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Abstract—Small cells are deployed in 5G networks to complement themacro cells for improving coverage and capacity. Small cells and

edge computing are natural partnerswhich can improve users’ experience. Small cell nodes (SCNs) equipped with edge servers can

support emerging computing services, such as virtual reality which impose low-latency and precise contextual requirements.With the

proliferation of wireless devices, there is an increasing demand for offloading tasks to SCNs. Given limited computation and

communication resources, the fundamental problem for a small cell network is how to select computing tasks tomaximize effective

rewards in an uncertain and stochastic environment. To this end, we propose an online learning framework, LFSC, which has the

performance guarantee to guide taskoffloading in a small cell network. LFSC balances between reward and constraint violations, and it

consists of three subroutines: i) a randomized algorithmwhich calculates selection probability of each task based on task weights; ii) a

greedy assignment algorithmwhich cooperatively allocates tasks among different SCNs based on the selection probability; iii) an update

algorithmwhich exploits themulti-armed bandit (MAB) technique to update task weights according to the feedback. Our theoretical

analysis shows that both the regret and violationsmetrics of LFSChave the sub-linear property. Extensive simulation studies based on real

world data confirm that LFSCachieves a close-to-optimal reward with low violations, and outperformsmany state-of-the-art algorithms.

Index Terms—Task offloading, online learning, 5G small cell

Ç

1 INTRODUCTION

EXPLOSIVE growth in mobile data traffic brings severe chal-
lenges to existingmacrocell coverage. Small cells are intro-

duced in 5G as a fundamental element of network
densification. Small cell nodes (SCNs) operate in high fre-
quencies, covering a range of 10 meters to 2 kilometers each
[1]. SCNs are often attached to existing structures (e.g., street-
lights or utility poles) and connected to the core network (or
the macrocell base station) through fiber optic cables. In par-
ticular, SCNs are close to wireless devices (WDs) and are able
to process larger amount of data at faster speeds. A small cell
network also increases the macrocell’s capacity, and provides
wireless users with better and faster connectivity [2]. The

number of small cell installation in the US increased 550 per-
cent in 2018, and is predicted to exceed 800,000 by 2026 [3].

5G is expected to support transmission speed as high as
10 Gb/s [4], which boosts the demand for new services such
as security surveillance, virtual reality, and automatic driv-
ing [5]. These applications usually generate a huge amount
of data and are often delay sensitive, and thus such services
are often prioritized to be processed at the edge rather than
at the remote cloud due to strict delay and high computing
requirements [6]. Therefore, edge computing and small cells
are natural partners that may work in concert. Small cells
equipped with edge servers represent a competitive solu-
tion for mobile task offloading. Since these servers are near
to tasks’ origin, so they can better meet the strict latency
requirements. A major operator survey [7] shows that over
79 percent of operators will deploy small cells with edge
computing before 2020 to support differentiated services for
the potential market worth.

In this work, we consider how a small cell network can
accept offloaded tasks from wireless devices. Operating
such a system is very challenging. First, different types of
tasks have different features, e.g., input and output data
size, latency requirement, etc. The above information is usu-
ally summarized as a task’s context and leads to different
allocation strategies. However, naively considering such
large amount of contexts incurs in high computation com-
plexity. Second, both communication and computation
resources at a SCN is limited. Due to the physical limitation
of 5G high frequency bands, e.g., Millimeter-Wave
(mmWave) channel sparsity, beamforming technique, and
number of radio frequency (RF) chains [8], each SCN can
only establish a fixed number of connections to accept off-
loaded tasks. Furthermore, a lower-powered SCN may
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support only a small edge server with finite computation
resource. Third, there exist significant uncertainties in the
task offloading process. For example, 5G mmWave signals
are prone to blockage due to weak diffraction capabilities
[1]. Once blockage happens, the execution of a task is inter-
rupted. Therefore, an efficient system needs to guarantee its
quality of offloading service. In addition, the reward (e.g.,
task value or computation rate) and resource consumption
of a task may be time varying, depending on the quality of
returned result. Worse yet, in practice, the aforementioned
information can only be learned after the system offloads
and processes tasks from WDs. Last but not least, a WD may
be covered by multiple small cells. Collaborative task off-
loading between SCNs is non-trivial, because maximizing
the reward at a single SCN does not always imply a global
reward maximization. Therefore, how to select offloading tasks
in a small cell network such that the effective reward, i.e., total
reward per unit resource, is maximized is a fundamental and
challenging problem.

Multi-armed bandit (MAB) is an online optimization
method for learning an effective strategy in an unknown envi-
ronment. Existing efforts on MAB are not directly applicable
to this problem. They either focus on a single agent [9], [10] or
ignore system constraints [11], [12]. Meanwhile, previous
research on task offloading in edge computing [13] cannot
capture all features in small cell networks, such as channel
instability and collaborative offloading. We will discuss this
in detail in Section 2. In thiswork, we propose an online learn-
ing-based framework, LFSC, to address the above challenges
and guide the task offloading process in small cell networks.
Our contributions are summarized as follows:

First, we first assume that all tasks can be processed in
one time slot, and formulate the task offloading problem in
5G small cell networks as an integer linear program (ILP).
In the online setting, there is no prior knowledge on the rele-
vant system parameters. We exploit MAB theory to deal
with the unknown environment. We first relax the integral
constraint, and consider it as the task selection probability.
Rather than pursue reward maximization, our design aims
to minimize the regret, which is the difference between the
optimal reward and the average of our task offloading algo-
rithm’s reward. Our online learning algorithm, LFSC,
makes a good balance between maximizing the overall
effective reward (i.e., minimizing the regret) and satisfying
resource capacity constraint as well as QoS requirement
(i.e., keeping low violations).

Second, to tackle other challenges in the algorithm design,
we leverage the following techniques: i) we introduce a
series of adjustable penalty coefficients, using the Lagrang-
ian method in constrained optimization [14], to balance
between maximizing objective values and curbing con-
straint violations; ii) we divide the task context space into
small hypercubes of similar contexts, and estimate the rele-
vant parameters of each task. In addition, each hypercube
maintains a weight, which is used to calculate the probabil-
ity that each task will be offloaded in each time slot. Hence,
the combined stage explosion and high computing com-
plexity can be masterly avoided; iii) in view of the computa-
tional difficulty of coordinating all SCNs, a greedy
algorithm is designed to conduct task offloading. While
SCNs make a collaborative offloading decision, which can

prevent a task from being repeatedly offloaded to multiple
SCNs at the same time. LFSC consists of three subroutines:
i) a randomized algorithm, trading off between exploration
and exploitation, computes the selection probability of each
task being offloaded to SCNs; ii) the greedy algorithm coor-
dinates multiple SCNs for task offloading, based on the
selection probability; iii) an update algorithm updates auxil-
iary variables based on feedback from current decision,
which will help in calculating the selection probability in
the next time slot.

