
TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012 1

Epidemic Attacks in Network-Coding Enabled
Wireless Mesh Networks: Detection,

Identification and Evaluation
Yongkun Li and John C.S. Lui, Fellow, IEEE, Fellow, ACM

Abstract—Epidemic attack is a severe security problem in network-coding enabled wireless mesh networks (WMNs). Malicious nodes
can easily launch such form of attack to create an epidemic spreading of polluted packets and deplete network resources. The
contribution of this work is to address such security problem. We allow the presence of “smart” attackers, i.e., they can pretend to
be legitimate nodes to probabilistically transmit valid packets so as to reduce the chance of being detected. We also address the case
where attackers cooperatively inject polluted packets. We employ the time-based checksum and batch verification to determine the
existence of polluted packets, then propose a set of fully “distributed” and “randomized” detection algorithms so that each legitimate
node in a WMN can identify its malicious neighbors and purge them for future communication. We provide formal analysis to quantify
the performance of the algorithms. Furthermore, simulation and system prototyping are carried out to validate the theoretic analysis
and show the effectiveness and efficiency of the detection algorithms.

Index Terms—Pollution Attack, Wireless Mesh Networks, Network Coding, Performance Evaluation

!

1 INTRODUCTION

IN recent years, wireless mesh networks (WMNs) have
emerged as a promising platform to provide easy Internet

access [1], [3], [16]. However, due to the spatial and temporal
fading of the wireless channels, communication links between
nodes usually have high loss rates. As reported in [1], half
of the operational links have a loss probability greater than
30%. Therefore, traditional routing protocols, which determine
the next hop in forwarding a packet, cannot guarantee a high
end-to-end throughput. In the past few years, we have seen
some exciting advancements in wireless routing protocols to
improve the performance of WMNs [4], [17], [22]. One such
protocol that is receiving a lot of attention is the opportunistic
routing protocol [5], [10]. In this protocol, any node which
overhears the transmission of another node can participate
in packet forwarding. Using this paradigm, high end-to-end
throughput can be obtained even if some links along the
source-destination path are lossy. However, since multiple
nodes which overhear the packet can participate in the packet
forwarding, packet collision may occur and thereby reduces
the network capacity. To overcome this problem, a number of
researchers have proposed enhancement on the transmission
schedulers. The main idea is that a node which is closer to
the destination will transmit with a higher priority so as to
reduce the possibility of packet collision.

To further improve the spatial reuse, a transmission sched-
uler based on network coding [20], [21] was proposed. This
promising approach can not only improve the end-to-end
throughput, but also reduce packet collision and improve the
network capacity. As demonstrated in [19] and systems like

• The authors are with the Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, Hong Kong.
E-mail: ykli@cse.cuhk.edu.hk, cslui@cse.cuhk.edu.hk

COPE [13] and MORE [6], one can achieve the above claim
for unicast and multicast data delivery in WMNs. The core
idea of using network coding is in “packets mixing”: inter-
mediate nodes along the source-destination path can mix (or
encode) received packets and then forward the coded packet
to other nodes. This active mixing by intermediate nodes
increases the packet diversity, resulting in fewer redundant
packet transmissions, and improves network capacity. As long
as the destination receives enough innovative (or linearly
independent) packets, it can decode the received packets and
obtain the original data.

However, allowing nodes in a WMN to perform network
coding opens the door for epidemic (or pollution) attack.
Malicious nodes can inject polluted/bogus packets into the
wireless network. If an intermediate node is unaware of receiv-
ing a polluted packet, it will continue to perform the packet
encoding and then forward the encoded but corrupted packet
to its neighbors. Since all nodes in a WMN participate in
encoding and packet forwarding, polluted packets will behave
like an epidemic and can be easily propagated across the entire
network, thereby significantly consume the network resource
and degrade the performance of legitimate flows. As indicated
in [8], pollution attack can be easily launched, and some
related work, e.g., [11], [14], [18], [23], [24] addresses this
problem, in particular, on detecting the existence of pollution
attack in the network and how to discard polluted packets.

In this paper, we focus on “detecting” and “identifying”
epidemic attackers in WMNs. Attackers can be intelligent in
the sense that they can choose to forward corrupted encoded
packets, or they can choose to forward legitimate encoded
packets. The rationale for attackers to pretend as legitimate
nodes is to reduce the chance of being detected. Contributions
of our work are:

• We propose a randomized and fully distributed detection

Digital Object Indentifier 10.1109/TMC.2012.186 1536-1233/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

mechanism: any legitimate node in a WMN can execute
our detection algorithms to identify its malicious neigh-
bors. We allow malicious nodes to pretend as legitimate
nodes and cooperatively inject polluted packets.

• We present a general analytical framework to quantify the
performance of our detection algorithms which shows the
effectiveness and efficiency of the algorithms.

• We validate our analytical models via extensive simula-
tions and system prototype. The simulation results show
the accuracy of our models and the effectiveness and the
efficiency of the algorithms.

The outline of the paper is as follows. In Section 2, we
briefly provide the necessary background on network coding
and how to efficiently determine the existence of polluted
packets. In Section 3, we present the distributed detection
mechanism in detail and also provide analysis on its per-
formance measures. In Section 4, we present a generalized
detection algorithm which cannot only defend against cooper-
ative attack, but also speed up the detection. We validate our
analysis via simulations and experimental results in Section 5,
and Section 6 concludes.

2 NETWORK CODING AND TIME-BASED
CHECKSUM BATCH VERIFICATION
In this section, we provide a brief background on network-
coding enabled WMNs, as well as the mechanism of time-
based checksum batch verification which is used to determine
the existence of polluted packets.

Wireless mesh networks (WMNs) consist of two types of
nodes: mesh routers and mesh clients. Each node operates not
only as a host but also as a router which forwards packets
for other nodes that are not in the direct transmission range
of their destinations. Although mesh clients can be stationary
or mobile, mesh routers usually have minimal mobility. For
the most commonly used architecture of WMNs, there is a
backbone network which only consists of mesh routers. In this
paper, we assume that the mesh routers are stationary, and we
focus on the backbones of WMNs which configured network-
coding enabled opportunistic routing protocol. This assump-
tion is not restrictive in practical WMNs as the network-coding
enabled opportunistic routing protocol cannot only decrease
the packets loss rate but also reduce the packets collision so
as to improve the network throughput.

Let us provide a brief background on network coding. The
pioneering paper on network coding can be found in [2].
Authors in [21] show that linear network coding achieves the
maximum capacity bounds. Moreover, Ho et al. prove that
the above argument is also true even if random coefficients
[12] are used for coding. When network coding is applied
in WMNs, the source first breaks up the file or message into
multiple generations. Each generation is further divided into n
packets, which are usually referred to as native packets. Each
packet is further divided into m codewords, each of which
is regarded as an element in a finite field Fq , where q is a
positive power of a prime number. Each native packet −→pi can
be viewed as an m-dimensional vector over the field Fq , i.e.,

−→pi = (p1i, p2i, ..., pmi)
!, pji ∈ Fq.

So all packets in one generation can be denoted as a m × n
matrix G, i.e., G = [−→p1,−→p2, ...,−→pn]. When the 802.11 MAC
is ready to send a packet, the source creates a random linear
combination of the n native packets and then transmits the
coded packet. Formally, a coded packet is (−→ej ,−→cj) where
−→ej =

∑n
i=1 cji

−→pi , and cji is a random coefficient. We call
−→cj = (cj1, cj2, ..., cjn) the code vector. For a forwarder,
if it receives l coded packets of the form (−→ej ,−→cj), then
it also creates a linear combination of the coded packets
via −→e =

∑l
j=1 c

′
j
−→ej , where c′j is a random coefficient.

Note that, a linear combination of coded packets is also a
linear combination of the native packets. Specifically, −→e =∑l

j=1 c
′
j
−→ej =

∑n
i=1(

∑l
j=1 c

′
jcji)

−→pi , which is also expressed
as a linear combination of the native packets.

When network coding is applied, intermediate malicious
nodes can modify the received packets and forward pollut-
ed/bogus packets. We say a packet (−→ej ,−→cj) is valid/correct if
and only if −→ej =

∑n
i=1 cji

−→pi holds. Otherwise, we call it a
polluted/bogus packet. Note that, the possibility of packets
mixing using network coding makes WMNs vulnerable to
pollution attack, which is induced by malicious nodes injecting
polluted packets. A naive approach to defend against such
attack is to perform hash verification by using hash functions
[15], which can check the integrity of each coded packet.
However, due to the high computational cost of modular
exponentiation, the achieved throughput is very low even if
batch verification is employed. One practical scheme to verify
packets is the time-based checksum verification mechanism
[8], which only requires random linear transformation to
reduce the computational complexity. The idea of time-based
checksum verification is as follows. The source periodically
broadcasts checksum packets which include (CHKs(G), s, t)
in an authenticated way after broadcasting multiple data
packets, where s is a random κ-bit seed and CHKs(G)
is a checksum which is a b × n matrix and t is the time
when the checksum is generated. To generate the checksum
CHKs(G), the source first generates a random b×m matrix
Hs by using the random κ-bit seed s and a pseudo-random
function f : {0, 1}κ × {0, 1}log2 b+log2 m → Fq . Specifically,
the element (Hs)ij is generated via fs(i||j). After generating
the matrix Hs, the source generates the checksum CHKs(G)
for generation G via CHKs(G) = HsG.

