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Abstract—Conversational recommendation systems (CRSs) are
increasingly prevalent, but they are susceptible to the influence of
corrupted user behaviors, such as deceptive click ratings. These
behaviors can skew the recommendation process, resulting in sub-
optimal results. Traditional bandit algorithms, which are typically
oriented to single users, do not capitalize on implicit social con-
nections between users, which could otherwise enhance learning
efficiency. Furthermore, they cannot identify corrupted users in
a real-time, multi-user environment. In this paper, we propose a
novel bandit problem, Online Learning and Detecting Corrupted
Users (OLDCU), to learn and utilize unknown user relations from
disrupted behaviors to speed up learning and detect corrupted
users in an online setting. This problem is non-trivial due to the
dynamic nature of user behaviors and the difficulty of online
detection. To robustly learn and leverage the unknown relations
among potentially corrupted users, we propose a novel bandit
algorithm RCLUB-WCU, incorporating a conversational mech-
anism. This algorithm is designed to handle the complexities of
disrupted behaviors and to make accurate user relation inferences.
To detect corrupted users with bandit feedback, we further devise
a novel online detection algorithm, OCCUD, which is based on
RCLUB-WCU’s inferred user relations and designed to adapt
over time. We prove a sub-linear regret bound for RCLUB-WCU,
demonstrating its efficiency. We also analyze the detection accuracy
of OCCUD, showing its effectiveness in identifying corrupted users.
Through extensive experiments, we validate the performance of
our methods. Our results show that RCLUB-WCU and OCCUD
outperform previous bandit algorithms and achieve high corrupted
user detection accuracy, providing robust and efficient solutions in
the field of CRSs.

Index Terms—Adversarial corruption, online learning, conver-
sational recommendation, bandit feedback, clustering of bandits.
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I. INTRODUCTION

IN TODAY’S world, recommendation systems have found
extensive use across various domains. Traditional online

recommendation systems often suffer from slow learning rates,
necessitated by extensive exploratory phases to decode user
preferences. To hasten this learning process and deliver more
customized recommendations, the concept of the conversational
recommendation system (CRS) has been introduced [1], [2], [3],
[4]. A CRS engages users periodically to elicit explicit feedback
on specific “key-terms,” leveraging this additional conversa-
tional data to refine the understanding of user preferences [5],
[6]. Fig. 1 shows a CRS within a movie recommendation context,
where the learning agent, i.e., the platform, not only suggests
movies, but also investigates user inclinations regarding certain
themes, such as romance. This conversational dynamic enables
the system to craft recommendations that more closely align
with individual user tastes.

Despite recent advances in CRS, there is a continuous in-
flux of data from numerous users [7], [8], [9], even involving
conversational feedback level. Over time, the actions of these
users, such as clicks and ratings, can be maliciously manipulated
or disrupted [10], [11], [12], [13], [14]. Such disruptions can
skew the learning agent’s estimation of user preferences, lead-
ing the system to make less-than-ideal recommendations [9],
[15], [16], thereby negatively impacting the user experience.
Consequently, it’s imperative to develop robust online learning
strategies that can effectively learn from potentially manipulated
user behaviors and identify corrupted users in real time. Some
previous works propose bandit algorithms to interactively learn
the unknown user preferences from corrupted feedback [10],
[14], [17], [18].

Nonetheless, these initiatives are beset by two significant
shortcomings. First, they are predominantly tailored for robust
online preference learning on an individual user basis. In the
more complex multi-user environments, these algorithms do not
adequately harness the implicit inter-user relationships, which
could be exploited to enhance learning efficiency amidst dis-
rupted behaviors. Second, existing literature does not address
the online identification of corrupted users within a multi-user
framework. Although there are works dedicated to corrupted
user detection [19], [20], [21], [22], [23], they primarily operate
on the premise of pre-existing user information in an offline
context, rendering them ineffective for online detection based
on bandit feedback.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Fig. 1. A CRS illustration where users can offer feedback on two levels. The
conversational feedback level is highlighted by the dashed red box.

Fig. 2. Illustration of OLDCU. The unknown user relationships are depicted by
dotted circles. For instance, users 3 and 7 share similar tastes, which could place
them in the same user segment (i.e., cluster). Users 6 and 8 are corrupted users
due to their fluctuating behaviors over time. For example, user 8’s behaviors are
normal at times t1 and t3 (shown in blue), but become adversarially corrupted at
times t2 and t4 (shown in red) [10], [12], making it challenging to detect them
online. The agent’s task is to understand these user relationships to leverage
information from similar users to enhance recommendation quality, and online
identify corrupted users 6 and 8.

To overcome these limitations, as shown in Fig. 2, we propose
a novel bandit problem titled “Online Learning and Detecting
Corrupted Users from Bandit Feedback with Adversarial Cor-
ruption” (OLDCU), tailored for CRSs. To model and utilize
the relationships among users, we posit an unknown clustering
structure over users, where users with similar preferences are
grouped into the same cluster [24], [25], [26]. This allows the
agent to infer the clustering structure and leverage the informa-
tion of similar users for better recommendations. Some users,
known as corrupted users, occasionally exhibit corrupted behav-
iors to deceive the agent [10], [11], [12], [14], while most of the
time they mimic the behaviors of normal users to avoid detection.
The agent’s task is not only to robustly learn the unknown
user preferences and relationships from potentially disrupted
feedback and balance the exploration-exploitation trade-off to
maximize cumulative reward, but also to online detect corrupted
users.

The OLDCU problem presents significant challenges in the
realm of CRSs. First, corrupted behaviors can lead to inaccurate
estimations of user preferences, which in turn can result in
incorrect inferences about user relationships and sub-optimal
recommendations. Second, detecting corrupted users from ban-
dit feedback is a complex task, given the dynamic nature of
their behaviors (sometimes regular while sometimes corrupted).
This contrasts with offline settings, where static embeddings can

capture corrupted users’ information, and existing methods can
perform binary classifications offline, which are not designed to
adapt over time [27], [28]. To address these issues, we introduce
an online learning framework mainly comprising two innovative
algorithms:

1) RCLUB-WCU: To robustly estimate user preferences,
learn the unknown relations from potentially corrupted
behaviors, and perform high-quality recommendations,
we propose a novel bandit algorithm “Robust Clustering
of Bandits with Corrupted Users” (RCLUB-WCU), which
maintains a dynamic graph over users to represent the
learned clustering structure, where users linked by edges
are inferred to be in the same cluster. RCLUB-WCU
adaptively removes edges and recommends arms based
on the aggregated interactive information within clusters.
Key designs of RCLUB-WCU include: (i) Weighted ridge
regression for robust user preference estimation, using the
inverse of the confidence radius as weights to lessen the
impact of potentially corrupted samples. (ii) A conversa-
tional query mechanism that utilizes interactive histories
to adaptively select explorative key-terms, efficiently inte-
grating information from both recommendations and con-
versations. (iii) A robust edge deletion rule that accounts
for the potential impact of corruptions when determining
cluster boundaries, ensuring that users within the same
connected component are likely to belong to the same true
cluster.

2) OCCUD: To detect corrupted users from bandit feed-
back, we leverage the learned clustering structure of
RCLUB-WCU and develop a novel algorithm called
“Online Cluster-based Corrupted User Detection” (OC-
CUD). By comparing each user’s non-robust preference
vector with the robust cluster estimate, OCCUD flags
users as corrupted when the discrepancy exceeds a cer-
tain threshold. The underlying intuitions are as follows:
Corrupted users, due to their misleading behaviors, would
have non-robust preference estimations that deviate sig-
nificantly from the ground truths. Conversely, with the
accurate clustering provided by RCLUB-WCU, the robust
preference estimations of users’ inferred clusters should
closely align with the ground truths. Therefore, for cor-
rupted users, their non-robust estimates should signifi-
cantly differ from the robust estimates of their inferred
clusters.