Third, we extend to consider a more practical scenario
where a task requires multiple time slots to be completed.
We propose a convex function to facilitate task completion.
Specifically, tasks, which have been offloaded but not yet
completed, have priority to continue to be processed in the
next time slot. In order to encourage SCNs to complete a
whole task, the reward of a task will increase rapidly when
the length of task execution increases. We modify the task
offloading algorithm accordingly, and present a new online
learning framework, LFSCExt, to solve this problem.

Last but not the least, we prove the sub-linear upper
bounds on the regret and violations of LFSC through rigorous
theoretical analysis. We prove that LFSC converges to the
optimal task offloading decision. Comparing with existing
state-of-the-art, we further demonstrate LFSC’s effective-
ness by extensive simulations. The results show that LFSC
significantly outperforms other benchmark algorithms.
Under the same system settings, our algorithm’s effective
reward almost coincides with the optimal value. Further-
more, in the early stage of exploration, the total violations of
LFSC are only 30, 32 and 20 percent of the vUCB [15], FML
[16] and random algorithm, respectively. Moreover, these
percentages decrease over time. Simulation results con-
firmed that LFSCExt can improve task completion with
high compound reward and low violations, compared to
other benchmark algorithms.

The rest of the paper is organized as follows. Section 2
reviews related literature. The small cell network is mod-
eled in Section 3. The task offloading frameworks for tasks
within one slot and over multiple slots are presented in Sec-
tions 4 and 5, respectively. The performance evaluation is
presented in Section 6. Section 7 concludes the paper.

2 RELATED WORK

Task Offloading. Previous studies on computation offloading
focus on when/how/what to offload from user devices to
the cloud or edge servers [13], [17], [18], [19], [20], [21]. Sun-
dar et al. [13] study the dependent task offloading problem.
They make the assumption that the current state of the
server and its performance of processing different tasks are
known in advance. In [17], to balance the energy-delay
tradeoff based on different offloading-decision criteria, Wu
et al. propose an energy-efficient offloading-decision algo-
rithm based on Lyapunov optimization. Different from our
algorithm, their algorithm aims to determine when to run
the application locally, when to forward it directly for
remote execution to a cloud infrastructure and when to del-
egate it via a nearby cloudlet to the cloud. Xu et al. [18]
study task offloading in an unknown dynamic system.
Eshraghi et al. [19] propose an algorithm to jointly optimize
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the offloading decisions for minimizing a weighted sum of
expected cost. They only consider one computing access
point and a remote cloud center. Xu et al. [22] introduce a
heuristic offloading method for deep learning edge services.
Hekmati et al. [23] consider a model with hard task execu-
tion deadlines. Yu et al. [24] design novel collaborative off-
loading schemes in MEC network. Online learning
algorithms based on MAB are proposed in [20], [21] to help
making task offloading decisions in the MEC environment.

Unfortunately, the above schemes are not well-suited for
5G networks with its special small cell architecture and
unique properties such as the collaboration among multiple
SCNs, and the communication limit of a SCN. Sahni et al.
[25] study the data-aware task allocation problem to jointly
schedule task and network flows in collaborative edge com-
puting. They propose a multistage greedy adjustment algo-
rithm to minimize the overall completion time of the
application. But it is not suitable for 5G networks due to the
dynamic features of 5G networks. Cheng et al. [26] investi-
gate joint task offloading in 5G radio accessing networks,
but not for small cell networks. An artificial fish swarm pol-
icy is developed in [27], which involves minimizing the
overall energy consumption while offloading tasks in 5G.
But tasks are offloaded to the macrocell base station rather
than SCNs. Xia et al. [28] consider the task offloading prob-
lem in a 5G multi-cell mobile edge cloud, with the goal of
minimizing energy consumption. In [29], Ali et al. come up
with a distributed framework for offloading a task of an
allocator among nearby devices to minimize the task execu-
tion time. Although it is proposed for 5G networks, they
don’t consider the small cell architecture in 5G networks. In
this paper, we consider offload workload to the 5G small
cell networks in an unknown environment, and aim at max-
imizing effective reward under system constraints.

Multi-Armed Bandit (MAB) Schemes. To address the uncer-
tainty in 5G environments, we propose an online learning
algorithm based on MAB, which was proven effective to
balance between exploration and exploitation in sequential
decisions [30]. The basic MAB framework learns to choose a
single optimal arm among a set of candidate arms of a priori
unknown rewards [31], without any constraints. Li et al. [10]
take context-dependent rewards into account. Gai et al. [12]
study multiple-play each time. Furthermore, Kim et al. [11]
propose a contextual MAB algorithm for a relaxed, semi-
parametric reward model. The above studies neglect system
constraints, which are crucial to guarantee system QoS.
Mahdavi et al. [32] extend the study of MAB where the
learner aims to maximize the total reward, given that some
additional constraints need to be satisfied. The arm’s
reward and cost in [32] are independent, while the objective
value in our work is a compound reward, which involves
learning multiple parameters. Cai et al. [33] propose an
online learning framework using stochastic constrained
bandit model with time-varying multi-level rewards based
on MAB. Patil et al. [34] study a variant of MAB problem,
which investigates the interplay between learning and fair-
ness. Gao et al. [35] model the unknown worker recruitment
in crowdsensing as a combinatorial MAB problem, and pro-
pose a worker recruitment algorithm.

Note that offloading tasks in 5G small cell networks
needs the collaboration of multiple SCNs, which implies

there are multiple agents in the MAB framework. The above
algorithms only work on the single agent and cannot apply
to multi-agents case. Shahrampour et al. [36] address the
MAB problem in a multi-agents framework, where all
agents explore the same finite set of arms. Instead, in our
work, each agent has a different set of arms and the sets
change over time. An online distributed experts problem is
studied to minimize the regret at time horizon in [37], where
the system involves multiple sites (agents). However, the
bandits are considered to be non-stochastic in this work.
Nicol et al. [38] propose a global recommendation algorithm
among multiple network nodes (i.e., multi-agents) to
improve the quality of recommendations, where only one
node reveals its payoff (reward) in each round. In [39], Xia
et al. study the offline and online task offloading problems
in a multi-cell mobile edge. They come up with a deep rein-
forcement learning based offloading algorithm to obtain the
optimal offloading policy. However, an important feature
in 5G, i.e., unstable signal, is ignored.