When a node receives a checksum packet, it verifies the
coded packets which are received before the checksum is
generated, i.e., before time t − ∆ where ∆ is the maximum
time skew in the network. Formally, to verify a coded packet
(−→ej ,−→cj), it checks if the following equation holds.

CHKs(G)−→cj = Hs
−→ej , (1)

where Hs is generated from the seed s by suing the way
described before. If Equation (1) holds, then the coded packet
is valid, otherwise, we call it a polluted packet. To reduce
the computational cost and make the verification practical,
the node can not verify every received packet, but perform
batch verification instead. Based on the batch verification,
when a node receives a checksum packet and has received
l coded packets (−→ej ,−→cj) (j = 1, 2, ..., l), it first creates a
linear combination of these l packets, −→e =

∑l
j=1 c

′
j
−→ej =

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

YONGKUN LI AND JOHN C.S. LUI: EPIDEMIC ATTACKS IN NETWORK-CODING ENABLED WIRELESS MESH NETWORKS: DETECTION... 3

∑n
i=1(

∑l
j=1 c

′
jcji)

−→pi , then verifies the the coded packet
(−→e ,−→c) where −→c =

∑l
j=1 c

′
j
−→cj by checking whether the

following equation holds or not.

CHKs(G)−→c = Hs
−→e . (2)

One important note is that using the batch verification, if
Equation (2) holds, then it implies all l received packets are
valid, and we call it the batch verification matches. On the
other hand, if the equality does not hold, then at least one
of the l packets is polluted and we have no knowledge of
which are the polluted packets. In this case, we call it the
batch verification does not match. In this paper, we assume
that whenever a verification is needed, batch verification is
performed. This assumption is not restrictive, in particular,
when one considers designing a WMN with high throughput
and low end-to-end delay.

Due to the packets mixing property of network coding, i.e.,
any malicious node can easily modify the packets, WMNs
are prone to pollution attack. As shown in [9], the threat
of pollution attack is very severe. Comparing with previous
work which focuses on designing efficient packet verification
scheme, our aim is to identify malicious nodes which generate
polluted packets. After detecting such malicious attackers, one
can simply block their communications to prevent further
resource depletion in WMNs, e.g., blacklist them from the
neighbor list, so as to defend against the pollution attack.

3 DETECTION METHODOLOGY
In this section, we propose our detection algorithms which are
based on batch verification to identify pollution attackers, as
well as the analytical methodology to quantify the performance
measures of the algorithms.

Since we focus on backbones of WMNs which use network-
coding enabled opportunistic routing protocol (e.g., MORE),
we first give a brief overview of the MORE protocol. In
MORE, the source node sends packets in generations, and
each generation contains n native packets. When the source
node is permitted to transmit, it will broadcast coded packets
which are the linear combination of the native packets instead
of directly broadcasting the native packets. A MORE header is
attached to each coded packet which contains a list of potential
forwarders. The source node chooses all its downstream nodes
which have a lower ETX [7] distance to the destination as
the potential forwarders. For a forwarder, when it receives a
packet, it checks whether it is in the “forwarder list” or not,
and also checks whether the packet is innovative or not. If yes,
it makes a number of transmissions wherein each transmitted
packet is also a linear combination of all its received packets
in the same generation. For the destination node, if it receives
n independent packets, it sends an acknowledgment to inform
the source to transmit next generation.

Specifically, consider the example in Figure 1 where the
source (node 1) sends coded packets CP1, CP2 and CP3 to
the destination (node 5) at time t1, t2 and t3 respectively.
When node 1 broadcasts these packets, both node 2 and
node 3 can overhear these packet transmissions. Since node
3 is closer to the destination than the source on the ETX

metric and these packets are innovative, it participates in the
forwarding, e.g., after receiving CP3, node 3 will perform
multiple transmissions, and in each transmission, all received
packets are encoded, e.g., it broadcasts CP1 ⊕ CP2 ⊕ CP3.

Fig. 1: Any two nodes that are connected with a dash line can
communicate with each other. ETX value of each link is 1.

Before we present our detection algorithms and the theoretic
analysis, we first list all notations that are used in this paper,
and the formal definitions will be presented later.

A : the detector node we focus on.
B : a neighbor of the detector node A.
NA : the set of neighbors of the detector node A.
N : number of neighbors, i.e., N = |NA|.
K : number of malicious neighbors or attackers.
F(t) : forwarder set at round t.
S(t) : suspicious set at round t.
α : forwarding probability.
δ : imitation probability.
p : probability of ignoring a round.
D : number of detectable rounds.
R : total number of detection rounds.
Pfn(t) : probability of false negative at round t.
Pfp(t) : probability of false positive at round t.
ps : selection probability.
F0(t) : forwarder set at round t with no attacker.
F≥1(t): forwarder set at round t with at least one attacker.
Pc : probability of correct detection.
Pw : probability of wrong detection.
Pm : probability of miss detection.

3.1 Core Idea of the Detection Algorithms

Since the detection algorithms we propose are fully distributed,
i.e., each legitimate node in a WMN can execute the detection
algorithms in an asynchronous fashion, in this paper, we only
focus on a particular legitimate node, say node A, and describe
its operations to identify its malicious neighbors. Let NA be
the set representing the neighbors of node A and we assume
|NA| = N . Among these N neighbors, we assume that K
(K ≥ 1) of them are malicious attackers.

Let us first look at the behaviors of a malicious node, when
it is ready to broadcast a packet, it may choose one of the
following actions:

1) with probability δ, imitates as a legitimate node by
performing correct coding operation and broadcasting
a valid encoded packet, or

2) with probability (1− δ), broadcasts a polluted packet.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

Here δ is called the imitation probability. The reason why
malicious nodes may imitate legitimate nodes is to thwart the
detection so as to reduce the chance of being detected.

On the other hand, for any legitimate node, it strictly follows
the routing protocol. Specifically, a legitimate node maintains
two buffers, verified buffer and unverified buffer. Every time
when it is going to forward packets, it only encodes the
packets in the verified buffer. On receiving a new packet, it
buffers the packet into the unverified buffer. When a checksum
packet arrives, it verifies those packets in the unverified buffer
based on the time based checksum verification scheme. If the
batch verification matches, then all verified packets are shifted
to verified buffer, otherwise, all packets are discarded. Note
that, by dropping the packets when batch verification does not
match, epidemic spreading of polluted packets is avoided so
that all packets forwarded by legitimate nodes are valid.

We define the duration of detector A receiving packets
(including one valid checksum packet) and performing batch
verification as a round. In other words, round t is the time
period from right after the (t−1)th verification to right after
the tth verification performed by node A. At round t, the tth

batch verification is performed. If the verification does not
match, then there must be some polluted packets and node A
can not determine which packets are polluted, so it can only
discard all of them to avoid further epidemic spreading. One
thing we want to emphasize is that, to achieve high throughput,
one can not verify the packets in the unverified buffer one
by one when receives a checksum packet but perform batch
verification instead. At round t, some neighbors of detector A
may forward packets to it and others may not. We define F(t)
as the set of neighbors of node A which forward innovative
packets to it at round t, and we call it the forwarder set. On
the other hand, F̄(t) is denoted as the set of neighbors which
do not forward at round t. We have NA = F(t) ∪ F̄(t).

The core idea of our algorithms is that, at round t, node A
determines the suspicious set S(t), which contains all of its
potentially malicious neighbors until the end of round t. As
time proceeds in rounds, node A can shrink the suspicious set
S(t) so that eventually, it only contains malicious neighbors
of node A. After the detection, node A claims that a node is
an attacker if and only if it stays in the suspicious set.

3
1

2
4

transmission

range of node 3
5

round 1

round 2

ro
u
n
d
 3

attacker

Fig. 2: Illustration of our detection mechanism.

Let us use a simple example to illustrate the core idea.
Consider the example in Figure 2 wherein node 3 has four
neighbors and node 4 is a malicious node. We initialize the
suspicious set at round 0 as S(0) = N3 = {1, 2, 4, 5}. We

assume that in the first round, node 1 and node 2 forward
packets to node 3, i.e., F(1) = {1, 2}, and the batch veri-
fication matches, then node 3 knows that node 1 and node
2 must be legitimate nodes, so the suspicious set shrinks as
S(1) = S(0)∩ F̄(1) = {4, 5}. In the second round, if node 2
and node 4 forward packets, since node 4 is a malicious node
and it forwards polluted packets, the batch verification does
not match. Node 3 knows that there is at least one attacker in
the forwarder set F(2) = {2, 4}, but it can not be sure whether
all attackers are in the forwarder set or not as it does not know
how many attackers exist, so S(1) keeps unchanged. However,
if node 1 and node 5 forward in the third round and the batch
verification matches, then node 3 can shrink the suspicious set
via S(3) = S(2) ∩ F̄(3) = {4}. Therefore, by shrinking the
suspicious set, node 3 detects the attacker, node 4.