In summary, this paper makes the following contributions.! Considering challenges posed by the presence of adversar-
ial corruption in user feedback within an online conversa-
tional recommendation system, we introduce the OLDCU
problem, focusing on how to online detect corrupted users
and maximize the cumulative reward.! We propose the RCLUB-WCU and OCCUD algorithms
within our novel online learning framework to address
the OLDCU problem. RCLUB-WCU minimizes regret
by leveraging social relations, while OCCUD detects cor-
rupted users online based on inferred user relations.! We prove the regret upper bound for RCLUB-WCU
even with corrupted conversational bandit feedback, which
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perfectly matches existing state-of-the-art results in several
degenerate settings. We also give a theoretical performance
guarantee for the detection algorithm OCCUD.! Through experiments on both synthetic and real-world
datasets, we demonstrate that our proposed algorithms
outperform existing bandit algorithms and achieve high
accuracy in detecting corrupted users.

II. PROBLEM FORMULATION

This section formulates the problem of “Online Learning and
Detecting Corrupted Users for Conversational Recommenda-
tion System” (OLDCU) (illustrated in Fig. 2).

A. Online Learning and Detecting Corrupted Users

In the context of conversational recommendation systems
(CRS), here are u users to be served, which we denote by the
set U = {1, 2, . . . , u}. A subset of users, denoted Ũ ⊆ U , may
exhibit corrupted behaviors. These users attempt to blend in with
normal users to avoid detection, while occasionally engaging in
actions that lead the system to make poor recommendations.
Each user i ∈ U , no matter a normal one or corrupted one,
has an associated preference feature vector θi ∈ Rd, which
is unknown to the system and bounded such that ‖θi‖2 ≤ 1.
Users are thought to be organized into an unknown clustering
structure based on preference similarities, which the system must
learn through interaction. The set of users U is divided into
m clusters, V1, V2, . . . , Vm, each cluster containing users with
identical preference vectors and users from different clusters
having distinct preference vectors. Specifically, the set of users
U can be partitioned into m (m % u) clusters, V1, V2, . . . Vm,
where ∪j∈[m]Vj = U , and Vj ∩ Vj′ = ∅, for j *= j′. Users in the
same cluster have the same preference feature vector, while users
in different clusters have different preference vectors. We use θj

to denote the common preference vector shared by users in the
j-th cluster Vj , and use j(i) to denote the index of cluster user
i belongs to (i.e., i ∈ Vj(i)). Then we have: for any two users
k, i ∈ U , if k ∈ Vj(i), then θk = θj(i) = θi; otherwise θk *= θi.
We assume that the arm set A ⊆ Rd is finite. Each arm a ∈ A is
associated with a feature vector xa ∈ Rd with ‖xa‖2 ≤ 1. We
denote ‖x‖M =

√
x,Mx, [m] = {1, . . . ,m}, the number of

elements in set A as |A|.
The agent’s learning process operates as follows. In each

round t ∈ [T ], a user it ∈ U arrives and the learning agent must
choose from a subset of arms, At ⊆ A. The agent determines
the user’s cluster Vt from past interactions and selects an arm
at ∈ At using information aggregated from Vt. When the user
receives at, they provide a reward, such as click-through rate
(CTR), expected to be x,

at
θit . We utilize a linear model for

online recommendations due to its computational efficiency,
with options to include non-linear relationships by incorpo-
rating deep learning architectures like DNNs or Transformers.
This is facilitated by a feature mapping function ϕ : A → Rd,
representing each arm as a feature vector xat = ϕ(at), which
effectively captures complex user-item interactions [6], [29].

However, corrupted users can manipulate the feedback. Adopt-
ing the approach from previous works [10], [12], we model cor-
rupted users as occasionally manipulating rewards to misdirect
the agent towards sub-optimal arms. Specifically, at each round
t, if the current served user is a corrupted user (i.e., it ∈ Ũ ), the
user can corrupt the reward by ct. To summarize, the reward that
the agent receives at round t is modeled as:

rt = x,
at
θit + ηt + ct, (1)

where ct = 0 if it is a normal user, (i.e., it /∈ Ũ), and ηt is 1-
sub-Gaussian random noise. As the number of corrupted users is
usually small (i.e., |Ũ | % u), and they only corrupt the rewards
occasionally with small magnitudes to make themselves hard
to be detected, we assume the sum of corruption magnitudes
in all rounds is upper bounded by the corruption level C, i.e.,∑T

t=1 |ct| ≤ C [10], [14], [18].
The learning agent’s objectives are twofold. One objective of

the learning agent is to minimize the expected cumulative regret,
which quantifies the difference between the expected cumulative
rewards gained from the optimal policy and the algorithm used
by the agent:

R(T ) = E
[

T∑

t=1

(x,
a∗
t
θit − x,

at
θit)

]
, (2)

where a∗t ∈ argmaxa∈At
x,
aθit denotes an optimal arm with

the highest expected reward at round t. The second objective
is to identify corrupted users online using bandit feedback.
Specifically, at each round t, the agent identifies a set of users,
denoted as Ũt, suspected to be corrupted. The goal is to make
Ũt as close as possible to the actual set of corrupted users Ũ .

B. Conversational Contextual Bandit Feedback

Compared to traditional recommendation systems, in the con-
text of CRSs, the system not only provides recommendations
but also possesses the capability to intermittently solicit direct
feedback from users regarding specific “key-terms” to gain a
better understanding of user preferences. A “key-term” is a
keyword or topic that is associated with a subset of arms. For
instance, the key-term “movie” could be related to arms such
as comedy, horror, action, etc. Let us denote a finite set of
such key-terms as K, with a total count of K key-terms. The
association between arms and key-terms is depicted through
a weighted bipartite graph (A,K,W ), where W , defined as
W ! [wa,k], a ∈ A, k ∈ K, represents the weight matrix that
signifies the strength of the relationship between each arm
a ∈ A and key-term k ∈ K. A weight wa,k ≥ 0 indicates the
association level, with the assumption that every key-term k is
positively connected to at least some arms (i.e.,

∑
a∈A wa,k > 0

for all k ∈ K), and the sum of weights for each arm is normalized
to 1 (i.e.,

∑
k∈K wa,k = 1 for each a ∈ A). The feature vector

of a key-term k is constructed as x̃k =
∑

a∈A
wa,k∑

a′∈A wa′,k
xa.

The feedback mechanism for a key-term k at time t from a user



8942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

it ∈ U , who may be either normal or corrupted, is mathemati-
cally expressed as:

r̃k,t = x̃,
k θit + η̃t + c̃t, (3)

where η̃t is assumed to be 1-sub-Gaussian random noise, and
c̃t is corrupted conversational reward, with c̃t = 0 if it /∈ Ũ .
Here, we also assume the sum of corruption magnitudes in all
rounds is upper bounded by the corruption level. Building on
the insights from prior works [5], [6], [30], [31], the unknown
user preference vector θit is essentially assumed to be the same
at both the arm level and the key-term level. However, a notable
departure from earlier conversational bandit frameworks is that
our model acknowledges the possibility of corruption even at
the key-term feedback level.

To maintain a positive user experience, it is crucial to regulate
the frequency of the system’s conversational engagements. To
this end, we introduce a conversation frequency function bit(t)
tailored for the user currently being served, it. This function
governs the number of conversational prompts initiated by the
system. At each round t, the system may engage in q(t) =
1bit(t)− bit(t− 1)2 conversations with the user it, provided
that the condition bit(t)− bit(t− 1) > 0 is satisfied. For ex-
ample, if bit(t) = k1 t

m2 with m ≥ 1 and k ≥ 1, the system
will initiate k conversations at every m-round interval. Under
this model, the system will engage in bit(t) conversational
interactions with the user it.

