomes more aggressive in reducing the ramp-up time, our online dis-
count algorithm can significantly reduce the ramp-up time. However, as shown in Figure 4(b) that
this is achieved at a “cost” of losing more short-term profits. If a seller has a large investing budget
and does not care about the short-term profit (i.e., α = 1), our algorithm can reduce the ramp-up
time by at least 60% trading around 1.2 times the short-term profit (i.e., a seller losing 0.2G (s )). If
a seller has a moderate investing budget (i.e., α = 0.6) our algorithm can reduce the ramp-up time
by at least 40% by trading 60% of the short-term profit. If a seller has a small investing budget (i.e.,
α = 0.1), we can reduce the ramp-up time by at least 20% by trading 20% of the short-term profit.

7.6 Long-Term Profits
Now, we study the impact our online discount algorithm on the long-term profit. We consider the
long-term profit improvement ratio of our mechanism over the case without discounts. We adopt
the experimental setting used in Section 7.3 and a discounting factor δ = 0.999. We consider two
cases of the ramp-up star, i.e., earning five stars and earning three stars. We input the inferred
model parameters into our model and apply Algorithm 5 to evaluate the long-term profit setting
K = 106 and I = 500,000. Figure 5 presents the long-term profit. Figure 5(a) shows that if a seller
aims for three stars in the ramp-up process and survives the ramp-up process, our algorithm can
improve the long-term profit by at least 15%. As α increases, the long-term profit improvement
ratio increases. This means that if a seller is more aggressive in reducing the ramp-up time, the
more long-term profits he can earn. However, this also requires a seller to have a larger investing
budget to survive the ramp-up process, since he sacrifice more short-term profits. Considerα = 0.6,
our algorithm can improve the long-term profit by at least 20%. In practice, sellers are more likely
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Fig. 5. Improvement in long-term profits.

to set a medium value for α because sellers usually have medium investing budgets and the short-
term profit is important to sustain their online store business.

8 RELATED WORK
Reputation systems [23] serve as a core building block for E-commerce systems. Three funda-
mental aspects have been extensively studied: (1) reputation management, (2) attacks and defenses,
and (3) efficiency. On widely practiced reputation management approach is the feedback-based
model [16, 25, 31, 34] that consists of a feedback system [16, 25] and a rating aggregation pol-
icy. The transitive trust model [13, 18, 24, 33] captures the propagation of trust via graphs. Graph
algorithms were proposed to compute the reputation score [18, 24, 33, 35]. In [14], the authors
proposed to use intertemporal discounting factors to measure the trustworthiness of users. Dis-
honest feedbacks are a typical attack to reputation systems and peer-prediction mechanisms were
designed [21] to address it. Reputation inflation (or fake feedbacks) is another possible attack to
reputation systems. A number of algorithms were proposed to resolve this attack [7, 15, 33]. Sev-
eral works investigated efficiency issues in E-commerce systems. In [6], the authors studied how
the leniency or criticality of buyers in assigning ratings may influence sellers’ advertising behav-
ior. Our work investigates the “ramp-up problem” in eBay like reputations systems, which was
first studied in [27]. It uncovered that the ramp-up time of the eBay reputation system is around
800 days. Our work is different in that we formulate a data-driven problem on how to infer the op-
timal discount to quickly ramp up the reputation. We like to mention that the two pages extended
abstract [30] contains some preliminary results of this article.

MAB framework addresses the tradeoff between exploration and exploitation in sequential
decision makings. Three fundamental frameworks are stochastic bandits, adversarial bandits, and
Markovian bandits. Stochastic bandits have four elements: arms, rewards, a forecaster, and the
number of rounds to be played. When one pulls an arm, a reward is generated via a probability
distribution with unknown parameters (e.g., mean, variance). The forecaster plays a finite number
of rounds (one arm per round). The objective is to maximize the expected total rewards. One rep-
resentative algorithm for the stochastic bandit is the UCB algorithm [3]. In adversarial bandits, an
adversary sets a reward for each arm. Exponential weights for Exploration and Exploitation (Exp3)
algorithms [5] are a family of playing strategies for adversarial bandits. In Markovian bandits, arms
are associated with states and state transition matrices [11]. Gittins Indices [11, 12] are a family
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of playing strategies for Markovian bandits. This article applies a stochastic bandit framework to
E-commerce systems, i.e., develop mechanisms to trade price discounts for reputation.