Besides developing algorithms to implement the above idea,
we also quantify the performance measures of the algorithms.
In particular, the performance measures include:

• Pfn(t), probability of false negative,
• Pfp(t), probability of false positive, and
• E[R], expected number of rounds needed for detection

until the suspicious set only contains malicious nodes.
The first two performance measures quantify the accuracy of
our detection algorithms, while the last performance measure
quantifies the efficiency, in terms of time complexity, of
our detection procedure. Precisely, Pfn(t) is defined as the
probability of a malicious node being wrongly removed from
the suspicious set S(t) at the end of round t. Since we claim
that a node is an attacker if and only if it belongs to S(t) after
t rounds, Pfn(t) is in fact the probability of false negative.
On the other hand, Pfp(t) is defined as the probability of a
randomly chosen node in S(t) being a legitimate node, which
is in fact the probability of false positive. Lastly, r.v. R is used
to denote the number of rounds needed for detection until all
nodes in S(t) are malicious nodes or S(t) is empty.

In the following, we separate the analysis into two cases to
illustrate our detection algorithms:

1) malicious nodes do not imitate the action of legitimate
nodes, or the imitation probability δ = 0;

2) malicious nodes may imitate the action of legitimate
nodes to reduce the chance of being detected, or δ > 0.

3.2 Attackers with Imitation Probability δ = 0

Consider the case when δ = 0, i.e., when a malicious node
attempts to transmit, it always broadcasts polluted packets.
As we stated before, since our detection algorithm is fully
distributed, we only focus on a particular detector, node A.
We initialize S(0) = NA. As time proceeds in rounds, nodes
in NA are classified into different types according to their
actions. Based on this classification, the suspicious set S(t)
which contains the potential malicious nodes in NA shrinks.
Eventually, the suspicious set S(t) only contains malicious
nodes, then node A can claim that it has identified the
attackers. Note that, based on the definition of probability of
false positive, if it is zero, then it means that all nodes in the
suspicious set are attackers. Therefore, the stopping criteria of
the detection algorithm can be designed based on probability

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

YONGKUN LI AND JOHN C.S. LUI: EPIDEMIC ATTACKS IN NETWORK-CODING ENABLED WIRELESS MESH NETWORKS: DETECTION... 5

of false positive. Specifically, one can stop shrinking and take
all nodes in S(t) as attackers when probability of false positive
is smaller than some predefined threshold θ. The detection
algorithm can be described as follows.

Algorithm 1 Detection Algorithm When δ = 0

1: S(0) = NA;
2: repeat
3: if the batch verification matches then
4: S(t) ← S(t− 1) ∩ F̄(t);
5: else
6: S(t) ← S(t− 1);
7: end if
8: until Pfp(t) < θ

The rationale of Algorithm 1 is as follows. In each round,
detector A performs the batch verification, if the verification
matches, then it means that the malicious nodes cannot be
in the set of nodes which performed forwarding at that round.
Since we assume the malicious nodes always forward polluted
packets (δ = 0), if the malicious nodes forward, then the
verification must not match. On the other hand, if there
is a mismatch of the batch verification, then at least one
malicious node forwarded at that round. However, because of
the possibility of existing multiple malicious nodes, maybe
only some malicious nodes forwarded, i.e., they belong to
the forwarder set, but others did not. Therefore, we cannot
distinguish the malicious nodes from the legitimate nodes and
the suspicious set remains unchanged.

Now, let us look at what information node A can obtain at
each round. Note that, at round t, node A knows the forwarder
set F(t) which contains the neighbors that forward packets
to it. Moreover, when node A performs batch verification, it
knows whether the verification matches or not. We call a round
where the suspicious set shrinks the detectable round and use a
0-1 random variable d(t) to indicate it. Based on Algorithm 1,
d(t) equals to one if the batch verification matches at round t,
and zero otherwise. We call d(t) the detectable round indicator.
Node A maintains the forwarder set F(t) and the detectable
round indicator d(t) which are obtained at each round. We
use the tuple of these two parameters to define the state of
node A at round t, which is denoted as s(t). Therefore, we
have s(t) = (F(t), d(t)). The collection of all these states
composes the detection history of node A and we denote it as
H(t), i.e., H(t) = (F(1), d(1)), (F(2), d(2)), ..., (F(t), d(t)).

To quantify the performance of the algorithm, we first
look at how the detection history H(t) is generated. Firstly,
we assume that the nodes’ forwarding decisions are inde-
pendent and identically distributed. And at each round, a
node forwards packets with probability α which is called the
forwarding probability. In fact, this independent and identical
assumption is reasonable since in a wireless mesh network,
fairness is a built-in feature in the medium access control
(MAC) protocol, e.g., in 802.11, a node cannot monopolize
the wireless resource by repeatedly sending packets. When
the communication channel is free, all nodes will compete
for the channel. In other words, nodes have the same chance

to participate in forwarding. Another thing is that due to
the property of the MORE routing protocol, specifically, if
a received packet is not innovative, it will be discarded
immediately, and a generation only contains 32 independent
packets in the common setting under MORE, moreover, a node
may receive multiple checksum packets during the period of
transmitting one generation, the forwarding probability α is
less than one for most cases.

To derive the forwarding probability at each round, we
use a random variable IB(τ) to indicate whether neighbor
B forwards at round τ or not, i.e., if B forwards, then
IB(τ) = 1, otherwise, IB(τ) = 0. Based on our assumption,
we have IB(τ)s are independent and identically distributed for
all B ∈ NA. Now, the forwarding probability can be can be
represented by α(τ) = Prob{IB(τ) = 1}. Note that, at round
τ , the number of nodes which forward is |F(τ)|, we have

E[
∑

B∈NA

IB] = N ·Prob{IB(τ) = 1} = Nα(τ) = |F(τ)|.

Therefore, the forwarding probability is α(τ) = |F(τ)|
N .

Now, let us derive the performance measures of Algorithm
1. We assume that the number of malicious neighbors of node
A is K (K ≥ 1). Based on Algorithm 1, we can see that no
malicious node will be removed from the suspicious set S(t).
Therefore, the probability of false negative is simply zero.

Pfn(t) = 0. (3)

To derive the probability of false positive, which is the
probability that a randomly chosen node in S(t) is a legitimate
node, we first compute the probability of a node being removed
from the suspicious set at round τ . We first consider a
malicious node, and use PM (τ) to denote this probability.
Since δ = 0, PM (τ) is just 0. For a legitimate node, we use
PL(τ) to denote the probability. Observe that, a legitimate
node will be removed from S(t) only when it forwards valid
packets in some detectable round τ . So PL(τ) equals to α(τ).
Therefore, the probability of false positive is:

Pfp(t) = P (B is legitimate | H(t)&B ∈ S(t))

=
P (B is legitimate &B ∈ S(t) | H(t))

P (B ∈ S(t) | H(t))

=
N−K
N

∏t
τ=1,d(τ)=1(1−PL(τ))

N−K
N

∏
τ=1...t
d(τ)=1

(1−PL(τ)) +
K
N

∏
τ=1...t
d(τ)=1

(1−PM (τ))

=
(N−K)

∏t
τ=1,d(τ)=1(1−α(τ))

(N−K)
∏t

τ=1,d(τ)=1(1−α(τ))+K
. (4)

Note that K is the number of attackers in the neighborhoods,
and node A is unaware of its value. However, by running
the algorithm for enough number of rounds, the suspicious
set will only contain malicious attackers. In other words, the
size of the suspicious set converges to K, i.e., |S(t)| → K.
Therefore, one can use |S(t)| to approximate K when compute
probability of false positive, and this approximation converges
to the accurate value. In other words, it is a good choice to
use this approximation to design the stopping criteria. Based

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

on this approximation, Pfp(t) is computed as follows.

Pfp(t) =
(N−|S(t)|)

∏t
τ=1,d(τ)=1(1−α(τ))

(N−|S(t)|)
∏t

τ=1,d(τ)=1(1−α(τ))+|S(t)|
. (5)

To derive the third performance measure E[R], we assume
that the forwarding probability is the same at every round and
use α to denote it. Since the suspicious set cannot shrink in
every round, we define those rounds where the suspicious set
shrinks as detectable rounds and use random variable D to
denote the number of detectable rounds that node A needs
to detect malicious nodes. To compute the distribution of D,
observe that, a legitimate node is removed from the suspicious
set only when it forwards at a detectable round, which happens
with probability α. Therefore,

P (D ≤ d) = P (after d detectable rounds, nodes in the
suspicious node set are all malicious)

= P (for each legitimate neighbor,
it forwards in at least one detectable round)

=
(
1− (1− α)d

)N−K
. (6)

For Algorithm 1, a detectable round happens when no polluted
packet is forwarded to node A, the corresponding probability
is pd = (1 − α)K . Given the number of detectable rounds
D, the conditional distribution P (R = r|D = d) is again a
negative binomial distribution, or,

P (R = r)=
r∑

d=1

P (D = d)P (R = r|D = d) (7)

=
r∑

d=1

(
r − 1

d− 1

)
(pd)

d(1− pd)
r−dP (D=d).

With this probability distribution, E[R] can be easily comput-
ed via E[R] =

∑∞
r=1 rP (R = r).

