
Optimizing RandomWalk Based Statistical
Estimation Over Graphs via Bootstrapping

Hong Xie , Pei Yi, Yongkun Li , and John C. S. Lui , Fellow, IEEE

Abstract—Graphs are commonly used in various applications such as online social networks (OSNs), E-commerce systems and
social recommender systems. Random walk sampling is often used to conduct statistical estimation over such graphs. This paper
develops an algorithmic framework to reduce the mean square error of such statistical estimation. Our algorithmic framework is
inspired by that the mean square error can be decomposed into a sum of the bias and variance of the estimator. More specifically, we
apply the bootstrapping technique to design a bias reduction algorithm. Our bias reduction algorithm only utilizes a small number of
“valid” sub-samples, which can reduce more bias of the estimator but may increase the variance of the estimator significantly. We use
multiple parallel random walks to reduce this variance such that it can be reduced to arbitrarily small by deploying a sufficient number of
random walks. We provide theoretical guarantees and computational complexity analysis of our proposed bias reduction algorithms.
Our algorithmic framework enables one to attain different trade-offs between the sample complexity (i.e., number of parallel random
walks) and the mean square error of the statistical estimation. Also, the proposed bias reduction algorithm is generic and can be
applied to optimize a large class of random walk sampling algorithms. To demonstrate the versatility of the framework, we apply it to
optimize the Metropolis random walk and simple random walk sampling. Extensive experiments on four public datasets confirm the
effectiveness and computational efficiency of our proposed algorithmic framework under the mean square metric and beyond.

Index Terms—Random walk, bootstrapping, graph, statistical estimation

Ç

1 INTRODUCTION

STATISTICAL estimation over graphs is a fundamental task
in graph analytic problems [1], [2], [3], [4], [5], [6], [7], [8].

A number of statistical estimation problems over graphs
have been studied ranging from estimating simple statistics
such as node degree distribution, vertex label distribution,
size estimation [3], [4], [9], [10], [11], etc., to sophisticated
statistics such as classification, ranking and regression [2],
[12], [13], [14]. It is not an easy task to conduct statistical
estimation over graphs. First, graphs in applications are
usually large in scale. For example, the number of monthly
active users of Facebook has reached over two billion [15].
Second, the whole graph is usually not accessible to third-
party agents. In many OSNs, only APIs are available for
third-party agents to access the graph data. Random walk
sampling is a mainstream method to address this challenge
[9], [15], [16], [17], [18], [19]. We use the following simplified

example to illustrate random walk based statistical estima-
tion over graphs.

Example 1. A company needs to make decisions regard-
ing whether to do advertisements over a social network.
The social network is characterized by a graph
G , ðV; E; xÞ; where V denotes the user set, E # V $ V
denotes the edge set and the function x prescribes an
attribute xðvÞ 2 f1; . . . ; 10g for vertex v 2 V. The attribute
xðvÞ quantifies the degree of proneness of user v on
advertisements over social networks. The company
wants to know the mean a and standard deviation s of
the degree of proneness over the whole user population:

a¼
P

v2V xðvÞ=jVj; s¼
ffiP

v2VðxðvÞ & aÞ2=jVj
q

: Suppose we
use the Metropolis random walk sampling algorithm [9]
to get samples from the graph G (details in Section 4).
Suppose we get L 2 Nþ samples U1; . . . ; UL; where Ui 2
V. Then one can estimate the mean and standard devia-

tion as: ba ¼
PL

i¼1 xðUiÞ=L; bs ¼
ffiPL

i¼1ðxðUiÞ & baÞ2=L
q

:

Example 1 illustrates one typical characteristic of random
walk based statistical estimation over graphs, i.e., only a
finite number (usually small number) of samples are gener-
ated to conduct the estimation [8], [20]. Note that Example 1
can be mapped to a broad class of applications. In particu-
lar, the attribute function x in Example 1 can be mapped to
node degree, vertex label, etc., leading to practical graph
mining problems. One central problem is how to improve
the estimation accuracy under this finite sample setting. A
number of random walk algorithms were proposed to solve
this problem [8], [9], [10], [15], [21]. In other words, these
works improve estimation accuracy via getting “better”
samples. This paper aims to improve estimation accuracy

(Hong Xie and Pei Yi are with the Chongqing Key Laboratory of Software
Theory and Technology, Chongqing University, Chongqing 400044,
China. E-mail: {xiehong2018, 201914131045}@cqu.edu.cn.

(Yongkun Li is with the School of Computer Science and Technology, Uni-
versity of Science and Technology of China, Hefei, Anhui 230026, China.
E-mail: ykli@ustc.edu.cn.

(John C. S. Lui is with the Department of Computer Science and Engineer-
ing, Chinese University of Hong Kong, Hong Kong. E-mail: cslui@cse.
cuhk.edu.hk.

Manuscript received 5 Mar. 2021; revised 30 Sept. 2021; accepted 27 Oct. 2021.
Date of publication 10 Nov. 2021; date of current version 3 Feb. 2023.
The work of Hong Xie was supported by the National Natural Science Founda-
tion of China under Grant 61902042, Chongqing Talents: Exceptional Young
Talents Project cstc2021ycjh-bgzxm0195. The work of John C.S. Lui was sup-
ported in part by GRF 14200420.
(Corresponding author: Hong Xie.)
Recommended for acceptance by B. He.
Digital Object Identifier no. 10.1109/TKDE.2021.3126906

2916 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

from an orthogonal perspective, i.e., we apply bootstrap-
ping techniques to exploit the property of the statistic in
estimation to improve estimation accuracy.

Our framework is inspired by bootstrapping techniques
and recent graph analytic systems that enable one to run
millions of random walks in parallel on consumer-level per-
sonal computers [22], [23], [24], [25], [26]. The accuracy of
the estimators in Example 1 can be characterized by bias
and variance. To illustrate, consider the estimator bs. The
mean square error of bs is denoted by MSEðbsÞ

MSEðbsÞ , E½ðbs & sÞ2* ¼ Var½bs* þ ðBiasðbsÞÞ2; (1)

where Var½bs* and BiasðbsÞ are defined as: Var½bs* , E½ðbs &
MeanðbsÞÞ2*; BiasðbsÞ , MeanðbsÞ & s; with MeanðbsÞ , E½bs*. This
implies that one can reduce the estimation error by reducing
the variance or bias. Note that these observations hold for
many statistics beyond the mean and standard deviation
and hence we consider general statistics. We apply the boot-
strapping technique to reduce the bias. Unlike most previ-
ous bootstrapping techniques that reduce the bias under the
constraint of not changing the variance or only allowing it
to increase slightly [27], our bias reduction algorithm only
utilizes a small number of “valid” sub-samples, which can
reduce more bias of the estimator but may increase the vari-
ance of the estimator significantly. Then we use multiple
parallel random walks to reduce the variance. One may
argue that this rises an issue of scalability. Fortunately, it
can be addressed by recent graph analytic systems [22],
[23], [24], [25], [26], which enable running millions of ran-
dom walks in parallel on consumer-level personal com-
puters. In fact, the variance can be reduced by averaging,
i.e., Var bsmr½ * ¼ Var½bs*=n; where bsmr ¼ ðbsð1Þ þ + + + þ bsðnÞÞ=n
denotes the average of n estimations of s from n parallel
random walks with the same initial point. Note that the bias
is unchanged, i.e., BiasðbsmrÞ ¼ BiasðbsÞ. Namely, one can
reduce the variance to arbitrarily small by deploying a suffi-
cient number of random walks. We develop an algorithmic
framework to reduce both bias and variance of the estima-
tor. Our contributions are the following:

(We develop an algorithmic framework to reduce
the mean square error of random walk based sta-
tistical estimation over graphs. Our algorithmic
framework provides a novel combination of ran-
dom walk sampling and bootstrapping technique, and
it enables one to attain different trade-offs between
sample complexity (i.e., number of parallel ran-
dom walks) and mean square error of the statisti-
cal estimation.

(We apply the bootstrapping technique to design a
bias reduction algorithm. Our bias reduction algo-
rithm only utilizes a small number of “valid” sub-
samples, which can reduce more bias of the estima-
tor but may increase the variance of the estimator
significantly. To overcome this problem, we use mul-
tiple parallel random walks to reduce this variance,
and show that it can be reduced to arbitrarily small
by deploying a sufficient number of random walks.
Our bias reduction algorithm is generic and can be
applied to a large class of random walk sampling

algorithms and statistical estimation problems. We
provide theoretical guarantees and computational
complexity analysis of our proposed bias reduction
algorithms.

(To demonstrate the versatility of our framework, we
apply it to optimize the Metropolis random walk
sampling and simple random walk sampling. Exper-
iment results on four public datasets show that our
algorithmic framework can reduce the bias of both
random walks without bias reduction (or with a clas-
sical bias reduction method) by as high as around
80% (or 60%). We also achieve similar reduction on
mean square error using only 1000 parallel random
walks and a larger number of random walks can
lead to a larger reduction. Our proposed bias reduc-
tion algorithm only incurs a negligible extra compu-
tation. Our proposed algorithms still have superior
performance over baselines under both the relative
mean absolute error and relative mean cubic abso-
lute error metric.

