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Abstract—Worker reliability estimation is a fundamental problem in crowdsensing applications. This paper proposes a robust feedback
rating approach to estimate worker reliability explicitly. In this approach, the requester provides a feedback rating to reflect the quality of
the sensor data submitted by each worker. The aggregation of each worker’s historical feedback ratings serves as a reliability estimate.
The challenges are: (1) Feedback ratings are subjected to noise; (2) Workers’ cognitive bias in task selection leads to sensor data
quality variations.We develop a mathematical model to quantify rating noise from requesters and the degree of cognitive bias of
workers in task selection. We derive sufficient conditions, under which the aggregate rating is asymptotically accurate in estimating
worker reliability, via stochastic approximation techniques. These conditions identify a class of asymptotically accurate rating
aggregation rules for crowdsensing applications. We further derive the minimum number of ratings needed to guarantee a given
reliability estimation accuracy, via martingale theory. Via extensive experiments: (1) We reveal fundamental understandings on how
various factors such as rating noise influence the minimum number of ratings needed to achieve certain accuracy; (2) We show that our
feedback rating approach improves air quality index estimation accuracy by as high as 50 percent over the a typical baseline algorithm.

Index Terms—Crowdsensing, worker reliability, feedback rating, stochastic approximation, martingale
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1 INTRODUCTION

CROWDSENSING applications [1] are becoming increasingly
popular due to the prevalence of mobile devices such as

smartphones, which are equipped with sensors such as
GPS, compass, etc. Crowdsensing is a paradigm that out-
sources the task of sensor data collection to a crowd of
mobile device users, and it is much cheaper than hiring
data sensing professionals. Crowdsensing has been applied
to a variety of applications such as air quality monitoring,
health care, smart transportation, etc. In general, a crowd-
sensing platform is composed of requesters, workers (i.e.,
mobile device users) and data sensing tasks. Requesters
post data sensing tasks on the crowdsensing platform,
workers use their mobile devices to collect sensor data
accordingly and transmit the data back to the requester
when it is done. Finally, the requester aggregates the data to
produce an estimate on the true information, e.g., the ground
truth air quality.

However, the data collected by workers is subjected to
noise [2]. This noise is caused by a variety of sources such
as the innate quality of the sensor in a mobile device, the

skill or expertise of a worker, the amount of efforts that a
worker exerts and the difficulty of a sensing task. As a con-
sequence, the data collected by different workers can vary
greatly or even be conflicting. In order to improve the accu-
racy of estimating the true information, it is important to col-
lect sensor data from reliable workers or adjust the estimate
toward reliable workers [3], [4]. However, worker reliability
is unknown to the requester.

This paper proposes a new alternative: utilizing a feedback
rating approach to estimate workers’ reliability. In this
approach, the crowdsensing platform operator (i.e., the
company who provides the crowdsensing platform to
requesters and workers) deploys a feedback rating system
and a rating aggregation rule. After a sensing task is com-
pleted, the requester provides a feedback rating to each
worker reflecting the quality of her submitted data. A
higher feedback rating implies that a worker’s data is of
higher quality. Finally, a rating aggregation rule summa-
rizes each worker’s feedback ratings to produce an indicator
on her reliability, which is public to all requesters and the
worker herself.

One essential component of a feedback rating system is
the sensor data quality assessment, which assists the
requester to assign a feedback rating. There are three typical
approaches to assess sensor data quality. The first approach
directly applies some previous sensor data quality assess-
ment algorithms such as [5] and [6]. In particular, Yang et al.
[5] proposed a clustering based approach to assess sensor
data quality. Peng et al. [6] designed an expectation-maximi-
zation algorithm to assess sensor data quality. The second
approach requires requesters to use their own knowledge
or expertise to evaluate the sensor data quality. In fact, this
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method is deployed in real-world crowdsourcing systems
like Upwork1 and Freelancer.2 The third approach estimates
the true information by some previous algorithms such as
[2], [3], [5], and then assess sensor data quality via calculat-
ing the variation or distance between the sensor data and
the estimate of the true information. We use the following
simplified example to illustrate this data quality assessment
method.

Example 1. Assume the air quality index (AQI) is measured
in the range ½0; 100#. Suppose three workers w1;w2 and w3

report the AQI of 10, 60 and 80 respectively, and the
requester estimates the ground truth AQI via the simple
average, i.e., ð10þ 60þ 80Þ=3 ¼ 50. We are aware of sophis-
ticated ground truth estimation method [2], [3], [5], but here
we use the simple average for simplicity of presentation.
Consider a numerical feedback rating metric in the range
[0,1]. One simple rating protocol is: the worker w1 receives a
feedback rating 1( j50( 10j=100 ¼ 0:6, w2 receives 1(
j50( 60j=100 ¼ 0:9, and w3 receives 1( j50( 80j=100 ¼
0:7. Suppose the crowdsensing platform operator uses the
“average scoring rule” to estimate worker reliability. E.g., if
w1;w2 and w3 have only one feedback rating, their reliability
scores are 0.6, 0.9 and 0.7 respectively. Suppose w1;w2 and
w3 participate another sensing task and earn feedback rat-
ings of 0:15; 0:85 and 0.75 respectively, their reliability
scores become ð0:6þ 0:15Þ=2 ¼ 0:375, ð0:9þ 0:85Þ=2 ¼
0:875 and ð0:7þ 0:75Þ=2 ¼ 0:725.

One advantage of this feedback rating approach is that
each worker is tagged with an explicit reliability score
(please refer to Section 5 for more discussions on the advan-
tage of the feedback rating approach). This reliability score
can be used to improve sensor data aggregation [2], task
matching or recommendation [3], or incentive mechanism
design [7], etc.

The challenge is how to “accurately” estimate worker reliabil-
ity via feedback ratings. For the crowdsensing platform opera-
tor, it is non-trivial to select an appropriate rating
aggregation rule because some rating aggregation rules may
not be accurate or robust in estimating worker reliability.
What makes it challenging is that feedback ratings are sub-
jected to noise. All of these three aforementioned sensor data
quality assessment methods can cause feedback rating noise.
The reason is that the accuracy of the sensor data quality
assessment algorithms [5], [6] is not 100 percent, requesters
are subjected to human bias or errors in evaluating sensor
data quality [8], and the accuracy of the true information esti-
mation methods [2], [3], [5] is not 100 percent. The following
simplified example illustrates rating noise.

Example 2 (Rating noise). Suppose the ground truth AQI
in Example 1 is 15. Under this ground truth AQI, feed-
back ratings should be: w1 receives 1( j15( 10j=100 ¼
0:95, w2 receives 1( j15( 60j=100 ¼ 0:55, and w3 receives
1( j15( 80j=100 ¼ 0:35. Comparing with the feedback
rating in Example 1, the feedback rating noise or error for
w1 is 0:95( 0:6 ¼ 0:35, for w2 is 0:55( 0:9 ¼ (0:35, and
for w3 is 0:35( 0:7 ¼ (0:35.

Note that the rating noise may also lead to cognitive bias
in task selection [9], e.g., the worker selects a task which
may not be appropriate at her reliability level. As a conse-
quence, it results in higher variations in sensor data quality
as illustrated in the following example.

