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A Reinforcement Learning Approach to Price Cloud
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Abstract— How to generate more revenues is crucial to cloud
providers. Evidences from the Amazon cloud system indicate that
“dynamic pricing” would be more profitable than “static pricing.”
The challenges are: How to set the price in real-time so to maximize
revenues? How to estimate the price dependent demand so to
optimize the pricing decision? We first design a discrete-time based
dynamic pricing scheme and formulate a Markov decision process
to characterize the evolving dynamics of the price-dependent
demand. We formulate a revenue maximization framework to
determine the optimal price and theoretically characterize the
“structure” of the optimal revenue and optimal price. We
apply the Q-learning to infer the optimal price from historical
transaction data and derive sufficient conditions on the model to
guarantee its convergence to the optimal price, but it converges
slowly. To speed up the convergence, we incorporate the structure
of the optimal revenue that we obtained earlier, leading to
the VpQ-learning ( Q-learning with value projection) algorithm.
We derive sufficient conditions, under which the VpQ-learning
algorithm converges to the optimal policy. Experiments on a
real-world dataset show that the VpQ-learning algorithm out-
performs a variety of baselines, i.e., improves the revenue by
as high as 50% over the Q-learning, speedy Q-learning, and
adaptive real-time dynamic programming (ARTDP), and by as
high as 20% over the fixed pricing scheme.

Index Terms— Cloud resources pricing, reinforcement learning
(RL), value projection.

I. INTRODUCTION

OVER the past decade, we have witnessed the rapid
growth of cloud computing services such as Amazon

Web Services, Google Cloud, and Microsoft Azure. Cloud
computing services have generated tremendous economic val-
ues for various companies. It was reported that the annualized
revenue of Microsoft Azure is $18.9 billion [1], and that of
Amazon Web Services is $29.13 billion [2]. What is more
promising is that the cloud computing service market is still
growing [3] and a variety of companies such as Google are
investing to expand their cloud computing services [4]. In
general, cloud computing serves as a new computing para-
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digm, where cloud providers supply flexible and on-demand
computing resources to cloud users.

How to generate more revenues from the cloud com-
puting platform is crucial to cloud providers. This raises
a fundamental question for cloud providers: How to price
their cloud resources? What makes this question interesting
is that each cloud provider only has a finite number of
cloud resources. Typically, major cloud providers such as
Amazon Web Services, Google Cloud, and Microsoft Azure,
practice a fixed pricing scheme, i.e., each unit of resource
is charged at a fixed price. However, evidence from the
Amazon EC2 Spot Instances [5] indicate that dynamic pricing
would be more profitable. In general, a dynamic pricing
scheme means that each unit of resource may be charged at
different prices at different time. In particular, the price may
depend on the demand of cloud users or the utilization of
resources.

Designing a dynamic pricing scheme has the following
challenges. The first one is: How to set the price of cloud
resources in real-time so as to maximize revenues? Note that
the demand depends on the price and the supply depends on
the resource usage level. Intuitively, if the demand is large
or the resource usage level is high, the cloud provider may
set a high price. Also, the current pricing decisions may
influence the future demand due to the network externality
effect in cloud computing applications [6]. Under this exter-
nality effect, the price not only influences the immediate
revenue but also influences the future revenue. This unique
feature of the externality effect makes previous auction-based
dynamic pricing schemes [7]–[12] and online algorithm based
dynamic pricing schemes [13] cannot be applied, because
they did not consider the impact of price on future revenue.
The cloud provider has full knowledge on her resource usage
level, while the price-dependent demand is usually unknown.
This raises the second challenge: How to estimate the price
dependent demand so to optimize the pricing decision? One
natural approach to address this challenge is via reinforce-
ment learning (RL) [14], [15]. However, previous RL-based
pricing schemes [14], [15] are not satisfactory. In particular,
Du et al. [14] did not provide convergence guarantees to the
optimal price. Lacking convergence guarantees is a serious
flaw for cloud resource pricing problems, because it may cause
great revenue loss to the cloud provider. The work [15] did not
consider the resource constraint, which is unrealistic. We aim
to design RL algorithms to price cloud resources dynamically,
providing convergence guarantees and achieving fast learning
speed. Our contributions are as follows.
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1) We formulate a mathematical model to quantify the
network externality effect in cloud computing applica-
tions [6] and characterize the evolving dynamics of the
price-dependent demand.

2) We design a discrete-time-based dynamic pricing
scheme. We formulate a revenue maximization frame-
work via a Markov decision process (MDP) to deter-
mine the optimal price. We theoretically characterize the
monotonicity of the optimal revenue and optimal price.

3) We apply the Q-learning to infer the optimal price from
historical transaction data and derive sufficient condi-
tions on the model to guarantee its convergence to the
optimal price, but it converges slowly. To speed up the
convergence, we add a value projection component into
the Q-learning, which preserves the monotonicity of the
optimal revenue that we obtained earlier, leading to the
VpQ-learning algorithm. We derive sufficient conditions,
under which the VpQ-learning algorithm converges to
the optimal policy. These conditions serve as guidance
to set parameters for the VpQ-learning algorithm.