3 SYSTEM MODEL

3.1 System Overview

As shown in Fig. 1, we consider a small cell network where
M small cell nodes are connected to a macrocell base station
(MBS) via fiber optic cables. A set of WDs are distributed in
this small cell network, and each may request to offload a
computing task. Each SCN is equipped with a computing
server, which can process tasks from WDs. Let T ¼
f1; 2; . . .; Tg denote a large time span. M SCNs are denoted
as M ¼ f1; 2; . . .;Mg. Let Dt denote all tasks in time slot t
and Dm;t denote the set of tasks that are within the coverage
of SCN m in time slot t. We assume the maximum number
of WDs that appear in SCN m’s coverage area to be Km, i.e.,
Km ¼ maxt2T jDm;tj. Note that a WD may be covered by
multiple small cells, and WDs are free to move from one
cell to another in different time slots. We first assume that
all tasks can be finished in one time slot. For complicated
tasks that need multiple time slots of execution, we discuss
how to handle them later in Section 5. Since SCNs are
deployed closer to WDs than MBS, they can provide low-
latency services and have higher priority in task offloading.
For those tasks that are not selected by SCNs, they can be
offloaded and processed by MBS, and we leave it in the
future work.

Fig. 1. An illustration of a small cell network.
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3.2 Task Offloading Problem

Task Context Information. In order to provide better perfor-
mance, we consider the scenario where the MBS controls
and prioritizes offloading task to SCNs. A computing task is
characterized by the following meta information: i) the size
of input data that needs to be transmitted from a WD to a
SCN; ii) the size of output data that is to be fed back from a
SCN to a WD; iii) the type of latency requirement (e.g., tasks
can be roughly classified into two categories: latency-sensi-
tive, latency-insensitive), and so on. The above meta infor-
mation of task i ði 2 DtÞ is represented by its context fi.

Random Process in Task Offloading. Consider three
unknown random processes that capture the offloading sce-
nario at SCN m, Um

f ðtÞ, V m
f ðtÞ and Qm

f ðtÞ, where f is the
task’s context. As a realization of Um

f ðtÞ, um;t
fi

characterizes
the reward for SCN m to complete task i with context fi at
time t (e.g., the value or computation rate of processing task
i). Latency-sensitive tasks have higher rewards since they
are eager to be completed as soon as possible. Let vm;t

fi
be the

likelihood for SCN m to complete task i at t. This captures
the unstable communication link between SCN m and the
WD caused by weak penetration of 5G millimeter-Wave.
The variable qm;t

fi
characterizes resource consumption at

SCN m while processing task i at t. Given that the environ-
ment and the resource consumption of a task are relatively
stable in the long run, we assume that V m

f ðtÞ and Qm
f ðtÞ are

stationary across contexts. The other random processes
Um
f ðtÞ are not necessarily stationary. They are all indepen-

dent across f and independent of each other. Without loss
of generality, we normalize Um

f ðtÞ 2 ½0; 1�, V m
f ðtÞ 2 ½0; 1� and

1=Qm
f ðtÞ 2 ½0; 1�. Therefore, the effective reward per unit

resource for SCN m to complete the task with context f at
time t is Gm

f ðtÞ ¼ Um
f ðtÞV m

f ðtÞ=Qm
f ðtÞ. For the convenience of

description, we use compound reward to refer toGm
f ðtÞ’s reali-

zation gm;t
fi

. Let ggm;t ¼ fgm;t
fi

gi2Dm;t
, similarly, we have vvm;t

and qqm;t.
System Constraints. 5G utilizes beamforming for mmWave

communications between SCNs and WDs. Due to physical
limitations such as RF chains, the number of beams emitted
by each SCN is limited. Hence, SCN m cannot support all
tasks inDm;t if the number of requests is beyond its capacity.
Let c denote the maximum number of tasks that each SCN
can support at a time slot. Similarly, the computing resources
(i.e., RAM, CPU, GPU) at each SCN are also limited. The total
resources utilized by all tasks at each SCN cannot exceed its
resource capacity b at each time slot. Last but not least, in
order to provide QoS guarantee, we also need to impose a
requirement that the number of successfully processed tasks
by each SCN at a time slot is at least a.

Decision Variable. Let a binary variable pm;t
i indicate

whether SCN m executes task i at time t. Let Im;t � Dm;t be
the set of tasks selected by SCN m at t. Table 1 lists all
notations.

Problem Formulation. We aim to maximize the total com-
pound reward under system constraints. The optimization
problem can be formulated as the following integer linear
program:

maximize
X
t2T

X
m2M

X
i2Dm;t

gm;t
fi

pm;t
i ; (1)

subject to X
i2Dm;t

pm;t
i � c; 8t 2 T ; 8m 2 M; (1a)

X
m2M

pm;t
i � 1; 8t 2 T ; 8i 2 Dt; (1b)

X
i2Dm;t

vm;t
fi

pm;t
i � a; 8t 2 T ; 8m 2 M; (1c)

X
i2Dm;t

qm;t
fi

pm;t
i � b; 8t 2 T ; 8m 2 M; (1d)

pm;t
i 2 f0; 1g; 8t 2 T ; 8m 2 M; 8i 2 Dm;t: (1e)

Constraint (1a) implies that the number of tasks accepted
by each SCN does not exceed its communication capacity.
Constraint (1b) guarantees that each task is not repetitively
offloaded by multiple SCNs, which avoids wasting resour-
ces and improves the efficiency of overall system. System
QoS requirement and resource capacity are modeled by (1c)
and (1d), respectively.

Challenges. Existing online optimization literature
assumes that the information of time slot t is known at the
beginning of t. We consider a more practical scenario, where
such information is not available. In particular, um;t

fi
; vm;t

fi
and qm;t

fi
can only be observed after a SCN processes a task.

In this paper, we design a learning-based framework to allo-
cate at most c tasks to each SCN. It is still challenging to
maximize the compound reward without any prior knowl-
edge. Hence, we relax the constraint of pm;t

i . Let ppm;t ¼
ðpm;t

1 ; pm;t
2 ; . . .; pm;t

Km
Þ represent the task selection probability

TABLE 1
Summary of Notations
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vector of SCN m at time t, where pm;t
i 2 ½0; 1�, i 2 Dm;t.

1 Let
fpp�m;tgm2M denote the optimal solution. We quantify the per-
formance of our algorithm by its regret value, which is
defined as the difference between the omniscient oracle’s
compound reward and the expectation of the LFSC’s com-
pound rewards. We assume that the oracle makes the best
selection and achieves the optimal compound reward. The
regret is defined as,

RðT Þ ¼
X
m2M

X
t2T

ggm;tpp
�
m;t � E

X
t2T

ggm;tppm;t

 !" #
: (2)

In addition to maximizing the total compound rewards
(minimizing the regret), (1c) and (1d) should also be guaran-
teed. To measure the overall violations of the constraints
until time T , we define two violations under the LFSC frame-
work,

V1ðT Þ ¼
X
m2M

E
X
t2T

ða� vvm;tppm;tÞ
" #

þ

; (3)

V2ðT Þ ¼
X
m2M

E
X
t2T

ðqqm;tppm;t � bÞ
" #

þ

; (4)

where ½	�þ ¼ maxð	; 0Þ. V1ðT Þ shows the overall difference
between the total expected number of completed tasks and
the minimum completed task threshold. Similarly, V2ðT Þ
measures how much the overall expected resource con-
sumption exceeds the resource capacity. The regret and the
above two violations are important metrics to measure the
performance of offloading tasks selection. A good algorithm
should reduce both the regret and violations, and it learns
more information about the environment.