2 MODEL & PROBLEM FORMULATION

2.1 The Graph Model
We consider an undirected graph with a finite set
V , f1; . . . ; V g of vertices, where V 2 Nþ. Each vertex v can
be a user in an OSN, or an item in a social recommender sys-
tem, etc. Let E # V $ V denote the edge set. As the graph G
is undirected, then ðu; vÞ 2 E implies that ðv; uÞ 2 E. For
example, an edge ðu; vÞ 2 E can indicate the friendship
between u and v in a social network. We focus on the case
that the graph G is connected. Let dðvÞ 2 Nþ denote the
degree of vertex v, formally dðvÞ , jfujðv; uÞ 2 Egj: Let
N ðvÞ # V denote the neighbor set of vertex v, formally
N ðvÞ , fujðv; uÞ 2 Eg: One can observe that dðvÞ ¼ jN ðvÞj.

We consider a real value attribute. In particular, each ver-
tex v is associated with a value xðvÞ 2 X indicating the attri-
bute, where X 2 R denotes the value set. For example, the
value xðvÞ can denote the gender of vertex v, then X ¼
f&1ðmaleÞ; 1ðfemaleÞg. The value xðvÞ can also denote the
degree of vertex v, then X ¼ f1; . . . ; dmaxg, where dmax ¼
maxv2VdðvÞ. For presentation simplicity, this paper consid-
ers the case that the cardinality of X is finite, i.e., jXj < 1.
Our results can be generalized to continuous case straight-
forwardly, by changing some summations into integrations.
Let m denote a distribution over the attribute value set X ,
which summarizes the collective attribute value over the
whole vertex set. Formally, we define m as: mðyÞ ¼P

v2V
1fxðvÞ¼yg
jVj ; 8y 2 X : Namely, mðyÞ is the fraction of verti-

ces with value y 2 X . To simplify notations, we denote the
undirected graph as G ¼ ðV; E; xÞ:

2.2 The Estimator Model
We consider a class of statistics u 2 R over the graph G
such that it can be expressed as a function of the distri-
bution m, i.e., u ¼ T ðmÞ; where T denotes a mapping
function: T : m 7! R: For example, the mean of value can
be modeled as

T ðmÞ ¼
X

y2X
mðyÞy: (2)

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2917

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

The standard deviation of value can be modeled by T as

T ðmÞ ¼
ffiX

y2X
mðyÞðy& !yÞ2

q
; (3)

where !y ¼
P

y2X mðyÞy. The standard deviation can be gen-
eralized to T ðmÞ ¼ ð

P
y2X mðyÞjy& !yjcÞ1=c; where c 2 Rþ. We

like to remark that many statistical estimation problems
over the graph G produce an estimator being a function of
the distribution m, e.g., maximum likelihood estimation,
regression, etc. Namely, the statistic u ¼ T ðmÞ can model a
large class of statistical estimation problems over the graph.

2.3 Problem Formulation
We consider a large scale graph G and one has to use random
walk sampling to estimate the statistic u. This setting is
adopted in many previous works [8], [15], [28]. We aim to
design an algorithm denoted by A to estimate the statistic u
via samples generated by a randomwalk sampling algorithm
running on the graph G. We consider two metrics in the
design ofA. The first one is the sample complexity defined as

SCðAÞ , # of samples required by the algorithm:

The second one is the estimation error.We consider themean
square error defined as MSEðbQÞ , E½ðbQ& uÞ2*; where bQ
denotes an estimator of u produced by the algorithm A. The
objective is to design an algorithmA to estimate the statistic u
attaining different trade-offs between the above twometrics.

3 ALGORITHMIC FRAMEWORK

3.1 Design of the Algorithmic Framework
We first define a random walk sampling oracle, which sup-
ports sampling query and estimating query.

Definition 1. A random walk oracle denoted by RWOracle is
defined as a function such that:

(for each query with initial point U0 2 V and sample
length L 2 Nþ, it returns L samples denoted by
UU , ðU1; . . . ; ULÞ:

UU ¼ RWOracle:SamplingðU0; LÞ;

(for each query with a sequence of L samples UU , it
returns an estimation of the statistic u:

bQrwðUUÞ ¼ RWOracle:StatisticsðUUÞ:

We defer details of the random walk oracle RWOracle to
Section 4. Here we focus on applying it to design our algo-
rithmic framework. Note that for the linear statistic, we usu-
ally have bQrwðUUÞ being asymptotically unbiased, i.e., the
bias ðE½bQrwðUUÞ* & uÞ goes to zero when L goes to infinity
(more details in Section 4). Unfortunately, in practice, we
can only collect a finite number of samples, under which
the bias is not negligible. To reduce the bias, let us define an
oracle to bootstrap the bias of the estimator bQrwðUUÞ first.

Definition 2. The bootstrapping oracle denoted by BootBia-

sOracle is defined as an algorithm such that for each query
with a sample sequence UU and the corresponding random walk
oracleRWOracle, it returns an estimation for the bias of bQrwðUUÞ

DðbQrwðUUÞÞ ¼ BootBiasOracleðUU; RWOracleÞ;

where DðbQrwðUUÞÞ denotes the estimated bias of bQrwðUUÞ.

We defer details of BootBiasOracle to Section 5. Here,
let us focus on applying it to design our algorithmic
framework.

To present our algorithmic framework, we need the
following notations. Denote M 2 Nþ initial points as:
UU0 , ðU0;1; . . . ; U0;MÞ; where U0;M 2 V. Denote Nm 2 Nþ as
the number of parallel random walks associated with initial
point U0;m, where m 2 f1; . . . ;Mg. For simplicity, denote
NN , ðN1; . . . ; NMÞ: Denote Lm 2 Nþ as the length of each
parallel random walk associated with initial point U0;m. For
simplicity, denote LL , ðL1; . . . ; LMÞ: Algorithm 1 outlines a
parallel algorithmic framework to estimate the statistic u
over the graph G. In step 2 of Algorithm 1, we run

PM
m¼1 Nm

random walks in parallel via the random walk oracle
RWOracle.Sampling. These random walks are organized
intoM groups. Groupm has Nm parallel random walks and
each random walk within this group has the same initial
point U0;m. After we obtain samples from these

PM
m¼1 Nm

random walks, in step 3 we apply the bootstrapping oracle
BootBiasOracle to estimate the bias of each random
walk sequence. We then use the estimated bias to debias the
random walk estimator by deducting it from the estimator.
Finally, return the average of debiased estimators as an esti-
mator of the statistic u. The notation U is used with several
different subscript forms, but none of them is overloaded,
because the bold case UU corresponds to a vector, while the
normal case U corresponds to a scalar.

Algorithm 1. Algorithmic Framework

1: Input: UU0; NN; LL, Random walk oracle RWOracle, Bootstrap-
ping oracle BootBiasOracle

2: Parallel random walk sampling: run
PM

m¼1 Nm random
walks in parallel to get samples:

UUm;n RWOracle:SamplingðU0;m; LmÞ;
8m ¼ 1; . . . ;M; n ¼ 1; . . . ; Nm

3: Estimate the bias via bootstrapping:

Dm;n BootBiasOracleðUUm;n; RWOracleÞ;
8m ¼ 1; . . . ;M; n ¼ 1; . . . ; Nm

4: Compute the debiased estimators:

bQm;n RWOracle:EstimateðUUm;nÞ & Dm;n;

8m ¼ 1; . . . ;M; n ¼ 1; . . . ; Nm

5: Return: bQ 1
M

PM
m¼1

PNm
n¼1

bQm;n
Nm

Remark. The bias estimation step, i.e., step 3, of Algorithm
1 incurs extra computation. One may suggest to use this
extra computation to generate more samples instead. We
argue that this extra computation incurred by our proposed
bias estimation algorithm, i.e., Algorithm 5, can be negligi-
ble compared to the total computation of generating sam-
ples. First, experiment results in Section 2.2 of our
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.

2918 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

org/10.1109/TKDE.2021.3126906, show that Algorithm 1
implemented with Algorithm 5 for bias estimation has
nearly the same running time as baseline randomwalk sam-
pling algorithms without bias estimation. This implies that
our bias estimation algorithm, i.e., Algorithm 5, only intro-
duces a negligible extra computation. This negligible extra
computation is achieved at the case that the whole graph is
loaded into the main memory. When the graph cannot be
loaded into the main memory, the running time of generat-
ing samples will be much larger as this incurs extra running
time to load part of the graph into the main memory. Fur-
thermore, the computational cost of generating one sample
involves sampling from neighbors. When the number
neighbors is not small, the computational cost of generating
samples can be much larger than that of estimating the bias.