4) We conduct experiments on a real-world cloud trace
dataset and compare the VpQ-learning algorithm with
a variety of baselines. Experimental results show that
the VpQ-learning algorithm improves the revenue over
the Q-learning, Speedy Q-learning and ARTDP by as
high as 50%, and improves the revenue over the fixed
pricing scheme by as high as 20%.

The remainder of this article is organized as follows.
Section II presents the related work. Section III presents our
dynamic pricing framework. Section IV theoretically char-
acterizes the optimal revenue and price. Section V presents
algorithms to infer the optimal price from historical transaction
data. Section VI presents the experimental results. Section VII
concludes.

II. RELATED WORK

A variety of dynamic pricing schemes have been proposed.
Auction based dynamic pricing schemes have been studied
extensively [7]–[12]. This approach has explored various
aspects and settings such as social welfare and profit maxi-
mization [10], soft deadline aware pricing [11], virtual cluster
pricing [12], etc. In general, this approach models the demand
as bids from users and applies the auction framework to
characterize the interaction between the cloud operator and
users. The objectives of this approach include achieving some
desired properties such as truthfulness of users in reporting
bids, competitive ratio analysis, etc. We consider a different
model, where users do not need to bid. In particular, we use a
Markov decision process to model the price-dependent demand
as well as the interaction between the cloud operator and users.
Our objective is different from the auction approach in that we
focus on characterizing the structure of the optimal revenue
and optimal price, as well as inferring the optimal price from
historical transaction data. Xu and Li [16] designed a dynamic
pricing scheme via the stochastic dynamic programming
approach. In particular, they considered a continuous cloud
resource model and applied the optimal control framework

to optimize the price. However, we consider a discrete cloud
resource model, to which their scheme cannot be applied. Our
model captures the positive network externality effect, which is
not captured in their model. Furthermore, their work focused
on the scenario that the cloud provider has full knowledge
of the model. However, one of our focuses is to address the
challenge that some parameters are unknown to the cloud
provider. Specifically, we design RL algorithms to infer the
optimal price from historical transaction data. Zhang et al.
[13] applied the online algorithm approach to study the optimal
posted pricing schemes. They derived a variety of competitive
ratios for their schemes. Their design objective is to maximize
the social welfare of a cloud system, while our design objective
is to maximize the revenue of a cloud provider. Note that it is
technically nontrivial to extend their framework to maximize
the revenue.

A variety of works applied the RL framework [17]
to improve the system performance of cloud systems.
Tesauro et al. [18] showed that the RL framework can effec-
tively reduce both transients and switching delays in resource
allocations. Dutreilh et al. [19] applied the RL framework to
address the resource dimensioning issue in cloud computing.
They implemented the RL algorithm into cloud controllers.
Xu et al. [20] applied the RL framework to automate the vir-
tual machine configuration process. Barrett et al. [21] applied
RL framework to address the application scaling problem in
cloud systems. Salahuddin et al. [22] showed that the RL
framework can efficiently minimize the overhead of resource
provisioning in vehicular clouds. Arabnejad et al. [23] con-
ducted a comparison study of various RL algorithms for the
fuzzy cloud auto-scaling problems. Different from their works,
we apply the RL framework to “price” cloud resources. A
few works applied RL to price cloud resources. Xu et al. [24]
studied the pricing problem under the competition among
multiple cloud operators. They considered one leading cloud
provider and several follow-ups cloud providers. They used
Q-learning to derive an optimal policy for the leading operator
to set the price. To make the problem tractable, they signif-
icantly simplified the interactions among the cloud operator
and the users, which is the focus of [14] and [15] and our
work. In particular, Du et al. [14] applied deep RL to price
cloud resources. They formulated a model with a large state
space and used a neural network to parametrize the optimal
pricing policy. They learned a policy without any theoretical
guarantee via training the neural network. Their scheme is
appropriate for the warm-start scenario where a vast amount
of training data is available. Our work focuses on the cold-start
scenario where no training data is available in advance, and the
algorithm learns the optimal policy through interacting with
users. Furthermore, our work has theoretical guarantees on the
convergence to the optimal policy. Shi et al. [15] also applied
the Q-learning to price the cloud resource. Their model does
not consider resource constraint. Our work captures resource
constraints.

Note that our pricing model is a finite MDP. There are four
notable RL algorithms with theoretical convergence guarantee
to infer the optimal price: 1) Q-learning [25]; 2) Speedy
Q-learning [26]; 3) Zap Q-learning [27]; and 4) ARTDP [28].

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:35:44 UTC from IEEE Xplore.  Restrictions apply. 