III. ALGORITHM DESIGN

In this section, we present our algorithms designed to address
the OLDUC problem. RCLUB-WCU (see in Algorithm 1) is a
bandit algorithm that effectively learns the unknown user cluster-
ing structure and preferences, even in the presence of potentially
corrupted user behaviors. Expect utilizing the cluster-based in-
formation, it also conducts occasional conversations with users
via key-term selection, to enhance recommendation quality (see
in Algorithm 2). Building on the clustering structure discerned
by RCLUB-WCU, the OCCUD algorithm (see in Algorithm 3)
is capable of accurately identifying corrupted users based on
bandit feedback.

A. RCLUB-WCU

The corrupted user behaviors may cause inaccurate user
preference estimations, leading to erroneous relation inference
and sub-optimal recommendations. In this case, how to learn
and utilize the unknown user relations to make good recom-
mendations becomes non-trivial. Motivated by this, we design
RCLUB-WCU as follows.

Assign the inferred cluster Vt for user it: RCLUB-WCU
maintains a dynamic undirected graph Gt = (U , Et) over users,
which is initialized to be a complete graph (Algorithm 1 Line 2).
Users with similar learned preferences will be connected with
edges in Et. The connected components in the graph represent
the inferred clusters by the algorithm. At round t, user it comes
to be served with a feasible arm set At for the agent to choose
from (Line 4). In Line 6, RCLUB-WCU detects the connected

Algorithm 1: RCLUB-WCU.
1: Input: Regularization parameter λ, confidence radius

parameter β, threshold parameter α, edge deletion
parameter α1,
f(T ) =

√
(1 + ln(1 + bi(T ) + T ))/(1 + bi(T ) + T ).

2: Initialization:!M i,0 = 0d×d, bi,0 = 0d×1,
M̃ i,0 = 0d×d, b̃i,0 = 0d×1, Ti,0 = 0, ∀i ∈ U ;! A complete graph G0 = (U , E0) over U .

3: for all t = 1, 2, . . . , T do
4: Receive the index of the current served user it ∈ U ,

get the feasible arm set at this round At.
5: Select key-terms to conduct conversations and receive

feedback if conversation is allowed (Algorithm 2);
6: Determine the connected components Vt in the current

maintained graph Gt−1 = (U , Et−1) such that it ∈ Vt.
7: Calculate robustly estimated statistics for the cluster

Vt:

MVt,t−1 = λI +
∑

i∈Vt

M i,t−1 ,

bVt,t−1 =
∑

i∈Vt

bi,t−1 , θ̂Vt,t−1 = M−1
Vt,t−1bVt,t−1 ;

8: Recommend an arm at with the largest UCB index as
in (6) and receive the corresponding reward rt;

9: Update the statistics for robust estimation of user it:

M it,t = M it,t−1 + wit,t−1xatx
,
at
,

bit,t = bit,t−1 + wit,t−1rtxat , Tit,t = Tit,t−1 + 1 ,

θ̂it,t = (λI +M it,t)
−1bit,t ,

wit,t = min

{
1,

α

‖xat‖M−1
it,t

}
;

10: Keep robust estimation of other users unchanged:

M !,t = M !,t−1, b!,t = b!,t−1, T!,t = T!,t−1,

θ̂!,t = θ̂!,t−1, for all % ∈ U , % *= it;

11: Delete the edge (it, %) ∈ Et−1, if
∥∥∥θ̂it,t − θ̂!,t

∥∥∥
2
≥ α1 (f(Tit,t) + f(T!,t) + (1 +K)αC) ,

and get an updated graph Gt = (U , Et);
12: Detect corrupted users by using OCCUD (Algorithm

3).
13: end for

component Vt in the graph containing user it to be the current
inferred cluster for it.

Robust preference estimation of cluster Vt: After determining
the cluster Vt for user it, RCLUB-WCU estimates the com-
mon preferences for users in cluster Vt using the historical
feedback of all users within Vt and recommends an arm to it
accordingly. The corrupted behaviors could cause inaccurate
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preference estimates, which can mislead the agent to make
sub-optimal recommendations. To address this issue, inspired
by [12], [32], we use the weighted ridge regression to make
estimations robust to corruptions. Specifically, RCLUB-WCU
robustly estimates the common preference vector of cluster Vt

by solving the following weighted ridge regression

θ̂Vt,t−1 = argmin
θ∈Rd

∑

s∈[t−1]
is∈Vt

wis,s(rs − x,
as
θ)2 + λ ‖θ‖22 , (4)

where λ > 0 is a regularization coefficient. This optimization
problem has a closed-form solution θ̂Vt,t−1 = M−1

Vt,t−1bVt,t−1 ,

where MVt,t−1 = λI +
∑

s∈[t−1]
is∈Vt

wis,sxasx
,
as

, bVt,t−1 =
∑

s∈[t−1]
is∈Vt

wis,srasxas .

In the above equations, we set the weight for user is in Vt

at round s as wis,s = min{1,α/‖xas‖M−1
is,s−1

}, where α is the
threshold coefficient to be determined later. The intuitions of
designing these weights are as follows. The term ‖xas‖M−1

is,s−1

is the confidence radius of the arm as for user is at round s,
representing the confidence that the algorithm has about the
estimation of the user is’s preference in arm as in s. Specifically,
if ‖xas‖M−1

is,s−1
is large, it means that the learning agent is uncer-

tain of user is’s preference on as, intuitively indicating that this
sample is more likely to be a corrupted one. Therefore, at round
s, we use the inverse of confidence radius α/‖xas‖M−1

is,s−1
to

assign a small weight to the sample at this round if it is potentially
corrupted. By doing this, uncertain interactive information for
each user in cluster Vt is assigned with less importance when
estimating the preference vector for Vt, which could help relieve
the estimation inaccuracy caused by those uncertain samples
that might be corrupted. For technical details, please refer to
the theoretical analysis in Section IV-A and the proofs in the
Appendix, available online.

Conversational query with key-terms: Interactions at the key-
term level are shown in Algorithm 2. At round t, the agent
initially determines the feasibility of conversations using bit(t).
If conversations are permitted, the agent requests the user’s
feedback on q(t) key-terms and employs this feedback to update
the system parameters. A key-term with an extensive confidence
radius indicates that the recommendation system has not fully
delved into the user’s preferences related to its corresponding
items. This implies that such a key-term is ideal for further
exploration. With this insight, we tactically choose key-terms
with the most extensive confidence radius to enable adaptive,
exploratory conversations. Specifically, when a conversation is
allowed at a given round t, a key-term is selected according to
the following equation:

k ∈ argmax
k∈Kt

βt ‖x̃k‖M−1
it,t

, (5)

where Kt ⊆ K represents the potentially time-dependent
set of key-terms available at t and βt =

√
λ +√

2 log(T ) + d log(1 +
bit (t)+t

λd ) + (1 +K)αC is the
confidence radius parameter. By opting for key-terms with
the largest confidence radius, Algorithm 2 can adaptively
solicit user feedback on key-terms whose associated areas have

Algorithm 2: Conversational Query With Key-Terms (At
Round t, Used in Line 5 in Algorithm 1).

1: Input: Graph (A,K,W ), conversation frequency
function bit(t).