3.3 Attackers with Imitation Probability δ > 0

Let us consider a more interesting case where a malicious
node can imitate as a legitimate node by forwarding a valid
packet with probability δ (δ > 0). In other words, when a
malicious node is prepared to broadcast a packet, it does not
modify the packet but performs correct network coding with
probability δ. Under this situation, if the verification does not
match, node A knows it must have received some polluted
packets. However, due to the existence of multiple attackers,
node A can not be certain whether all malicious nodes are in
the forwarder set or not. On the other hand, if the verification
matches, node A still faces with the problem of accurately
detecting the malicious nodes since they may pretend to be
legitimate nodes. As discussed before, the goal of malicious
nodes is to reduce the system performance or damage the
system by injecting polluted packets. However, the imitation
actions violate this objective. Moreover, the damage that the
attackers can cause in one round is limited as they can only
make the packets forwarded by legitimate nodes in that round
be discarded. Therefore, the imitation probability δ cannot be
too large for rational attackers. Based on this fact, we propose
a “randomized detection algorithm” as follows.

Algorithm 2 Detection Algorithm When δ > 0

1: repeat
2: if the batch verification matches then
3: with probability 1− p: S(t) ← S(t− 1) ∩ F̄(t);
4: else
5: S(t) ← S(t− 1);
6: end if
7: until Pfp(t) < θ

Let us derive the performance of Algorithm 2. Firstly, note
that, a round is detectable only when the batch verification
matches and it is not ignored. Secondly, if a malicious node
pretends to be a legitimate node to forward valid packets
in some detectable round, then it will be removed from the
suspicious set, i.e., it evades the detection. This error is char-
acterized by probability of false negative, Pfn(t). Formally,
this probability is derived as follows.

Pfn(t) = P (after t rounds, the malicious node
is not in the suspicious set S(t) | H(t))

= P (the malicious node forwards valid packets
in at least one detectable round | H(t))

= 1−
∏t

τ=1,d(τ)=1

1− α(τ)

1− α(τ) + α(τ)δ
, (8)

where α(τ) = |F(τ)|
N is the forwarding probability at round τ ,

and d(τ) = 1 only when round τ is a detectable round.
To derive the probability of false positive, note that, the

probability that a malicious node is removed from the sus-
picious set at some detectable round τ , i.e., PM (τ), is

α(τ)δ
1−α(τ)+α(τ)δ . Similarly, for a legitimate node, the correspond-
ing probability is α(τ), i.e., PL(τ) = α(τ). Based on Equation
(4), the probability of false positive for Algorithm 2 is

Pfp(t)=
(N−K)

∏t
τ=1,d(τ)=1(1−PL(τ))

(N−K)
∏

τ=1...t
d(τ)=1

(1−PL(τ))+K
∏

τ=1...t
d(τ)=1

(1−PM (τ))
.

Again, we have to approximate K. Since the probability of
each malicious node being in the suspicious set is 1−Pfn(t),
K can be approximated as |S(t)|

1−Pfn(t)
. Therefore, Pfp(t) is

Pfp(t)=
N− |S(t)|

1−Pfn(t)

(N− |S(t)|
1−Pfn(t)

)+ |S(t)|
1−Pfn(t)

∏
τ=1...t
d(τ)=1

1−PM (τ)
1−PL(τ)

. (9)

To derive E[R], we first derive the distribution of number
of detectable rounds D, based on Equation (6), we have

P (D ≤ d) =
(
1− (1− α)d

)N−K
. (10)

Observe that, a detectable round only happens when the
verification matches and the round is chosen for detection. The
corresponding probability is pd = (1−α+αδ)K(1−p). Given
the number of detectable rounds D, the conditional distribution

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

YONGKUN LI AND JOHN C.S. LUI: EPIDEMIC ATTACKS IN NETWORK-CODING ENABLED WIRELESS MESH NETWORKS: DETECTION... 7

P (R = r|D = d) is a negative binomial distribution, or,

P (R = r)=
r∑

d=1

P (D = d)P (R = r|D = d)

=
r∑

d=1

(
r − 1

d− 1

)
(pd)

d(1− pd)
r−dP (D=d), (11)

where pd = (1−α+αδ)K(1−p) and P (D = d) can be easily
derived from Equation (10). Given this distribution, E[R] can
be easily computed by E[R] =

∑∞
r=1 rP (R = r).

3.4 Improvement on Pfn

In the last subsection, we address the case where malicious
nodes may pretend to be legitimate nodes to forward valid
packets. When the algorithm runs for sufficient number of
rounds, we can guarantee that all nodes in the suspicious
set are malicious nodes, i.e., probability of false positive
converges to 0. However, since the malicious node may evade
the detection, probability of false negative is not 0. To detect
all malicious attackers, observe that, when Algorithm 2 runs
for sufficient number of rounds, all nodes in the suspicious set
S(t) are malicious. The insufficiency is that only a fraction
of malicious nodes stay in S(t). Intuitively, one can remove
those detected malicious nodes (i.e., blacklist them for further
data exchange), then repeat the detection process again. After
repeating the detection process multiple times, one can be
certain in removing all malicious nodes from the neighbor
list. The enhanced algorithm is as follows.

Algorithm 3 Enhanced Detection Algorithm
1: loop
2: S(0) ← NA;
3: repeat
4: if the batch verification matches then
5: with probability 1−p: S(t) ← S(t−1)∩ F̄(t);
6: else
7: S(t) ← S(t− 1);
8: end if
9: until Pfp(t) < θ

10: remove nodes in S(t) from neighbors: NA←NA\S(t);
11: end loop

One important performance measure for this enhanced
algorithm is that how many times we have to repeat until
all attackers are identified. Note that, for each execution of
Algorithm 2, a fraction of 1−Pfn(t) attackers are identified,
so as long as (Pfn(t))β is small enough, one can claim
that all attackers are identified. Therefore, one can roughly
estimate the total number of detection rounds for identifying
all attackers as βE[R] where E[R] is derived by Equation
(11). In our simulation, the results show that one can identify
all attackers in very small number of executions.

4 GENERALIZED DETECTION ALGORITHM
In the last section, we present the detection algorithms and the
analytic methodology to quantify their performance measures.

The core idea of our algorithms is to shrink the suspicious
set until it only contains malicious nodes. Therefore, making
sure that the suspicious set can get shrunk is the key point to
guarantee the effectiveness of our algorithms. However, based
on our detection algorithms (Algorithm 1 and Algorithm 2),
the suspicious set cannot shrink if the batch verification does
not match. Therefore, if the detector receives polluted packets
in most rounds, which may happen when multiple attackers
exist and they cooperate with each other to launch powerful
attack, then the number of rounds needed for detection may
become very large and the algorithm may even fail to detect
malicious attackers. We call this case the cooperative pollution
attack to distinguish from the ordinary pollution attack we
have discussed in last section. In this section, we provide a
general randomized detection algorithm which cannot only be
used to speed up the detection when ordinary pollution attack
is performed, but can also be used to identify the malicious
attackers when cooperative attack is launched.

4.1 Detection Algorithm
The basis of the generalized algorithm is as follows. Firstly,
to defend against the cooperative attack, every time when
the detector receives a checksum packet and performs batch
verification, it first randomly selects every forwarder with
probability ps which is called the selection probability, and
only encodes the packets received from these forwarders for
batch verification. We still use F(t) to denote the set of
forwarders which are selected for batch verification at round t.
Secondly, at round t, if the batch verification does not match,
even if we cannot shrink the suspicious set because maybe only
a part of malicious nodes are in the forwarder set F(t), but we
can make sure that at least one attacker exists in the forwarder
set F(t) as the polluted packets can not be forwarded by
legitimate nodes. To speed up the detection, we also make
use of the information gained from the rounds where batch
verification does not match. We first list two notations.

• F0(t): the set of forwarders which are selected for
batch verification at round t, and the batch verification
matches, i.e., no malicious node exists in this set without
considering the imitation behaviors.

• F≥1(t): the set of forwarders which are selected for batch
verification at round t, and the batch verification does not
match, i.e., at least one of them is malicious.

We call F0(t) the type one forwarder set and F≥1(t) the type
two forwarder set. We define S(t) as the suspicious set which
stores all the detection information until round t. We initialize
it as an empty set, i.e., S(0) = ∅. The procedure for shrinking
the suspicious set at round t is presented in Algorithm 4.

The rationale of the generalized algorithm can be illustrated
as follows. By randomly selecting forwarders for batch veri-
fication, one can prevent the attackers cooperatively injecting
polluted packets which may make the batch verification do
not match at every round. Moreover, randomness also brings
benefits in terms of distinguishing the forwarders. After the
batch verification at round t, if the verification does not match,
then we can make sure that at least one attacker exists in the
forwarder set, i.e., we get a type two forwarder set F≥1(t).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

Algorithm 4 Generalized Detection Algorithm at Round t

1: F(t) ← ∅;
2: for every forwarder B at round t do
3: with probability ps: F(t) ← F(t) ∪ {B};
4: end for
5: encode the packets received from forwarders in F(t) and

perform batch verification;
6: if the batch verification matches then
7: S(t) ← S(t− 1) ∧ F0(t);
8: else
9: S(t) ← S(t− 1) ∧ F≥1(t);

10: end if

On the other hand, if the batch verification matches, we get
a type one forwarder set F0(t). Although the forwarder set
may contain attackers as they may pretend as good nodes
to forward correct packets, we still utilize this forwarder set
for detection. The reason is that as we stated in Section 3.3,
the imitation probability δ cannot be too large. Moreover, the
nodes in F0(t) are randomly selected from forwarders with
probability ps. Therefore, one can still avoid high detection
error even if utilize the type one forwarder sets.