7450 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Different from Speedy Q-learning and Zap Q-learning, the
VpQL algorithm accelerates the Q-learning algorithm via
using the monotone property of the value function. Different
from ARTDP, our algorithm is a model-free algorithm. Our
value projection idea is generic and can be applied to accel-
erate the convergence of speedy Q-learning, Zap Q-learning,
and ARTDP.

Lastly, we discuss some notable dynamic pricing schemes
with externality effects that were proposed in other application
domains beyond cloud computing. Several dynamic pricing
schemes were proposed for wireless communication networks
[29]–[31]. These works focused on understanding the benefits
of dynamic schemes through both analytical and numerical
studies while learning the optimal dynamic price is not con-
sidered. Furthermore, these dynamic pricing schemes were
tailored to wireless communication networks, whose physical
model is quite different from ours. For example, the exter-
nality effect in wireless communication networks is negative
which is induced by network congestion. Several dynamic
pricing schemes were proposed to handle externality effect
induced by social networks [32]–[34]. Similar to our model,
the externality effect in these works is positive. They quantified
the externality effect at the microlevel, i.e., they modeled
how friends of a customer influences this customer’s purchase
behavior, while we quantify the externality effect at the macro
level through the total amount of demand requests. These
works provided analytical characterizations on the equilibrium
of user behavior, structure of optimal price such as price fluc-
tuations, etc. They did not study how to infer the optimal price.
Our focus is on the learning aspect of dynamic pricing. Lastly,
we are also aware of some works on dynamic competition
among platforms with network externality effect [35]. They
studied the product quality competition among platforms and
the equilibrium of competition.

III. SYSTEM MODEL

In this section, we first present the design of our cloud
resource pricing scheme. Then, we formulate a probabilistic
model to characterize cloud users’ decisions, based on which
we formulate an MDP to characterize the cloud provider’s
decisions. Finally, we formulate a revenue maximization
framework and apply the Bellman equations to characterize
the optimal pricing scheme. Table I summarizes key notations
in this article.

A. Pricing Scheme and Decision Spaces

We consider a cloud provider who provides a total number
of S ∈ Z+ units of computing resources to a large number
of cloud users. Each unit of resource can be interpreted as
a single CPU, or a virtual machine, etc. For simplicity of
analysis, we assume that all resources are of the same type and
each unit of computing resource is indivisible. We consider
the scenario that the cloud provider does not have any a-prior
knowledge on the demand of cloud users. Instead, we rely
on the historical transactions between the cloud provider and
users, which enables us to predict (or estimate) the demand.
Our objective is to develop a framework to predict the future

TABLE I

MAIN NOTATIONS

demand and optimize the price simultaneously. In this subsec-
tion, we present the pricing scheme as well as the decision
space for the cloud provider and users.

We consider a discrete time system. More concretely,
we divide the time horizon into equal-length time slots indexed
by t ∈ N. The length of a time slot can be one day, one week,
etc. Also, t = 0 indicates the initial time slot. At each time slot
t , the cloud provider sets a per-unit price at ∈ A ! [0, A] and
the “duration” Dt ∈ Z+ of holding on to a resource measured
in terms of the number of time slots, where A ∈ R+. For
example, (a0, D0) = ($1, 10) at t = 0 means that at the initial
time slot, each unit of resource is sold at $1 for holding 10 time
slots. In the next time slot (i.e., time slot 1), the cloud provider
can change the price and duration to (a1, D1) = ($4, 8). When
the holding of a cloud resource is expiring at t = 9, the user is
allowed to renew the resource, however, at the latest price and
duration parameter. To complete a transaction (i.e., a resource
allocation) at time slot t , the users must make the payment in
the current time slot and the allocated resource will take effect
from the next time slot.

For mathematical tractability, we fix the duration to be
one-time slot, i.e., Dt = 1,∀t . Through this, we simplify the
decision of the cloud provider from two-dimension (at , Dt )
to one dimension at . It is a reasonable simplification with
strong physical interpretations. Consider the original pricing
scheme (at , Dt ) (i.e., Dt ≥ 1). One unit of resource, once
allocated, the per-slot price is fixed at at/Dt for time slots
t + 1, . . . , t + Dt . However, under our simplified case, the
cloud provider can set different per-slot prices (i.e., at in the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:35:44 UTC from IEEE Xplore.  Restrictions apply. 



XIE AND LUI: RL APPROACH TO PRICE CLOUD RESOURCES 7451

simplified case) in time slots t + 1, . . . , t + Dt . This means
that fixing the duration to be one-time slot helps the could
provider to further exploit the advantage of dynamic pricing.
The operational cost for the cloud provider and the user
experience will not be affected significantly, because users are
allowed to flexibly renew the cloud resource, i.e., renewal is
done on a slot by slot basis instead of renewing after multiple
time slots.