2: if bit(t)− bit(t− 1) > 0 then
3: q(t) = 1bit(t)− bit(t− 1)2;
4: while q(t) > 0 do
5: Select a key-term k ∈ Kt according to (5) and query

the user’s preference over it;
6: Receive the user’s feedback r̃k,t;
7: M it,t = M it,t−1 + w̃it,t−1x̃kx̃

,
k ,

bit,t = bit,t−1 + w̃it,t−1x̃kr̃k,t, w̃it,t =

min

{
1, α

‖x̃k‖M−1
it,t

}
;

8: q(t) −= 1;
9: end while

10: else
11: M it,t = M it,t−1, bit,t = bit,t−1;
12: end if

been least explored to date. This approach effectively utilizes
interactive information to guide the selection of key-terms,
thereby enhancing the exploration of user preferences. We
denote the total selected key-terms as K′

t ⊆ Kt at round t.
Recommend at with estimated preference of cluster Vt: Based

on the corruption-robust preference estimation θ̂Vt,t−1 of cluster
Vt, in Line 8, the agent recommends an arm using the upper
confidence bound (UCB) strategy to balance exploration and
exploitation

at = argmax
a∈At

x,
a θ̂Vt,t−1︸ ︷︷ ︸
R̂a,t

+βt ‖xa‖M−1
Vt,t−1︸ ︷︷ ︸

Ca,t

, (6)

where R̂a,t denotes the estimated reward of arm a at t and Ca,t

denotes the confidence radius of arm a at t, respectively. The
design of Ca,t theoretically relies on Lemma 2 that will be given
in Section IV.

Update the robust estimation of user it: After receiving the
reward rt, the algorithm updates the estimation statistics of
user it, while keeping the statistics of other users unchanged
(Line 9 and Line 10). Specifically, RCLUB-WCU estimates the
preference vector of user it by solving the following weighted
ridge regression

θ̂it,t = argmin
θ∈Rd

∑

s∈[t]
is=it

wis,s(rs − x,
as
θ)2 + λ ‖θ‖22 . (7)

This has a closed-form solution θ̂it,t = (λI +M it,t)
−1bit,t,

with the weights designed in the same way as before by the
same reasoning, where M it,t =

∑
s∈[t]
is=it

wis,sxasx
,
as

, bit,t =∑
s∈[t]
is=it

wis,srasxas .

Update the dynamic graph: Finally, with the updated prefer-
ence estimation of user it, RCLUB-WCU checks whether the
current inferred user it’s preference similarities with other users
are still true, and updates the maintained graph accordingly.
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Algorithm 3: OCCUD (At Round t, Used in Line 12 in
Algorithm 1).

1: Initialize Ũt = ∅; Input probability parameter δ.
2: Update the statistics for non-robust estimation of user it:

M̃ it,t = M̃ it,t−1 + xatx
,
at

+
∑

k∈K′
t

x̃kx̃
,
k ,

b̃it,t = b̃it,t−1 + rtxat +
∑

k∈K′
t

x̃kr̃k,t ,

θ̃it,t = (λI + M̃ it,t)
−1b̃it,t .

3: Keep non-robust estimation of other users unchanged:

M̃ !,t = M̃ !,t−1, b̃!,t = b̃!,t−1,

θ̃!,t = θ̃!,t−1, for all % ∈ U , % *= it.

4: for all connected component Vj,t ∈ Gt do
5: Calculate robust estimation statistics for the cluster

Vj,t:

MVj,t,t = λI +
∑

!∈Vj,t

M !,t , TVj,t,t =
∑

!∈Vj,t

T!,t ,

bVj,t,t =
∑

!∈Vj,t

b!,t , θ̂Vj,t,t = M−1
Vj,t,t

bVj,t,t ;

6: for all user i ∈ Vj,t do
7: Detect user i to be a corrupted user and add user i to

the set Ũt if the following holds:
∥∥∥θ̃i,t − θ̂Vi,t,t−1

∥∥∥
2
>

g(Ti,t)√
λmin(M̃ i,t) + λ

+
g(TVi,t,t) + (1 +K)αC

√
λmin(MVi,t,t)

.

(8)

8: end for
9: end for

Precisely, if the l2-norm of the difference between the updated
estimated preference vector θ̂it,t of user it and the estimation
θ̂!,t of user % is larger than a threshold defined in Line 11,
RCLUB-WCU will delete the edge (it, %) in Gt−1 to separate
them apart. This threshold is carefully designed, considering the
estimation uncertainty caused by both stochastic noises and po-
tentially corrupted behaviors. The updated graph Gt = (U , Et)
will be used in the next round.

B. OCCUD

Based on the inferred clustering structure of RCLUB-WCU,
we propose a novel algorithm, OCCUD, that can detect cor-
rupted users in an online manner. We summarize how OCCUD
works at round t in Algorithm 3. The design ideas and process
of OCCUD are as follows.

Besides the robust preference estimations (with weighted
ridge regression) of users and clusters kept by RCLUB-WCU,

OCCUD also maintains the non-robust estimations for each user
by regular online ridge regression without weights (Line 2 and
Line 3). Specifically, at round t, OCCUD updates the non-robust
estimation of user it by solving the following online regression
without weights:

θ̃it,t = argmin
θ∈Rd

∑

s∈[t]
is=it

(rs − x,
as
θ)2 + λ ‖θ‖22 , (9)

which has a closed-form solution θ̃it,t=(λI + M̃ it,t)
−1
b̃it,t,

where M̃ it,t =
∑

s∈[t]
is=it

xasx
,
as

, b̃it,t =
∑

s∈[t]
is=it

rasxas .

With the robust and non-robust preference estimations, OC-
CUD does the following to detect corrupted users based on the
clustering structure inferred by RCLUB-WCU. First, OCCUD
finds the connected components in the graph kept by RCLUB-
WCU, which represent the inferred clusters for the users. Then,
for each inferred cluster Vj,t ∈ Gt: (1) OCCUD computes its
robustly estimated preferences vector θ̂Vi,t,t (Line 5). (2) Denote

g(x) =
√
d log(1 + bi(t)+x

λd ) + 2 log(T ) +
√

λ and λmin(·) as
the minimum eigenvalue of the matrix argument. For each user i
whose inferred cluster is Vj,t (i.e.,i ∈ Vj,t), OCCUD calculates
the difference between user i’s non-robustly estimated prefer-
ence vector θ̃i,t and the robustly estimated preference vector
θ̂Vi,t,t for user i’s inferred cluster Vj,t. If the difference is larger
than a carefully designed threshold, OCCUD will detect user i
as a corrupted user and add user i to the detected corrupted user
set Ũt (Line 7).

The intuitions of the OCCUD algorithm are as follows. On the
one hand, after some interactions, the RCLUB-WCU algorithm
will infer the user clustering structure accurately. Thus, at round
t, the robustly-estimated preference vector θ̂Vi,t,t for user i’s
inferred cluster should be pretty close to user i’s ground-truth
preference vector θi. On the other hand, since the behaviors of
normal users are always regular, at round t, if user i is a normal
user, the non-robustly estimated preference vector θ̃i,t should
also be close to the ground-truth θi. However, the non-robustly
estimated preference vector of a corrupted user should be quite
far from the ground truth due to the disruptions of the corrupted
behaviors. Based on the above reasoning, to detect the corrupted
users, for each user, OCCUD compares the user’s non-robustly-
estimated preference vector and the robustly-estimated prefer-
ence vector of the user’s inferred cluster. If the difference exceeds
a carefully designed threshold, then with a high probability, this
user is a corrupted user. For theoretical support and technical
details about this threshold, please refer to the discussions and
proof in Section IV-B and Appendix, available online. Simple
illustrations of our proposed algorithms can be found in Fig. 3.
Note that while our algorithms are initially developed within
the context of the CRS framework, their applicability extends
beyond this scope. The broader relevance and adaptability of our
algorithms are elaborated in Section V-B.