To derive S(t), we have to define the operations on ∧ since
we have to compute S(t− 1)∧Fs(t) where s is either “0” or
“≥ 1”. We have the following cases.

Case 1: S(t− 1) = ∅. Since S(t) is initialized as an empty
set, this case happens when the algorithm starts. The operation
under this case is defined as follows.

S(t− 1) ∧ Fs(t) =

{
∅, if s is “0”,
{Fs(t)}, if s is “≥ 1”. (12)

The reason why we ignore the type one forwarder set is that
we are only uncertain about the types of nodes that are in
type two forwarder sets, so we only have to keep the type two
forwarder sets in the suspicious set.

Case 2: S(t − 1) -= ∅ and Fs(t) is a type one forwarder
set, i.e., s is “0”, or Fs(t) is a type two forwarder set but
there exists at least one forwarder set Fs(τ) in the suspicious
set such that either Fs(τ) is a subset of Fs(t) or Fs(t) is a
subset of Fs(τ) holds. The operation under this case is

S(t− 1) ∧ Fs(t) = {Fs(τ)∧Fs(t)|Fs(τ)∈S(t−1)}. (13)

Now we define the operation of ∧ between the two forwarder
sets Fs(τ) and Fs(t) under case 2. We first consider s is “0”.

F≥1(τ) ∧ F0(t) = F≥1(τ)\F0(t). (14)

The rationale of this operation is that since the type one
forwarder set F0(t) does not contain malicious node without
considering the imitation behavior, one can simply remove
them from the type two forwarder set. However, since mali-
cious node may pretend to be a good node, this operation may
cause some detection error. Specifically, maybe the reduced set
does not contain any malicious node but we still believe that
it contains at least one, and we will quantify the error later.

If s is “≥ 1” under case 2, the operation is defined as

F≥1(τ) ∧F≥1(t)=

{
F≥1(τ), if F≥1(τ)⊆F≥1(t),
F≥1(t), if F≥1(t)⊆F≥1(τ).

(15)

The rationale of this operation is that if a malicious node exists
in some set, then it must be in its superset, so we do not need
to keep the redundant information in the suspicious set.

Case 3: If neither case 1 nor case 2 hold, we simply add
the forwarder set to the suspicious set. Note that, in this case,
the forwarder set Fs(t) must be of type two, i.e., s is “≥ 1”,
and it can not be a subset or superset of any element in the
suspicious set. In other words, it is just like that this forwarder
set contains some independent information, so we have to keep
it. Mathematically, we have

S(t− 1) ∧ Fs(t) = S(t− 1) ∪{F s(t)}. (16)

By now, we have defined all operations on ∧, i.e., Equation
(12)-(16). Note that, based on our definitions, the suspicious
set will only contain type two forwarder set, so we do not need
the operation of ∧ between two type one forwarder sets. In
the following, we will provide the rule of making decisions on
the types of nodes. In other words, how to determine whether
a node is a malicious node or not. Before we do that, we first
show that every forwarder set in the suspicious set can shrink
to a singleton set or an empty set and the result is stated in
the following theorem.
Theorem 1: For every forwarder set in the suspicious set,
by using the operations defined in Equation (12)-(16), it can
finally shrink to one of the following three sets.

• case 1: {Bm}≥1 where Bm is a malicious node;
• case 2: {Bg}≥1 where Bg is a good node;
• case 3: ∅.

Proof: For every forwarder set Fs(τ) in the suspicious set,
it must be a type two forwarder set, i.e., s is “≥ 1”. Let
|F(τ)| = n. Without loss of generality, we assume that k
of the n nodes in the forwarder set are attackers, we have
1 ≤ k ≤ min{K,n}. At round t, the forwarder set can shrink
in two cases. Firstly, if the batch verification matches, then the
nodes in F0(t) will be removed. So the probability that the
size of the forwarder set F≥1(τ) decreases at least by one is

p1=(1−α(1−δ)ps)
K−k[(1−α(1−δ)ps)

k−(1−αps)
n]. (17)

The second case that F≥1(τ) can shrink is that the forwarder
set at round t is of type two and it is a subset of F≥1(τ),
i.e. F≥1(t) ⊂ F≥1(τ). The probability that the size of the
forwarder set F≥1(τ) decreases at least by one in this case is

p2=(1−αps)
N−n[1−(1−α(1−δ)ps)

k−(αps)
n]. (18)

Note that both p1 and p2 is positive, so the probability that
the forwarder set shrinks at every round, p1 + p2, is positive.
Therefore, after enough number of rounds, it is sure to shrink
the forward set F≥1(τ) to a singleton set or an empty set.

Now we present the decision rule which is used to identify
attackers. Since every forwarder set in the suspicious set can
shrink to a singleton set or an empty set, we will take the node
in the singleton set as attacker and remove it from neighbor-
hoods. Note that, we also have to remove all forwarder sets
which contain the identified attacker from the suspicious set.
Formally, the decision rule can be described as follows.

Decision rule: take B as an attacker iff {B}≥1∈S(t). (19)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

YONGKUN LI AND JOHN C.S. LUI: EPIDEMIC ATTACKS IN NETWORK-CODING ENABLED WIRELESS MESH NETWORKS: DETECTION... 9

Note that, based on Theorem 1, the node in the singleton set
may be a good node, so detection error may happen when use
the decision rule presented above. We will quantify the error
later. One thing we want to emphasize is that, one can plug
our algorithm into the routing protocol. In other words, the
algorithm will keep running in every detector node as long
as there is packet forwarding through the node. Specifically,
every detector node maintains one suspicious set which stores
the type two forwarder sets according to our algorithm and
the operations we defined before. As long as a forwarder set
shrinks to a singleton set, take the node as attacker and remove
it from the neighborhoods. Note that, if no attacker exits in
the neighborhoods, then the suspicious set will keep being an
empty set as no type two forwarder set appears.

4.2 Performance Evaluation

Now, we quantify the performance of the generalized detection
algorithm. Based on Theorem 1, one type two forwarder set
can shrink to be {Bm}≥1, {Bg}≥1 or ∅. Based on the deci-
sion rule, if {Bm}≥1 happens, then one attacker is correctly
identified and we call this case correct detection, if {Bg}≥1

happens, then we wrongly take a good node as an attacker and
we call this case wrong detection, if the forwarder set shrinks
to be an empty set, then we just waste some rounds and we
call this case miss detection. To quantify the performance of
our algorithm, we only need to focus on the shrinkage process
of a particular forwarder set in the suspicious set, and we are
interested in the following four measures.

• R: average number of rounds needed to shrink a for-
warder set to {Bm}≥1, {Bg}≥1 or ∅.

• Pc: probability of correct detection, i.e., the probability
that the forwarder set shrinks to {Bm}≥1.

• Pw: probability of wrong detection, i.e., the probability
that the forwarder set shrinks to {Bg}≥1.

• Pm: probability of miss detection, i.e., the probability
that the forwarder set shrinks to ∅.

Intuitively, the first measure quantifies the efficiency of the al-
gorithm and the last three measures quantify the effectiveness
and we have Pc + Pw + Pm = 1.

To derive the performance measures, we first focus on a
particular forwarder set which contains n nodes and k of them
are attackers when it is added into the suspicious set. For ease
of presentation, we take the forwarder set as being in state
(n, k). At each round, if i good nodes and j malicious nodes
are removed from the forwarder set, then only n−i−j nodes left
and k−j of them are attackers, i.e., the forwarder set transits
from state (n, k) to state (n− i−j, k−j). We first compute
such transition probabilities and the results are presented in
the following lemma.
Lemma 1: At each round, the probability that a forwarder
set of state (n, k) transits to state (n− i− j, k − j) (0 ≤ i ≤
n− k, 0 ≤ j ≤ k) is computed as follows.

(1) if i+ j -= 0 and j -= k, the transition probability is:

Pij(n, k)=
[
1−α(1−δ)ps

]K−k
[(

k

j

)
(1−αps)

k−j(αδps)
j

]

[(
n− k

i

)
(1− αps)

n−k−i(αps)
i

]
+

[
1−αps

]N−n
[(

n−k

i

)
(1−αps)

i(αps)
n−k−i

]

[(
k

j

)
(1− αps)

j((αps)
k−j − (αδps)

k−j)

]
. (20)

(2) if i+ j -= 0 and j = k, the transition probability is:

Pik(n, k) =

[(
n− k

i

)
(1− αps)

n−k−i(αps)
i

]
×

(αδps)
k [1− α(1− δ)ps]

K−k . (21)

(3) if i = j = 0, the transition probability is:

P00(n, k) = 1−
n−k∑

i=0

k∑

j=0
i+j '=0

Pij(n, k). (22)

Now, we quantify the performance of shrinking a particular
forwarder set which is at state (n, k) as follows.
Lemma 2: For a particular forwarder set which is at state
(n, k), the average number of rounds needed for shrinking it
to {Bm}≥1, {Bg}≥1 or ∅ is

R(n, k)=

n−k∑
i=0

k∑
j=0

i+j '=0

(R(n−i−j, k−j)+1)Pij(n, k)+P00(n, k)

1− P00(n, k)
,

(23)
where R(0, 0) = 0, R(1, 0) = 0 and R(1, 1) = 0.