For the ease of presentation, each cloud user can hold
at most one unit of cloud resource. This does not lose any
generality, because we can treat a user holding multiple units
of cloud resource as “multiple users”. In each decision time
slot, we classify users into two types as follows.

1) resource holders who hold some resources in the deci-
sion time slot. Their decision space is {renew, not
renew}. We remark that the renewal will be made at
the new price.

2) potential orderers who do not hold any resource and
arrive at the system in the decision time slot. They can
order some cloud resources or leave the system without
any ordering, i.e., decision space is {order, not order}.

When the total number of requests (renewal requests plus the
ordering requests) exceeds the resource budget S, the renewal
requests will be satisfied at a higher priority, and the ordering
requests will be served in a first-come-first-serve manner.

Remark: We consider a discrete resource model rather
than the continuous one due to the following reasons. Many
real-world cloud systems such as Amazon Web Services and
Huawei Cloud price their cloud resources using a discrete
resource model. Many previous works [7]–[12] also considered
discrete resource models, though their models are different
from ours (more details on this difference are discussed in
Section II).

B. Cloud Users’ Decision Model

We use a probabilistic model to characterize the collective
decision making of the resource holder population and the
potential orderer population respectively. We define the func-
tion Pr : A → [0, 1] to quantify the probability that a cloud
resource holder renews the holding of a resource

Pr (a) ! P[a resource holder chooses to renew|a]
where a denotes the latest price set by the cloud provider.
Thus the probability that a resource holder does not renew is
1− Pr(a). We assume that Pr (a) is decreasing in a to capture
that resource holders are less likely to renew under higher
prices. Similarly, potential orderers make decisions based on
the price as well. We define the function Po : A → [0, 1] to
quantify the probability that a potential orderer orders a unit
of cloud resource:

Po(a) ! P[a potential orderer chooses to order|a].
Thus, the probability that a potential orderer does not order is
1− Po(a). We like to remark that the cloud provider does not
have any a priori knowledge on Pr (a) and Po(a).

Based on cloud users’ decision model, we now formulate an
MDP to characterize the cloud provider’s decision. An MDP

is typically characterized by five elements: states, actions,
rewards, state transition probabilities, and policies. We next
introduce each of these elements.

C. States and User Demands

We say that the cloud system is at the state s ∈ S !
{0, 1, . . . , S} if s units of resource are held by cloud users.
The state s reflects the utilization level of the cloud system,
e.g., s = S means all resources are fully utilized, while s = 0
means that all resources are available. Due to the positive
network externality effect (i.e., cloud users may influence their
friends to use the cloud system), the state of the system (or
the utilization level of the system) has a positive effect on
the demand of users. Intuitively, a higher utilization level
implies a larger number of resource holders, and they can
influence more friends to use the cloud system. Thus, there
will be more potential orderers attracted to the cloud system.
Formally, let Np denote the number of potential orderers. Due
to the uncertainty of the arrival of potential orderers, Np ∈ N
is a random variable with CDF

FNp (k|s) ! P[Np ≤ k|s].

We model the positive externality stochastically as follows.
Assumption 1: The CDF FNp (k|s) is decreasing in s, i.e.,

FNp (k|s + 1) ≤ FNp (k|s).
Assumption 1 states that when the state is larger (i.e.,

the number of resource holders is higher), the number of
potential orderers is more likely to be larger. Its physical
meaning is a positive externality effect in demand, i.e., prob-
abilistically a larger number of resource holders can influence
more of their friends to use the cloud system resulting in a
larger volume of demand. Essentially, one will see later that
the analytical results as well as the VpQ-learning algorithm
are tailored to this positive externality effect. If Assumption 1
does not hold, i.e., there is no such positive externality effect,
one needs to significantly modify the analytical results as
well as the VpQ-learning algorithm. A direct consequence of
this assumption is that the expected number potential orderers
increases in s, i.e., E[Np|s + 1] ≥ E[Np|s] (it follows that
E[Np|s] = ∑S

j=1[1 − FNp ( j |s)]). Our analysis relies on
this mild assumption on the CDF of Np without assuming
any specific instances of FNp ( j |s)]. Furthermore, the cloud
provider does not have any a priori knowledge on FNp ( j |s)].

We define the demand as the total number of requests (i.e.,
the number of renewal requests plus the number of ordering
requests) from users. Let Nr and No denote the number of
renewal requests and the number of ordering requests in a
time slot respectively. Let Nd denote the demand, formally
Nd ! Nr + No. We define the following notation to simplify
the presentation.

Definition 1: Suppose X is a random variable and follows
a binomial distribution B(n,ρ). We denote its pmf as

P(k; n,ρ) ! P[X = k] =
(

n
k

)
ρk(1− ρ)n−k .
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With some basic probability argument, we can derive the
pmf of the demand Nd as

P[Nd = j |s, a] =
j∑

k=0

P[Nr = k|s, a]P[No = j − k|s, a]

where P[Nr = k|s, a] and P[No = k|s, a] are:

P[Nr = k|s, a] = P(k; s, Pr (a))

P[No = k|s, a] =
∑

i≥k

(FNp (i +1|s)− FNp (i |s))P(k; i, Po(a)).