Example 3 (Cognitive bias). Suppose workers’ skill level
is measured in a range ½0; 5#, and the ground truth skill
level of w2 is 3. Due to noise or bias in feedback ratings,
she receives a sequence of feedback ratings as:
0:9; 0:85; 0:98; 0:9; 0:9. In this situation, she may over esti-
mate her own skill level to be of 4. This over assessment
may lead her to select more challenging tasks (i.e., fits for
workers having skill level of 4 as above). As a conse-
quence, she submits a low quality sensor data because
her ground truth skill level is only of 3.

Hence, rating noise and cognitive bias in task selection
exists in a feedback rating system. This paper aims to
explore a robust rating aggregation rule to handle rating
noise and cognitive bias in task selection. We do not restrict
to any instance of feedback rating assigning methods (or
sensor data quality estimation methods), but instead we
develop a model to abstract these methods via rating noise
and cognitive bias in task selection and study how to design
robust rating aggregation rules. We aim to answer: (1) How
to develop a mathematical model to characterize the rating noise
and cognitive bias in task selection? (2) Under what conditions,
an aggregate rating can accurately reflect the worker reliability?
(3) What’s the speed of revealing the worker reliability? Our con-
tributions are:

! We develop a mathematical model to capture key
factors that affect the accuracy of feedback ratings in
reflecting the sensor data quality. Our model quanti-
fies the degree of rating noiseand cognitive bias.

! We derive sufficient conditions, under which the
aggregate rating is asymptotically accurate in esti-
mating worker reliability, via the stochastic approxi-
mation theory. These conditions enable us to
identify a class of asymptotically accurate rating aggre-
gation rulesfor crowdsensing applications. We further
derive the minimum number of ratings needed to guar-
antee a given reliability estimation accuracy, via the
martingale theory.

! We conduct extensive experiments and reveal that
the averaging scoring rule is sub-optimal in terms of
estimation accuracy, and a recency aware rating aggre-
gation rule can significantly improve the accuracy
under the same number of ratings. To achieve the
same estimation accuracy, the minimum number of
ratings needed decreases slightly as the degree of cog-
nitive bias increases, while it increases significantly as
the degree of rating bias increases. Our feedback rat-
ing approach improves AQI estimation accuracy by
as high as 50 percent over the URP algorithm [3],
especially when the sensor data is noisy.

The reminder of this paper organizes as follows. Section 2
presents the crowdsensing system model, rating behavior
model, task selection behavior model and rating aggrega-
tion rule model. Section 3 presents the theoretical analysis1. https://www.upwork.com/

2. https://www.freelancer.com/
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on the accuracy of worker reliability estimation using feed-
back ratings. Section 4 presents the experimental results.
Section 5 discusses the related work and Section 6
concludes.

2 SYSTEM MODEL

We start with a baseline model of estimating worker reli-
ability. Then, we formulate models to characterize the cog-
nitive bias of task selection and the rating noise from
requesters.

2.1 The Baseline Model
Worker Reliability. Consider a crowdsensing platform where
requesters post data sensing tasks and workers are allowed
to select any posted task to solve. Without loss of generality,
we focus on one worker denoted by w in our presentation.
We denote the skill level of worker w by

s 2 S , ½0; smax#; (1)

where smax 2 Rþ denotes the maximum possible skill level.
The skill level s captures the innate quality of the sensor in a
mobile device, the expertise of a worker, ..., etc. A larger
value of s implies that a worker is more skilled. We denote
the reliability of worker w by

u 2 M , ½0;M#; (2)

where M 2 Rþ denotes the maximum possible reliability
level. The reliability u reflects the average quality of the sen-
sor data submitted by worker w. The rationality of this
modeling of average quality is to capture uncertainty in sen-
sor data quality submitted by a worker. Due to human fac-
tors such as consistency of workers in solving tasks [10],
[11] and the data collection environment such as weather, a
worker may submit sensor data with different qualities
even when she repeats the same task twice. For example,
u ¼ E½Mð1(XÞ#, where X is a random variable denoting
the normalized error of the data submitted by worker w. A
larger value of u implies a more reliable worker. We for-
mally model workers’ reliability u on a task with certain
skill requirement as

u , fðs; vÞ; (3)

where v 2 S denotes overall skill requirement of the data
sensing tasks that the worker w selects to solve, and f :
S ) S ! M denotes the reliability function. Also, v can be
interpreted as the average skill requirement of tasks selected
by the worker w, who knows the real skill value s of herself.
The rationality behind this model of average skill require-
ment is to capture that workers may select different tasks
which may require different skill levels. A larger value of v
implies that on average the worker w tends to select tasks
with higher skill requirement. The function fðs; vÞ models
the average reliability u of the worker w. It is increasing in s
and decreasing in v, capturing that on average a worker’s
reliability increases (or the quality of submitted data
increases) if she is more skilled, while her reliability
decreases (or the quality of submitted data decreases) if she
selects data sensing tasks with higher skill requirement (i.e.,
a higher chance that a selected task is not appropriate for

her skill level). Workers has financial incentives to select
tasks with high skill requirement [7], [12], [13]. Note that
the function f is unknown to the worker and the crowdsens-
ing platform operator. Workers need to learn from their
crowdsensing experience to select appropriate tasks. Unless
stated explicitly, we assume that all the functions in this
paper are continuously differentiable. One possible example
of f can be expressed as

fðs; vÞ ¼ M ) s( vþ smax

2smax
; (4)

which is a linear reliability function. One can check that this
linear form of fðs; vÞ is well-defined, i.e., fðs; vÞ 2 M.

One alternative to model worker reliability is via a stair
function F ðs; V Þ ¼ M1fs*V g, where V denotes the skill
requirement of a task selected by worker w. Here, V is a ran-
dom variable capturing the uncertainty in the skill require-
ment. The average reliability of worker w can be derived as
E½F ðs; V Þ# ¼ MP½s * V #. Suppose V follows a normal distri-
bution with mean v and variance 1. Then, the average
worker reliability E½F ðs; V Þ# is a function of the mean v of
this normal distribution. Furthermore, the average worker
reliability E½F ðs; V Þ# is decreasing in v. Namely, the average
worker reliability E½F ðs; V Þ# is a special case of Equation (3).
This example shows that Equation (3) is reasonable and
flexible.

Feedback Ratings and Reliability Estimation. Note that the
worker reliability u is unknown to requesters and the
crowdsensing platform operator. To reveal a worker’s reli-
ability, a feedback rating system is deployed by the crowd-
sensing platform operator. After a sensing task is
completed, the requester provides a feedback rating to each
worker reflecting the quality of her sensor data. The feed-
back rating is recorded in the profile of a worker. Without
loss of generality, we consider a cardinal rating metric M.
A higher rating means that the sensor data is of higher qual-
ity. Let Ri 2 M denote the ith rating of the worker w. For
example, Ri ¼ Mð1(XiÞ, whereXi 2 ½0; 1# is a random var-
iable denoting an estimate of the normalized error of the
data submitted by worker w. The crowdsensing platform
operator deploys a weighted average scoring rule to esti-
mate the worker w’s reliability from past ratings, i.e.,

Qi ,
Pi

j¼1 ajRj
Pi

j¼1 aj

; 8i 2 Nþ; (5)

where Qi denotes an estimate of u, and aj 2 Rþ denotes the
weight of the jth rating. The aggregate rating Qi is public to
all workers and requesters. The weights aj; 8j, are con-
trolled by the crowdsensing platform operator. For exam-
ple, the simple average scoring rule can be achieved via
aj ¼ 1; 8j, and

Qi ¼
R1 þ . . .þRi

i
: (6)

Another possibility is to use a recency aware rating aggrega-
tion rule where aj ¼ j; 8j, and

Qi ¼
R1 þ 2R2 þ . . .þ iRi

1þ . . .þ i
: (7)
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Namely, a more recent rating is weighted more. Based on
Qi, we first define the status of the worker w.