4 ALGORITHM DESIGN AND ANALYSIS

In this section, we first analyze key challenges in algorithm
design and propose corresponding solutions in Section 4.1.
The detailed LFSC algorithm is presented in Section 4.2 and
analyzed in Sections 4.3 and 4.4.

Main Idea. Based on the MAB framework, we propose an
online learning-based framework, LFSC, to solve the task
offloading problem. Fig. 2 shows the structure of LFSC. It
consists of three subroutines: probability calculation algo-
rithm Calculating, assignment algorithm GreedySelect and
updating algorithm Updating. At the beginning, Lagrangian

multipliers are introduced as adjustable penalty coefficients
to make a trade-off between the objective and violations.
Based on the objective and constraints in ILP (1), we con-
struct a new regret function. In Calculating algorithm, for
each SCN, the probability of each task being offloaded is
derived based on the idea of context space division and the
regret function. Calculating avoids the combinatorial explo-
sion caused by lots of task contexts. Then, to avoid the prob-
lem of repeated offloading, we design a greedy algorithm
GreedySelect to guide task offloading among multiple SCNs.
Base on the results of Calculating, a weighted bipartite graph
is constructed and tasks are iteratively selected to be off-
loaded according to this graph. Finally, in Updating algo-
rithm, once a task is completed, auxiliary variables and
related parameters are updated to calculate the selection
probability for future tasks. This makes the estimation of
parameters more accurate.

Algorithm 1. An Online Learning Framework (LFSC)

Initialize context partition: divide context space F into ðhT ÞDF

hypercubes of identical size
Initialize partitions weight: wm;1

f ¼ 1 for f 2 F T form 2 M
Initialize auxiliary variables: �1

m;1 ¼ 0; �1
m;2 ¼ 0;a > 0;b >

0; gm 2 ð0; 1�; dm ¼ 8gmc
1�gm

; hm ¼ gmdmc
ðdmþcÞKm

form 2 M
1: for t ¼ 1; 	 	 	 ; T do
2: form 2 M do
3: ~pptm ¼ Calculatingðfwm;t

f gf2FT
Þ

4: end for
5: fI t

mgm2M ¼ GreedySelectðc; f~pptmgm2MÞ
6: form 2 M do
7: fwm;tþ1

f gf2FT
= Updatingðfwm;t

f gf2FT
; I t

m; ~pp
t
mÞ

8: end for
9: end for

4.1 Challenges and Solutions

Challenge 1. In the general MAB framework, the learner sim-
ply aims to maximize the total reward (i.e., or minimize the
regret) without taking any constraints into account, which
does not apply to our model. Enlightened by [33], we lever-
age the theory of Lagrangian method in constrained combi-
natorial optimization to balance between maximizing the
total compound reward and satisfying the system con-
straints. Specifically, we introduce a set of adjustable
Lagrangian multipliers �m

1 ðT Þ and �m
2 ðT Þ for each SCN m,

and combine the regret with violations to construct a new
regret function

Y ¼
X
m2M

½RmðT Þ þ �m
1 ðT ÞðVm;1ðT ÞÞ2 þ �m

2 ðT ÞðVm;2ðT ÞÞ2�;

where the Lagrangian multipliers play a regulatory role and
RmðT Þ; Vm;1ðT Þ and Vm;2ðT Þ denote the regret and violations
of SCN m at time slot t, respectively. In this regret function,
the constraint violations Vm;1ðT Þ and Vm;2ðT Þ are squared for
facilitating the analysis of the regret analysis. If constraints
are being violated a lot, LFSC places more weight on the
violations controlled by �m

1 ðT Þ (�m
2 ðT Þ); it decreases the

weight on violations when constraints are satisfied reason-
ably. Note that, our algorithm allows violations to happen

Fig. 2. An illustration of our algorithm structure.

1. With the exception of ppm;t being a column vector, all other vectors
in this paper are row vectors.
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in some time slots, but the constraints must hold in the long
term. Now our goal is to obtain a sub-linear bound for Y ,
i.e., Y � T 1�uð0 < u < 1Þ, and thus we can further derive
sub-linear bounds for both regret and violations in long
terms.

Challenge 2. The core issue to be solved is how the MBS
selects c offloading tasks for each SCN based on historical
knowledge. A straightforward approach is to enumerate all
possible sets and select the optimal one. Unfortunately, this
leads to a very large search space. Furthermore, the com-
pound reward can only be observed after task completion.
In order to avoid this combinatorial explosion, the tradi-
tional way is to keep a series of weights for each SCN’s all
task contexts [40]. According to these weights, the selection
probability vectors are calculated in each time slot. Never-
theless, each task comes with its context, which means there
are massive contexts to be learned. If we maintain a weight
for each context, it will have high computational complex-
ity. Hence, we use a basic hypothesis that for similar task
contexts, their feedback by a particular SCN will be similar.
Under this hypothesis, our algorithm uniformly partitions
the context space into small hypercubes of similar task con-
texts and maintains a weight for each hypercube. Mean-
while, the algorithm learns about the parameters of
different hypercubes, which can be considered as approxi-
mate estimates of the parameters for contexts belonged to it.

Algorithm 2. Calculate Chosen Probability Vectors
Calculating

Input: fwm;t
f gf2FT

1: Observe SCNm’s current neighbor tasks Dm;t

2: Observe tasks’ contexts ffm;t ¼ ffi;tgi2Dm;t

3: for i 2 Dm;t do
4: Find fft ¼ ffi;tgi2Dm;t

such that fi;t 2 fi;t 2 FT

5: end for
6: if argmaxj2FT

wm;t
j � ð1c �

g
jFT j

Þ=ð1� gÞ
P

f2FT
wm;t

f then
7: Decide �t so as to satisfy
8: �tP

w
m;t
f

��t
�tþ
P

w
m;t
f

< �t
w
m;t
f

¼ ð1c �
g

jFT j
Þ=ð1� gÞ

9: Set St ¼ ff : wm;t
f � �tg and ~wm;t

f ¼ �t for f 2 St

10: else
11: Set St ¼ ;
12: end if
13: Set ~wm;t

f ¼ wm;t
f for f 2 FTnSt

14: Set ~wm;t
i ¼ ~wm;t

fi

15: for i 2 Dm;t do
16: ~pm;t

i ¼ c½ð1� gÞ ~w
m;t
iP

i2Dm;t
~wm;t
i

þ g
jDm;tj�

17: end for
18: Return: ~pptm

Challenge 3. Since a task can be assigned to multiple
SCNs, we need to consider the collaboration between differ-
ent SCNs. If we extend the traditional single agent MAB
approach to our setting, there are two key obstacles: i) the
tasks covered by multiple SCNs may be repeatedly off-
loaded, which causes unnecessary waste of computing
resources; ii) cascade sub-optimality will occur when a SCN
selects a sub-optimal task i since its optimal task i� has
already been offloaded to another SCN. This sub-optimal
selection has the potential to bring cascade effect. In other
words, local optimality at a single SCN does not always

result in the global optimum. Therefore, we design a greedy
algorithm that maps a task to a SCN with the maximum
reward to solve this challenge.