A variety of work studied the reputation effect on the product price. Landon et al. [19] investi-
gated the impact of product reputation on the price using data from the wine market. Ba et al. [4]
conducted online experiments and empirical studies on the data from an online auction market
to show that reputation can generate price premiums for sellers. Jin et al. [17] studied how the
reputation of a seller influences the product price in internet auctions.

9 CONCLUSION
This article develops an online algorithmic framework to enhance seller reputation (in E-commerce
systems) via inferring optimal price discounts from the transaction data. We formulate an opti-
mization framework to select the optimal discount rate which explores the tradeoff between the
ramp-up time and the short-term profit. We derive the closed-form optimal discount rate and ap-
ply a stochastic bandit framework to infer it from a seller’s historical transaction data with regret
upper bounds. We show that the computational complexity of evaluating the performance metrics
like the ramp-up time are infeasibly high. We develop efficient randomized algorithms to approx-
imate them with guaranteed performance. Finally, we conduct experiments on an eBay’s dataset.
Experimental results show that our online discount algorithm can trade 60% of the short-term
profit for reducing the ramp-up time by 40%. Furthermore, this reduction in the ramp-up time can
increase a seller’s long-term profits by at least 20%.

APPENDIX
With some basic probability and combinatorial arguments we can derive the pmf ofN (s ) as follows.

Lemma 1. For all j > ns , we express the pmf for N (s ) as

P[N (s ) = j] =
⌊(j−ns )/2⌋∑

N −=0

ns∑

ℓ1=1

ns+2∑

ℓ1+1
. . .

ns+2k−2∑

ℓk−1+1
. . .

ns+2N −−2∑

ℓN−−1+1
(

j − 1
j − ns − 2N − − 1

)
(P+)ns+N − (P0) j−ns−2N − (P−)N − , (22)

Proof. Given the number of positive ratings N +, neutral ratings N 0 and negative ratings N −,
the probability that these ratings take these signs is (P+)N + (P0)N 0

(P−)N − . A configuration is valid
if the ramp-up condition is satisfied by the (N + + N 0 + N −)-th rating. Now, we compute the num-
ber of valid configurations. Let ℓi , where i ≤ N −, denote the position of the first negative rating.
This means that the ith negative rating is the ℓi -th rating. Consider the first negative rating. It
must occurred before the ns -th positive rating, otherwise the configuration will be invalid. Hence,
its position ranges from the first rating to the ns -th rating. Consider the ith negative rating. It must
occurred before the (ns + i − 1)-th positive rating. Hence, its position ranges from the (ℓi−1 + 1)-
th rating to the (ns + 2i − 2)-th rating. Therefore, the total number of valid configurations can be
expressed as ∑ns

ℓ1=1
∑ns+2

ℓ1+1 . . .
∑ns+2i−2

ℓi−1+1 . . .∑ns+2N −−2
ℓN−−1+1 1. Now, we determine the position of neutral ratings. We have a total number N 0

neutral ratings to be placed among a sequence of N + + N − ratings. Note that the position of the
neutral ratings does not change the validity of a configuration. For each valid configuration, there
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are ( N ++N 0+N −−1
N 0−1 ) ways to place the neutral ratings. Hence, the total probability is

P[N (s ) = i] =
⌊(j−ns )/2⌋∑

N −=0

ns∑

ℓ1=1

ns+2∑

ℓ1+1
. . .

ns+2j−2∑

ℓj−1+1
. . .

ns+2N −−2∑

ℓN−−1+1
(
N + + N 0 + N − − 1

N 0 − 1

)
(P+)N + (P0)N 0

(P−)N − .

We conclude this lemma by observing that N + + N 0 + N − = i and N + = ns + N −, yielding N 0 =
i − ns − 2N −. !

Proof of Theorem 4.3. Recall that in the bandit interpretation, the reward corresponds to level
m discount is −αλ0P0w − (1 − α )dmp/u, wherew follows an exponential distribution with param-
eter λ0Pm . Hence, αλ0P0w follows an exponential distribution with parameter αP0/Pm . We employ
large deviation theory to complete this proof.