Definition 1. The worker w is over rated if Qi > u, under rated
if Qi < u, and correctly rated if Qi ¼ u.

Note that the status of a worker (i.e., over, under or cor-
rectly rated) is unknown to the requesters and the crowd-
sensing platform operator because u is unknown to them.

2.2 Workers’ Task Selection Behavior Model
We model the cognitive bias [9] in task selection via two
steps: (1) Model how historical ratings may influence work-
ers’ self-assessment of skills; (2) Model how skill self-assess-
ment influences task selection. Then, we model how the
task selection behavior influences the quality of sensor data
submitted by a worker.

Skill Self-Assessment. We define the rating history of
worker w up to the ith rating as

Hi , fR1; . . . ; Rig; 8i 2 Nþ; (8)

and we defineH0 ¼ ; for presentation convenience. The his-
torical ratings Hi serve as persuasion messages, and the
message-based persuasion effect [14], [15] (a well-known
psychological effect) implies that the historical ratings Hi

may influence workers in assessing their own skills. Con-
sider worker w, let

Si , ~gðHiÞ; 8i 2 Nþ; (9)

denote her skill self-assessment from historical ratings Hi,
where ~g : H ! S denotes the self-assessment function and

H , fHi : 8Hi; 8i 2 Nþg (10)

denotes all possible rating histories. We define S0 as a ran-
dom variable to capture the noise in the initial skill assess-
ment, and E½S0# ¼ s to capture that the initial assessment is
statistically unbiased. Note that the self-assessed skill Si is
known to the worker w only and unknown to the requesters
and the crowdsensing platform operator.

Definition 2. The worker w over assesses her skill if Si > s,
under assesses if Si < s, and correctly assesses if Si ¼ s.

Our model also captures the special case that the
worker w always correctly assesses her skill by ~gðHiÞ ¼
s; 8Hi. In practice, the worker w may over or under assess
her skill. For mathematical tractability of this practical
scenario, we assume the following to capture dominating
factors.

Assumption 1. The self-assessment function ~g satisfies that

~gðHiÞ ¼ gðQiÞ; 8Hi; 8i 2 Nþ; (11)

where g : M ! S.

Assumption 1 captures that the influence of the histori-
cal ratingsHi on the self-assessment behavior is dominated
by the reliability score Qi. We also call g the self-assess-
ment function to simplify our presentation. The self-assess-
ment function gðQiÞ is non-decreasing in Qi and satisfies
gðQiÞ ¼ s if Qi ¼ u. This property captures that worker w

over/under/correctly assesses her skills when she is over/
under/correctly rated. One possible example of self-
assessment function g can be

gðQiÞ ¼ sþ smax ) b)Qi ( u

M
; (12)

where b satisfies

0 + b + min
s

smax

M

u
;
smax ( s

smax

M

M ( u

! "
; (13)

in order to guarantee that gðQiÞ is well-defined, i.e., gðQiÞ 2
S. The b models the sensitivity of self-assessment to histori-
cal ratings. A larger value of b implies that worker w’s self-
assessment is more sensitive to historical ratings. Formation
of the self-assessment is a complex psychological behavior.
Worker skill s and reliability u are two latent factors that
affect this psychological behavior implicitly. Workers do
not know exact values of them but they know their self-
assessment, i.e., the value of gðQiÞ. This is similar to genera-
tive modeling in recommendation applications, where users
know their preferences quantified by ratings, but they do
not known their latent feature vectors, which are used to
model their ratings [16]. Equation (12) illustrates an exam-
ple to approximate this psychological behavior. In Equa-
tion (12), the parameters s and u quantify how different
users form different self-assessments. This model enables
us to simulate self-assessment behavior of workers and
based on it we study the empirical performance of the feed-
back rating system.

Self-Selection Behavior. The self-selection behavior means
that the worker w selects the tasks based on her self-
assessed skill, i.e., Si. Let Vi2S denote the overall skill
requirement of the tasks selected by the worker w whose
self-assessed skill is Si. Note that Vi ¼ v if the worker w
accurately assessed her own skill, i.e., Si ¼ s. However, it
may happen that the self-assessed skill is not accurate, i.e.,
Si 6¼ s, leading to that the worker w selects tasks that are not
appropriate for her skill, i.e., Vi 6¼ v.

Definition 3. We define the cognitive bias as the case Vi 6¼ v.

Namely, the cognitive bias means that the worker selects
a task which may not be appropriate at her reliability level.
We formally model the self-selection behavior via

Vi , hðSiÞ; 8i 2 N; (14)

where h : S ! S denotes the self-selection function. We
classify the self-selection behavior as follows.

Definition 4. The worker over selects tasks if Vi > v, under
selects tasks if Vi < v, and properly selects tasks if Vi¼v.

The self-selection function hðSiÞ is non-decreasing in Si,
and satisfies that hðSiÞ¼v if Si¼s. This property captures
that the worker w tends to over/under/properly select tasks
if she over/under/correctly assesses her skills. One possible
example self-selection function h is

hðSiÞ ¼ vþ g ) ðSi ( sÞ; (15)
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where g satisfies

0 + g + min
v

s
;
smax ( v

smax ( s

! "
; (16)

to guarantee hðSiÞ 2 S: The g models the sensitivity of self-
selection to skill assessment Si, i.e., a larger value of g mod-
els that the overall skill requirement Vi of the selected tasks
is more sensitive to skill assessment Si. With similar reasons
as Equation (12), Equation (15) contains parameters s and v
that are unknown to the worker and Equation (15) mainly
enables us to simulate the self-selection behavior of work-
ers. Furthermore, if gðQiÞ satisfies Equation (12), we can
have

Vi¼vþg sþsmaxb
Qi(u

M
(s

# $
¼ vþbgsmax

Qi(u

M
: (17)

It implies that the worker w tends to over/under/properly
select tasks to solve if she is over/under/correctly rated.

Data Quality Variations. Note that the worker w may over
or under select tasks to solve. Therefore, the quality of the
sensor data submitted by the worker w evolves dynami-
cally. Given the overall skill requirement Vi of the selected
tasks, we denote the corresponding data quality as ~Qi 2 M.
Without loss of generality, we formally quantify sensor data
quality using the reliability metric, i.e.,

~Qi ¼ fðs; ViÞ; 8i 2 N: (18)

Suppose Equations (4), (12), and (15) hold. One possible
example of ~Qi can be derived as

~Qi ¼ M ) s( Vi þ smax

2smax
¼ u þ bg

2
) ðu (QiÞ: (19)

From this simple example, one can observe that the worker
w behaves less reliably (i.e., ~Qi < u) if she is over rated, and
she behaves more reliably (i.e., ~Qi > u) if she is under rated.
One may suggest to under rate worker to push them to
behave more reliably. However, workers may get discour-
aged if we keep underrating them and they may even leave
a crowdsensing platform. Hence, for the ecosystem of a
crowdsensing platform, honest rating is essential. Note that
the data quality influences the rating provided by reques-
ters, leading to rating variations.