Moreover, probability of correct detection, probability of
wrong detection and probability of miss detection are

Px(n, k)=

n−k∑
i=0

k∑
j=0

i+j '=0

Px(n−i−j, k−j)Pij(n, k)

1− P00(n, k)
, (24)

where x is c, w or m, Pc(0, 0) = 0, Pc(1, 0) = 0, Pc(1, 1) =
1, Pw(0, 0) = 0, Pw(1, 0) = 1, Pw(1, 1) = 0, Pm(0, 0) = 1,
Pm(1, 0) = 0 and Pm(1, 1) = 0.
Proof: We use Xt to denote the state of the forwarder set at
round t and let T =min{t|Xt=(1, 0), (1, 1) or (0, 0)}. Then

R(n, k) = E(T |X0 = (n, k)),

Pc(n, k) = P{XT = (1, 1)|X0 = (n, k)},
Pw(n, k) = P{XT = (1, 0)|X0 = (n, k)},
Pm(n, k) = P{XT = (0, 0)|X0 = (n, k)}.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

By using the formula of total probability, we have

R(n, k) =
n−k∑

i=0

k∑

j=0

E(T |X1=(n−i−j, k−j), X0=(n, k))×

P{X1 = (n− i− j, k − j)|X0 = (n, k)}

=
n−k∑

i=0

k∑

j=0

E(T |X1 = (n− i− j, k − j))Pij(n, k)

=
n−k∑

i=0

k∑

j=0

(
R(n− i− j, k − j) + 1

)
Pij(n, k).

By moving the R(n, k) in the right hand side to the left side,
we have the result shown in Equation (23).

To derive the probability of correct detection, we have

Pc(n, k) =
n−k∑

i=0

k∑

j=0

P{XT =(1, 1)|X1=(n−i−j, k−j)}×

P{X1 = (n− i− j, k − j)|X0 = (n, k)}

=
n−k∑

i=0

k∑

j=0

Pc(n− i− j, k − j)Pij(n, k).

By moving the Pc(n, k) in the right hand side to the left side,
we have the result shown in Equation (24). Similarly, Pw(n, k)
and Pm(n, k) can also be derived.

To release the condition that the forwarder set is at state
(n, k) so as to derive the expectation of these performance
measures, we only need to take into account all possible states
in which a forwarder set can be when it is added into the
suspicious set and take the average. Note that, the probability
that a forwarder set is at state (n, k) is

P (n, k)=

(
N−K
n−k

)(
αps

)n−k(
1− αps

)N−K−(n−k)
×

(
K

k

)(
1−αps

)K−k(
(αps)

k−(αδps)
k
)
/Σ, (25)

where

Σ=
K∑

k=0

N−(K−k)∑

n=k

(
N−K
n−k

)(
αps

)n−k(
1− αps

)N−K−(n−k)
×

(
K

k

)(
1−αps

)K−k(
(αps)

k−(αδps)
k
)
.

Now, the expectation of the performance measures can be
easily derived and the results are stated as follows.
Theorem 2: For every forwarder set which is added into the
suspicious set, the average number of rounds needed to shrink
it to a singleton set or an empty set is

R =
K∑

k=0

N−(K−k)∑

n=k

R(n, k)P (n, k). (26)

where R(n, k) is derived in Equation (23) and P (n, k) is
derived in Equation (25).

Moreover, probability of correct detection, probability of
wrong detection, and probability of miss detection are

Px =
K∑

k=0

N−(K−k)∑

n=k

Px(n, k)P (n, k). (27)

where x is c, w or m, Px(n, k) is derived in Equation (24)
and P (n, k) is derived in Equation (25).

4.3 Detection Acceleration
In previous subsections, we present the generalized detection
algorithm which is able to defend against the cooperative
attack, and we also quantify the performance of the algorithm.
In this subsection, we propose a new operation which is very
useful to accelerate the shrinkage of the suspicious set.

Note that, after perform the operation defined in Equation
(14), for a forwarder set F≥1(τ) in the suspicious set, maybe
there exists another forwarder set F≥1(ν) which is a subset of
F≥1(τ), i.e., F≥1(ν) ⊂ F≥1(τ). If this happens, redundant
information is kept in F≥1(τ). Intuitively, it can bring much
benefit in terms of shrinking the forwarder set F≥1(τ) if we
remove the redundant information. Formally, to speed up the
detection, we perform the following operation on S(t) after
round t (t ≥ 1), and we call it accelerating operation.

S(t) = {F≥1(τ)∗|F≥1(τ) ∈ S(t)}, (28)

where F≥1(τ)∗ is computed as follows.

F≥1(τ)∗=

{
F≥1(ν), if ∃F≥1(ν)∈S(t)&F≥1(ν)⊂F≥1(τ),
F≥1(τ), otherwise.

By combing all of the operations we defined before, the full
generalized algorithm can be described as follows.

Algorithm 5 Generalized Detection Algorithm

1: S(0) = ∅;
2: t = 0;
3: loop
4: t ← t+ 1;
5: shrink the suspicious set at round t; /*Use alg. 4*/
6: S(t) = {F≥1(τ)∗|F≥1(τ) ∈ S(t)}; /*Acceleration*/
7: for F≥1(τ) ∈ S(t) do
8: if |F≥1(τ)| ≤ 1 then
9: S(t) = S(t)\{F≥1(τ)};

10: remove node in F≥1(τ) from neighbors;
11: end if
12: end for
13: end loop

5 PERFORMANCE EVALUATION
In previous sections, we present a set of distributed detection
algorithms, as well as the theoretic analysis on their perfor-
mance. In this section, we validate the analysis and show the
effectiveness and efficiency of the algorithms via simulation.

5.1 Performance of Algorithm 1
We first show the performance of Algorithm 1. In this case,
malicious nodes only forward polluted packets, i.e., the imita-
tion probability δ = 0. Observe that, since no malicious node
can evade the detection, i.e., Pfn(t) = 0, we only show the
performance measures of Pfp(t) and E[R].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

YONGKUN LI AND JOHN C.S. LUI: EPIDEMIC ATTACKS IN NETWORK-CODING ENABLED WIRELESS MESH NETWORKS: DETECTION... 11

We first focus on the performance measure of E[R], Figure
3 shows the theoretical results and the simulation results. In
this simulation, we set the forwarding probability α as 0.3.
Figure 3a corresponds to the case of single malicious node
and Figure 3b shows the results of the case where three of
the N neighbors are malicious. In both figures, the horizontal
axis is the number of neighbors N , and the vertical axis is
the average number of detection rounds E[R]. From both
figures, we can see that the theoretic results fit well with the
simulation results. When number of neighbors gets larger, the
average number of rounds needed to detect the malicious nodes
increases accordingly. Moreover, if multiple malicious nodes
exist, then it takes longer time to detect them. However, even
in the multiple attackers case, the number of rounds needed for
detection is still very small, e.g., it only takes around twenty
rounds if the detector has eight neighbors and three of them
are attackers. Therefore, Algorithm 1 is very efficient to detect
malicious attackers when δ = 0.

4 6 8 10 12 14 16
7

8

9

10

11

12

13

14

number of neighbors: N

nu
m

be
r o

f r
ou

nd
s:

 E
[R

]

sim
theo

K=1
�=0.3

(a) single attacker case

4 6 8 10 12 14 16

10

15

20

25

number of neighbors: N

nu
m

be
r o

f r
ou

nd
s:

 E
[R

]

sim
theo

K=3
�=0.3

(b) multiple attackers case

Fig. 3: Average number of rounds for the case when δ = 0.

Now, let us look at the performance measure of Pfp(t).
In this simulation, we set N as eight and the forwarding
probability α as 0.3. We also consider the case of single
malicious node which is shown in Figure 4a and the case
of multiple malicious nodes which is shown in Figure 4b.
In both figures, the horizontal axis represents the number
of rounds that Algorithm 1 has been run, and the vertical
axis shows probability of false positive. The curves with
stars correspond to the theoretic results which are derived
by Equation (5). From both figures, we can see that the
approximated value converges to the accurate value, and when
the accurate value is small enough, see < 0.2, the theoretic
value is a really good approximation. This convergence shows
the effectiveness of the stopping criteria which is designed by
using the approximated value of Pfp(t).

5.2 Performance of Algorithm 2
Now, we show the performance of Algorithm 2 which is
used to defend against the attack where attackers may imitate
legitimate nodes. In this simulation, we still set the forwarding
probability α as 0.3. We set δ, the imitation probability, as
0.1, and p, the probability of ignoring a round, as 0.6. The
results of performance measure E[R] are shown in Figure 5.
Again, we consider both cases of single attacker and multiple
attackers. Figure 5a corresponds to the single attacker case and
Figure 5b corresponds to the three attackers case. Firstly, we

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

number of rounds: t

P fp
(t)

sim
theo

N=8
K=1

(a) single attacker case

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

number of rounds: t

P fp
(t)

sim
theo

N=8
K=3

(b) multiple attackers case

Fig. 4: Probability of false positive Pfp(t).

can see that the theoretic results fit well with the simulation
results. Secondly, when number of neighbors increases, it takes
more rounds to detect the malicious nodes. Moreover, it takes
a longer time to detect the attackers when multiple attackers
exist. Lastly, by comparing with Figure 3, we can see that it
is much more difficult to detect attackers when they imitate
the legitimate nodes in some rounds.