3.2 Analysis of the Algorithmic Framework
To analyze the performance of Algorithm 1, we first decom-
pose the mean square error into follows: MSEðbQÞ ¼
Var½bQ* þ ½BiasðbQÞ*2; where Var½bQ* and BiasðbQÞ are defined
as the variance and bias of the estimator bQ

Var½bQ* , E½ðbQ& MeanðbQÞÞ2*; BiasðbQÞ , MeanðbQÞ & u;

with MeanðbQÞ , E½bQ* denoting the mean of bQ.
Note that for a given group of random walks with the

same initial point U0;m, the bQm;n across n ¼ 1; . . . ; Nm are
independent and identically distributed. Thus, we denote
the variance and bias of bQm;n as

s2
m , Var½bQm;n*; dm , BiasðbQm;nÞ; 8n ¼ 1; . . . ; Nm:

Lemma 1. The variance and bias of bQ produced by Algorithm 1

can be derived as Var½bQ* ¼ 1
M2

PM
m¼1

s2m
Nm

; BiasðbQÞ ¼
PM

m¼1
dm
M : Furthermore, lim8m;Nm!1 MSEðbQÞ ¼ ½BiasðbQÞ*2:

Due to page limit, all proofs are in our supplementary file,
available online. Lemma 1 states closed-form expressions for
the variance and bias of the estimator bQ outputted by Algo-
rithm 1. One can reduce the variance of bQ to zero by increas-
ing the number of parallel random walks Nm at each initial
pointm to infinity. The bias of bQ is the average of the bias of
multiple random walks associated with M initial points.
The following lemma derives analytical expression for the
sample complexity of Algorithm 1.

Lemma 2. The sample complexity of Algorithm 1 is SCðAAlgo1Þ
¼
PM

m¼1 NmLm; where AAlgo1 denotes Algorithm 1.

Lemma 2 states the sample complexity for Algorithm 1.
The sample complexity increases linearly with the sample
length Lm associated with each initial point U0;m, and also
increases linearly with the number of parallel randomwalks
in each initial point. In real-world applications, one usually
does not want to have a long sample sequence Lm as it is
time-consuming. However, one may want to use a larger
number of parallel random walks to decrease the estimation
error. Hence, the analytical expressions derived in Lemmas
1 and 2 enable one to select the appropriate sample com-
plexity to trade it for improving estimation accuracy.

The computational complexity of Algorithm 1 involvesPM
m¼1 Nm queries of the random walk oracle RWOracle

and bootstrapping oracle BootBiasOracle. We next
design algorithms to implement the the random walk oracle
RWOracle and bootstrapping oracle BootBiasOracle as
well as study their computational complexity.

4 THE SAMPLING ORACLE

In this section, we present two random walk oracles, which
are based on the simple random walk and Metropolis ran-
dom walk respectively. Most graph sampling algorithms
are the variants of these two random walk algorithms, and
they can also be applied to design the random walk oracle
similarly (please refer to Section 9 for details).

Algorithm 2. RWOracle Based on Metropolis Random
Walk

1: function RWOracle.SamplingU0; L
2: for ‘ ¼ 1; . . . ; ~L do " Burn-in period
3: U‘ vwith prob. P½vjU‘&1* derived in Equation (4)
4: for ‘ ¼ ~Lþ 1; . . . ; ~Lþ L do " sampling period
5: U‘ vwith prob. P½vjU‘&1* derived in Equation (4)
6: return ðU ~Lþ1; . . . ; U ~LþLÞ
7: function RWOracle.EstimateUU
8: Estimate the probability mass:

bmðyÞ
PlengthðUUÞ

i¼1 1fxðUiÞ¼yg

lengthðUUÞ ; 8y 2 X

9: return T ðbmÞ

Metropolis Random Walk. The Metropolis random walk is
an application of the Metropolis-Hastings algorithm [29] to
graph sampling. Under the Metropolis random walk algo-
rithm, in each step, the walker moves to a neighbor of the
current vertex with certain probability derived as follows:

P½U‘þ1jU‘*

¼
1

dðU‘Þ
min 1; dðU‘Þ

dðU‘þ1Þ

" #
; if U‘þ12N ðU‘Þ;

1&
P

v2N ðU‘Þ
1

dðU‘Þ
min 1;dðU‘Þ

dðvÞ

" #
; if U‘þ1 ¼ U‘:

8
><

>:

(4)

Note that the graph G is connected. Thus, the Metropolis
random walk has a stationary distribution. Let p denote the
stationary distribution of the Metropolis random walk. It
can be derived as pðvÞ ¼ 1=jVj; 8v 2 V: Furthermore, for any
function f : V ! R, it holds that limL!1

PL
‘¼0

fðU‘Þ
L ¼

P
v2V

fðvÞ
jVj : Namely, one can use the samples from the Metropolis
random walk to construct asymptotic unbiased estimators
(when the sample length goes to infinity). It is important to
remember that when the sample length is finite, the bias is
non-zero.

Based on the Metropolis random walk, Algorithm 2 out-
lines a random walk oracle. Consider the RWOracle.Sam-

pling(U0; L) function, the algorithm first simulates the
Metropolis random walk by ~L 2 Nþ steps, for the purpose
of making the random mix. This period is also called the
burn-in period. Then the algorithm simulates another L
steps and returns them as the samples. The function
RWOracle.Estimate(UU) first estimates the distribution m

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2919

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

using the samples UU via simple averaging. Then, it uses the
estimated distribution to produce an estimator of the statis-
tic u. Note that lengthðUUÞ denotes the number of elements in
vector UU .

Via some direct arithmetic calculations, the computa-
tional complexity of RWOracle:SamplingðU0; LÞ imple-
mented in Algorithm 2 can be derived as Oðð ~Lþ LÞ
maxv2VdðvÞÞ: The factor maxv2VdðvÞ shows in the computa-
tional complexity due to that drawing a random sample
from the neighbors of a node is linear in the number of
neighbors. The computational complexity of RWOracle:
EstimateðUUÞ implemented in Algorithm 2 is OðlengthðUUÞÞ.

Simple Random Walk. Under the simple random walk [30],
the walker moves each neighbor of the current node with
equal probability, formally

P½Uiþ1jUi* ¼
1

dðUiÞ
; if v 2 N ðUiÞ;

0; otherwise:

$
(5)

The stationary distribution of the simple random walk
can be expressed as pðvÞ ¼ dðvÞ=ð2jEjÞ [30]. Then, for any
function f : V ! R, it holds that limL!1

PL
‘¼0

fðU‘Þ=dðU‘ÞPL

‘¼0
1=dðU‘Þ

¼
P

v2V
fðvÞ
jVj :Based on this observation, similar with Metropolis

random walk, Algorithm 3 outlines a simple random walk
based RWOracle.

Algorithm 3. Simple RandomWalk Based RWOracle

1: function RWOracle.SamplingU0; L
2: for ‘ ¼ 1; . . . ; ~L do " burn in period
3: U‘ vwith prob. P½vjU‘&1* derived in Equation (5)
4: for ‘ ¼ ~Lþ 1; . . . ; ~Lþ L do " sampling period
5: U‘ vwith prob. P½vjU‘&1* derived in Equation (5)
6: return ðU ~Lþ1; . . . ; U ~LþLÞ
7: function RWOracle.EstimateUU
8: Estimate the probability mass:

bmðyÞ
PlengthðUUÞ

i¼1 1fxðUiÞ¼yg=dðUiÞ
PlengthðUUÞ

i¼1 1=dðUiÞ
; 8y 2 X

9: return T ðbmÞ

With a similar analysis as Algorithm 2, one can obtain
that the function RWOracle:SamplingðU0; LÞ and RWOracle:
EstimateðUUÞ implemented in Algorithm 3 have the same
computational complexity as that implemented in Algo-
rithm 2. Note that one can easily extend the above random
walk sampling oracles to other random walk algorithms,
such as its sophisticated variants [15].

5 BOOTSTRAPPING BIAS

We first design an oracle to bootstrap the bias via Jackknife.
More importantly, we derive sufficient conditions, under
which this oracle can reduce the bias of estimator. These
conditions reveal a restriction that this oracle may perform
poorly when the graph is incomplete. Then we design
another oracle to relieve this restriction, and theoretically
show that it works even over incomplete graphs.

5.1 Bootstrapping Bias via Jackknife
Recall the closed-form expression for estimator bQ, i.e., bQ ¼
1
M

PM
m¼1

PNm
n¼1

bQm;n
Nm

(i.e., line 5 in Algorithm 1). By the linear-
ity of expectation, it boils down to estimate the bias for
bQm;n: The bQm;n is evaluated from the samples denoted by

UUm;n , U ð1Þ
m;n; . . . ; U

ðLmÞ
m;n

n o
:

For simplicity of notation, let UUð&iÞ
m;n denote a vector of sam-

ples excluding the ith sample U ðiÞ
m;n

UUð&iÞ
m;n , Uð1Þ

m;n; . . . ; U
ði&1Þ
m;n ; Uðiþ1Þ

m;n ; . . . ; UðLmÞ
m;n

h i
:

Namely, UU ð&iÞ
m;n is a ðLm & 1Þ-sized sub-sample from UUm;n. In

total, we have Lm such sub-samples: UU ð&1Þ
m;n ; . . . ; UU

ð&LmÞ
m;n :

From the ðLm & 1Þ-sized sub-sample UUð&iÞ
m;n , we apply the

random walk oracle to generate one estimator as

bQð&iÞ
m;n ¼ RWOracle:Estimate UU ð&iÞ

m;n

" #
:

Applying the Jackknife, the estimate of the bias of bQm;n is

dBiasðbQm;nÞ ¼ ðLm & 1Þ
PLm

i¼1
bQð&iÞ
m;n

Lm
& bQm;n

 !