Remark. For a newly registered worker, her reliability
score set is empty. Namely, we do not impose any prior
information on the reliability of a new worker. Since she has
no feedback ratings, and she has no idea about her own sta-
tus, i.e., over rated/under rated. She will learn or assess her
skill level through working on tasks. In selecting the first
task, a worker may over select or under select. And we
model it as an uncertain behavior by inducing a statistical
unbiased condition modeled in the next subsection.

2.3 Requesters’ Rating Behavior Model
Instead of restricting to any instance of feedback rating
assigning methods, we develop a model to abstract these
methods via rating noise or biases and we study how to
design robust rating aggregation rules. Our results can be
directly applied to an instance of rating protocol if it satis-
fies these properties characterized by our model. To capture

the noise in feedback rating, we model each rating Ri as a
random variable. If the rating is unbiased, each rating is sta-
tistically accurate in reflecting the quality of sensor data,
i.e., E½Riþ1# ¼ ~Qi. For example, consider Ri ¼ Mð1(XiÞ.
The unbiasness property E½Riþ1# ¼ ~Qi can be achieved by
that Xi accurately reflects the normalized data error. This
can be achieved in practice, but it may incur a high cost. For
example, the requester can hire some professionals to pro-
duce an accurate estimate of the true information and then
use it to compute the normalized data error. We thus con-
sider a general scenario that the feedback rating can be
biased but it may also be cheaper to implement. We con-
sider the rating bias caused by the historical ratings of each
worker. This corresponds to the scenario that requesters
incorporate each workers’ historical performance record in
aggregating the sensor data, or estimating the quality of sen-
sor data. Formally,

E½Riþ1jHi# ¼ qðQi; ~QiÞ; 8i 2 Nþ; (20)

where q : M)M ! M denotes the rating bias function.
One can use different instances of q to model different
crowdsensing application scenarios. For example, the spe-
cial instance qðQi; ~QiÞ ¼ ~Qi; 8~Qi 2 M, models the unbiased
scenario.

Assumption 2. The rating bias function qðQi; ~QiÞ is non-
decreasing in Qi and increasing in ~Qi. Furthermore,
qðQi; ~QiÞ ¼ Qi if ~Qi ¼ Qi.

Assumption 2 captures that a worker receives a higher
rating (on average) from requesters if she submits a higher
quality sensor data, or if she has a more positive historical
performance record (i.e., the aggregate rating). If the aggre-
gate rating Qi accurately reflects the data quality, i.e., Qi ¼
~Qi, the feedback rating becomes unbiased. Namely, we con-
sider the rating bias caused by the mismatch between the
aggregate rating and the sensor data quality. We set
E½R1jH0# ¼ ~Q0 to capture that the first rating is statistically
unbiased because the worker does not have any rating.

To illustrate, the special case qðQi; ~QiÞ ¼ ~Qi (i.e., unbi-
ased scenario) satisfies Assumption 2. Another possible
case of q can be

qðQi; ~QiÞ ¼ hQi þ ð1( hÞ~Qi; (21)

where h 2 ½0; 1Þmodels the strength of rating bias. Note that
h ¼ 0 models the unbiased scenario. A larger value of h
implies a strong rating bias toward Qi, or a less accurate rat-
ing protocol.

2.4 Technical Questions
Based on our model, we seek to understand the efficiency of
the feedback rating approach. Formally, we explore the fol-
lowing questions from three different perspectives:

! The crowdsensing platform operator: The crowdsensing
platform operator deploys the feedback rating sys-
tem and sets the parameter ai for the feedback rating
system. How to select ai for the rating aggregation
rule? Will the true reliability score u be revealed, i.e.,
Qi converges to u? What is the speed of revealing it?

XIE AND LUI: QUANTIFYINGWORKER RELIABILITY FOR CROWDSENSING APPLICATIONS: ROBUST FEEDBACK RATING... 463

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:46:38 UTC from IEEE Xplore.  Restrictions apply. 



! Worker: Will cognitive bias be eliminated, i.e., ðSi; Vi;
~QiÞ converges to ðs; v; uÞ? What is the speed of elimi-
nating it?

! Requester: Will rating bias be eliminated, i.e., qðQi;
~QiÞ converges to ~Qi? What is the speed of eliminat-
ing it?

Table 1 summarizes key notations used this paper.

3 THEORETICAL ANALYSIS

We derive sufficient conditions, under which the aggregate
rating is asymptotically accurate in estimating worker reli-
ability, via the stochastic approximation theory. These con-
ditions enable us to identify a class of asymptotically
accurate rating aggregation rules for crowdsensing applica-
tions. We further derive the minimum number of ratings
needed to guarantee a given reliability estimation accuracy,
via the martingale theory.

3.1 Implications From the Model
We first state a lemma, which provides a connection
between Si; Vi; ~Qi and Qi, and prove their monotone
properties.

Lemma 1. Under Assumption 1, we derive Si; Vi and ~Qi as

Si ¼ gðQiÞ; Vi ¼ hðgðQiÞÞ;
~Qi ¼ fðs; hðgðQiÞÞÞ:

(22)

Furthermore, Si is non-decreasing in Qi and Si ¼ s, Vi is non-
decreasing in Qi and Vi ¼ v if Qi ¼ u, and ~Qi is non-increas-
ing in Qi and ~Qi ¼ u if Qi ¼ u.

We present proofs to lemmas and theorems in the sup-
plementary file. Lemma 1 states that if worker w is correctly
rated (i.e., Qi ¼ u), she can correctly assess her skill (i.e.,
Si ¼ s) and properly select tasks to solve (i.e., Vi ¼ v), and
the data quality matches the ground truth reliability (i.e.,
~Qi ¼ u). Over/under rating worker w results in that she
over/under assesses her skill and over/under selects tasks
to solve as well as the data quality increases/decreases.
Lemma 1 also states that Si; Vi and ~Qi are essentially deter-
mined by Qi. This connection reduces the study of the con-
vergence of Si; Vi, ~Qi and Qi to the study of the convergence
of Qi. For some concrete understandings of Lemma 1, one
can refer to examples of f; g and h that are derived in Equa-
tions (4), (12), and (15) respectively.

Note that the aggregate rating Qi evolves dynamically.
Therefore, it is important to characterize how workers’ task
selection behavior aswell as the rating bias change against the
variation of the aggregate ratingQi. We impose the following
assumption tomake this characterization quantitative.

Assumption 3. There exists a constant % 2 Rþ such that

@f

@v

%%%%

%%%%<%;
dg

dQi

%%%%

%%%%<%;
dh

dSi

%%%%

%%%%<%;
@q

@Qi

%%%%

%%%%<%;
@q

@~Qi

%%%%

%%%%<%: (23)

Assumption 3 captures that a small variation in the mean
of skill requirement v, or aggregate rating Qi, or skill self-assess-
ment Sidoes not drastically change the reliability score u, or
skill self-assessment Si, or mean of skill requirement ~Qi. Further-
more, a small variation in the aggregate rating or quality of
sensor data does not drastically change the mean of feed-
back rating. For example, the reliability function f derived
(4), the self-assessment function g derived in (12), the self-
selection function h derived (15) and the rating bias function
q derived in (21) satisfy Assumption 3.

Assumption 3 implies the following lemma, which states
that workers’ task selection behavior will not change drasti-
cally under a small variation in aggregate rating Qi.