IV. THEORETICAL ANALYSIS

In this section, we theoretically analyze the performances of
our proposed algorithms, RCLUB-WCU and OCCUD. For ease
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Fig. 3. Algorithm illustrations. Users from 1 to 8 correspond to the 8 users in Fig. 2, where users 6 and 8 can be corrupted at some time steps (orange), while the
other users are never corrupted (green). (a) illustrates RCLUB-WCU, which starts with a fully connected user graph, and adaptively deletes edges between users
(dashed lines) with dissimilar robustly learned preferences. The corrupted behaviors of users 6 and 8 may cause inaccurate user preference estimations, leading to
erroneous relation inference. In this case, how to delete edges correctly becomes non-trivial, and our algorithm addresses this challenge (detailed in Section III-A).
(b) illustrates OCCUD. We use person icons with triangle hats to represent the non-robust user preference estimations. In this illustration, the gap between the
non-robust estimation of user 6 and the robust estimation of user 6’s inferred cluster (circle C1) exceeds the threshold r6 (from Line 7 in Algorithm 3), then
OCCUD detects user 6 to be corrupted.

of exposition, we put the proofs in the Appendix, available on-
line. We first make the following assumptions about the clusters,
users, and items, which are consistent with the settings from
previous works on clustering of bandits [24], [25], [33].

Assumption 1 (Gap Between Different Clusters): Impractical
to assume that only cameras with identical feature vectors form
a group for configuration sharing, the gap between any two
preference vectors for different clusters is at least γ

∥∥∥θj − θj′
∥∥∥
2
≥ γ > 0 , ∀j, j′ ∈ [m] , j *= j ′ ,

where γ is an unknown positive constant.
Assumption 2 (Uniform Arrival of Users): At each round t,

a user it comes uniformly at random from U with probability
1/u, independent of the past rounds.

Assumption 3 (Item Regularity): At each round t, the feature
vector xa of each arm a ∈ At is drawn independently from a
fixed unknown distribution ρ over {x ∈ Rd : ‖x‖2 ≤ 1}, where
Ex∼ρ[xx,]’s minimal eigenvalue λx > 0. At ∀t, for any fixed
unit vector z ∈ Rd, (θ,z)2 has sub-Gaussian tail with variance
no greater than σ2.

A. Regret Analysis of RCLUB-WCU

In this section, we present a theoretical performance guar-
antee for RCLUB-WCU by establishing an upper bound on its
expected regret, as defined in (2). Regret is defined as the dis-
crepancy between the cumulative rewards accrued by the agent
and those obtained by an oracle strategy. By standard practice,
the conversation frequency is bounded by bi(t) ≤ t, I ∈ U . For
the purposes of our analysis, we will therefore assume a linear
relationship of the form bi(t) = bi · t, where bi is a constant that
lies within the open interval (0, 1).

First, we prove the following lemma which gives a sufficient
time, after which RCLUB-WCU can cluster all the users cor-
rectly with high probability.

Lemma 1: With the robust preference estimations, RCLUB-
WCU will gather enough information for every user after:

t ≥ O

(
u

(
Cd

γ2λ̃x

+
1

λ̃2
x

)
ln(T )

)
, (10)

where λ̃x !
∫ λx

0 (1− e−
(λx−x)2

2σ2 )cdx, |At| ≤ c, ∀t ∈ [T ].
After correct clustering, the following lemma gives a high-

probability upper bound of the gap between θ̂Vt,t−1 and the
ground-truth θit in the direction of the action vector xa for
RCLUB-WCU, supporting the design of the confidence radius
Ca,t in (6).

Lemma 2: With probability at least 1− 5δ for some δ ∈
(0, 1

5 ) after correctly clusering, for each user it, we have:
∣∣∣xT

a (θ̂Vt,t−1 − θit)
∣∣∣ ≤ β ‖xa‖M−1

Vt,t−1
! Ca,t ,

where β =
√

λ +
√

2 log( 1δ ) + d log(1 +
bit (T )+T

λd ) + (1 +

K)αC.
With Lemmas 1 and 2, we prove the following main theorem

about the regret upper bound of RCLUB-WCU, which gives the
first sub-linear regret bound for the OLDCU problem.

Theorem 3: (Regret Upper Bound of RCLUB-WCU) With the
assumptions in Section II and α =

√
d+

√
λ

C , the expected regret
of the RCLUB-WCU algorithm for T rounds satisfies:

R(T ) ≤ O

((
Cd

γ2λ̃x

+
1

λ̃2
x

)
u log(T )

)
+O

(
d
√
mT log(T )

)

+O
(
mCd log1.5(T )

)
. (11)

The regret upper bound shown in (11) is composed of three
terms. The first term is the sufficient time for correctly clustering
(defined in Lemma 1) needed to get enough information for
accurate robust preference estimations such that the algorithm
could cluster all users correctly afterward with high probability,
where the number of users u relies on this term. Note that this
term is related to the corruption level C, which is inevitable
since, intuitively, if there are more corrupted user behaviors, it
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will be harder for the algorithm to learn the underlying clustering
structure correctly. The last two terms correspond to the regret
after correctly clustering with the correct learned clustering
structure. Specifically, the second term is caused by the stochas-
tic noises when leveraging the aggregated information within
clusters to make recommendations; the third term is the regret
caused by the disruption of corrupted user behaviors, which is
associated with the corruption level C.

When the corruption level C is unknown, we can use its
estimated upper bound Ĉ !

√
T to replace C in the algorithm.

In this way, ifC ≤ Ĉ, the result of regret bound will be replacing
C with Ĉ in (11); in the case when C >

√
T , R(T ) = O(T ),

which as supported by [12], is already optimal for a large class
of bandit algorithms.

Discussions about the tightness of our regret bound: Since our
work is the first study on the OLDCU problem, we will compare
our regret upper bound with several degenerated cases to show
the tightness of our result.! First, in the case when C = 0, i.e., all users are normal, our

setting degenerates to the classic CB problem [24]. In this
case the bound in Theorem 3 becomes O

(
1
λ̃2
x
u log(T )

)
+

O
(
d
√
mT log(T )

)
, perfectly matching the state-of-the-art

results in CB [24], [25], [26].! Second, in the case when m = 1 and u = 1, i.e., there is
only one user, our setting degenerates to linear bandits with
adversarial corruptions [12], [17], and the bound in The-
orem 3 becomes O

(
d
√
T log(T )

)
+O

(
Cd log1.5(T )

)
, it

also perfectly matches the nearly optimal result in [12].
The above comparisons show the tightness of the regret bound

of our proposed RCLUB-WCU algorithm, indicating nearly
optimal recommendation performance of RCLUB-WCU.

B. Theoretical Performance Guarantee for OCCUD

We theoretically prove the following theorem, which gives a
performance guarantee of the corrupted user detection algorithm
OCCUD.

Theorem 4: (Theoretical Guarantee for OCCUD) With the
assumptions in Section II, the carefully designed threshold in
Algorithm 3 Line 7 after correctly clusering, for any detected
corrupted user i ∈ Ũt, with probability at least 1− 5δ, this user
i is indeed a corrupted user.

This theorem theoretically guarantees that after RCLUB-
WCU learns the clustering structure accurately, with high prob-
ability, the corrupted users detected by OCCUD are indeed
corrupted, showing the high detection accuracy of our proposed
OCCUD algorithm.

V. EXPERIMENTS

We carry out a thorough set of experiments to resolve the
ensuing research questions:! RQ1: How effectively can RCLUB-WCU learn and utilize

user preferences and relationships to deliver personalized
online recommendations with corrupted users?

! RQ2: Is OCCUD capable of accurately detecting corrupted
users in real-time, given potentially compromised bandit
feedback?! RQ3: Does RCLUB-WCU demonstrate greater robustness
compared to baseline algorithms when faced with different
user preferences, levels of corruption, conversation fre-
quency and arm set sizes?

To thoroughly assess the versatility of our proposed al-
gorithms, we conduct two distinct scenarios: one devoid of
conversational feedback to ascertain the algorithm’s universal
applicability even in traditional recommendation systems, and
another enriched with diverse forms of conversational feedback
to underscore the algorithm’s enhanced performance within the
CRS framework.