Lemma 2. Let X1, . . . ,Xn denote n independent and identically distributed (IID) exponen-
tial random variables with parameter λ. Let Xn =

∑n
i=1 Xi/n. Then: 1) ∀γ1 >

1
λ ,P[Xn ≥ γ1] ≈

exp {
n(λγ1 − 1 − ln(λγ1))

}
; 2) ∀γ2 <

1
λ ,P[Xn ≤ γ2] ≈ exp {

n(λγ2 − 1 − ln(λγ2))
}
.

Also note that for any x ≥ 0, the following inequality holds x − ln(1 + x ) ≥ 3x 2

6+4x , and for all x ∈
[0, 1] the following inequality holds −x − ln(1 − x ) ≥ 3x 2

6−4x .With these observations and applying
the proving framework developed in [3], we complete this proof. !

Proof of Theorem 5.1. The expected ramp-up time can be expressed as E[T (s )] =∑ns
j=1 1/(λS (r j )P0). The expected short-term profit can be expressed as E[G (s )] = nsu. With some

basic algebraic arguments, we have

z (s,M∗) =
ns∑

i=1

"
$−α

1
∑ns

j=1 1/(λS (ri )P0)

1
λS (ri )Pm∗i

− (1 − α )
p

nsu
dm∗i

%
' .

Similarly,

z (s,M∗
of ) =

ns∑

i=1

"
$−α

1
∑ns

j=1 1/(λS (r j )P0)

1
λS (ri )Pm∗sub

− (1 − α )
p

nsu
dm∗sub

%
' .

Computing the difference we complete this proof. !

Proof of Theorem 6.1. First, one can easily obtain that

|z (s,M∗of ) − z (s,M∗) | =
∞∑

j=ns

P[N (s )= j]E[|z (s,M∗of ) − z (s,M∗) | |N (s ) = j].

Note that

E[|z (s,M∗of ) − z (s,M∗) | |N (s ) = j] =
j∑

i=1
E

[
1 − α
E[G (s )]p (dm∗sub

− dm∗i )

+
α

E[T (s )]
"
$

1
λS (ri )Pm∗sub

− 1
λS (ri )Pm∗i

%
' |N (s ) = j

⎤⎥⎥⎥⎥⎦ .
By the linearity of expectation, we conclude. !
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Proof of Theorem 6.2. Observe that

|z (s, M̂) − z (s,M∗of ) | =
∞∑

j=ns

P[N (s ) = j]E[|z (s, M̂) − z (s,M∗of ) | |N (s ) = j].

We complete this prof by deriving E[|z (s, M̂)−z (s,M∗of ) | |N (s )= j] with a similar approach as
Theorem 4.3. !

Proof of Lemma 6.5. Note that each product earns a profit of u. We then have G∞=
E[∑∞i=1 uδ

ti ]=∑∞
i=1 u

∑
(r1, ...,ri ) P[r1, . . . , ri ]E[δ ti |r1, . . . , ri ]. Observe

E[δ ti |r1, . . . , ri ] =
i∏

j=1
E[δwi |r1, . . . , ri ] =

i∏

j=1

λS (r j )P0

λS (r j )P0 − lnδ .

Also observe that P[r1, . . . , ri ] =
∏i

j=2 (P−I{r j=r j−1−1} + P0I{r j=r j−1 } + P
+I{r j=r j−1+1} ). This completes

the proof. !

Proof of Theorem 6.7. The expected computational complexity for Algorithm 4 is
O (KE[N (s )]). Let Ri denote the ith rating. Observe that

E[N (s )]=
∞∑

i=1
P[N (s )≥ i]≤ns − 1+

∞∑

i=ns

P

⎡⎢⎢⎢⎢⎢⎣
i∑

j=1
R j <ns

⎤⎥⎥⎥⎥⎥⎦
.