Lemma 2. Under Assumptions 1 and 3, we have

dSi

dQi

%%%%

%%%% < %;
dVi

dQi

%%%%

%%%% < %2;
@~Qi

@Qi

%%%%%

%%%%% < %3: (24)

Lemmas 1 and 2 serve as building blocks for later
analysis.

3.2 Revealing Ground Truth Reliability
We study the convergence of the aggregate ratingQi. In par-
ticular, we are interested in whether Qi converges to u, i.e.,
revealing the ground truth reliability score. In the following
lemma, we characterize the updating dynamics of aggregate
rating Qi.

Lemma 3. Under Assumption 1, the updating dynamics of Qi

can be characterized by the following dynamical system

TABLE 1
Main Notations

s; u true skill level and reliability level of worker w
S;M skill level and reliability level set
smax;M maximum possible skill level and reliability level
fðs; vÞ reliability function
Ri;ai the ith rating and the weight of ith rating
Qi an estimate of u from R1; . . . ; Ri

Hi the rating history of worker w up to ith rating
H a set of all possible rating history
Si w’s skill self-assessment from historical ratingsHi

gð,Þ self-assessment function
b sensitivity parameter of linear self-assessment

function
Vi overall skill requirement of tasks corresponding to

Si

hð,Þ self-selection function
g sensitivity parameter of the linear self-selection

function
~Qi the data quality corresponding to Vi

qð,; ,Þ the rating bias function
h strength of rating bias
~ai normalized rating weight ~aiþ1 , ai=

Pi
j¼1 aj

Wi the noise of rating Ri

~qð,Þ the reliability of worker w under Qi

m parameter for the rating aggregation rule
r parameter that quantifies the sensitivity

of reliability to worker skill
v parameter that quantifies the sensitivity

of sill assessment to aggregate rating
n sensitivity parameter of sill requirement

of selected tasks to skill assessment
t parameter that quantifies the sensitivity of rating

bias to Qi and ~Qi
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Qiþ1 ¼ ð1( ~aiþ1ÞQi þ ~aiþ1ð~qðQiÞ þWiþ1Þ; (25)

where ~aiþ1, ~qðQiÞ andWiþ1 are defined as

~aiþ1 ,
aiþ1Piþ1
j¼1 aj

; (26)

Wiþ1 , Riþ1 ( ~qðQiÞ; (27)

~qðQiÞ , qðQi; fðs; hðgðQiÞÞÞÞ: (28)

TheWiþ1 satisfies E½Wiþ1jHi# ¼ 0 and E½W 2
iþ1jHi# + M2.

Lemma 3 derives a dynamical system to characterize the
updating dynamics of Qi. This dynamical system enables us
to study the convergence of Qi from the stochastic approxima-
tion [17] perspective. In particular, the ~ai is interpreted as
the updating step size, Wiþ1 is interpreted as the stochastic
noise and qðQiÞ is interpreted as the objective function. This
interpretation can reveal fundamental understandings on
the role that workers, requesters and the crowdsensing plat-
form operator play in the convergence of Qi.

! The role of the crowdsensing platform operator.Note that
~ai corresponds to the weights of the rating aggrega-
tion rule. Therefore, the weights of the rating aggre-
gation rule, i.e., ai; 8i, only influence whether Qi

converges or not and they have nothing to do with
which value the Qi converges to. It suggests that the
crowdsensing platform operator should carefully
select the weights, i.e., ai; 8i, so as to guarantee the
convergence of Qi. One example of ~ai is

~ai ¼
aiPi
j¼1 aj

¼ 1

i
; (29)

where aj ¼ 1; 8j. This example corresponds to the
average scoring rule.

! The role of the worker and requester.Under appropriate
weights ai; 8i, if Qi converges, it converges to a value
determined by the function ~qðQiÞ. From the analytical
expression of ~qðQiÞ, one can observe that the rating
bias function q, the reliability function f , the self-
assessment function g and the self-selection function h
jointly determine which value the Qi converges to. To
illustrate ~qðQiÞ, consider f; g; h and q derived in Equa-
tions (4), (12), (15), and (21) respectively. Then we have

~qðQiÞ ¼ hQi þ ð1( hÞ u þ bg

2
ðu (QiÞ

# $

¼ Qi þ ð1( hÞ 1þ bg

2

# $
ðu (QiÞ: (30)

In the following lemma, we provide further understand-
ings on the role of the worker and requester via the function
~qðQiÞ.

Lemma 4. Under Assumptions 1 and 2, the function ~qðQiÞ has a
unique fixed point, i.e., ~qðQiÞ ¼ Qi if and only if Qi ¼ u.

Lemma 4 states that under mild assumptions on work-
ers’ task selection behavior and requesters’ rating behavior,

the function ~qðQiÞ has a unique fixed point. This attractive
property of ~qðQiÞ serves as a building block for us to estab-
lish the convergence of the aggregate rating Qi, because the
dynamical system derived in (25) aims to locate a fixed
point of ~qðQiÞ. For some concrete understandings (or simple
verification) of Lemma 4, one can work on the simple exam-
ple of ~qðQiÞ derived in Equation (30). Based on Lemma 4,
we characterize the role of the crowdsensing platform oper-
ator and the convergence of Qi in the following theorem.

Theorem 1. Suppose Assumptions 1-3 hold. Assume the weights
ai; 8i, of the rating aggregation rule satisfy

X1

i¼1

~ai ¼ 1;
X1

i¼1

~a2
i < 1: (31)

We have P limi!1 Qi ¼ u½ # ¼ 1:

Theorem 1 states sufficient conditions, under which the
aggregate rating Qi converges to u. In other words, Qi is
asymptotically accurate in estimating the ground truth reli-
ability. Condition (31) characterizes a large class of asymp-
totically accurate rating aggregation rules for crowdsensing
applications. For example, consider the average scoring
rule, i.e., aj ¼ 1; 8j. Then we have ~ai derived in Equa-
tion (29). Then it follows that

X1

i¼1

~ai - lim
i!1

ln i ¼ 1;
X1

i¼1

~a2
i ¼

X1

i¼1

1

i2
< 2: (32)

This means that the average scoring rule is asymptotically
accurate. Now consider a recency aware rating aggregation
rule, i.e., aj ¼ j. Then we have

~ai ¼
aiPi
j¼1 aj

¼ i
Pi

j¼1 j
¼ 2

iþ 1
: (33)

With a similar derivation as Equation (32), we conclude that
the rating aggregation rule with weights aj ¼ j; 8j, satisfies
Condition (31). Now let us consider a more general class of
rating aggregation rules, aj ¼ jm, where m 2 Rþ. Then one
can have

Xi

j¼1

aj ¼
Xi

j¼1

jm-
Z i

0
xmdx ¼ 1

mþ 1
xmþ1

%%i
0
¼ imþ1

mþ 1
: (34)

Then it follows that

~ai ¼
aiPi
j¼1 aj

- im
mþ 1

imþ1
¼ mþ 1

i
: (35)

With a similar derivation as Equation (32), we conclude that
the rating aggregation rule with aj ¼ jm; 8j, satisfies Condi-
tion (31).

Now, we apply Lemma 1 and Theorem 1 to characterize
workers’ task selection behavior and the requesters’ rating
behavior in an asymptotic sense.