The demand function P[Nd = j |s, a] is unknown to the
cloud provider because Pr (a), Po(a) and FNp (i |s) are all
unknown to her.

D. Actions, Rewards and Station Transitions

Recall that the duration is fixed to be one-time slot. Thus,
in each time slot, the action for the cloud provider is to set
the price, i.e., set a ∈ A. The action a impacts two elements
of the MDP: 1) the reward (measured in terms of revenue) in
the current time slot and 2) the state transition probabilities,
which influences the reward in the subsequent time slots. Let
us define them individually.

As shown in the last subsection, the action a of the cloud
provider influences the demand of users, i.e., Nd . Due to
resource budget S, the number of allocated cloud resource
(denoted by Na) for each given demand Na is

Na =
{

Nd , if Nd < S
S, if Nd ≥ S.

At each time slot, the reward to the cloud provider is defined
as the expected revenue, i.e., the total expected payments
collected from cloud users

r(s, a) ! aE[Na|s, a] = a
∑

j∈S
jP[Na = j |s, a]

where we derive P[Na = j |s, a] as

P[Na = j |s, a] =
{

P[Nd = j |s, a], if j < S
P[Nd ≥ S|s, a], if j = S.

We will see later that P[Na = j |s, a] is actually the state
transition probabilities.

Let p( j |s, a) denote the probability that the system will be
at state j at the next time slot, given that the system is at state
s in the current time slot and the cloud provider selects an
action a ∈ A. In fact, the system will be at state j at the next
time slot if and only if the cloud provider allocates j units of
resources in current time slot, namely,

p( j |s, a) = P[Na = j |s, a].

We like to remark that the reward r(s, a) and state transi-
tion probability p( j |s, a) are unknown to the cloud provider
because the nested demand function P[Nd = j |s, a] is
unknown.

E. Optimal Policies to Maximize Revenue

We consider expected infinite-horizon discounted revenue
denoted by R(s0) for the cloud provider, which is defined as

R(s0) ! E
[ ∞∑

t=0

δt r(st , at)|s0

]

where s0 denotes the initial state and δ ∈ (0, 1) denotes
the discounting factor. Here we take expectation because the
states st is a random variable due to uncertainty in state
transition. We will call it revenue R(s0) for simplicity. The
infinite horizon captures that the cloud provider runs their
business for a long time and the discounting factor can be
interpreted as inflation in economics. Considering R(s0) makes
sense because, for the cloud provider, the marginal cost of
allocating a unit of resource is very small as compared to the
cost of maintaining the computing resource in data centers.
Cloud providers may be allowed to be at different initial states.
For example, a startup cloud provider may have an initial
state s0 = 0, meaning that she has not attracted any users
yet. A mature cloud provider may have a large initial state,
meaning that she has attracted a large number of users already.
This article aims to select the optimal actions to maximize the
revenue for all possible initial states so that it can be applied
to different types of cloud providers.

We apply the conventional notation of policies to charac-
terize the optimal pricing decision. We focus on a special
class of policies, i.e., the stationary and deterministic (SD)
policies, because they can attain the maximum revenue [36]
and they are easy to locate, analyze and implement. An SD
policy means that at each time slot the cloud provider applies
the same Markovian deterministic decision rule to select the
price. Formally, an SD policy π is defined as π ! (d)∞,
where the Markovian deterministic decision rule d : S → A
prescribes a price for each state. Under a SD policy the action
is determined by the current state only, i.e., at = d(st ). Given
an initial state s0 = s, we define the revenue of a policy π as

vπ (s) ! E[R(s)|π].
Our objective is to locate the optimal policy denoted by π∗

π∗ ∈ arg max
π∈$SD

vπ (s)

where $SD denotes a set of all the SD policies.

F. Optimality Conditions

We characterize the optimal policy via the Bellman equa-
tions [36]. Let π∗ = (d∗)∞ denote the optimal policy and let
v∗(s) ! vπ∗(s) denote the optimal revenue function. Then,
the v∗(s) is a unique solution of the Bellman equations [36]

v∗(s) = max
a∈A




r(s, a) + δ
∑

j∈S
p( j |s, a)v∗( j)






where r(s, a) is the expected revenue earned in the current
time slot, and δ

∑
j∈S p( j |s, a)v∗( j) is the future revenue that

the cloud provider will earn in the subsequent time slots. The
physical meaning of the optimal revenue is a balance between
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the current revenue and the future revenue. Once we have the
optimal value function v∗(s), the optimal action satisfies [36]

d∗(s) ∈ arg max
a∈A




r(s, a) + δ
∑

j∈S
p( j |s, a)v∗( j)




.