: (6)

Note that dBiasðbQm;nÞ estimates the bias fully relying on the
samples UUm;n itself. Based on dBiasðbQm;nÞ, we outline a boot-
strapping oracle to estimate the bias in Algorithm 4.

Algorithm 4. BootBiasOracleðUUm;n; RWOracleÞ via
Jackknife

1: for i ¼ 1; . . . ; L do
2: UU ð&iÞ

m;n ½U ð1Þ
m;n; . . . ; U

ði&1Þ
m;n ; U ðiþ1Þ

m;n ; . . . ; U ðLmÞ
m;n *

3: bQð&iÞ
m;n RWOracle:EstimateðUU ð&iÞ

m;n Þ
4: bQm;n RWOracle:EstimateðUUm;nÞ
5: Estimate the bias

dBiasðbQm;nÞ ðLm & 1Þ
PLm

i¼1
bQð&iÞ
m;n

Lm
& bQm;n

 !

6: return dBiasðbQm;nÞ

To illustrate, consider Lm ¼ 3. Then, we have UUm;n ¼
fU ð1Þ

m;n; U
ð2Þ
m;n; U

ð3Þ
m;ng. In total, there are three sub-samples, i.e.,

UUð&1Þ
m;n ¼ ½U ð2Þ

m;n; U
ð3Þ
m;n*, UUð&2Þ

m;n ¼ ½U ð1Þ
m;n; U

ð3Þ
m;n* and UUð&3Þ

m;n ¼ ½U ð1Þ
m;n;

Uð2Þ
m;n*. The estimator can be calculated as bQð&1Þ

m;n ¼ RWOracle:

Estimateð½U ð2Þ
m;n; U

ð3Þ
m;n*Þ. Similarly, bQm;n RWOracle:Estimate

ð½U ð1Þ
m;n; U

ð2Þ
m;n; U

ð3Þ
m;n*Þ. The bias can be calculated as

dBiasðbQm;nÞ ¼ 2
bQð&1Þ
m;n þ bQð&2Þ

m;n þ bQð&3Þ
m;n

3
& bQm;n

 !

:

To analyze the theoretical guarantee of Algorithm 4, we
next define a class of expandable T .

Definition 3. Let X1; . . . ; Xn denote n independent and identi-
cally distributed samples from the distribution m. Let T ðmnÞ
denote an estimator of the statistic u, where mnðyÞ ¼Pn

i¼1 1fXi¼yg=n. The T is expandable if it satisfies E½T ðmnÞ* ¼
u þ

P1
j¼1 ajðmÞ=nj; where ajðmÞ 2 R; 8j ¼ 1; . . . ;1 is inde-

pendent of n.

2920 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

Most statistics are expandable [31], i.e., mean, variance,
most maximum likelihood estimators, etc. For example,
when the T is the mean, i.e., derived in Equation (2), we
have E½T ðmnÞ* ¼ u: When T is the variance, i.e., derived in
Equation (3), we have E½T ðmnÞ* ¼ u & u=n: The following
theorem states theoretical guarantee for Algorithm 4 under
expandable statistic.

Theorem 1. Under the RWOracle implemented in Algorithms 2
or 3. Suppose G is complete and of large scale and the T is
expandable with a1ðmÞ > 0. Algorithm 4 corrects the bias from

BiasðbQm;nÞ ¼ Oð1=LmÞ to BiasðbQJK
m;nÞ ¼ Oð1=L2

mÞ, where
bQJK
m;n , bQm;n & dBiasðbQm;nÞ denotes the corrected estimator.

Theorem 1 states sufficient conditions under which Algo-
rithm 4 corrects the bias of estimator bQm;n from Oð1=LmÞ to
Oð1=L2

mÞ. One sufficient condition is that G has to be a com-
plete graph. However, in real-world applications, graphs
are usually incomplete. In this case, we may not have theo-
retical guarantee for Algorithm 4. In Section 5.2, we design
a variant of the Jackknife algorithm to address this limita-
tion. The following theorem states the computational com-
plexity of Algorithm 4.

Theorem 2. Under the RWOracle implemented in Algorithms
2 or 3. The computational complexity of the bootstrapping ora-
cle BootBiasOracleðUUm;n; RWOracleÞ implemented in
Algorithm 4 is OðL2

mÞ.

Theorem 2 states that the computational complexity of
BootBiasOracleðUUm;n; RWOracleÞ implemented in Algo-
rithm 4 is quadratic in the number of samples in UUm;n.

5.2 Improve Accuracy via Sub-Sample Selection
One restriction of Algorithm 4 is that some of the
ðLm & 1Þ-sized sub-samples of UUm;n are not valid random
walk sequences when the graph is incomplete. When the
graph is incomplete, it may happen that UUð&iÞ

m;n is not a sam-
ple sequence generated by the random walk sampling algo-
rithm. In particular, according to the transition probability
in Equation (4), the walker can not move from vertex Uði&1Þ

m;n

to U ðiþ1Þ
m;n . Formally, we define valid and invalid sub-sample

in the following definition.

Definition 4. A sub-sample UU ð&iÞ
m;n is valid with respect to a ran-

dom walk with transition probability P½+j+* if P½U ðiþ1Þ
m;n jUði&1Þ

m;n * >
0 for i,2 and Uðiþ1Þ

m;n ¼U ðiÞ
m;n for i¼1, otherwise it is invalid.

Definition 4 is general and it can be applied to any ran-
dom walk algorithms. It states that a sub-sample UUð&iÞ

m;n with
respect to a random walk algorithm is valid if it can be a tra-
jectory of this random walk with the same initial state UU ð1Þ

m;n.
For example, one valid sub-sample can be UUð&LmÞ

m;n ¼
½Uð1Þ

m;n; . . . ; U
ðLm&1Þ
m;n *, which is obtained by deleting the last

sample of UUm;n. Invalid sub-samples may cause the bias esti-
mation (i.e., Equation (6)) being inaccurate. To relieve this
problem, we design bootstrapping algorithms to estimate
bias with sub-sample selection.

Bootstrapping via One Valid Sub-Sample. We first consider
the sub-sample UU ð&LmÞ

m;n . This sub-sample has a nice statistical
property that it is valid regardless of the samples in UUm;n.
Namely, it is identically distributed as a random walk trajec-
tory with length Lm & 1 and initial state UUð1Þ

m;n. This nice

statistical property ofUU ð&LmÞ
m;n is essential for analytical studies.

Formally, we estimate the bias via the sub-sampleUU ð&LmÞ
m;n as

dBiasVSðbQm;nÞ ¼ ðLm & 1Þ bQð&LmÞ
m;n & bQm;n

" #
: (7)

In Equation (7), we take the average over one sub-sample,

i.e., bQð&LmÞ
m;n , while we take the average of Lm sub-samples in

Equation (6), i.e.,
PLm

i¼1
bQð&iÞ
m;n =Lm. Taking the average over

one sub-sample leads to a larger variance of the bias estima-

tion dBiasVSðbQm;nÞ than that of dBiasðbQm;nÞ with all the sub-
samples (Equation (6)). Namely, our approach is at the cost
of increasing the variance. As we have shown in Section 3,
one can increase the number of parallel random walks to
reduce the variance. Based on the new bias estimator
dBiasVSðbQm;nÞ, we implement an oracle to bootstrap bias in
Algorithm 5.

Algorithm 5. BootBiasOracleðUUm;n; RWOracleÞ With
One Valid Sub-Sample

1: UU ð&LmÞ
m;n ½U ð1Þ

m;n; . . . ; U
ðLm&1Þ
m;n *

2: bQð&LmÞ
m;n RWOracle:EstimateðUU ð&LmÞ

m;n Þ
3: bQm;n RWOracle:EstimateðUUm;nÞ
4: Estimate the bias

dBiasVSðbQm;nÞ ðLm & 1Þ bQð&LmÞ
m;n & bQm;n

" #

5: return dBiasVSðbQm;nÞ

To illustrate, consider Lm ¼ 3. Then, we have UUm;n ¼
fU ð1Þ

m;n; U
ð2Þ
m;n; U

ð3Þ
m;ng. We only have one sub-sample in consider-

ation, i.e., UU ð&3Þ
m;n ¼ ½U ð1Þ

m;n; U
ð2Þ
m;n*. We can calculate the estimator

for the sub-sample as: bQð&3Þ
m;n ¼ RWOracle: Estimateð½U ð1Þ

m;n;

Uð2Þ
m;n*Þ. Similarly, bQm;n RWOracle:Estimateð½U ð1Þ

m;n;U
ð2Þ
m;n;

Uð3Þ
m;n*Þ. The bias can be calculated as: dBiasðbQm;nÞ ¼ 2ðbQð&3Þ

m;n &
bQm;nÞ:Wenext state theoretical guarantees for Algorithm 5.