Corollary 1. Under Assumptions 1-3 and Condition (31), it
holds that

P lim
i!1

ðSi; Vi; ~QiÞ ¼ ðs; v; uÞ
& '

¼ 1; (36)
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P lim
i!1

qðQi; ~QiÞ ¼ u

& '
¼ 1: (37)

Corollary 1 states that in the long run, workers assess
their skills correctly, select tasks properly and the quality of
their data matches the ground truth reliability. Namely, the
cognitive bias will be eliminated. On the requester side, the
rating bias will eventually be eliminated.

3.3 Speed of Revealing Ground Truth Reliability
Now, we further study the speed of revealing the ground
truth reliability. Examining the dynamical system derived
in (25), one can observe that characterizing the convergence
rate ofQi analytically is challenging in general. We first con-
sider linear instances of f; g; h and q derived in Equations (4),
(12), (15) and (21) respectively. We will complement these
linear instances by extensive numerical studies on general
non-linear instances in Section 4. Formally, when f; g; h and
q are linear, the ~qðQiÞ has the linear form derived in Equa-
tion (30). This linear form of ~qðQiÞ enables us to identify a
“martingale” structure, which governs the updating
dynamics of Qi. We state it in the following lemma.

Lemma 5. Suppose f; g; h and q satisfy Equation (4), (12), (15)
and (21) respectively. Let

k, 0; if K ¼ ;;
max K; otherwise;

!
bQi ,

Qi(u
!i

; if i > k;
0; if i = k;

!

(38)

where K , argif~aiþ1ð1( hÞ 1þ bg=2ð Þ ¼ 1g and

!i ,
Qi

j¼kþ2 1(~ajð1(hÞ 1þ bg
2

( )* +
; if i * kþ 2;

1; if i ¼ kþ 1:

!

(39)

Then, bQi forms a martingale with respect to the filtration Hi,
where i * k.

Lemma 5 identifies a martingale, which enables us to study
the speed of revealing the ground truth reliability analytically.
We like to remark that in the martingale statement, Hi repre-
sents the s field generated by random variables R1; . . . ;Ri. In
the following theorem, we derive a metric to quantify the
speed of revealing the ground truth reliability.

Theorem 2. Suppose f; g; h and q satisfy Equations (4), (12),
(15), and (21) respectively. Define zi and nð"; dÞ as

zi , 2= !2i
Xi

j¼kþ1

~a2
j

!2j

 !
; 8i > k; (40)

nð"; dÞ , maxi > k zi +
1

"2
ln
2

d

! "
; 8" 2 ½0; 1#; d 2 ½0; 1#:

(41)

If the number of ratings i satisfy i * nð"; dÞ; then Qi is "-accu-
rate, i.e., jQi ( uj=M + ", with probability at least 1( d.

Theorem 2 derives the minimum number of ratings
nð"; dÞ needed to guarantee Qi is "-accurate with high

probability (i.e., at least 1( d). For each given ð"; dÞ pair,
smaller nð"; dÞ reflects a faster speed in revealing the ground
truth reliability, implying a higher efficiency of the feedback
rating approach.

We next apply Theorem 2 to study the speed of eliminat-
ing the cognitive bias in workers’ task selection behavior
and the rating bias.

Corollary 2. Suppose f; g; h and q satisfy Equation (4), (12),
(15) and (21) respectively. We have

i > n
"

b
; d

# $
) P

jSi ( sj
smax

< "

& '
* 1( d; (42)

i > n
"

bg
; d

# $
) P

jVi ( vj
smax

< "

& '
* 1( d; (43)

i > n
2"

bg
; d

# $
) P

j~Qi ( uj
M

< "

" #
* 1( d: (44)

If i > n "=j1( ð1( hÞ 1þ 0:5bgð Þj; dð Þ; we have

P
jqðQi; ~QiÞ ( uj

M
< "

" #

* 1( d: (45)

3.4 Robustness Against Misbehaving Ratings
Without loss of generality, we focus on one worker, i.e.,
worker w, to study the robustness of our feedback rating
approach against misbehaving ratings from requesters.
From worker w’s perspective, the feedback rating itself mat-
ters instead of requesters who assign feedback ratings.
Hence, we omit the requester ID in misbehaving ratings.
Denote a set of L 2 Nþ misbehaving ratings as

RMisb , i‘; eRi‘

, -
: ‘ ¼ 1; . . . ; L

n o
; (46)

where eRi‘ 2 M denotes the ‘th misbehaving rating and i‘ 2
Nþ denotes the corresponding index. Note that RMisb is a
strong misbehaving rating attack, as we do not restrict both
the arrival pattern and the value of misbehaving ratings.
The following theorem characterizes the robustness of our
feedback rating approach againstRMisb.

Theorem 3. Suppose Assumptions 1, 2, and 3 hold and
jRMisbj < 1. Assume the weights ai; 8i, of the rating aggre-
gation rule satisfy (31). We have P limi!1 Qi ¼ u½ # ¼ 1:

Theorem 3 states that the aggregate rating Qi can still
converges to u if the number of misbehaving ratings is finite.
Namely, our feedback rating approach is robust to a finite
number of misbehaving ratings.

4 EXPERIMENTS

We conduct experiments to study the impact of various
model parameters on the convergence of Qi as well as the
speed of Qi in revealing the ground truth reliability. We
also apply our feedback rating approach to estimate AQI
and show that it can improve estimation accuracy by as
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high as 50 percent over the URP algorithm [3], especially
when the sensor data is noisy.

4.1 Experiment Settings
Without loss of generality, we set smax ¼ 1 andM ¼ 5 in our
experiments. We consider the following non-linear form of
reliability function f :

fðs; vÞ ¼ M= 1þ exp (r
s( v

smax

# $& '
; (47)

where r 2 Rþ models the sensitivity of the reliability u to
workers’ skill and the skill requirement of tasks. A larger
value of r models a higher degree of sensitivity. Fig. 1 illus-
trates fðs; vÞ under different selections of r. One can observe
that when r ¼ 1 the curve of fðs; vÞ is almost linear in both s
and v, i.e., the linear form of f can be captured as a special
case of r ¼ 1.

We consider the following self-assessment function g:

gðQiÞ¼

2s

1þexp (v
Qi(u
M

( ) ; if s+ smax
2 ;

2s(smaxþ 2ðsmax(sÞ
1þexp (v

Qi(u
M

( ) ; if s > smax
2 :

8
><

>:
(48)

where v 2 Rþ models the sensitivity of skill assessment to
the aggregate rating Qi. A larger value of v models a higher
degree of sensitivity. Fig. 2 illustrates the curve of gðQiÞ
under different selections of v. Again, one can observe that
we capture the linear form of g as a special case of v ¼ 1.

We consider the following self-selection function h:

hðSiÞ ¼

2v

1þexp (n
Si(s
smax

( ) ; if v + smax
2 ;

2v(smax þ 2ðsmax(vÞ
1þexp (n

Si(s
smax

( ) ; if v> smax
2 ;

8
><

>:
(49)

where n 2 Rþ models the sensitivity of the skill requirement
of the selected tasks to skill self-assessment. A larger value
of n models a higher degree of sensitivity. Fig. 3 illustrates

the curve of hðSiÞ under different selections of n. Again, one
can observe that we capture the linear form of h as a special
case of n ¼ 1.