These two equations serve as building blocks to: 1) analyze
and locate the optimal policy when model parameters, i.e.,
Pr (a), Po(a) and FNp (i |s) are given and 2) infer the optimal
policy when these model parameters are unknown. We next
state a scaling property, which will simplify our discussion.

Theorem 1: Suppose d∗(s) and v∗(s) are the optimal price
and revenue function respectively. Consider a scaled system
such that ã ∈ [0, ξ A], P̃r (ã) = Pr (ã/ξ), and P̃o(ã) =
Po(ã/ξ), where ξ > 0. The optimal price and revenue function
for the scaled system are ξd∗(s) and ξv∗(s) respectively.

Theorem 1 states that as we scale the maximum price
linearly, we scale the optimal price and optimal revenue
function linearly at the same rate. This implies that we can
normalize the action space such that A = [0, 1]. We present
all proofs to lemmas and theorems in our supplementary file.

Summary: The demands are determined by model para-
meters Pr (a), Po(a) and FNp (i |s), which are all unknown in
practice. In the following, we first analyze the optimal policy
assuming these model parameters are given. Through this,
we gain insights to design RL algorithms to estimate the
demand and optimize the pricing decisions simultaneously.

IV. OPTIMAL PRICING & MONOTONICITY

In this section, we study the case that all model parameters
are given. We first characterize the properties of the model.
Then we characterize the monotonicity of the optimal revenue
and optimal policy.

A. Properties of the Model

To simplify notations, we define the following:

F(k; n,ρ) ! P[X ≤ k] =
k∑

i=0

(
n
i

)
ρi (1− ρ)n−i

which denotes the CDF of a binomial distribution with para-
meter n ∈ N+, ρ ∈ [0, 1] and k ∈ {0, 1, . . . , n}. Let

FNr (k|s, a) ! P[Nr ≤ k|s, a]
denote the CDF of the number of renewal requests Nr . In the
following lemma, we derive the closed-form FNr (k|s, a) and
characterize its monotonicity.

Lemma 1: The CDF of Nr can be expressed as
FNr (k|s, a) = F(k; s, Pr (a)). For any k < s and
Pr (a) ∈ (0, 1), it holds that FNr (k|s + 1, a) < FNr (k|s, a) and
∂ FNr (k|s, a)/∂a > 0.

Lemma 1 states that the number of renewal requests
increases if the number of resource holders (i.e., state s)
increases or the cloud provider decreases the price.

Denote the CDF of the number of ordering requests No as

FNo (k|s, a) ! P[No ≤ k|s, a].

In the following lemma, we derive its closed-form expression
and characterize its monotonicity.

Lemma 2: The CDF of No can be expressed as

FNo (k|s, a) =
∞∑

i=0

[FNp (i + 1|s)− FNp (i |s)]F(k; i, Po(a)).

For any Po(a) ∈ (0, 1) we have FNo (k|s +1, a) ≤ FNo (k|s, a),
and ∂ FNo(k|s, a)/∂a > 0 holds.

Lemma 2 states that the number of ordering requests
increases if the number of resource holders increases. This is
due to the positive network externality effect [6]. Furthermore,
the number of ordering requests increases if the cloud provider
decreases the price.

Denote the CDF of the demand Nd as

FNd (k|s, a) ! P[Nd ≤ k|s, a].
In the following lemma, we derive its closed-form expression
and characterize its monotonicity.

Lemma 3: The CDF of Nd can be expressed as

FNd (k|s, a)=
s∑

i=0

[FNr (i +1|s, a)−FNr (i |s, a)]FNo(k − i |s, a).

For any Pr (a) ∈ (0, 1) and Po(a) ∈ (0, 1), it holds that
FNd (k|s + 1, a) < FNd (k|s, a), and ∂ FNd (k|s, a)/∂a >0.

Lemma 3 states that the demand increases when the number
of resource holders increases or the price decreases. Based on
Lemma 3, we next derive the closed-form reward r(s, a) and
characterize its monotonicity.

Lemma 4: The reward r(s, a) can be derived as

r(s, a) = a
S−1∑

k=0

[1− FNd (k|s, a)]

and satisfies r(s + 1, a) > r(s, a).
Lemma 4 states that given the same price, the reward

(earned in each time slot) increases as the number of resource
holder increases. Let Fst(k|s, a) ! ∑k

j=0 p( j |s, a) denote the
cumulative state transition probabilities. We next derive the
closed form Fst(k|s, a) and characterize its monotonicity.

Lemma 5: The Fst(k|s, a) can be expressed as

Fst(k|s, a) =
{

FNd (k|s, a), if k < S
1, if k = S.

For any k < S, Pr (a) ∈ (0, 1) and Po(a) ∈ (0, 1), it holds
that Fst(k|s + 1, a) < Fst(k|s, a) and ∂ Fst(k|s, a)/∂a > 0.