4.2 Algorithm Details

Algorithm Structure. The framework of our algorithm, LFSC,
is shown in Algorithm 1. At a high level, the algorithm con-
sists of two parts: i) a tailored contextual MAB algorithm,
which balances between exploration and exploitation in each
time slot to learn parameters such that a close-to-optimal
performance can be achieved; ii) a greedy assignment algo-
rithm, which gives a collaborative task offloading solution
among all SCNs.

Let F be the DF-dimensional context space, where DF is
the number of context dimensions per task. We assume it is
bounded and can hence be set to F :¼ ½0; 1�DF without loss
of generality. First, during initialization, LFSC uniformly
partitions the context space F into ðhT ÞDF hypercubes (i.e.,
each hypercube has the same size ð 1

hT
ÞDF ), where hT is an

input to our algorithm. Let FT be the resulting partition.
Then LFSC initializes a set of weights for the hypercubes of
each SCN, which will be updated according to historical
observations. In each time slot, LFSC calculates the selection
probability vector for each SCN towards current tasks
within its coverage, as shown in Algorithm 2. Next, the
greedy assignment algorithm in Algorithm 4 assigns tasks
to SCNs based on selection probability vectors. Finally, in
Algorithm 3, each SCN accepts tasks according to the
assignment. After receiving the feedback (i.e., um;t

fi
; vm;t

fi
and

qm;t
fi

) of the processed tasks, LFSC updates estimated param-
eters and hypercubes’ weights as well as some auxiliary
variables for each SCN, which will be used in the next time
slot to help learning.

Algorithm 3. Update Auxiliary Variables Updating

Input: fwm;t
f gf2FT

; I t
m; ~pp

t
m

1: Receive feedback um;t
i ; vm;t

i ; qm;t
i and calculate compound

reward gm;t
i for i 2 I t

m

2: for i 2 Dm;t do
3: ĝm;t

i ¼ gm;t
i =~pm;t

i 1ði 2 I t
mÞ

4: v̂m;t
i ¼ vm;t

i =~pm;t
i 1ði 2 I t

mÞ
5: q̂m;t

i ¼ qm;t
i =~pm;t

i 1ði 2 I t
mÞ

6: end for
7: for f 2 F do
8: Calculate hypercubes’ compound reward and parame-

ters ĝm;t
f ; v̂m;t

f and q̂m;t
f

9: if f =2 St then
10: wm;tþ1

f ¼ wm;t
f exp½hmðĝm;t

f þ �t
m;1v̂

m;t
f þ �t

m;2q̂
m;t
f Þ�

11: else
12: wm;tþ1

f ¼ wm;t
f

13: end if
14: end for
15: Update Lagrange multipliers:
16: �tþ1

m;1 ¼ ½ð1� dmhmÞ�t
m;1 � hmð v̂vt~pp

t

1�gm
� aÞ�þ

17: �tþ1
m;2 ¼ ½ð1� dmhmÞ�t

m;2 � hmðb� q̂qt~pp
t

1�gm
Þ�þ

18: Return: fwm;tþ1
f gf2FT

Tailored Contextual MAB Algorithm. The algorithm con-
sists of Algorithms 2 and 3. In each iteration, LFSC first gets
the contexts of all tasks within SCNm’s coverage and classi-
fies them into corresponding hypercubes (Lines 1-5 in
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Algorithm 2). Then, our algorithm preprocesses the weights
of hypercubes and determines each task’s weight (Lines 6-
14 in Algorithm 2), which are used to calculate the selection
probability vector ~pptm (Lines 15-17 in Algorithm 2). Note
that the first and second terms in the RHS of Line 16 reflect
the trade-off between exploitation and exploration. After
each SCN has processed tasks according to the greedy
assignment approach, MBS receives their feedback and cal-
culates compound rewards for them (Line 1 in Algorithm 3).
In Lines 2-5, Algorithm 3 calculates the unbiased estimates
ĝm;t
i ; v̂m;t

i ; q̂m;t
i for each task, where 1ðAÞ is an indicator func-

tion, i.e., 1ðAÞ ¼ 1 if the event A happens and 1ðAÞ ¼ 0 oth-
erwise. Next, in Line 8, the estimated compound reward
ĝm;t
f of the hypercube f is calculated according to ĝm;t

f ¼P
i:fi;t2f ĝ

m;t
i =

P
i:fi;t2f 1. Similarly, our algorithm computes

v̂m;t
f and q̂m;t

f . Finally, Lines 9-17 in Algorithm 3 update the
weights of all hypercubes and Lagrange multipliers of each
SCN at the end of each iteration.

Greedy Assignment Algorithm. We design a greedy assign-
ment algorithm to give a collaborative task offloading solu-
tion among all SCNs. According to our system model, we
abstract a weighted bipartite graph G ¼ ðM;Dt; EÞ, where
M, Dt and E represent left vertices (i.e., all SCNs), right ver-
tices (i.e., all tasks at time slot t) and edges, respectively. If
task i is within the coverage of SCN m at time slot t (i.e.,
i 2 Dm;t), there is a weighted edge between them, which is
denoted as wðm; iÞ. Hence, E , fwðm; iÞg. In particular, we
set wðm; iÞ ¼ ~pm;t

i after all SCNs’ selection probability vec-
tors are computed in Algorithm 2.

The greedy algorithm operates in an iterative fashion. Let
CðmÞ denote the number of tasks that will be offloaded to
SCN m until now, which is initialized to zero. In each itera-
tion, the highest weight edge ðm; iÞ is selected until there is
no edge in E0 (Line 2 in Algorithm 4). If the number of
selected tasks for SCNm is less than c, task iwill be selected
and offloaded to SCN m. Meanwhile, we update CðmÞ and
the set of available edges E0 (Lines 3-6). Otherwise, this
edge is deleted from E0. Finally, we get the task offloading
scheme V after all iterations.