Now consider ℓ≤ 2ns
P+−P− . We have ∑ℓ

i=ns
P[∑N (s )

j=1 R j <ns] ≤ ℓ − ns + 1. Consider ℓ > 2ns
P+−P− , apply-

ing Hoeffding’s inequality [22] we have

P

⎡⎢⎢⎢⎢⎢⎣
ℓ∑

j=1
R j <ns

⎤⎥⎥⎥⎥⎥⎦
= P

⎡⎢⎢⎢⎢⎢⎣
ℓ∑

j=1
R j < ℓ(P

+−P−)− ℓ2 (P+−P−)

⎤⎥⎥⎥⎥⎥⎦
≤ exp

(
−2ℓ

2

4
(P+ − P−)2

4ℓ

)
= exp

(
− ℓ8 (P+ − P−)2

)
.

Hence, ∑∞i=ℓ P
[∑i

j=1 R j <ns
]
≤ O ((P+ − P−)−2). So, E[N (s )] = O ((P+ − P−)−2 + ns

P+−P− ).
We now derive the minimum simulation rounds needed to guarantee an accurate estimation.

Observe that E[Ti ]=E[T (s )], and Var[Ti ]=Var[T (s )]. Note that Ti are IID random variables.
Applying Chebyshev’s inequality [22], we have

P[|Ê[T (s )] − E[T (s )]| ≥ ϵE[T (s )]]

≤ Var[∑K
i=1Ti ]

ϵ2K2E[T (s )]2 =
Var[T (s )]

ϵ2KE[T (s )]2 =
1

ϵ2K

Var[T (s )]
E[T (s )]2 .

We derive an upper bound for Var[T (s )] as

Var[T (s )] =
∞∑

i=ns

P[N (s ) = i]E[Var[T (s )]|N (s ) = i]

≤ 1
λ0P0

∞∑

i=ns

P[N (s ) = i]
i∑

j=1

1
λS (r j )Pmj

,
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where the last step follows 1
λ2
S (rj )

P 2
mj
≤ 1

λ0P0
1

λS (rj ) Pmj
. We express E[T (s )] as E[T (s )] =

∑∞
i=ns
P[N (s ) = i] ∑i

j=1
1

λS (rj ) Pmj
. Then, it follows that

Var[T (s )]
E[T (s )]2 ≤

1
λ0P0
/ "#
$
∞∑

i=ns

P[N (s ) = i]
i∑

j=1

1
λS (r j )Pmj

%&
'

≤ λs−1PM

λ0P0

1
E[N (s )] ≤

λs−1PM

λ0P0

1
ns
.

To make 1
ϵ 2K

Var[T (s )]
E[T (s )]2 ≤ ξ , we only need K ≥ 1

ϵ 2
λs−1PM

λ0P0
1

ns
. This completes the proof. !

Proof of Theorem 6.8. Let GI =
∑I

i=1 uiδ ti . Then the approximating error |Ĝ∞ −G∞ | ≤ |Ĝ∞ −
E[GI ]| + |E[GI ] −G∞ |. We next derive the minimum K to guarantee |Ĝ∞ − E[GI ]| ≤ ϵ/2 and the
minimum I to guarantee |E[GI ] −G∞ | ≤ ϵ/2.

Let us derive the minimum K to guarantee |Ĝ∞ − E[GI ]| ≤ ϵ/2 first. Observe that Gi are
IID random variables having mean E[Gi ] = E[GI ] and variance Var[Gi ] = Var[GI ]. Applying
Chebyshev’s inequality [22], we have

P
[
|Ĝ −GI | ≥

1
2ϵ

]
= P

⎡⎢⎢⎢⎢⎣|
K∑

i=1
Gi − KGI | ≥

1
2ϵK

⎤⎥⎥⎥⎥⎦
≤ 4Var[∑K

i=1Gi ]
ϵ2K2 =

4Var[GI ]
ϵ2K

.

We next derive an upper bound for Var[GI ]. To guarantee 4Var[GI ]
ϵ 2K ≤ ξ , we only need K ≥ 4Var[GI ]

ϵ 2ξ .
We next derive an upper bound for Var[GI ]. First applying the Cauchy–Schwarz inequality, we
bound Var[GI ] as

Var [GI ] = E
⎡⎢⎢⎢⎢⎢⎣
"
$

M∑

i=1
uiδ

ti −
M∑

i=1
uiE[δ ti ]%'

2⎤⎥⎥⎥⎥⎥⎦
=

M∑

i=0

M∑

j=0
E
[
(uiδ

ti − E[uiδ
ti ]) (ujδ

tj − E[ujδ
ti ])

]

≤
M∑

i=0

M∑

j=0

√
Var[uiδ ti ]Var[ujδ tj ].