A. Experiment Setup

1) Datasets: We perform our experiments utilizing both syn-
thetic and real-world datasets. Below is the detailed information
regarding the publicly available real-world datasets utilized in
our paper:! Movielens [34]: This dataset comprises ratings from 2,113

users across 10,197 movies. The Movielens dataset does
not provide explicit labels for fraudulent users; therefore,
we have manually identified such users by adopting the
methodology in [35].! Amazon [36]: We utilize a subset of the Amazon musical
instrument reviews dataset, which includes contributions
from 1,429 users pertaining to 900 items. In the Amazon
dataset, we categorize users as normal if they have received
helpful votes exceeding 80%, and as fraudulent if they have
received less than 20%, in line with [21].! Yelp [37]: The Yelp dataset is extensive, featuring
1,987,929 users and 150,346 items, primarily focusing on
restaurant reviews. It comes with authentic labels for users,
distinguishing between normal and fraudulent activities
based on their review patterns.! Last.fm [38]: Originating from the online music service
Last.fm, this dataset encompasses 186,479 tag assign-
ments, linking 1,892 users to 17,632 artists. Potential cor-
rupted users are identified based on their tagging patterns
and deviations from the norm [35].

The datasets exhibit varying proportions of fraudulent users,
specifically 10%, 3.5%, 30.9% and 8.5% for the Movielens,
Amazon, Yelp, and Last.fm datasets, respectively. To accommo-
date the diverse scales of these datasets, we strategically select
subsets of the most active users (those who provide the highest
number of ratings) and the items that have garnered the most
ratings, aligning with [6], [25], [26]. Additionally, corrupt users
are considered to provide negative rewards based on the normal
rewards from the aforementioned datasets, thus allowing us to
assess the performance of our algorithm even in the most extreme
scenarios.

2) Evaluation Metrics: To evaluate the performance of the
RCLUB-WCU recommendation, we use cumulative regret, a
standard metric in bandit scenarios [7], [29], [39]. To assess
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the detection of corrupted users by OCCUD, we use the AUC
metric [21], [33], which measures the model’s ability to differ-
entiate between corrupted and normal users. To measure user
experience in the presence of potentially corrupted feedback,
we use the sum of all the ratings of random users from the real
dataset as a metric [25]. All the experiments are conducted on
PCs with Intel(R) Xeon(R) Gold 6240C @ 2.60 GHz, and AMD
Ryzen 7 4800H with Radeon graphics @ 2.90 GHz.

3) Evaluation Parameters: In alignment with the publicly
available code of the previous works [12], [40], we adopt a
unified parameter setting to facilitate a direct and equitable
comparison. Specifically, we set the regularization parameter
λ to 1, the confidence radius parameter β to 1.5, the threshold
parameter α to 0.2, and the edge deletion parameter α1 to 1.
Additionally, the experiment also includes an ablation analysis
to examine parameter sensitivity.

B. Evaluation Without Conversational Feedback

In this section, we explore an extreme scenario under CRS
where bi(t) ≡ 0, ∀i ∈ U . This specific circumstance enables us
to focus exclusively on evaluating the performance of RCLUB-
WCU and OCCUD under the condition of no conversational
feedback, using both synthetic and real-world datasets.

1) Baseline Comparisons: To evaluate the effectiveness of
our approach, we benchmark against several existing methods.
Traditional offline detection techniques [20], [21], [27], [28]
rely on comprehensive user data acquired prior to creating user
encodings for classification, which is not feasible for online
detection in bandit feedback environments. Therefore, we focus
on comparing our algorithm with six online recommendation
baselines and one baseline specifically designed for online cor-
rupted user detection within bandit feedback.! LinUCB [41]: Use a single non-robust estimated vector to

represent the preference of each user.! LinUCB-ind: Use a separate LinUCB for each user.! CW-OFUL [12]: A state-of-the-art bandit approach with
robust estimated vector for all users.! CW-OFUL-ind: Use a separate CW-OFUL for each user.! CLUB [24]: A graph-based clustering for multiple users.! SCLUB [26]: A set-based clustering of bandits approach
for multiple users without corruption.

Moreover, our approach to online corrupted user detection
is a pioneering study in this area. Consequently, there are no
pre-existing baselines for direct comparison. Therefore, we
introduce our OCCUD algorithm and compare it with two
novel baseline methods. The first method, GCUD, utilizes a
graph-based clustering structure. It identifies corrupted users by
selecting those with the largest euclidean distance between their
current and previous user parameters, represented as ‖θ̂i,t −
θ̂Vi,t,t−1‖2. This method assumes a known proportion of user
corruption, which is unrealistic in many practical situations.
The second baseline, NCUD, employs a simpler approach by
comparing non-robust estimators of user parameters without in-
corporating weighted regression. Both of these baseline methods
rely on the RCLUB-WCU framework to detect corrupted users.
This comparison aims to demonstrate the non-trivial nature of

OCCUD’s design and its effectiveness in identifying corrupted
users without requiring extensive pre-obtained data, unlike some
offline methods [19], [20] that are incompatible with our ap-
proach.

2) Dataset Generation and Preprocessing: Synthetic
Dataset: In alignment with the methodology outlined in [26],
we simulate an environment with u = 1, 000 users, grouped
into m = 10 clusters, each comprising 100 users. A subset of
100 users is randomly designated as corrupted. User preferences
and item vectors are generated in d− 1 dimensions following
a standard Gaussian distribution, normalized, and extended
by one dimension with a constant value of 1, then scaled by√
2, setting d = 50. An arm set of |A| = 1, 000 items is fixed,

from which 20 items are randomly chosen in each round t to
form a selection set At. The corruption mechanism and the
reward flipping for the initial rounds are implemented in [26],
[32], with T = 1, 000, 000 total rounds and corruption level
C = 20, 000.

Real-world Datasets: On real-world datasets, we generate
the preference and item vectors as in [26], [42], [43]. We first
construct the binary feedback matrix through the users’ ratings:
if the rating is greater than 3, then the feedback is 1; otherwise,
the feedback is 0. Then we use SVD to decompose the extracted
binary feedback matrix. Ru×m = θSXT, where θ = (θi), i ∈
[u] and X = (xj), j ∈ [m], with dimensions d = 50 selected
for both. To ensure a fair comparison with baseline algorithms,
similar to [24], [27], [28], [35]), we employ identical real-world
datasets, including the Movielens dataset (1,000 users, 1,000
items), the Amazon dataset (1,400 users, 800 items), and the Yelp
dataset (2,000 users, 2,000 items). For experiments involving a
larger number of users, please refer to the Appendix, available
online. We form 10 clusters in the Movielens and Amazon
datasets and 20 clusters in the Yelp dataset. The corruption of
user feedback in these real-world datasets is the same manner
as in the synthetic dataset.

3) Performance Evaluation and Analysis: Regret of Multi-
ple Datasets: The performance results for our recommenda-
tion system are presented in Fig. 4(a)–(d). On the Movielens
and Amazon datasets, characterized by smaller user gaps, Lin-
UCB initially outperforms LinUCB-Ind. However, over time,
LinUCB-Ind shows a tendency to catch up and potentially
exceed LinUCB. For instance, on the Amazon dataset, which has
the smallest proportion of corrupted users, the edge of RCLUB-
WCU over other baselines is less pronounced, reflecting the
lesser influence of corruption. Overall, RCLUB-WCU consis-
tently exhibits lower regret across all datasets when compared to
baseline methods, underscoring its effective adaptation to user
preferences and inter-user relationships. The fact that RCLUB-
WCU surpasses CW-OFUL-ind, despite both employing robust
preference estimation techniques, underscores RCLUB-WCU’s
enhanced ability to utilize user information robustly and effec-
tively.