Algorithm 4. Greedy Assignment Algorithm GreedySelect

Input: c; fwðm; iÞg
Initialize: V ¼ ;; E0 ¼ fwðm; iÞg; CðmÞ ¼ 0 form 2 M
1: while E0 6¼ ; do
2: select ðm; iÞ ¼ argmaxðm0;i0Þ2E0wðm0; i0Þ
3: if CðmÞ < c then
4: V ¼ V [ fðm; iÞg
5: CðmÞ ¼ CðmÞ þ 1
6: E0 ¼ E0nfðm0; i0Þg8ðm0; i0Þ : i0 ¼ i
7: else
8: E0 ¼ E0nfðm; iÞg
9: end if
10: end while
11: Return: V

4.3 Regret and Violation Analysis

Now we establish the upper bounds on the regret RðT Þ and
violations V1ðT Þ, V2ðT Þ of our online learning algorithm
LFSC. The theorem below states that the regret and viola-
tions of our algorithm are all sub-linear with respect to T ,

which means LFSC converges to the optimal task offloading
decisions over time, and has an asymptotically optimal per-
formance when T is sufficiently large.

Theorem 1. Let hm ¼ gmdmc
ðdmþcÞKm

, dm ¼ 8gmc
1�gm

and g ¼ minð1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kmð1þcÞ

c lnðKm=cÞT2=3

q
Þ, we achieve its sub-linear bounds for the regret

RðT Þ and violations V1ðT Þ; V2ðT Þ as follows:

RðT Þ � O T
2
3�

s
DFLD

s
2
Fcðcþ 1Þ

X
m2M

ðKm lnKmÞ
" #

;

V1ðT ÞðV2ðT ÞÞ � O T
5
6L

1
2D

s
4
Fc

3
2

X
m2M

K
1
2
m

 !
:

To prove Theorem 1, we first decompose the multi-agent
problem into multiple single agent problems and analyze
the sub-problems. Let RmðT Þ; V m

1 ðT Þ; V m
2 ðT Þ respectively

denote the regret and two violations of SCN m when the all
tasks within SCN m’s coverage are available to it, and there
exist no conflicts with other SCNs.

Lemma 1. For a SCN m, we can establish its sub-linear bounds
for its regret RmðT Þ and violations V m

1 ðT Þ; V m
2 ðT Þ as follows:

RmðT Þ � OðLD
s
2
FcKm lnKmT

2
3�

s
DFÞ; (5)

V m
1 ðT ÞðV m

2 ðT ÞÞ � OðL1
2D

s
4
Fc

1
2K

1
2
mT

5
6Þ: (6)

Proof. Please refer to Appendix. A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2020.3036390. tu

Next, we analyze the performance of our greedy algo-
rithm in Algorithm 4.

Lemma 2. For any given weighted bipartite graph instance G ¼
ðM;Dt; fwðm; iÞgÞ, let V� and V denote the optimal solution
and the output of our greedy algorithm, respectively. Then,P

ðm;iÞ2V gm;t
fi

wðm; iÞ � 1
cþ1

P
ðm;iÞ2V� gm;t

fi
wðm; iÞ, where

wðm; iÞ ¼ ~pm;t
i in our setting and gm;t

fi
wðm; iÞ correspondingly

represents the objective value in ILP (1).

Proof. Please refer to Appendix. B, available in the online
supplemental material. tu

Finally, combining Lemmas 1 and 2, we derive the upper
bounds for the regret and violations of LFSC. Let pp��m;t denote
the optimal solution for SCN m without considering con-
flicts. Note that pp�m;t is the optimal solution for SCN m,
which takes into account the conflicts among multiple
SCNs. Since the conflicts among SCNs are ignored in
Lemma 1, we have

P
t2T ggm;tpp

�
m;t �

P
t2T ggm;tpp

��
m;t for m 2

M, and we obtain,

RðT Þ ¼
X
m2M

X
t2T

ggm;tpp
�
m;t � E

X
t2T

ggm;t~ppm;t

 !" #

� ðcþ 1Þ
X
m2M

X
t2T

ggm;tpp
��
m;t � E

X
t2T

ggm;t~ppm;t

" #
:
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Therefore, we obtain

RðT Þ � O T
2
3�

s
DFLD

s
2
Fcðcþ 1Þ

X
m2M

ðKm lnKmÞ
" #

;

V1ðT ÞðV2ðT ÞÞ � O T
5
6L

1
2D

s
4
Fc

3
2

X
m2M

K
1
2
m

 !
;

which shows that both regret and violations are sub-linear
in the time horizon T . tu

4.4 Runtime Analysis

Then, we analyze the runtime of our algorithm, which can
be completed in polynomial time.

Theorem 1. In each time slot, the task offloading decision
can be made in OðMKmaxÞ steps, where M ¼ jMj and
Kmax ¼ maxm2MKm.

Proof. In the stage of calculating probability vectors (Algo-
rithm 2), lines 3-5 can be done in OðjDm;tjÞ steps and lines
6-14 can be completed in constant time. In lines 15-17, the
selection probabilities of tasks are calculated. This is also
done in OðjDm;tjÞ steps. Similarly, in Algorithm 3, lines 2-
6 can be done in OðjDm;tjÞ steps and lines 7-18 can be
done in constant time. For the Greedy Assignment Algo-
rithm (Algorithm 4), its runtime is relevant to the number
of SCNs (namely, jMj) and the number of tasks covered
by each SCN. Algorithm 4 can be done in OðjMj �
maxm2MKmÞ steps. Therefore, in each time slot, the run-
time of our algorithm is OðMKmaxÞ. tu

5 EXTENSION TO TASKS REQUIRING MULTIPLE

SLOTS

In this section, we consider the scenario where the execution
of a task requires multiple slots. We introduce the system
model in Section 5.1 and present the task offloading frame-
work in Section 5.2.

5.1 System Model

The previous model is based on the assumption that each
task can be completed in one time slot. In this section, we
extend our study to a more practical scenario where a task
requires multiple time slots for its execution. In order to
encourage SCNs to complete a whole task, the system will
pay extra reward to a task which already executed several
slots.