We consider the following rating bias function q:

qðQi; ~QiÞ ¼
1

t
ln h expðtQiÞ þ ð1( hÞexpðt ~QiÞ
, -

; (50)

where t 2 Rþ models the sensitivity of rating bias to Qi and
~Qi. A larger value of t models a higher degree of sensitivity.
Fig. 4 illustrates the curve of qðQi; ~QiÞ under different selec-
tions of t. Again, one can observe that we capture the linear
form of q as a special case of t ¼ 0:1.

The rating Riþ1 follows a scaled beta distribution. More
concretely, Riþ1 ¼ MX, where X follows a standard beta
distribution, with mean qðQi; ~QiÞ=M and variance 1=M2.

4.2 Impact of Non-Linearity on Convergence
Now we study the impact of non-linearity on the conver-
gence of Qi. Throughout this section, we set s ¼ v ¼ 0:5 and
h ¼ 0:5. Fig. 5 shows the curve of Qi under different selec-
tions of r. One can observe that as r varies from 1 to 20, Qi

converges after a similar number of ratings i. Recall that
Fig. 1 illustrates that r ¼ 1 is nearly the same as a linear
form of f . This implies that the non-linearity of f influences
the convergence speed of Qi only slightly compared with its
linear form.

Fig. 1. Illustrating fðs; vÞ.

Fig. 2. Illustrating gðQiÞ, where u ¼ 2:5.

Fig. 3. Illustrating hðSiÞ, where s ¼ 0:5.

Fig. 4. Illustrating qðQi; ~QiÞ, where h ¼ 0:4.

Fig. 5. Impact of r on the convergence, where s ¼ v ¼ 0:5; h ¼ 0:5.
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Fig. 6 shows the impact of v (i.e., the parameter that quanti-
fies the sensitivity of the skill requirement of the selected
tasks to skill self-assessment) on the convergence speed of
Qi. From Fig. 6, one can observe that as v varies from 1 to
20, Qi converges after a similar number of ratings i, imply-
ing that the non-linearity of g influences the convergence
speed of Qi only slightly compared with its linear form.

Fig. 7 shows the impact of n (i.e., the parameter that
quantifies the sensitivity of the skill requirement of the
selected tasks to skill self-assessment) on the convergence
speed of Qi. From Fig. 7, one can observe that as n varies
from 1 to 20, the Qi converges after a similar number of rat-
ings i, implying that the non-linearity of h influences the
convergence speed of Qi only slightly as compared with its
linear form.

Fig. 8 shows the impact of t (i.e., the parameter that
quantifies the sensitivity of rating bias to Qi and ~Qi) on the
convergence speed of Qi. From Fig. 8, one can observe that
as t varies from 0.1 to 4, Qi converges after a similar number
of ratings i, implying that the non-linearity of q influences
the convergence speed of Qi only slightly as compared with
its linear form.

Lessons Learned. The non-linearity of f; g; h and q influen-
ces the convergence speed of Qi only slightly as compared
with their linear form.

4.3 Speed of Revealing Ground Truth Reliability
We further study the speed of revealing the ground truth
reliability, via selecting linear forms of f; g; h and q derived
in Equations (4), (12), (15), and (21) respectively.

Fig. 9a shows the impact b on minimum number of rat-
ings nð"; dÞ. One can observe that as b, i.e., the parameter
that quantifies the sensitivity of skill self-assessment to
aggregate rating, varies from 0.2 to 0.8, the minimum num-
ber of ratings decreases slightly. This statement also holds
for g, i.e., the parameter that quantifies the sensitivity of
skill requirement of selected tasks to skill self-assessment,
because g and b are symmetric as illustrated in Equa-
tion (19). Fig. 9b shows that as the strength of rating bias h
increases, on the minimum number of ratings nð"; dÞ
increases significantly.

Fig. 10 shows the impact of rating aggregation rules, i.e.,
m, on the minimum number of ratings. From Fig. 10a, one
can observe that the minimum number of ratings under m ¼
2 is smaller than that under m ¼ 0. This implies that the
averaging scoring rule is not optimal, but instead a recency
aware rule can improve it. Furthermore, one can also
observe that the improvement is significant, especially
when the rating bias is strong and the accuracy parameter "
is small. Fig. 10 shows that when the strength of rating bias
h is small, the average scoring rule has nearly the highest
accuracy under the same number of ratings.

Lessons Learned. The minimum number of ratings varies
slightly (or significantly) as the cognitive bias of workers (or
the rating bias) varies from small to large. The unweighted
averaging scoring rule is sub-optimal in terms of estimation
accuracy, while a recency aware rating aggregation rule can
significantly improve the accuracy under the same number
of ratings.

4.4 Applications to AQI Estimation
Application Settings. We now apply our feedback rating
approach to AQI (air quality index) estimation. The AQI is

Fig. 6. Impact of v on the convergence, where s ¼ v ¼ 0:5; h ¼ 0:5.

Fig. 7. Impact of n on the convergence, where s ¼ v ¼ 0:5; h ¼ 0:5.

Fig. 8. Impact of n on the convergence, where s ¼ v ¼ 0:5; h ¼ 0:5.

Fig. 9. Impact of b and h on the convergence rate, where s ¼ v ¼ 0:5.

Fig. 10. Impact of rating aggregation rules on the convergence rate,
where s ¼ v ¼ 0:5;b ¼ 0:5; g ¼ 0:5.
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measured in the range ½0; 100# and consider a task with a
ground truth AQI of x. ¼ 40. A set of W , f1; . . . ;Wg work-
ers report AQI data. Specifically, let Xw 2 ½0; 100# denote the
AQI reported by worker w, where Xw=100 follows the stan-
dard beta distribution. The worker are classified into two
types: reliable worker having ðE½Xw#;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Xw#

p
Þ ¼ ð50; 10Þ

and unreliable worker having ðE½Xw#;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Xw#

p
Þ ¼ ð80; 10Þ.

Let Qw;iw denote the aggregate rating of worker w, where iw
denotes the number of ratings of w. Let bX denote an esti-
mate of the ground truth AQI. We use a feedback rating aware
estimation scheme

bX ¼
P

w2W Q5
w;iw

Xw
P

w2W Q5
w;iw

:

We compare our estimation scheme with two baselines: (1)
the simple average scheme bX ¼ ð

P
w2W XwÞ=W and (2) the

state-of-the-art truth estimation scheme called URP algo-
rithm [3]. We use the root mean square error as the perfor-
mance metric

RMSE ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð bX ( x.Þ2#

q
:

We compute this metric via Monte Carlo simulation with
1000 rounds of repetitions. We consider W ¼ 10 workers
and for simplicity of discussion, we set iw ¼ NumRat; 8w 2
W. We aim to demonstrate the benefit of feedback ratings in
improving the AQI estimation. To achieve this, we start
from the stage that the AQI sensing task has been assigned
to some reliable workers and unreliable workers, i.e., we
omit the process of task assignment or selection. We vary
the fraction of unreliable workers who report the AQI from
small to large. Furthermore, the historical ratings of each
participating worker are generated by our model under the
same settings of Section 4.3, where we set ðs; vÞ ¼ ð0:7; 0:7Þ
for reliable workers and ðs; vÞ ¼ ð0:3; 0:7Þ for unreliable
workers, and the variance of ratings is set to ð2=MÞ2. We
aim to provide fundamental understandings on the rating
bias by varying h.