Detection of Corrupted Users: The results of the detection of
corrupted users are detailed in Table I. We test the AUC of OC-
CUD, GCUD, and NCUD for detection results every 200, 000
rounds. Over time, the performance of OCCUD improves signif-
icantly, outperforming GCUD and NCUD as it detects corrupted
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Fig. 4. Cumulative regret of recommendations in synthetic and real-world datasets without conversational feedback.

TABLE I
DETECTION RESULTS (AUC ± STANDARD DEVIATION) ON SYNTHETIC AND REAL DATASETS

Fig. 5. Visualization of the non-robust estimation of users by t-SNE. Red
represents normal users, and blue represents corrupted users.

users only relying on robust estimations. Specifically, OCCUD
achieves an AUC of 0.850 on the Movielens dataset, 0.840 on
the Amazon dataset, and 0.628 on the Yelp dataset. AUC scores
obtained are comparatively high, especially when benchmarked
against recent literature on offline settings [27], [28]. In Fig. 5,
we apply t-SNE [44] to analyze the non-robust estimations of
preference vectors across the synthetic and Movielens datasets
(due to space constraints, we will then evaluate the Amazon and
Yelp datasets at the corruption level). The results show that the
users with similar preferences form clusters, with a tendency for
separation between normal and corrupted users.

Different Corruption Levels: We conduct experiments on
the Amazon and Yelp datasets to assess the robustness of
RCLUB-WCU, CLUB, and SCLUB against different levels of
corruption, for these two baselines perform the best among all

Fig. 6. Cumulative regret under different corruption levels.

the baselines. Following the corruption mechanism described
in Section V-B2, we vary the number of corrupted rounds Tc

at 1,000; 10,000; and 100,000 to simulate increasing degrees of
corruption. The outcomes, illustrated in Fig. 6, indicate a decline
in all algorithms’ performance with rising corruption levels.
RCLUB-WCU maintains superiority with Tc up to 10,000, but
at Tc = 100, 000, its performance also degrades, consistent with
our theoretical expectations. Across all tests, RCLUB-WCU
outshines CLUB and SCLUB, demonstrating a more gradual
increase in regret.

Varying Cluster Numbers: In line with [25], we evaluate
the performance of cluster-based algorithms (RCLUB-WCU,
CLUB, SCLUB) as the underlying cluster number varies. We
set m to 5, 10, 20, and 50. The results, presented in Fig. 7,
reveal that the performance of all these algorithms declines as
the number of clusters increases, which is consistent with our
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Fig. 7. Cumulative regret with varying cluster numbers.

theoretical findings. The performance of CLUB and SCLUB
deteriorates much more rapidly than that of RCLUB-WCU.

C. Evaluation With Conversational Feedback

In this section, we delve into user-interactive scenarios un-
der sophisticated conversational recommendation frameworks,
employing both synthetic and real-world datasets to assess the
efficacy of our proposed algorithms.

1) Baseline Comparisons: For a more equitable evaluation
within the CRS framework, and to underscore the strengths of
our algorithm that consistently integrates conversational feed-
back, we have incorporated the following baseline algorithms
that also facilitate direct conversations with users:! Arm-Con [45]: This conversational bandit algorithm initi-

ates dialogues about arms without key-term consideration,
employing LinUCB for arm selection.! ConUCB [5]: A fundamental conversational bandit algo-
rithm that, when a conversation is permissible, chooses a
key-term to minimize a certain estimation error.! ConLinUCB [43]: A suite of algorithms varying the key-
term selection strategy. It includes:
– ConLinUCB-BS, which calculates the barycentric span-

ner of key terms for exploration.
– ConLinUCB-MCR, which utilizes historical key-term

selection data to choose terms with the largest confidence
radius.

– ConLinUCB-UCB, which employs a LinUCB-inspired
strategy to select key terms with the highest upper con-
fidence bound, combining the estimated mean with the
confidence radius.

2) Dataset Generation and Preprocessing: The generation
and preprocessing of synthetic and real-world datasets follow a
process similar to that described in Section V-B, with corruption
levelC = 40, 000. Consequently, we focus more on detailing the
generation and setting of key-terms at the conversational level,
following [5], [43], [46].

Synthetic Dataset: Each user preference vector θi and each
arm feature vector xa are generated by independently drawing
from the standard normal distribution N (−1, 1). Subsequently,
these vectors are normalized. The weight matrix W ! [wa,k] is
generated in the following manner: Initially, for each key-term k,
an integer nk is randomly selected from the range {1, 2, . . . , 5}.
A subset of nk arms, denoted as Ak, is then randomly chosen to
be the related arms for key-term k. For each arm a that is related
to a set of na key-termsKa, equal weights are assigned such that

Fig. 8. Cumulative regret of recommendations in synthetic and real-world
datasets with conversational feedback.

wa,k = 1
na

for all k ∈ Ka. the feature vector for each key-term k

is calculated as x̃k =
∑

a∈A
wa,k∑

a′∈A wa′,k
xa. The key-term-level

feedback is then generated in accordance with (3).
Real-World Datasets: Key-terms are extracted based on

movie genres, business categories, or tag IDs from the Movie-
Lens, Yelp, and Last.fm datasets, respectively. Specifically, we
extract the top 2,000 arms (|A| = 2, 000) with the most user-
assigned tags and the top 500 users (Nu = 500) who have
assigned the most tags. For each arm, we retain a maximum
of 20 tags that are associated with the most arms, and these are
considered as the arm’s associated key-terms. All the retained
key-terms linked with the arms constitute the key-term set K.
The Last.FM dataset has |K| = 2, 726 key-terms, while the
Movielens dataset has 5,585 key-terms. The Yelp has |K| = 805.
For each arm, the weights of all related key-terms are set to
be equal. Following the approach in [5], the feature vectors of
key-terms are computed as x̃k =

∑
a∈A

wa,k∑
a′∈A wa′,k

xa. Eq. (3)
continues to be used for generating the key-term-level feedback
is then still generated.

3) Performance Evaluation and Analysis: Regret Analysis
Across Multiple Datasets: We conduct an evaluation of cu-
mulative regret across four distinct datasets, comparing the
performance of RCLUCB-WCU against six baseline algorithms
amidst the context of users arriving at random. The findings
are presented in Fig. 8, with the number of rounds plotted on
the x-axis and the cumulative regret on the y-axis Consistent
patterns emerge across all datasets, corroborating prior works.
Specifically, each algorithm demonstrates sublinear regret as the
number of rounds increases. Algorithms that do not incorporate
querying of key terms, i.e., LinUCB-ind and Arm-Con, exhibit
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Fig. 9. Rating under different conversation functions.

the highest cumulative regret, underscoring the value of conver-
sational interactions for improved performance. Notably, our
RCLUCB-WCU algorithm surpasses all competing algorithms,
securing the improvement of 34.3%, 75.3%, 66.3%, 87.9%, over
ConLinUCB-MCR—the strongest baseline—across all four
datasets, respectively, under potentially corrupted feedback on
both arm and conversation interaction levels. This enhancement
in performance lends empirical support to our theoretical find-
ings and highlights the efficacy of incorporating conversational
elements into the recommendation process.

Impact of Conversation Frequency: To compare the impact of
the conversation frequency on all algorithms since different users
arrive randomly, we maintain the same unified conversation
function for all algorithms, which are {51 log(t)

50 2, 51log(t)2,
501log(t)2, 1 t

502, 1 t
102}, respectively. We then assess the cu-

mulative rating of the items recommended to all users who
arrive randomly by the time rounds T = 10000, averaged under
6 random trials. A higher value of b(t) allows the agent to
engage in more conversations. The outcomes of this setup are
shown in Fig. 9 under the largest dataset Yelp. As b(t) increases,
our algorithms demonstrate a corresponding rise in ratings,
which underscores the beneficial impact of more frequent con-
versations. In every scenario, RCLUCB-WCU outperforms the
ConUCB, Arm-Con, ConLinUCB-UCB, ConLinUCB-MCR,
and ConLinUCB-BS, showcasing its robustness across different
conversation frequencies.