We assume that a task must be executed on the same
SCN, to avoid the migration cost. We introduce a new deci-
sion variable xmi , which represents whether task i is allo-
cated to SCN m or not. Also, the number of time slots for
task i’s execution should be no more than the required time
slots Li. In order to promote task completion, we multiply
the reward um;t

fi
by a convex function zti

zti ¼ r

Li

Li�tt
i ;

where r > 1, Li is the number of time slots required by task
i. The number of slots for task i’s execution until time t is
tti ¼

Pt
0

P
m2M pm;t

i ; 8i 2 D; and D is the set of all tasks. As a
result, the compound reward is gm;t

fi
¼ um;t

fi
ztiv

m;t
fi

=qm;t
fi

.

maximize
X
t2T

X
m2M

X
i2Dm;t

gm;t
fi

pm;t
i ; (7)

subject to X
m2M

xm
i � 1; 8i 2 D; (7a)

pm;t
i � xm

i ; 8t 2 T;8i 2 Dm;t; (7b)

X
t2T

X
m2M

pm;t
i � Li; 8i 2 D; (7c)

X
i2Dm;t

pm;t
i � c; 8t 2 T; 8m 2 M; (7d)

X
i2Dm;t

vm;t
fi

pm;t
i � a; 8t 2 T; 8m 2 M; (7e)

X
i2Dm;t

qm;t
fi

pm;t
i � b; 8t 2 T;8m 2 M; (7f)

pm;t
i ; xm

i 2 f0; 1g; 8t 2 T; 8m 2 M; 8i 2 D: (7g)

Constraint (7a) guarantees that a task can only be proc-
essed on the same SCN. Constraint (7b) represents the relation
between two decision variables. Constraint (7c) implies the
upper bound of execution length for task i. Constraints (7d),
(7e) and (7f) are the same as constraints (1a), (1c) and (1d).

5.2 Algorithm Design

We adopt the same MAB framework to design an online
learning-based algorithm, LFSCExt, as shown in Algo-
rithm 5 to offload tasks over multiple slots. LFSCExt also
includes two parts: i) a contextual MAB algorithm, which is
consisting of Algorithms 2 and 7, to trade off between explo-
ration and exploitation and achieve close-to-optimal perfor-
mance; ii) a greedy assignment algorithm in Algorithm 6,
which collaborates task offloading among all SCNs.

Algorithm 5. An Online Learning Framework (LFSCExt)

Initialize context partition: divide context space F into ðhT ÞDF

hypercubes of identical size
Initialize partitions weight: wm;1

f ¼ 1 for f 2 F T form 2 M
Initialize auxiliary variables: �1

m;1 ¼ 0; �1
m;2 ¼ 0;a > 0;b >

0; gm 2 ð0; 1�; dm ¼ 8gmc
1�gm

; hm ¼ gmdmc
ðdmþcÞKm

form 2 M
1: for t ¼ 1; 	 	 	 ; T do
2: form 2 M do
3: ~pptm ¼ Calculatingðfwm;t

f gf2FT
Þ

4: end for
5: fI t

mgm2M ¼ GreedySelectExtðc; f~pptmgm2MÞ
6: Delete task i from allDm;t when it finished.
7: form 2 M do
8: fwm;tþ1

f gf2FT
= UpdatingExtðfwm;t

f gf2FT
; I t

m; ~pp
t
mÞ

9: end for
10: end for
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Algorithm 6. Greedy Assignment Algorithm Greedy-
SelectExt

Input: c; fwðm; iÞg
Initialize: V ¼ ;; E0 ¼ fwðm; iÞg; CðmÞ ¼ 0 form 2 M
1: GreedySelect: Line 1-4
2: form 2 M do
3: Dm;t ¼ Dm;tni;8m =2 V
4: end for
5: GreedySelect: Line 5-10
6: Return: V

Algorithm 7. Update Auxiliary Variables UpdatingExt

Input: fwm;t
f gf2FT

; I t
m; ~pp

t
m

1: Receive feedback um;t
i ; vm;t

i ; qm;t
i , calculate zti and extended

compound reward gm;t
i for i 2 I t

m

2: Updating: Line 2-17
3: Return: fwm;tþ1

f gf2FT

Although LFSCExt follows the same design steps of
LFSC, the following modifications are made accordingly. To
satisfy the execution constraint (7c), we add line 6 in Algo-
rithm 5 to delete task i once it is completed. The modifica-
tion in Algorithm 6 implies there is no migration, and
corresponds to constraint (7a) and (7b). To accommodate
new compound reward, Algorithm 7 is adjusted. In Line 1,
the value of the convex function zti is calculated first, and
then the new compound reward is obtained. The perfor-
mance of LFSCExt is evaluated by simulation study. We
observe that LFSCExt outperforms other benchmark algo-
rithms with high compound reward and low violations.

6 PERFORMANCE EVALUATION

We next demonstrate the performance of LFSC via numeri-
cal simulations. We first describe the simulation settings.

Then the benchmark algorithms and numerical results are
presented.

Simulation Setup. We consider a scenario where there are
30 SCNs connected to a MBS. Suppose the number of WDs
appearing in each SCN’s coverage area varies randomly in
interval [35,100] in each time slot, i.e., jDm;tj 2 ½35; 100�. In a
time slot, each SCN can simultaneously support up to 20
WDs. For simplicity, we only consider the input and output
data size of tasks, as well as the type of computation resour-
ces they depend on (i.e., CPU, GPU, or both CPU and GPU).
The input data size of tasks is randomly distributed
between 5 Mbit and 20 Mbit [41]. Similarly, the output is
between 1 Mbit and 4 Mbit. Then we divide the input/out-
put data size into three categories by default. The reward
and likelihood of a SCN completing a task are normalized
and uniformly distributed in [0, 1]. The resource consump-
tion that a SCN processes a task is uniformly distributed in
[1, 2] [20]. To guarantee the performance of the network, the
minimum completed task threshold a and computation
resource limit b of each SCN are set to 15 and 27,
respectively.

Benchmark Algorithms. To evaluate the performance of
our algorithm, we provide a thorough analysis by compar-
ing LFSC with the following benchmark schemes:

� Oracle: Oracle has a priori knowledge of the entire
system. In each time slot, Oracle makes the best task
offloading policy under the system constraints, and
it constitutes a performance upper bound to the
other algorithms.

� Variant-UCB (vUCB): This is a variant of the classic
learning algorithm UCB [15], which we adapt to our
use-case. To fit our model, vUCB maintains a series
indices �gtf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðtÞ=ðNfðtÞÞ

p
for our hypercubes for

each SCN, where �gtf is the estimated compound
reward of hypercube f , andNfðtÞ is the total number
of times that tasks with context in hypercube f has

Fig. 3. Compound rewards, violations and performance ratio of LFSC, Oracle, vUCB, FML, and Random.
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been selected before time t. Then our greedy algo-
rithm Algorithm 4 is used to guide task offloading
among multiple SCNs based on the indices.

� FML: Fast Machine Learning (FML) [16] is an effi-
cient context-aware online learning algorithm. Since
FML only considers a single agent, it is slightly mod-
ified to fit our system model. Specifically, our greedy
algorithm is added to handle multi-agents problem
(i.e., multiple SCNs in our paper).