Now, let us derive an upper bound for the variance Var[uiδ ti ]. With some basic probability
arguments, we have

Var[uiδ
ti ] = Var[uiδ

ti−1+wi ] = E[Var[uiδ
ti−1+wi ]|ti−1]

= E[δ 2ti−1 Var[uiδ
wi ]].

For the ease of presentation, denote yi =
ln δ−1

λS (ri ) Pmi
. We can then bound Var[uiδwi ] as

Var[uiδ
wi ]≤u2E[δ 2wi ]−u2 (E[δwi ])2=

u2

1 + 2yi
− u2

1 + 2yi + y2
i

=
u2y2

i

(1 + 2yi ) (1 + 2yi + y2
i )
≤ u2y2

i ≤ u2
(

lnδ−1

λ0P0

)2
.
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Furthermore, we bound E[δ 2ti−1 ] as

E[δ 2ti−1 ] ≤ E[δ 2(w1+...+wi−1 )] =
i−1∏

j=1
E[δ 2w j ]

=

i−1∏

j=1

(
1 + 2 lnδ−1

λS (r j )Pmj

)−1

≤
(
1 + 2 lnδ−1

λmax

)−(i−1)

,

where λmax = max{λsPM , λS }. We then have

Var[uiδ
ti ] ≤ u2

(
1 + 2 lnδ−1

λmax

)−(i−1) (
lnδ−1

λ0P0

)2
.

For the ease of presentation, denote x = 1 + 2 ln δ−1

λmax
. We can then bound Var[GI ] as follows:

Var[GI ] ≤ u2
(

lnδ−1

λ0P0

)2 M∑

i=1

M∑

j=1

√
x−(i+j−2)

≤ u2
(

lnδ−1

λ0P0

)2 (1 − (x−0.5)M )2

(1 − x−0.5)2

≤ u2
(

lnδ−1

λ0P0

)2 1
(1 − x−0.5)2

= u2
(

lnδ−1

λ0P0

)2
x (
√
x + 1)2

(
λmax

2 lnδ−1

)2

≤ u2
(
1 + 2 lnδ−1

λmax

) (
2 + lnδ−1

λmax

)2 (
λmax
2λ0P0

)2
,

where the last step follows x < (1 + ln δ−1

λmax
)2. We can then conclude the low bound of K . In fact,

ln δ−1

λmax
can be treated as a constant. Hence, K ≥ Θ( 1

ϵ 2ξ ( max{λs PM ,λS }
λ0P0

)2).

Now, we derive the minimum I to guarantee |E[GI ] −G∞ | ≤ ϵ/2. Observe that

|E[GI ] −G∞ | =
444444E

⎡⎢⎢⎢⎢⎣
∞∑

i=I+1
uiδ

ti

⎤⎥⎥⎥⎥⎦
444444 ≤ E

⎡⎢⎢⎢⎢⎣
∞∑

i=I+1
uδ ti

⎤⎥⎥⎥⎥⎦
=

∞∑

i=I+1
uE[δw1+...+wi ] =

∞∑

i=I+1
u

i∏

j=1
E[δwi ]

=

∞∑

i=I+1
u

i∏

j=1

(
1 + lnδ−1

λS (r j )Pmj

)−1

≤
∞∑

i=I+1
u

(
1 + lnδ−1

λmax

)−i

≤ u

(
1 + lnδ−1

λmax

)−I−1 (
1 + λmax

lnδ−1

)
.
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Hence, we need M satisfies

u

(
1 + lnδ−1

λmax

)−I−1 (
1 + λmax

lnδ−1

)
≤ ϵ

2 ,

which yields

I >
ln ϵ

2 − lnu − ln
(
1 + λmax/ lnδ−1

)

ln(1 + lnδ−1/λmax)
− 1.

This completes the proof. !
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