Lemma 5 states that the system is more likely to transits to
a large state (i.e., high resources usage) if the cloud provider
decreases the price.

B. Optimal Revenue and Optimal Policy

Based on the optimality conditions derived in Section III-
F, and the model properties derived in Section IV-A, we first
characterize the monotonicity of the optimal revenue function.

Theorem 2: The optimal revenue function v∗(s) is increas-
ing in the state s, i.e., v∗(s + 1) > v∗(s).

Theorem 2 states that the optimal revenue for the cloud
provider increases in the state s (i.e., cloud resource usage
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level). This implies that a cloud provider wants to maintain
the resource usage at a high level. This is intuitive because a
higher usage of the resource means a larger number of users
leading to a larger demand (Lemma 3). Note that the proof
is nontrivial because we do not have a closed-form optimal
revenue function. Sustaining a high level of resource usage is
nontrivial. On the one hand, a new cloud provider is initialized
with state s = 0, i.e., no users in the cloud system. On the other
hand, setting a small price can increase the resource usage
quickly (Lemma 5), however, it may cause some revenue loss
and add some financial burden to the cloud provider in the
short term.

Characterizing the optimal policy is challenging because we
need to know the future reward (determined by the optimal
revenue function). However, we only have the monotone
properties of the optimal revenue function (Theorem 2). We,
therefore, aim to establish conditions under which the optimal
policy exhibits some nice properties. Through these nice
properties, we uncover insights on the optimal policy.

We employ convex optimization theory [37] to characterize
the optimal policy. For the ease of presentation, we define
a function to quantify the state-action dependent total reward
(i.e., the reward earned in the current time slot plus that earned
in subsequent time slots). Formally, let Q(s, a) denote the
state-action dependent total reward function

Q(s, a) ! r(s, a) + δ
∑

j∈S
p( j |s, a)v∗( j).

Note that the function Q(s, a) is nonlinear in a, and the v∗( j)
can be treated as constants (even though their exact values
are unknown). Then, for each given s, finding the optimal
price d∗(s) is equivalent to solve the following nonlinear
optimization problem with a compact domain.

Problem 1: Given the state s, find the optimal price

max
a

Q(s, a)

s.t. a ∈ A.

Thus, locating the optimal policy is equivalent to solv-
ing a sequence of Problem 1 with under different stats
s = 0, 1, . . . , S. In the following lemma, we apply convex
optimization theory [37] to characterize the optimal solution
of Problem 1 as well as the optimal policy.

Lemma 6: Suppose for all s ∈ S, the function Q(s, a) is
strictly concave with respect to a, that is,

∂2 Q(s, a)

∂a2
< 0. (1)

Problem 1 has a unique solution under each s ∈ S, implying
that there exists a unique optimal policy π∗. Furthermore,
if Q(s, a) satisfies the following extra condition:

∂ Q(s + 1, a)

∂a
≥ ∂ Q(s, a)

∂a
(2)

the unique optimal solution of Problem 1 is nondecreasing in
the state s, implying d∗(s + 1) ≥ d∗(s).

Lemma 6 states sufficient conditions to guarantee the
uniqueness and monotonicity of the optimal policy. It states
that conceptually the cloud provider would set a larger price

when the state is larger (i.e., a higher resource usage level).
This is because the demand will be larger when the state
increases (as stated in Lemma 3). Lemma 6 is a direct conse-
quence of the convex optimization theory, and Conditions (1)
and (2) are quite general in the sense that they are imposed on
the total reward Q(s, a), which does not rely on any specific
structure of the MDP model. These two conditions lay the
foundation for us to characterize the optimal policy. However,
the generality of Conditions (1) and (2) makes it difficult
to interpret them. We next refine Conditions (1) and (2) via
exploring the specific structure of our MDP model for cloud
applications, in order to obtain more interpretable conditions.

Theorem 3: If Fst( j |s, a) is convex with respect to a, then
Condition (1) holds, implying a unique optimal policy π∗.

Theorem 3 states a sufficient condition to guarantee that
Condition (1) holds, implying the uniqueness of the optimal
policy. This condition means that there is an increasing return
effect in transferring to a small state (i.e., low the resource
usage level) when the cloud provider increases the price. In
other words, when the price is small, increasing the price
only increases the probability of transferring to a small state
slightly. When the price is large, increasing the price increases
that probability significantly. Refining Condition (2) is a little
bit more subtle. For ease of presentation, we define the
elasticity of a function.

Definition 2: The elasticity of a function f with respect to
x is defined as E f

x ! (∂ f / f )/(∂x/x).
The elasticity E f

x is a standard notion in economic liter-
ature works, where the function f is usually interpreted as
demand and x is usually interpreted as a price. An economic
interpretation of the elasticity is the ratio of the relative
change in demand (i.e., f ) with respect to the relative change
in price (i.e., x). In the following theorem, we present a
sufficient condition (in terms of elasticity) to guarantee that
Condition (2) holds.