4 6 8 10 12 14 16
10

20

30

40

50

60

number of neighbors: N

nu
m

be
r o

f r
ou

nd
s:

 E
[R

]

sim
theo

K=1
�=0.3
�=0.1
p=0.6

(a) single attacker case

4 6 8 10 12 14 16
10

20

30

40

50

60

number of neighbors: N

nu
m

be
r o

f r
ou

nd
s:

 E
[R

]

sim
theo

K=3
�=0.3
�=0.1
p=0.6

(b) multiple attackers case

Fig. 5: Average number of rounds for the case when δ > 0.

Figure 6 shows the results of probability of false positive
Pfp(t). Figure 6a corresponds to the single attacker case and
Figure 6b corresponds to the three attackers case. In both
cases, the number of neighbors is set as eight, i.e., N = 8. We
compare the simulation results with the theoretic results which
are computed based on Equation (9). Again, both figures show
the convergence of the approximated value, which further
show the effectiveness of the stopping criteria.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of rounds: t

P fp
(t)

sim
theo

N=8
K=1

(a) single attacker case

0 50 100 150
0

0.2

0.4

0.6

0.8

1

number of rounds: t

P fp
(t)

sim
theo

N=8
K=3

(b) multiple attackers case

Fig. 6: Probability of false positive Pfp(t).

Now, let us consider the performance measure of probability
of false negative Pfn(t) which is shown in Figure 7. In this
simulation, we choose the same parameters as before. Recall

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

that, since δ is not zero, a malicious node may pretend to
be a legitimate node so as to evade the detection. When the
number of detection round increases, the chance of evading
the detection gets larger, which is shown in both figures.
Fortunately, by comparing with Figure 6, even when the
number of rounds is large enough such that Pfp(t) is really
small, we still have some probability to detect the malicious
nodes, i.e., Pfn(t) -= 1. This shows that in every execution of
Algorithm 2, we indeed detect some attackers. In other words,
it shows the rationality of the enhanced detection algorithm.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of rounds: t

P fn
(t)

sim
theo

N=8
K=1

(a) single attacker case

0 50 100 150
0

0.2

0.4

0.6

0.8

1

number of rounds: t

P fn
(t)

sim
theo

N=8
K=3

(b) multiple attackers case

Fig. 7: Probability of false negative Pfn(t).

5.3 Improvement on Probability of False Negative
Using the enhanced detection Algorithm 3 in Section 3.4, we
can detect all malicious nodes by repeatedly running the de-
tection algorithm. Table 1 shows the results. In this simulation,
we set N as ten and four of them are malicious. Since each
time the malicious node can only be detected with probability
1 − Pfn(t), where t satisfies Pfp(t) = 0, i.e., the algorithm
runs until all nodes in the suspicious set are malicious. To show
the performance, we run the experiments three times (e.g.,
Exp. A, B and C). Each row in Table 1 corresponds to one
experiment outcome. From the table, we can observe that in all
experiments, we only need to repeat the detection algorithm
a few times to detect all malicious nodes. For example, in
the first experiment, two of the four malicious nodes are
detected in the first execution. In the second execution, both
the remaining two malicious nodes evade the detection. But
in the final execution, both malicious nodes are detected. In
summary, the enhanced detection algorithm is indeed efficient
to detect all malicious nodes.

Experiment # detected # detected # detected
Exp. A 2 0 2
Exp. B 3 1 -
Exp. C 2 2 -

TABLE 1: Performance of the enhanced detection alg.

5.4 Results from System Prototype
To show the effectiveness of the identification and detection of
our algorithm, we build a prototype of WMN, which consists
of 20 nodes. Each node is equipped with 802.11n transceiver
and this WMN is deployed using the MORE protocol and it

is network-coding enabled. We consider a particular node 10,
which has nine neighbors and they are node 1 to node 9. Node
i needs to send packets to node i+3 (for 1 ≤ i ≤ 3) but since
the destination node is not within the transmission range of the
sender, all transmissions have to go through node 10. Node 7, 8
and 9 are potential malicious nodes, and they probabilistically
transmit bogus packets to damage the legitimate transmissions.

We carry out a series of experiments to get the time needed
for node 10 to detect all these malicious nodes. In particular,
we perform the experiment 200 times. Each time we record the
time it takes to detect all three malicious nodes, and then we
average all these 200 values. Results are presented in Table 2.
As we can see for the table, it takes a short time to detect
malicious nodes. For Experiment C, we use the enhanced
detection algorithm. We see that it takes around 10 seconds on
average to detect node 7, 8 and 9, which send bogus packets
so as to create an epidemic spreading.

Experiment Malicious Nodes Average
Detection Time

Exp. A node 7 3.60 sec.
Exp. B node 7 and node 8 6.21 sec.
Exp. C node 7, node 8 and node 9 10.30 sec.

TABLE 2: Average time needed to detect all malicious nodes.

5.5 Performance of the Generalized Algorithm
In this subsection, we validate our theoretic analysis and show
the effectiveness and efficiency of the generalized detection
algorithm via simulation. We assume that the detector has
eight neighbors, i.e., N = 8, and at each round, each neighbor
forwards with probability 0.6, i.e., α = 0.6. At each round,
the detector only selects each forwarder for batch verification
with probability 0.6, i.e., ps = 0.6. In the simulation, we vary
the number of attackers from 1 to N and consider two cases.
One is called low imitation case where attackers pretend to be
good nodes to forward correct packets with small probability,
we choose δ as 0.2 in this case. The other case is called high
imitation case where δ is set as 0.6.

We first focus on the low imitation case. To show the
effectiveness of the generalized algorithm, we derive the
performance measure of probability of correct detection Pc,
probability of wrong detection Pw and probability of miss
detection Pm. The simulation and theoretic results are shown
in Figure 8. Figure 8a corresponds to the case where the
accelerating operation is not performed to speed up the de-
tection and Figure 8b shows the results when the accelerating
operation is performed in every round. In both figures, the
horizontal axis is the number of attackers in the neighborhood,
i.e., K, and we vary it from 1 to N . The vertical axis shows
the probabilities. In each figure, we have three groups of
curves which show the results of Pc, Pw and Pm respectively.
For each group of curves, the curve with circles shows the
simulation results and the curve with stars shows the theoretic
results which are derived by Equation (27). From the figures,
we can see that even when the accelerating operation is used,
our theoretic results are still very accurate to quantify the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

YONGKUN LI AND JOHN C.S. LUI: EPIDEMIC ATTACKS IN NETWORK-CODING ENABLED WIRELESS MESH NETWORKS: DETECTION... 13

effectiveness of the generalized algorithm. Another conclusion
is that the generalized algorithm is very effective to identify the
malicious attackers for all cases as the probability of correct
detection is always much higher than the probability of wrong
detection. Moreover, as the number of attackers increases, the
probability of correct detection also increases. The physical
meaning is that if most of the neighbors are attackers, then
when a forwarder set shrinks to a singleton set, the node in
the singleton set is very likely to be a real attacker.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

number of attackers: K

Pr
ob

ab
ili

ty

 sim
theo

Pm

Pw

Pc

N=8
�=0.6
ps=0.6
�=0.2

(a) Without acceleration.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

number of attackers: K

Pr
ob

ab
ili

ty

 sim
theo

Pm N=8
�=0.6
ps=0.6
�=0.2

Pc

Pw

(b) With acceleration.

Fig. 8: Probability of correct/wrong/miss detection.

Now, let us look at the efficiency of the generalized al-
gorithm. The results are shown in Figure 9. Again, Figure
9a corresponds to the case when accelerating operation is
not performed and Figure 9b corresponds to the case when
accelerating operation is used to speed up the detection. The
horizontal axis is the number of attackers and the vertical
axis shows the average number of rounds needed to shrink
a forwarder set to a singleton set or an empty set. We also
compare the theoretic results which are derived by Equation
(26) with the simulation results. Firstly, we can see that the
number of rounds needed to shrink the forwarder set is very
small, i.e., the generalized algorithm is very efficient to find
attackers. Moreover, the smaller number of attackers we have,
it is more easier for us to detect. Secondly, although our
theoretic analysis on the performance measure of R does not
hold for the case when the accelerating operation is used, it
still gives us a good upper bound. Last but not least, we can
see that the accelerating operation is very efficient to speed
up the detection, it can decrease the number of rounds needed
for shrinking the forwarder set to nearly one half. In a word,
the generalized algorithm is really efficient in detecting the
malicious attackers even if they dominate the neighborhoods.

Now, let us show the results when the imitation probability
is high, and we set it as 0.6 in the simulation. The results
of the performance measures of Pc, Pw and Pm are shown
in Figure 10, and the results of the performance measure of
average number of detection rounds R are shown in Figure
11. From these figures, we have similar conclusions as the
case of low imitation. One thing we have to mention is
that when imitation probability gets large, the probability of
wrong detection is comparable to the probability of correct
detection when the number of attackers is very small, see
only one attacker exists. In fact, the physical meaning of this
case is reasonable. Intuitively, if only a very small number
of attackers exist among a large number of neighbors, and

1 2 3 4 5 6 7 8
0

5

10

15

20

25

number of attackers: K

D
et

ec
tio

n
R

ou
nd

s:
 R

sim
theo

N=8
�=0.6
ps=0.6
�=0.2

(a) Without acceleration.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

number of attackers: K

D
et

ec
tio

n
R

ou
nd

s:
 R

sim
theo

N=8
�=0.6
ps=0.6
�=0.2

(b) With acceleration.