Theorem 3. Suppose the graph G is connected and the T is
bounded and expandable with a1ðmÞ > 0. Denote a space of all
probability distribution over the attribute set X as V ¼
frj
P

y2X rðyÞ ¼ 1; r : V! ½0; 1*g: Let Fm;n denote a proba-
bility distribution over V induced by UUm;n

Fm;nðrÞ ¼ P
1

Lm

XLm

i¼1

1
fxðUðiÞ

m;nÞ¼yg
¼ rðyÞ

" #
:

Let Cn denote a probability distribution over V such that

CnðrÞ ¼ P½mn ¼ r*: If kCLm &Fm;nkTV - o 1=Lmð Þ; where

k + kTV denotes the total variation distance. Algorithm 5 cor-

rects the bias from BiasðbQm;nÞ ¼ Oð1=LmÞ to BiasðbQVS
m;nÞ ¼

Oð1=L2
mÞ, where bQVS

m;n , bQm;n & dBiasVSðbQm;nÞ denotes the

corrected estimator.

Theorem 3 states sufficient conditions under which the
Algorithm 5 provides theoretical guarantees on the bias
reduction. Note that in Theorem 3, the graph can be of any
general topology provided that it is connected. It only
requires an extra condition on the sample UUm;n induced dis-
tribution over X , which can be achieved by an appropriate

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2921

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

burn-in period. The following theorem states the computa-
tional complexity of Algorithm 5.

Theorem 4. Under the RWOracle implemented in Algorithms
2 or 3. The computational complexity of the bootstrapping ora-
cle BootBiasOracleðUUm;n; RWOracleÞ implemented in
Algorithm 5 is OðLmÞ.

Compared with Theorem 2, Algorithm 5 reduces the
computational complexity from quadratic in Lm to linear
in Lm.

Bootstrapping via All Valid Sub-Samples. To reduce the var-
iance of Algorithm 5, we propose an algorithm to estimate
bias with all valid sub-samples. Due to page limit, we pres-
ent them in our supplementary file, available online.

6 EXPERIMENT I: THE BIAS

We conduct experiments on four real-world datasets pub-
lished on SNAP1 to evaluate our algorithmic framework on
bias reduction. Experiment results further confirm the supe-
rior performance of our algorithm in reducing the bias. Due
to page limit, some experiment results are presented in our supple-
mentary file, available online.

6.1 Experiment Setting
Dataset. Table 1 summarizes four datasets published on
SNAP. We have two reasons in selecting them: (1) each
node is associated with an attribute, i.e., community; (2)
they are from four diverse applications. For each dataset, if
it is a directed graph, we add reciprocal edges to make it an
undirected one. In each dataset we consider two types of
attributes: (1) the community associated with a node; (2) the
degree of a node.

The scale of the graphs (i.e., millions of nodes) used in our
experiment is widely usedmany previous works for the eval-
uations of random walk sampling algorithms [15], [32], [33],
[34]. Note that our objective is using these graphs to compare
our algorithm with other baseline algorithms. In academia,
we may not have the chance to run experiments in the real-
world setting, where calculating over the entire graph is
impossible. The logic is that if we can show our algorithm has
superior performance on these graphs, one may expect that
our algorithm can have superior in the real-world setting.

Statistical Estimation Model. Consider the degree as the
attribute of nodes. We have X ¼ f1; . . . ; dmaxg and xðvÞ
denotes the degree of node v. Furthermore, mðyÞ denotes the
fraction of nodes with degree y 2 X . We aim to estimate the
standard deviation of degree

T ðmÞ ¼
ffiX

y2X
mðyÞðy& !yÞ2

q
; (8)

where !y ¼
P

y2X mðyÞy denotes the average degree.
Consider the community as the attribute of nodes. We

first rank the community ID, then based on the ranked list
we divide the community ID into K 2 Nþ groups such that
each group contains the same number of community ID. A
node has attribute k ¼ 1; . . . ; K, if it belongs to a community
with ID in group k. Thus, we have X ¼ f1; . . . ; Kg. We fur-
ther set mðkÞ as the fraction of nodes with community ID
belonging to group k. Note that

PK
k¼1 mðkÞ 6¼ 1, as a node

may belong to multiple communities or a node may not
belong to any communities. Note that our framework
applies to the case that

PK
k¼1 mðkÞ 6¼ 1. We estimate the vari-

ation of mðkÞ as

T ðmÞ¼
XK

k¼1

1

K
mðkÞ & mð1Þ þ + + + þ mðKÞ

K

%%%%

%%%%
c

 !1=c

; (9)

where c 2 Rþ. When c > 2, the above statistic corresponds
to generalized standard deviation.

Baseline & Parameter setting. To demonstrate the versatil-
ity of our framework, we apply it to reduce the bias of
Metropolis random walk and simple random walk. When
Metropolis random walk [29] serves as the baseline, we
compare: (1) MR, which is a variant of Algorithm 2 without
bias reduction, i.e., it is the Metropolis random walk; (2)
JKM, which is a variant of Algorithm 2 and it uses Jackknife,
i.e., Algorithm 4, to reduce the bias of Metropolis random
walk; (3) VSM, which uses our bootstrapping oracle with
valid sub-sample selection, i.e., Algorithm 5, to reduce bias
of Metropolis random walk. When simple random walk
serves as the baseline, we compare: (1) SRW, which extends
Algorithm 2 to simple randomwalk, i.e., it is the simple ran-
dom walk algorithm; (2) JKS, which extends Algorithm 4 to
simple random walk, i.e., it uses Jackknife to reduce the bias
of simple random walk; (3) VSS, which extends Algorithm 5
to simple random walk, i.e., it uses our bootstrapping oracle
with valid sub-sample selection to reduce the bias of simple
random walk.

We rank nodes based on the ID and then select ranked
ðjVj 1MÞth, . . . , ðjVjMMÞth nodes as M initial points. Random
walks in each group have the same length, i.e., L1¼ + + + ¼
LM¼L. We also run the same number of parallel random
walks on each initial point, i.e., N1¼ + + + ¼ NM ¼ N . By
default, we set the burn-in period to ~L¼0. We will vary ~L to
study the impact of burn-in period on the effectiveness and
efficiency of our method. Unless we state explicitly, we con-
sider the following default parameters, i.e., M¼10; L¼50;
N¼105; c¼2 and K¼5 to compute the bias. Note that run-
ning this large number of random walks on each initial
point is to ensure an accurate estimation of the bias via the
Monter Carlo method.

6.2 Impact of Initial Points
We vary the number of initial points M from 4 to 18. We fix
the total number of random walks to be MN ¼ 106. Con-
sider the case that community servers as node attribute.
Fig. 1 shows the bias of estimating the statistic derived in
Equation (9). One can observe that our bootstrapping algo-
rithm VSMcan reduce the bias of Metropolis random walk
MRby as high as 40%. This reduction ratio varies slightly as

TABLE 1
Overall Statistics of Four Datasets

of nodes # of edges # of communities

com-Amazon 334,863 925,872 75,149
wiki-topcats 1,791,489 28,511,807 17,364
com-Orkut 3,072,441 117,185,083 6,288,363
com-LiveJournal 3,997,962 34,681,189 287,512

1. http://snap.stanford.edu/data/index.html

2922 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

the number of initial points varies from M ¼ 4 to M ¼ 18.
Furthermore, our bootstrapping method VSM reduces the
bias of Jackknife method JKM by as high as 30%. Further-
more, our bootstrapping method VSScan reduce the bias of
simple random walk SRWby as high as 50%. This reduction
ratio varies slightly when the number of initial points varies
from M ¼ 4 to M ¼ 18. When simple random walk serves
as the baseline, our bootstrapping method VSS reduces the
bias of Jackknife method JKSby as high as 30%.

Consider the case that node degree serves as node attri-
bute. Fig. 2 shows the bias of estimating the statistic derived
in Equation (8). One can observe that our bootstrapping
method still reduces the bias of both Metropolis random
walk and simple random walk significantly (as high as 80%)
when the number of initial points varies fromM ¼ 4 toM ¼
18. Furthermore, our bootstrapping method reduces more
bias than the Jackknife method in most cases when the num-
ber of initial points varies fromM ¼ 4 toM ¼ 18.

Lessons Learned. Under different number of initial points,
our bootstrapping method reduces the bias of both Metropo-
lis random walk and simple random walk significantly (i.e.,
as high as 80%). It can also reduce the bias of the Jackknife
method significantly inmost cases , i.e., as high as 60%.

6.3 Impact of Sample Length
Wevary the sample lengthL from 10 to 60, while set the other
parameters as their default values. Consider the case that
community serves as node attribute. Fig. 3 shows the bias of
six algorithms (i.e.,MR, JKM, VSM, SRW, JKS and VSS) eval-
uated on four datasets in Table 1, where the statistic under
estimation is derived in Equation (9). One can observe that
the bias of all these six algorithms decrease when the sample
length L varies from 10 to 60. Namely, the bias decrease in
sample length. AmongMR, JKM and VSM, our VSM has the
smallest bias followed by the JKM. Using a sample length of
L ¼ 50, our VSM reduces the bias ofMR (or JKM) by as high
as 40% (30%). Our bootstrapping method VSS reduces the
bias of SRW (or JKS) by as high as 50% (30%).