� Random: This algorithm randomly picks c tasks for
each SCN in each time slot, and each task cannot be
repeatedly offloaded.

Performance Metrics. Our performance metrics consist of
cumulative (per-time-slot) compound reward, cumulative
(per-time-slot) violations of (1c) and (1d) in ILP (1) and per-
formance ratio. The cumulative compound reward (violation)
is the overall compound reward of all SCNs in the system
up to time slot t. And the per-time-slot compound reward
(violation) at t is the compound reward (violation) of all
SCNs in time slot t. In particular, we define the performance
ratio as: performance ratio=cumulative compound reward /
(cumulative violation1 + cumulative violation2), which shows
the ratio between total reward and violations.

Result Analysis. We run simulations with T ¼ 10; 000. As
can be seen in Fig. 3a, the cumulative compound reward of
LFSC is almost identical to that of the Oracle at each time
slot. To get more details, as shown in Fig. 3b, the per-time-
slot compound reward of LFSC is slightly larger than that
of the Oracle in the first few time slots (t � 74). It is
because LFSC is in unknown environment at the begin-
ning. It may offload the tasks that have large compound
rewards but violate the system constraints. As t increases,
LFSC is in the exploration stage and learns from history
observation. Thus, its per-time-slot compound reward is
decreasing and smaller than Oracle’s. After that, the com-
pound reward becomes closer to the value of Oracle,
which means LFSC becomes more accurate in estimating
the system parameters. Note the per-time-slot compound
reward of the Oracle is varying since the number of incom-
ing tasks and their contexts may be different in each time
slot. However, the cumulative compound rewards and
per-time slot compound rewards of vUCB and FML are
always larger than the values of our LFSC and the Oracle.

This is because these two algorithm select tasks with large
compound reward regardless of the minimum completed
task threshold and computation resource limit.

Fig. 3c shows that for each time slot, LFSC’s cumulative
violation of minimum completed task threshold is always
the lowest. LFSC selects and processes tasks that are less
likely to violate the minimum completed task threshold.
Moreover, the violations of LFSC occur in the exploration
stage, and the growth rate of later cumulative violations
tends to zero. This can also be verified in Fig. 3d. After t ¼
1200, the per-time-slot violation-1 of vUCB and FML fluctu-
ates within a certain range. In contrast, the value of LFSC
gradually decreases and asymptotically approaches zero.
Since the Oracle can make task offloading decisions without
any violation, it is not depicted in Figs. 3c and 3d. Similarly,
the cumulative/per-time-slot violation of computation
resource limit are shown in Figs. 3e and 3f. They show the
superiority of LFSC in meeting resource capacity con-
straints. In Fig. 3g, after t ¼ 2750, LFSC has a significantly
better performance ratio compared to vUB and FML algo-
rithms. It strikes a balance between gleaning reward and
curbing violations.

Next, we investigate the impact of the minimum com-
pleted task threshold a on the total compound reward and
violation of (1c). As before, we run the simulation with

Fig. 4. Total compound reward and violation of (1c) under different value
of a.

Fig. 5. The average total compound reward and average violations of
SCNs when the number of SCNs varies.

Fig. 6. The impact of the likelihood of task completion.
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T ¼ 10; 000. Fig. 4 shows the total compound rewards and
violations of algorithms for different a 2 f13; 14; 15; 16; 17g.
As the value of a increases, the total compound reward of
LFSC decreases. Nonetheless, it is still the closest to the
value of Oracle. Note the total compound rewards of vUCB
and FML have not changed because the way they make task
offloading decisions is not affected by the value of a. The
total violations of all algorithms increase with the increase
of a, yet, the value of LFSC increases more slowly.

Then, we observe the performance of LFSC in different
environments where the range of the likelihood that a task
is successfully offloaded is different. The likelihood of task
completion is divided into three intervals, i.e., [0.25,0.5),
[0.5,0.75) and ½0:75; 1�. From Fig. 5, we can find that it is eas-
ier to satisfy the minimum completed task threshold, and
all algorithms’ violations of constraint (1c) in ILP (1) are
decreasing as the likelihood increases, when the value of a
is fixed. The likelihood is smaller, i.e., the minimum thresh-
old is more difficult to satisfy, the superiority of our LFSC
algorithm over vUCB and FML is more prominent.

Finally, we study the performance of LFSC when the
number of SCNs varies. Fig. 6 shows the average total com-
pound reward and the average total violations (sum of vio-
lation1 and violation 2) under different number of SCNs.
From Fig. 6, we can find that when there are more SCNs in
the system, each SCN’s average compound reward is close
to that of Oracle. Meanwhile, in LFSC, the average viola-
tions basically keep changeless. But the average violations
of other algorithms increase as the number of SCNs
increases. It implies that our LFSC has a strong scalability.

Simulations for Tasks Requiring Multiple Slots. We evaluate
the performance of LFSCExt through large-scale simula-
tions based on real-world data. We set the base of the con-
vex function to 2 (r ¼ 2) and the number of required slots
for each task varies randomly in ½10; 30�. Other benchmark
algorithms and LFSC are adjusted to accommodate the new
model. We also combine vUCB with the same convex func-
tion to encourage task completion. Figs. 7a, 7b and 7c shows
that we only lose a very small amount of compound reward
and even achieved a better violation compared to the origi-
nal LFSC algorithm. We further find that the performance
ratio is slightly higher than LFSC in Fig. 7d. The result dem-
onstrates that besides LFSCExt can not only improve task
completion, but also maintain high performance in com-
pound reward and violation metrics.

We also run the simulation with T ¼ 10; 000 again to find
out the influence of the minimum completed task threshold
a on the total compound reward and violation of (7e). Fig. 8
shows the result for different a 2 f15; 16; 17g. As the value
of a increases, the total compound reward of LFSCExt
decreases and violation of (7e) slightly rises, which coin-
cides with Fig. 4. Moreover, compared to LFSC, LFSCExt is
less sensitive to the change of a.

7 CONCLUSION

We studied task offloading in 5G small cell networks, and
proposed an online learning-based solution framework.
Our algorithm, LFSC, leverages the MAB technique to learn
the best task selection strategy in a small cell network, while
considering resource capacity constraints and QoS require-
ment. The efficiency of LFSC is verified by both theoretical
analysis and simulation studies. We proved that LFSC
achieves sub-linear bounds for both regret and violations.
Our algorithm’s superiority over other benchmark algo-
rithms is also confirmed by large-scale evaluations based on
real-world data. Furthermore, we discuss the situation that
the task execution extends to multiple time slots and pro-
pose an effective solution.

For future work, it is interesting to jointly consider off-
loading tasks to MBS and SCNs. Tasks that do not restrict
the latency but consume large amount of computing resour-
ces will be offloaded to MBS.
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