Fig. 9: Average number of detection rounds.

the attackers only occasionally do bad things, then it will be
easy for them to entrap other good nodes. In other words,
it is hard to distinguish good nodes and the bad nodes which
only occasionally behave maliciously. However, by comparing
Figure 9 with Figure 11, we can see that choosing higher
imitation probability will make the attackers be detected much
faster. Moreover, the damage that the attackers can cause is
also much smaller if the imitation probability is higher. On
the other hand, one can also decrease the selection probability
ps so as to increase the probability of correct detection.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

number of attackers: K

Pr
ob

ab
ili

ty

 sim
theo

N=8
�=0.6
ps=0.6
�=0.6

PcPw
Pm

(a) Without acceleration.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

number of attackers: K

Pr
ob

ab
ili

ty

 sim
theo

N=8
�=0.6
ps=0.6
�=0.6

PcPw
Pm

(b) With acceleration.

Fig. 10: Probability of correct/wrong/miss detection.

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

10

number of attackers: K

D
et

ec
tio

n
R

ou
nd

s:
 R

sim
theo

N=8
�=0.6
ps=0.6
�=0.6

(a) Without acceleration.

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

10

number of attackers: K

D
et

ec
tio

n
R

ou
nd

s:
 R

sim
theo

N=8
�=0.6
ps=0.6
�=0.6

(b) With acceleration.

Fig. 11: Average number of detection rounds.

6 CONCLUSION
In this paper, we present a set of fully distributed defense
and detection algorithms to address the pollution attack prob-
lem in wireless mesh networks which are configured with

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, AUGUST 2012

network coding enabled opportunistic routing protocol. The
contribution of this paper is on how to effectively discover the
malicious nodes without modifying existing routing protocol
and packets verification scheme, then isolate them from the
network so as to defend against the pollution attack. We
consider both cases where (1) the malicious nodes always
forward polluted packets, and (2) the malicious nodes may
pretend to be legitimate nodes and forward valid packets so as
to evade the detection. We also propose a general detection al-
gorithm which cannot only detect attackers even if cooperative
pollution attack is launched, but also speed up the detection.
We provide formal analysis to quantify the performance of our
detection algorithms, and extensive simulations are provided
to validate the theoretic analysis and show the effectiveness
and efficiency of the detection algorithms.

REFERENCES
[1] D. Aguayo, J. C. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level

Measurements from an 802.11b Mesh Network. In SIGCOMM, pages
121–132, 2004.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Transactions on Information Theory, 46(4):1204–1216, July
2000.

[3] I. Akyildiz and X. Wang. A Survey on Wireless Mesh Networks. IEEE
Radio communication, 43(9):S23–S30, September 2005.

[4] P. Bahl, R. Chandra, P. P. C. Lee, V. Misra, J. Padhye, D. Rubenstein, and
Y. Yu. Opportunistic Use of Client Repeaters to Improve Performance
of WLANs. In CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT
Conference, pages 1–12, New York, NY, USA, 2008.

[5] S. Biswas and R. Morris. Opportunistic Routing in Multi-hop Wireless
Networks. SIGCOMM Comput. Commun. Rev., 34(1):69–74, 2004.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading Structure
for Randomness in Wireless Opportunistic Routing. In SIGCOMM
’07: Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 169–
180, New York, NY, USA, 2007. ACM.

[7] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High-
throughput Path Metric for Multi-hop Wireless Routing. In MobiCom
’03: Proceedings of the 9th annual international conference on Mobile
computing and networking, pages 134–146, New York, NY, USA, 2003.
ACM.

[8] J. Dong, R. Curtmola, and C. Nita-Rotaru. Practical Defenses Against
Pollution Attacks in Intra-flow Network Coding for Wireless Mesh
Networks. In WiSec ’09: Proceedings of the second ACM conference
on Wireless network security, pages 111–122, 2009.

[9] J. Dong, R. Curtmola, R. Sethi, and C. Nita-Rotaru. Toward Secure
Network Coding in Wireless Networks: Threats and Challenges. Secure
Network Protocols, 2008.

[10] C. Gkantsidis, W. Hu, P. Key, B. Radunovic, P. Rodriguez, and S. Gheo-
rghiu. Multipath Code Casting for Wireless Mesh Networks. In CoNEXT
’07: Proceedings of the 2007 ACM CoNEXT conference, pages 1–12,
New York, NY, USA, 2007. ACM.

[11] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger.
Byzantine Modification Detection in Multicast Networks with Random
Network Coding. Information Theory, IEEE Transactions on, 2008.

[12] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger. On Randomized
Network Coding. In 41st Annual Allerton Conference on Communica-
tion, Control and Computing, Monticello, IL, USA, 2003.

[13] S. Katti, H. R. D. Katabi, W. Hu, and M. Medard. The Importance of Be-
ing Opportunistic: Practical Netowk Coding for Wireless Environments.
In In Proceedings of 43rd International Conference on Communication,
Control and Computing, 2005.

[14] E. Kehdi and B. Li. Null Keys: Limiting Malicious Attacks Via Null
Space Properties of Network Coding. In INFOCOM 2009, IEEE, 2009.

[15] M. N. Krohn, M. J. Freedman, and D. Mazières. On-the-Fly Verification
of Rateless Erasure Codes for Efficient Content Distribution. In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, May 2004.

[16] R. K. Lam, D.-M. Chiu, and J. C. S. Lui. On the Access Pricing
and Network Scaling Issues of Wireless Mesh Networks. IEEE Trans.
Comput., 56(11):1456–1469, 2007.

[17] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative
Diversity in Wireless Networks: Efficient Protocols and Outage Be-
havior. IEEE Transactions on Information Theory, 50(12):3062–3080,
December 2004.

[18] A. Le and A. Markopoulou. Locating Byzantine Attackers in Intra-
Session Network Coding Using Spacemac. In Network Coding (NetCod),
2010 IEEE International Symposium on, 2010.

[19] J. Le, J. C. S. Lui, and D.-M. Chiu. Dcar: Distributed Coding-
Aware Routing in Wireless Networks. IEEE Transactions on Mobile
Computing, 9:596–608, 2010.

[20] J. Le, J. C. S. Lui, and D.-M. Chiu. On the Performance Bounds
of Practical Wireless Network Coding. IEEE Transactions on Mobile
Computing, 9:1134–1146, 2010.

[21] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear Network Coding. IEEE
Transaction on Information Theory, 49(2):371–381, Feb. 2003.

[22] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving Loss Resilience
with Multi-radio Diversity in Wireless Networks. In MOBICOMM, 2005.

[23] M. Siavoshani, C. Fragouli, and S. Diggavi. On Locating Byzantine
Attackers. In Network Coding, Theory and Applications, 2008.

[24] S. Vyetrenko, A. Khosla, and T. Ho. On Combining Information-
theoretic and Cryptographic Approaches to Network Coding Security
Against the Pollution Attack. In Asilomar’09: Proceedings of the 43rd
Asilomar conference on Signals, systems and computers, pages 788–792,
Piscataway, NJ, USA, 2009. IEEE Press.

Yongkun Li was born in China. He received his
Bachelor degree from University of Science and
Technology of China in 2008. Currently, he is
a Ph.D. candidate in the Department of Com-
puter Science and Engineering at The Chinese
University of Hong Kong. His research interests
lie in the theoretic topics of interactive networks
such as P2P networks and online social net-
works.

John C.S. Lui was born in Hong Kong and
is currently a professor in the Department of
Computer Science & Engineering at The Chi-
nese University of Hong Kong. He received his
Ph.D. in Computer Science from UCLA. When
he was a Ph.D student at UCLA, he worked
as a research intern in the IBM T. J. Watson
Research Laboratory. After his graduation, he
joined the IBM Almaden Research Laborato-
ry/San Jose Laboratory and participated in var-
ious research and development projects on file

systems and parallel I/O architectures. He later joined the Department of
Computer Science and Engineering at The Chinese University of Hong
Kong. His current research interests are in communication networks,
network/ system security (e.g., cloud security, mobile security, etc),
network economics, network sciences (e.g., online social networks,
information spreading, etc), cloud computing, large scale distributed
systems and performance evaluation theory. John serves in the editorial
board of IEEE/ACM Transactions on Networking, IEEE Transactions
on Computers, IEEE Transactions on Parallel and Distributed Systems,
Journal of Performance Evaluation and International Journal of Network
Security . John serves as reviewer and panel member for NSF, Canadian
Research Council and the National Natural Science Foundation of China
(NSFC). John served as the chairman of the CSE Department from
2005-2011. He received various departmental teaching awards and
the CUHK Vice-Chancellor’s Exemplary Teaching Award. He is also a
corecipient of the IFIP WG 7.3 Performance 2005 and IEEE/IFIP NOMS
2006 Best Student Paper Awards. He is an elected member of the IFIP
WG 7.3, Fellow of ACM, Fellow of IEEE and Croucher Senior Research
Fellow. His personal interests include films and general reading.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