Different Arm Set Sizes: We evaluate the influence of arm
set poolsize on algorithm efficacy by varying the size of |At|
to include {50, 100, 400, 600, 1000, 2000} options within
the Yelp dataset which boasts the largest user base. Note that
an increase in |At| typically makes the task of identifying
the optimal arm more challenging. To underscore the supe-
riority of our algorithms under conversation interactions, we
measure the rating differential between LinUCB-ind and the
other contenders, denoted as Rating −RatingLinUCB-ind. This
differential quantifies the enhancement in user feedback at-
tributable to the conversational bandit algorithms relative to
LinUCB-ind. As shown in Fig. 10, our proposed algorithm,
RCLUCB-WCU, demonstrates increasingly pronounced ben-
efits even as |At| grows. Specifically, with an arm set size
of 50, RCLUCB-WCU achieves improvements by factors of
36.9×, 43.9×, 7.2×, 4.0×, and 5.6× over ConUCB, Arm-Con,

Fig. 10. Evaluation of user ratings across various arm poolsizes.

TABLE II
CUMULATIVE REGRET ACROSS DIFFERENT PARAMETER CONFIGURATIONS OF

THE RCLUCB-WCU SERIES

ConLinUCB-UCB, ConLinUCB-MCR, and ConLinUCB-BS,
respectively. When the arm set size expands to 2000, the im-
provements by RCLUCB-WCU are by factors of 4.0×, 5.2×,
3.1×, 2.4×, and 2.7×, respectively, over the same benchmarks.
Given that recommendation applications often involve a large
arm set size, RCLUCB-WCU is expected to deliver a substantial
performance edge over baselines in practical settings.

Ablation Study on Parameter Sensitivity: We then present
an ablation study designed to investigate the sensitivity of
various parameters, including the regularization parameter λ,
the confidence radius parameter β, the threshold parame-
ter α, and the edge deletion parameter α1. Specifically, we
have configured the following parameter settings (λ,β,α,α1)
for the RCLUCB-WCU series: RCLUCB-WCU (a) with
(1, 1.5, 0.2, 1), RCLUCB-WCU (b) with (0.9, 1.4, 0.3, 0.2),
RCLUCB-WCU (c) with (1.1, 1.3, 0.25, 0.25), RCLUCB-
WCU (d) with (0.8, 1.2, 0.4, 0.3), and RCLUCB-WCU (e) with
(1.2, 1.1, 0.5, 0.15). We have set the experimental rounds T
and the corruption level C at 10,000 for each configuration.
Table II summarizes the results on cumulative regret across four
distinct datasets. These results illustrate the consistent perfor-
mance under various parameter configurations, underscoring the
robustness of our algorithm RCLUCB-WCU.

VI. RELATED WORK

Conversational Recommendation Systems: Conversational
recommendation systems (CRSs) engage in conversations by
asking users if they like the items chosen by the bandit algo-
rithm [45]. Further improvement has been achieved by taking
advantage of recent developments in deep learning or rein-
forcement learning to generate conversations and assist rec-
ommendations, but without a theoretical guarantee [2], [47].
Conversational feedback on key terms is used to help elicit
user preferences and accelerate online recommendations [5].
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Some subsequent works attempt to improve the performance of
CRSs with the aid of additional information, such as relative
feedback [6], self-generated key-terms [42], and knowledge
graph [30]. Unlike these works, we consider learning unknown
user relations via bandit feedback and leveraging these learned
relations to improve quality of CRSs.

Bandits With Adversarial Corruptions: The work [10] first
studies the problem of bandits with adversarial corruptions,
where the rewards are corrupted with the sum of corruption
magnitudes in all rounds constrained by the corruption level
C. The paper [14] proposes an improved algorithm with a
tighter regret bound. The work [17] first studies stochastic linear
bandits with adversarial corruptions. To tackle the contextual
linear bandit setting where the arm set changes over time, the
work [18] proposes a variant of the OFUL [39] that achieves a
sub-linear regret. A recent work [12] proposes the CW-OFUL
algorithm that achieves a nearly optimal regret bound. All these
works focus on designing robust bandit algorithms for a single
user; none consider how to robustly learn and leverage the
implicit relations among potentially corrupted users for more
efficient learning. Moreover, none of them considers how to
online detect corrupted users in the multi-user case. We expand
upon the findings of [48], moving from simple arm-level reward
corruption to more complex two-level corruption affecting both
arm and key levels.

Fraud Detection: The goal of fraud detection is to distin-
guish fraudsters from normal users. Various efforts have been
made to detect offline fraud [20], [21]. With the develop-
ment of the graph learning architecture GNN, the paper [19]
proposes the SemiGNN model, which applies a GNN-based
hierarchical attention mechanism to do fraud detection in fi-
nancial applications. To tackle the issue of label imbalance,
the paper [22] proposes the PC-GNN model with node re-
sampling, and the work [23] devises the AO-GNN model
with edge pruning. A recent work [49] proposes the H2-
FDetector model considering the influence of homophilic and
heterophilic connections. All these works are based on offline
static known information of users and user relations. These
works have not explored detecting corrupted users in an on-
line setting with bandit feedback, where such an approach is
crucial due to dynamic user characteristics [42] and the privacy
concerns associated with collecting user data in recommenda-
tion systems [50]. Furthermore, they also have not considered
optimizing the balance between exploration and exploitation
for long-term rewards, which significantly differentiates our
work.

Bandits with Multiple Users: Some works study how to lever-
age user relations to speed up the bandit learning process in the
case of multiple users. The work [51] leverages a known user
adjacency graph to share context and rewards among neigh-
boring users. To adaptively learn and utilize the unknown user
relations, the paper [24] formulates the clustering of bandits
(CB) problem where there is an unknown user clustering struc-
ture to be learned by the agent. A follow-up work [40] uses
the collaborative effects on items to guide the clustering of
users. The work [25] studies the CB problem in a cascading
bandit setting. The paper [26] considers the setting where users

have different arrival frequencies. A recent work [33] studies the
problem of federated clustering of bandits. All these works only
consider leveraging the relations among normal users; none of
them have considered how to robustly learn the user relations
from potentially disrupted behaviors, and thus would easily be
misled by corrupted users.

To the best of our knowledge, this paper is the first work
to study the problem of (i) learn the unknown user relations
and preferences from potentially corrupted user behaviors; (ii)
adaptively detect the corrupted users online from both selection
and conversational feedback. Compared to neural-based online
learning methods, such as NeuralUCB, our approach offers
relatively lower computational costs [52].

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the OLDCU problem within a
conversational recommendation framework, dealing with users
who have unknown preferences and relations, some of whom
may perform corrupted actions. Our novel bandit algorithm,
RCLUB-WCU, optimizes item and key-term selection through
user interactions, while OCCUD detects corrupted users based
on learned user relations. We provide theoretical performance
analysis, including a sublinear regret upper bound for RCLUB-
WCU and an evaluation of OCCUD’s corrupted user detection
accuracy. Our extensive experiments demonstrate that our algo-
rithms outperform existing bandit algorithms and achieve high
accuracy in detecting corrupted users.

For future work, we intend to incorporate user-centered eval-
uations to align our proposed algorithms more closely with
real-world user interactions and needs. Additionally, investigat-
ing the integration of our bandit learning techniques with large
language models (LLMs) in conversational systems could prove
intriguing.
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