Consider the case that node degree serves as node attri-
bute. Fig. 4 shows the bias of estimating the statistic stated
in Equation (8). One can observe that among MR, JKM and
VSM, our VSM has the smallest bias. Using a sample length
of L¼50, VSM reduces the bias ofMR (or JKM) by as high as
80% (50%). Furthermore, our bootstrapping method VSS
reduces the bias of SRW (or JKS) by as high as 70% (60%).

Lessons Learned.Under different sample lengths, our boot-
strapping method reduces the bias of both Metropolis ran-
dom walk and simple random walk significantly and it can
also reduce the bias of the Jackknife method.

6.4 Impact of Number of Community Groups
We vary the number of community groups K from 5 to 10.
Fig. 5 shows the bias of estimating the statistic derived in

Fig. 1. Impact of M on bias with Metropolis random walk (MR) and
simple random walk (SRW) as baselines. [community as attribute].

Fig. 2. Impact of M on bias with Metropolis random walk (MR) and
simple random walk (SRW) as baselines. [degree as attribute].

Fig. 3. Impact of sample length L on bias with Metropolis random walk
(MR) and simple random walk (SRW) as baselines. [community as
attribute].

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2923

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

Equation (9). One can observe that our bootstrapping algo-
rithm VSM can reduce the bias of Metropolis random walk
MRby as high as 30%. This reduction ratio varies slightly as
the number of community groups varies from K ¼ 5 to K ¼
10. Our bootstrapping method VSM reduces the bias of Jack-
knife method JKMby as high as 25%. Furthermore, our boot-
strapping method VSS can reduce the bias of simple random
walk SRWby as high as 50% and this reduction ratio varies
slightly when the number of community groups varies from
K ¼ 5 to K ¼ 10. When simple random walk serves as the
baseline, our bootstrapping method VSS can reduce the bias
of the Jackknifemethod JKS by as high as 30%.

Lessons Learned. Under different number of community
groups, our bootstrapping method reduces the bias of
both Metropolis random walk and simple random walk

significantly (i.e., as high as 50%). It can also reduce more
bias than the Jackknife method (i.e., as high as 30%).

6.5 Impact of Statistical Estimation Model
To study the impact of statistical estimation model on bias
reduction, we vary the parameter c in the statistical estima-
tion model derived in Equation (9) from 1 to 3. Fig. 6 shows
the bias of estimating the statistic derived in Equation (9).
One can observe that our bootstrapping algorithm VSM can
reduce the bias of Metropolis random walkMRby as high as
30%. This reduction ratio varies slightly as the parameter of
the statistical estimation model varies from c ¼ 1 to c ¼ 3.
When Metropolis random walk serves as the baseline, our
bootstrapping method VSM reduces the bias of Jackknife
method JKMby as high as 30%. Furthermore, our bootstrap-
pingmethodVSS can reduce the bias of simple randomwalk
SRWby as high as 50% and this reduction ratio varies slightly
when c varies from 1 to 3. When simple random walk serves
as the baseline, our bootstrapping method VSS can reduce
the bias of the Jackknifemethod JKS by as high as 40%.

Lessons Learned. Under different statistical estimation
models, our bootstrapping method reduces the bias of both
Metropolis random walk and simple random walk signifi-
cantly (by as high as 50%). It can also reduce the bias of Jack-
knife method by as high as 40%.

6.6 Impact of Burn-in Period
To study the impact of burn-in period on bias reduction, we
vary the length of burn-in period ~L from 0 to 10000. Fig. 7
shows the bias of estimating the statistic derived in Equa-
tion (9). One can observe that our bootstrapping algorithm
VSM can reduce the bias of Metropolis random walk MR by
as high as 25%. This reduction ratio varies slightly as the
length of burn-in periof ~L varies from 0 to 1000. When
Metropolis random walk serves as the baseline, our boot-
strapping method VSM reduces the bias of Jackknife
method JKM by as high as 20%. Furthermore, our

Fig. 4. Impact of sample length L on bias with Metropolis random walk
(MR) and simple random walk (SRW) as baselines. [degree as attribute].

Fig. 5. Impact ofK on bias with Metropolis random walk (MR) and simple
random walk (SRW) as baselines. [community as attribute].

Fig. 6. Impact of statistical estimation model c on bias with Metropolis
random walk (MR) and simple random walk (SRW) as baselines.
[community as attribute].

2924 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

bootstrapping method VSS can reduce the bias of simple
random walk SRW by as high as 50% and this reduction
ratio varies slightly when ~L varies from 0 to 10000. When
simple random walk serves as the baseline, our bootstrap-
ping method VSS can reduce the bias of the Jackknife
method JKS by as high as 40%.

Lessons Learned. Under different length of burn-in period,
our bootstrapping method reduces the bias of both Metrop-
olis random walk and simple random walk significantly (by
as high as 50%). It can also reduce the bias of Jackknife
method by as high as 40%.

7 EXPERIMENT II: THE MEAN SQUARE ERROR

We conduct experiments to show how to use our bootstrap-
ping algorithm to attain different trade-offs between the
sample complexity and mean square error of an estimator.
Experiment results further show that our bootstrapping
method can reduce themean square error of an estimator sig-
nificantly by 1000 randomwalks.Due to page limit, some exper-
iment results are presented in supplementary file, available online.

7.1 Experiment Setting
We consider the same experiment setting as Section 6,
except that we study the mean square error of each algo-
rithm when the total number of parallel random walks is
small. We use Monte method to estimate the mean square
error of each algorithm. In particular, we repeat each algo-
rithm for 1000 times, and use the average of the outputs in
these 1000 times to estimate the mean square error. Follow-
ing previous works [9], [10], [33], [34], we consider the rela-
tive mean square error (RMSE), i.e., RMSEðbQÞ ¼ MSEðbQÞ=u2;
to eliminate the scale bias.

Due to page limit, we only consider the case that commu-
nity serves as attribute. For the case of node degree serving
as attribute, one can expect similar results, because the
trade-off between the sample complexity and mean square

error is governed by the bias reduction and these two cases
have similar bias reduction.

7.2 Impact of Number of RandomWalkers
Note that the number of random walks equals MN . We set
all the parameters except N as their default values stated in
Section 6. We vary N from 1 to 100 such that the number of
random walks MN varies from 10 to 1000. Fig. 8 shows the
RMSE of six algorithms described in Section 6.1 evaluated
on four datasets in Table 1, where the statistic in estimation
is derived in Equation (9). One can observe that when the
number of random walks is small, i.e., MN ¼ 10, our VSM
may have a larger RMSE than MR and JKM in some cases.
This is because our VSM has a larger variance than MR and
JKM and when the total number of random walks is small,
the variance dominates. When the number of random walks
is large, i.e., MN ¼ 1000, our VSM reduces the RMSE of MR
(JKM) by as high as 50% (40%). This is because when the
total number of random walks is large, the bias dominates.
Furthermore, when the number of random walks is small,
i.e., MN ¼ 10, our VSS may have a larger RMSE than SRW
and JKS in some cases. When the number of random walks
is large, i.e.,MN ¼ 1000, our VSS reduces the RMSE of SRW
(JKS) by as high as 70% (50%).

Lessons Learned. Our bootstrapping method reduces the
RMSE of Metropolis random walk and simple random walk
significantly (i.e., as high as 70%) by no more than one thou-
sand random walks and it can also reduce the bias of Jack-
knife method by as high as 50%.

7.3 Impact of Sample Length
We vary the sample length L from 10 to 60. We set the num-
ber of random walks to be 1000. All the other parameters
are set as default values. Fig. 9 shows the RMSE of six algo-
rithms described in Section 6.1 under the statistic derived in
Equation (9). One can observe that the RMSE of these six
algorithms decreases as the sample length L increases.

Fig. 7. Impact of length of burn-in period ~L on bias with Metropolis ran-
dom walk (MR) and simple random walk (SRW) as baselines. [commu-
nity as attribute].

Fig. 8. Impact of number of random walks on the RMSE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines.
[community as attribute].

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2925

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

Furthermore, our VSM reduces the RMSE ofMR and JKMby
as high as 50%. Lastly, our VSS reduces the RMSE of SRW
(JKS) by as high as 60% (40%).

7.4 Impact of Number of Community Groups
We consider the same setting as Section 7.3, except we set
the sample length L to be 50 and vary the number of com-
munity groups K from 5 to 10. Fig. 10 shows the RMSE of
six algorithms under the statistic derived in Equation (9).
One can observe that our bootstrapping algorithm VSM can
reduce the RMSE of Metropolis random walk MRby as high
as 50%. This reduction ratio varies slightly as we vary the
number of community groups from K ¼ 5 to K ¼ 10. Our
VSM reduces the RMSE of Jackknife method JKMby as high

as 40%. Furthermore, our bootstrapping method VSS can
reduce the RMSE of simple random walk SRWby as high as
70% and this reduction ratio varies slightly when the num-
ber of community groups varies from K ¼ 5 to K ¼ 10.
Lastly, when simple random walk serves as the baseline,
our VSS can reduce the RMSE of the Jackknife method JKS
by as high as 50%.