AQI Estimation Accuracy. Fig. 11a shows the RMSE of
three ground truth estimation schemes, where we vary the
number of reliable workers from 1, representing that only
10 percent of the AQI are reported by reliable workers, to
10, representing that all AQI are reported from reliable
workers. One can observe that when the number of reliable
workers is no more than 4, i.e., at most 40 percent AQI are
reported reliable workers, our feedback rating aware esti-
mation scheme reduces the RMSE of URP algorithm by as
high as ð34:7( 17:01Þ=34:7 ¼ 51% (achieved when the num-
ber of reliable workers is 4). Namely, our feedback rating

aware estimation scheme significantly outperforms the URP
algorithm in the applications scenario that only a small frac-
tion of data is reliable. When the number of reliable workers
is no less than 8, i.e., at least 80 percent AQI are reported
reliable workers, the URP algorithm reduces the RMSE of
our feedback rating aware estimation scheme by at most
ð11:37( 10:60Þ=11:37 ¼ 7% (achieved when the number of
reliable workers is 8). This implies that the URP algorithm
can slightly outperform our feedback rating aware estima-
tion scheme in the applications scenario in which a large
fraction of data is reliable. Furthermore, our feedback rating
aware estimation scheme always outperform the simple
average scheme. Note that our feedback rating aware esti-
mation scheme achieves the above improvement under a
large rating bias h ¼ 0:8. Fig. 11b shows that the RMSE of
our feedback rating estimation scheme decreases when the
rating bias h decreases. Namely, our feedback rating aware
estimation scheme is more accurate if the crowdsensing
platform operator can deploy a feedback rating system with
small rating bias h. From Fig. 11b, one can observe that as
we increase the number of ratings from 20 to 80, we
decrease the RMSE slightly, implying that 20 ratings can
already guarantee a small RMSE, showing that our scheme
is highly efficient and robust.

Lessons Learned. Our feedback rating aware estimation
scheme significantly outperforms (i.e., reduce the RMSE by
as high as 50 percent) the URP algorithm in the applications
scenario that only a small fraction of data is reliable. Our
feedback rating aware estimation scheme is highly robust
and efficient.

5 RELATED WORK

Worker reliability has been applied in many aspects of
crowdsensing applications. One important aspect is incen-
tive mechanism design [6], [18], [19], [20], [21]. A variety of
incentive mechanisms take the reliability of workers as
input parameters [7], [12], [13]. Our work complements
them by providing an approach to track the reliability
scores of workers. Another important aspect is task match-
ing or allocation [3], [22]. Yang et al. [3] showed that incor-
porating worker reliability into task matching can improve
the matching accuracy significantly. Halabi et al. [4]
designed a task assignment mechanism for vehicular
crowdsensing applications, which assigns tasks based on
vehicles’ reliability. Our work supports task matching or
assignment by providing explicit reliability scores on
workers.

Worker reliability is essential for estimate the true infor-
mation (called truth discovery) in crowdsensing applica-
tions. A number of works focused on estimating the true
information and worker reliability jointly from the data
submitted by workers. One class of algorithms can esti-
mate worker reliability with proven guarantee on the esti-
mation error [23], [24], [25]. These algorithms are batch
learning algorithms, and Wang et al. [26] proposed a recur-
sive expectation-maximization algorithm to accommodate
streaming data scenario. In these works [23], [24], [25],
[26], the data collected by workers is assumed to be either
boolean or discrete and only of one dimension. Extending
them to continuous or multiple dimensional data setting is

Fig. 11. RMSE of three estimation schemes.

XIE AND LUI: QUANTIFYINGWORKER RELIABILITY FOR CROWDSENSING APPLICATIONS: ROBUST FEEDBACK RATING... 469

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:46:38 UTC from IEEE Xplore.  Restrictions apply. 



technically non-trivial. Our feedback rating approach only
requires requesters to assign ratings to assess the quality
of data. Our work can be applied to discrete, continuous or
even multi-dimensional data, as there are various sensor
quality estimation algorithms [5], [6] that can be applied to
discrete, continuous or even multi-dimensional data.
Another class of approaches were inspired by the truth dis-
covery framework [2], [3], [5], [27], [28], [29]. The intuition
is that the data collected by reliable workers should be
close to the true information and the worker whose data is
close to the true information should have a high reliability
score, or the graphical model [30]. This class of approaches
have no theoretical guarantee on the reliability estimation
error, while our work has. Furthermore, all these
approaches are centralized and require one to input the
data of multiple tasks in a batch manner. Our approach
can handle the data of each task distributedly and the data
of different tasks can even be allowed to arrive in a stream
manner. Lastly, our approach updated worker reliability
dynamically, capturing that worker may make errors
regardless of reliable ones or unreliable ones, while previ-
ous works treat worker reliability estimation as a one shot
problem.

Two notions that are closely related to worker reliability
are worker performance and worker consistency. Huang
et al. [31] conducted experiments to study the accuracy of
peer consistency evaluation method in evaluating worker
performance in human computation systems such as
crowdsourcing. Qiu et al. [32] proposed to combine gold
standard evaluation and peer consistency evaluation to
measure worker performance. Williams et al. [10] proposed
a metric to quantify the consistency of workers, i.e., the abil-
ity that a worker output the same result when repeating the
same task. They proposed a mechanism that generates tasks
with consistency probes to estimate worker consistency.
Alqershi et al. [11] proposed a metric that evaluates worker
consistency via pairwise comparisons. These worker perfor-
mance methods and worker consistency methods are all
one shot. They have the potential to be applied to estimate
sensor data quality. Our approach aims to evaluate the long
term or average reliability of workers.

A number of works designed rating mechanisms to
address incentive issues in crowdsensing applications. Qiu
et al. [33] designed a rating mechanism to incentivize
requesters to allocate tasks to less skilled workers. Through
this, less skilled workers can have chance to solve tasks and
at the same time improve their skills, which in turn
improves sustainability of crowdsourcing platforms. Lu
et al. [34], [35] and Xie et al. [8] designed rating mechanisms
to incentivize participation from workers and high quality
contribution from workers. Different from these works, this
paper focuses on designing rating systems to reveal worker
reliability.

A variety of works studied sensor data quality estima-
tion. Yang et al. [5] proposed a clustering based approach to
estimate sensor data quality. Peng et al. [6] designed an
expectation-maximization algorithm to estimate sensor data
quality. These works provide alternatives to implement
the rating protocol in our approach. Note that our work
does not restrict to any specific rating protocols. We deve-
lop a general model to capture the impact of data quality

estimation accuracy on the feedback ratings and our model
allows errors in the estimation.

6 CONCLUSION

This paper utilizes a feedback rating approach to estimate
worker reliability. We develop a mathematical model to
characterize the cognitive bias in task selection and the rat-
ing bias. We derive sufficient conditions, under which the
aggregate rating is asymptotically accurate in estimating
worker reliability, and identify a class of asymptotically
accurate rating aggregation rules. We further derive the
minimum number of ratings needed to guarantee a given
reliability estimation accuracy. We conduct experiments
and found that: (1) A recency aware rating aggregation rule
can significantly improve the accuracy of the average scor-
ing rule in estimating worker reliability; (2) To achieve the
same reliability estimation accuracy, the minimum number
of ratings needed increases significantly as the degree of rat-
ing bias increases. (3) Our feedback rating approach
improves AQI estimation accuracy by as high as 50 percent
over the URP algorithm[3] when the sensor data is noisy.
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