Lessons Learned. Under different number of community
groups and one thousand random walks, our bootstrapping
method reduces the RMSE of both Metropolis random walk
and simple random walk significantly (i.e., as high as 70%)
and it can also reduce the RMSE of Jackknife method by as
high as 50%.

7.5 Impact of Statistical Estimation Model
We vary the parameter c of Equation (9) from 1 to 3. All the
other parameters are set the same as Section 7.3, except the
sample length L is set to be 50. Fig. 11 shows the RMSE of
six algorithms under the statistic derived in Equation (9).
One can observe that our bootstrapping algorithm VSM can
reduce the RMSE of Metropolis random walk MRby as high
as 50%. This reduction ratio varies slightly as we vary the
parameter of the statistical estimation model from c ¼ 1 to
c ¼ 3. Our bootstrapping method VSM reduces the RMSE
of Jackknife method JKMby as high as 50%. Furthermore,
our bootstrapping method VSS can reduce the RMSE of
simple random walk SRWby as high as 70% and this reduc-
tion ratio varies slightly when c varies from 1 to 3. Lastly,
when simple random walk serves as the baseline, our boot-
strapping method VSS reduces the RMSE of the Jackknife
method JKS by as high as 40%.

Lessons Learned. Under different statistical estimation
models and one thousand random walks, our bootstrapping
method reduces the RMSE of both Metropolis random walk
and simple random walk significantly (by as high as 70%)
and it can also reduce the RMSE of Jackknife method by as
high as 40%.

Fig. 9. Impact of walk length L on the RMSE with Metropolis random
walk (MR) and simple random walk (SRW) as baselines. [community as
attribute].

Fig. 10. Impact of community groups K on the RMSE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines. [com-
munity as attribute].

Fig. 11. Impact of statistical estimation model c on the RMSE with
Metropolis random walk (MR) and simple random walk (SRW) as base-
lines. [community as attribute].

2926 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

7.6 Impact of Burn-in Period
We vary the length of burn-in period ~L from 0 to 10000. All
the other parameters are set the same as Section 7.3, except
the sample length L is set to be 50. Fig. 12 shows the RMSE
of six algorithms under the statistic derived in Equation (9).
One can observe that our bootstrapping algorithm VSM can
reduce the RMSE of Metropolis random walk MR by as
high as 50%. This reduction ratio varies slightly as we vary
~L from 0 to 10000. Our bootstrapping method VSM reduces
the RMSE of Jackknife method JKM by as high as 50% as
well. Furthermore, our bootstrapping method VSS can
reduce the RMSE of simple random walk SRW by as high as
80% and this reduction ratio varies slightly when ~L from 0
to 10000. Lastly, when simple random walk serves as the
baseline, our bootstrapping method VSS reduces the RMSE
of the Jackknife method JKS by as high as 60%.

Lessons Learned. Under different length of burn-in period
and one thousand random walks, our bootstrapping
method reduces the RMSE of both Metropolis random walk
and simple random walk significantly (by as high as 80%)
and it can also reduce the RMSE of Jackknife method by as
high as 60%.

8 EXPERIMENT III: BEYOND MSE

In this section, we evaluate our proposed algorithms
beyond the mean square error metric. In particular, we eval-
uate our proposed algorithms under the relative mean abso-
lute error (RMAE) metric, i.e., RMAEðbQÞ , E½jbQ& uj*=juj; and
the relative mean cubic absolute error (RCAE), i.e.,
RCAEðbQÞ , E½jbQ& uj3*=juj3: We consider the same experi-
ment setting as Section 7. Due to page limit, some experi-
ment results are presented in our supplementary file,
available online.

8.1 Impact of Number of RandomWalks
Note that the number of random walks equals MN . We set
all the parameters except N as their default values stated in

Section 6. We vary N from 1 to 100 such that the number of
random walks MN varies from 10 to 1000. Fig. 13 shows the
RMAE of six algorithms evaluated on four datasets in
Table 1, where the statistic in estimation is derived in Equa-
tion (9). One can observe that when the number of random
walks is small, i.e., MN ¼ 10, our VSM may have a larger
RMAE than MR and JKM in some cases. This is because our
VSM has a larger variance than MR and JKM and when the
total number of random walks is small, the variance domi-
nates. When the number of random walks is large, i.e.,
MN ¼ 1000, our VSM reduces the RMAE of MR (JKM) by
as high as 50% (40%). This is because when the total number
of random walks is large, the bias dominates. Furthermore,
when the number of random walks is small, i.e., MN ¼ 10,
our VSS may have a larger RMAE than SRW and JKS in
some cases. When the number of random walks is large, i.e.,
MN ¼ 1000, our VSS reduces the RMAE of SRW (JKS) by as
high as 60% (30%). Similar statements holds for the RMCE
metric, as shown in Fig. 14. In summary, our proposed algo-
rithms still have superior performance over baselines under
both the RMAE and RMCE metric.

9 RELATED WORK

Random Walk. Random walk sampling is a mainstream
method to generate representation samples from large scale
graphs [16]. Two fundamental random walk sampling algo-
rithms are (1) the simple random walk [30], and (2) the
Metropolis random walk [29]. A number of variants of ran-
dom walk sampling algorithms were proposed to improve
the estimation accuracy. Rasti et al. [32] proposed an algo-
rithm which incorporate respondent-driven sampling into
Metropolis random walk. Ribeiro et al. [33] developed a
coordinated multidimensional random walk sampling algo-
rithm. Kurant et al. [9] proposed a stratified weighted ran-
dom walk algorithm. Jin et al. [21] and Xu et al. [34]
proposed random walk sampling algorithms with jumps.
Lu et al. [3] developed an algorithm to approximate the bias

Fig. 12. Impact of length of burn-in ~L on RMSE with Metropolis random
walk (MR) and simple random walk (SRW) as baselines. [community as
attribute].

Fig. 13. Impact of number of random walks on the RMAE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines.
[community as attribute].

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2927

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

of estimating the population size via random walk. Lee et al.
[10] proposed two algorithms to reduce the asymptotic vari-
ance of estimators: (1) non-backtracking random walk and
(2) random walk with delayed acceptance. Li et al. [20] fur-
ther extended the delayed acceptance method to Metropolis
random walk, which is shown to further reduce the asymp-
totic variance. Lu et al. [35] showed that the harmonic mean
estimator for average degree can reduce the estimation vari-
ance significantly. Zhou et al. [8], [28], [36] proposed history
dependent random walk sampling algorithms, which are
shown to have a fast convergence speed. Li et al. [15] further
improved them by considering the walking history and
next-hop candidates. Essentially, all these algorithms
improve estimation accuracy via designing random walk
strategies, i.e., they focus on generating samples. These
algorithms only use simple average to do the estimation.
Our framework is orthogonal to their works and comple-
ments them. First, we focus on how to utilize samples to
produce accurate estimation. In particular, we achieve this
by applying bootstrapping techniques to design a bias
reduction algorithm. Second, our framework utilizes recent
graph processing systems which can run millions of ran-
dom walks on a consumer-level personal computer. Third,
our framework is generic and it can be applied to improve
the estimation accuracy of any random walk strategies.

Our work is orthogonal to works on parallel random
walk algorithms and systems [22], [23], [24], [25], [26] in the
sense that it is independent of the design of parallel random
walk algorithms, i.e., it can be applied to a broad class of
parallel random walk algorithms.

Bootstrapping. Bootstrapping is a technique for statistical
estimation. There are a variety of bootstrapping techniques
such as Efron bootstrap and Jackknife for different applica-
tions or settings [27], [31], [37], [38], [39]. Model-based boot-
strapping techniques require a large number of samples to
accurately reconstruct the model. Thus it is not suitable for
random walk sampling applications because the sample

size is usually small. Model-free bootstrapping techniques
such as Jackknife have the issue of invalid sub-samples in
random walk sampling applications. Our work proposes a
new variant of the Jackknife method with sub-sample selec-
tion which is fine tuned for the random walk sampling algo-
rithms. In our framework we allow the variance to increase
whenever the bias can be further reduced. We overcome the
increased variance by parallel random walks.

10 CONCLUSION

This paper develops an algorithmic framework to improve
the accuracy of random walk based statistical estimation
over graphs.We apply the bootstrapping technique to design
a bias reduction algorithm. Our algorithmic framework ena-
bles one to attain different trade-offs between the sample
complexity and the error of statistical estimation. Also, our
bias reduction algorithm is generic and can be applied to
optimize a large class of random walk sampling algorithms.
We provide theoretical guarantees and computational com-
plexity analysis of our proposed bias reduction algorithms.
Extensive experiments on four public datasets confirm the
effectiveness and efficiency of our proposed algorithmic
framework under themean squaremetric and beyond.

REFERENCES

[1] M. Kim and J. Leskovec, “Modeling social networks with node
attributes using the multiplicative attribute graph model,” in Proc.
27th Conf. Uncertainty Artif. Intell., 2011, pp. 400–409.

[2] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identi-
fication and learning over graphs: Accounting for nonlinearities
and dynamics,” Proc. IEEE, vol. 106, no. 5, pp. 787–807, May 2018.

[3] J. Lu and D. Li, “Bias correction in a small sample from big data,”
IEEE Trans. Knowl. Data Eng., vol. 25, no. 11, pp. 2658–2663, Nov.
2013.

[4] K. Nakajima and K. Shudo, “Estimating properties of social net-
works via random walk considering private nodes,” in Proc. 26th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 720–730.

[5] X. Yang, H. Steck, Y. Guo, and Y. Liu, “On top-k recommendation
using social networks,” in Proc. 6th ACM Conf. Recommender Syst.,
2012, pp. 67–74.

[6] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “A model-based
approach to attributed graph clustering,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 505–516.

[7] S. Zhang, J. Yang, and V. Cheedella, “Monkey: Approximate
graph mining based on spanning trees,” in Proc. IEEE 23rd Int.
Conf. Data Eng., 2007, pp. 1247–1249.

[8] Z. Zhou, N. Zhang, Z. Gong, and G. Das, “Faster randomwalks by
rewiring online social networks on-the-fly,” ACM Trans. Database
Syst., vol. 40, no. 4, pp. 1–36, 2016.

[9] M. Kurant, M. Gjoka, C. T. Butts, and A. Markopoulou, “Walking
on a graph with a magnifying glass: Stratified sampling via
weighted random walks,” in Proc. ACM SIGMETRICS Joint Int.
Conf. Meas. Model. Comput. Syst., 2011, pp. 281–292.

[10] C.-H. Lee, X. Xu, and D. Y. Eun, “Beyond random walk and
metropolis-hastings samplers: Why you should not backtrack for
unbiased graph sampling,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 40, no. 1, pp. 319–330, 2012.

[11] X. Xu, C.-H. Lee, and D. Y. Eun, “Challenging the limits: Sampling
online social networks with cost constraints,” in Proc. IEEE Conf.
Comput. Commun., 2017, pp. 1–9.

[12] S. Agarwal, “Ranking on graph data,” in Proc. 23rd Int. Conf. Mach.
Learn., 2006, pp. 25–32.

[13] C. E. Priebe, D. L. Sussman, M. Tang, and J. T. Vogelstein,
“Statistical inference on errorfully observed graphs,” J. Comput.
Graph. Statist., vol. 24, no. 4, pp. 930–953, 2015.

[14] D. Zhou and B. Sch€olkopf, “A regularization framework for learn-
ing from graph data,” in Proc. Workshop Statist. Relational Learn.
Int. Conf. Mach. Learn., 2004, pp. 132–137.

Fig. 14. Impact of number of random walks on the RMCE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines.
[community as attribute].

2928 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

[15] Y. Li et al., “Walking with perception: Efficient random walk sam-
pling via common neighbor awareness,” in Proc. IEEE 35th Int.
Conf. Data Eng., 2019, pp. 962–973.

[16] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking
in Facebook: A case study of unbiased sampling of OSNs,” in
Proc. IEEE INFOCOM, 2010, pp. 1–9.

[17] X. Chen, Y. Li, P. Wang, and J. C. Lui, “A general framework for
estimating graphlet statistics via random walk,” Proc. VLDB
Endowment, vol. 10, pp. 253–264, 2016.

[18] P. Wang et al., “MOSS-5: A fast method of approximating counts
of 5-node graphlets in large graphs,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 1, pp. 73–86, Jan. 2018.

[19] J. Zhao, P. Wang, J. C. Lui, D. Towsley, and X. Guan, “Sampling
online social networks by random walk with indirect jumps,”
Data Mining Knowl. Discov., vol. 33, no. 1, pp. 24–57, 2019.

[20] R.-H. Li, J. X. Yu, L. Qin, R. Mao, and T. Jin, “On random walk
based graph sampling,” in Proc. IEEE 31st Int. Conf. Data Eng.,
2015, pp. 927–938.

[21] L. Jin et al., “Albatross sampling: Robust and effective hybrid ver-
tex sampling for social graphs,” in Proc. 3rd ACM Int. Workshop
MobiArch, 2011, pp. 11–16.

[22] A. Kyrola, “DrunkardMob: Billions of random walks on just a
PC,” in Proc. 7th ACM Conf. Recommender Syst., 2013, pp. 257–264.

[23] K. Vora, G. Xu, and R. Gupta, “Load the edges you need: A
generic I/O optimization for disk-based graph processing,” in
Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2016, pp. 507–522.

[24] H. Liu and H. H. Huang, “Graphene: Fine-grained IO manage-
ment for graph computing,” in Proc. 15th Usenix Conf. File Storage
Technol., 2017, pp. 285–299.

[25] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang,
“KnightKing: A fast distributed graph random walk engine,” in
Proc. 27th ACM Symp. Oper. Syst. Princ., 2019, pp. 524–537.

[26] R. Wang, Y. Li, H. Xie, Y. Xu, and J. C. Lui, “GraphWalker: An I/
O-efficient and resource-friendly graph analytic system for fast
and scalable random walks,” in Proc. USENIX Conf. Usenix Annu.
Tech. Conf., 2020, Art. no. 38.

[27] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Boca
Raton, FL, USA: CRC Press, 1994.

[28] Z. Zhou, “Faster sampling over online social networks,” PhD dis-
sertation, George Washington Univ., Washington, DC, USA, 2015.

[29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” J. Chem. Phys., vol. 21, no. 6, pp. 1087–1092, 1953.

[30] L. Lov#asz et al., “Random walks on graphs: A survey,” Combina-
torics, Paul Erdos is Eighty, vol. 2, no. 1, pp. 1–46, 1993.

[31] B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans,
vol. 38. Philadelphia, PA, USA: SIAM, 1982.

[32] A. H. Rasti, M. Torkjazi, R. Rejaie, N. Duffield, W. Willinger, and
D. Stutzbach, “Respondent-driven sampling for characterizing
unstructured overlays,” in Proc. IEEE INFOCOM, 2009, pp. 2701–
2705.

[33] B. Ribeiro and D. Towsley, “Estimating and sampling graphs with
multidimensional random walks,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp. 390–403.

[34] X. Xu, C.-H. Lee, and D. Y. Eun, “A general framework of hybrid
graph sampling for complex network analysis,” in Proc. IEEE
Conf. Comput. Commun., 2014, pp. 2795–2803.

[35] J. Lu and H. Wang, “Variance reduction in large graph sampling,”
Inf. Process. Manage., vol. 50, no. 3, pp. 476–491, 2014.

[36] Z. Zhou, N. Zhang, and G. Das, “Leveraging history for faster
sampling of online social networks,” Proc. VLDB Endowment,
vol. 8, pp. 1034–1045, 2015.

[37] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their
Application, vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 1997.

[38] J. Shao and D. Tu, The Jackknife and Bootstrap. Berlin, Germany:
Springer, 2012.

[39] S. N. Lahiri, Resampling Methods for Dependent Data. Berlin, Ger-
many: Springer, 2013.

Hong Xie received the BEng degree from the
School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China, and the PhD degree from the
Department of Computer Science and Engineer-
ing, Chinese University of Hong Kong, Hong
Kong, advised by Prof. John C. S. Lui. He is cur-
rently a research professor with the College of
Computer Science, Chongqing University. He
was a postdoctoral research fellow with CUHK
and NUS.

Pei Yi received the BEng degree from Hohai Uni-
versity, Nanjing, China. He is currently working
toward themaster’s degree in the College of Com-
puter Science, Chongqing University, Chongqing,
China, under the supervision of Prof. Hong Xie.
His research interests include graph analytics,
Markov ChainMonte Carlo, etc.

Yongkun Li received the bachelor’s degree in
computer science from the University of Science
and Technology of China, Hefei, China, and the
PhD degree in computer science from the Chi-
nese University of Hong Kong, Hong Kong,
advised by Prof. John C. S. Lui. He is is an associ-
ate professor with the School of Computer Sci-
ence and Technology, University of Science and
Technology of China. Before that, he was a post-
doctoral fellow with the Institute of Network Cod-
ing, working with Prof. John C. S. Lui and Prof.
Patrick P. C. Lee.

John C. S. Lui (Fellow, IEEE) received the PhD
degree in computer science from the University
of California at Los Angeles, Los Angeles, Cali-
fornia. He was a chairman with the CSE Depart-
ment from 2005 to 2011. He is currently the
Choh-Ming Li chair professor with the Depart-
ment of Computer Science and Engineering, Chi-
nese University of Hong Kong. His current
research interests include communication net-
works, system security (e.g., cloud security,
mobile security, etc.), network economics, net-

work sciences, large-scale distributed systems, and performance evalu-
ation theory. He is an elected member of the IFIP WG 7.3, and a
Croucher senior research fellow. He was a recipient of the various
departmental teaching awards and the CUHK Vice-Chancellors Exem-
plary Teaching Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XIE ETAL.: OPTIMIZING RANDOMWALK BASED STATISTICAL ESTIMATION OVER GRAPHS VIA BOOTSTRAPPING 2929

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:50:17 UTC from IEEE Xplore. Restrictions apply.