Theorem 4: If Fst( j |s, a) is strictly convex with respect
to a and the elasticity of the probability decrement function
'Fst( j |s, a) ! Fst( j |s, a)− Fst( j |s − 1, a) with respect to a
is bounded below, that is,

E'Fst
a ≥ −1/

(
1 + δS A

a(1− δ)

)

then, Condition (2) holds, i.e., (∂ Q(s, a)/∂a) is increasing
in s.

Theorem 4 states that if Fst( j |s, a) is strictly convex with
respect to a and the elasticity of 'Fst( j |s, a) with respect to
a is bounded bellow, then Condition (2) holds. We like to
point out that besides Theorem 3 and Theorem 4, there are
also other ways to refine Conditions (1) and (2). We leave it
as future work for further exploration.

Our results thus far assume all model parameters are given.
In practice, Pr (a), Po(a) and FNp (i |s) are unknown. We next
address this challenge.

V. INFERRING OPTIMAL PRICING DECISIONS

We apply the Q-learning to infer the optimal price from his-
torical transaction data and derive sufficient conditions on the
model to guarantee its convergence to the optimal price, but it
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converges slowly. To speed up the convergence, we incorporate
the monotonicity of the optimal revenue (Theorem 2), leading
to the VpQ-learning algorithm. We also prove the convergence
of the VpQ-learning algorithm. We will show the efficiency
of the VpQ-learning algorithm via experiments in Section VI.

A. Inferring the Optimal Price via Q-Learning

1) Overview: Note that Pr (a), Po(a) and FNp (i |s) are
unknown. In practice, the cloud provider has full knowledge
to her historical transaction data, i.e., the states, the actions
and the per-slot revenue earned in previous time slots, etc.
Formally, we denote the transaction data obtained in time slot
t as

ht ! (at , Nd (t), Na(t))

where at , Nd (t) and Na(t) denote the action (or price), demand
requests and number of units of cloud resources allocated in
time slot t . The historical transaction data up to time slot t
is {h0, h1, . . . , ht }. Our objective is to infer the optimal price
at each time slot based on the transaction data up obtains
before that time slot. Recall that the action space is continuous,
which makes it difficult to infer the optimal price [17]. In
practice, cloud providers can discretize the action (or price)
space A. For example, Amazon Web Services uses a discrete
price space. For the remainder of this article, let us consider
a discrete action space

Ã ! {ãm|m ∈ {1, . . . , M}, am ∈ A}
where M ∈ N+. Recall that the cloud provider’s decision
model is a discounted infinite horizon MDP. There are two
representative types of RL algorithms [17]: 1) model-free algo-
rithms, e.g., Q-learning [25] and 2) model-based algorithms,
e.g., ARTDP [28]. Note that there are no regret bounds for
learning discounted MDPs [17] and convergence analysis is
essential for such learning tasks. We apply the model-free
algorithm, i.e., Q-learning, to infer the optimal price. The
reason is as follows. We do not assume parametric forms on
the model, i.e., the reward and state transition probabilities. For
our model, the reward can be calculated from state transition
probabilities. Thus, for model-based algorithms, one needs to
estimate the state transition probabilities. Each state-action pair
(s, a) is associated with a state transition distribution, whose
support is S. Roughly, there are in total |S| × |Ã| × |S| =
|S|2|Ã| parameters to learn. However, for Q-learning, one only
needs to estimate the Q function, which has |S||Ã| elements,
i.e, |S||Ã| parameters to estimate.

2) Inferring Optimal Price via Q-Learning: The core idea
of the Q-learning algorithm is that in each time slot it infers
the optimal price from the estimate of Q(s, a) and then using
the transaction data generated in this time slot to update the
estimate of Q(s, a). We fit the Q-learning algorithm to our
model and describe it in Algorithm 1. Step 2 states that the
cloud provider with probability εt selects a price uniformly at
random from Ã. The purpose is to explore potential promising
prices (this is the exploration step) due to that the estimate
of Q(s, a) may contain errors. With probability 1 − εt , the
cloud provider selects the price at , which maximizes the

estimate of Q(s, a), i.e., at ∈ arg maxa∈Ã Q(st , a) (this is
the exploitation step). Step 3 corresponds to the observation
of demand, i.e., after the cloud provider sets a price at , she
receives or observes Nd (t) requests at time slot t . Note that the
Nd (t) is a sample drawn according the CDF FNd (k|st , at) and
the FNd (k|st , at) is unknown to the cloud provider. Namely,
FNd (k|st , at ) models the unknown environment. Step 4 simu-
lates the resource allocation that the cloud provider allocates
Na(t) units of resource being aware of the resource constraint.
Step 5 states that the cloud provider earns a per-slot reward
of r̂(st , at ) = at Na(t). Step 6 simulates the state transition,
i.e., the states in the next time slot will be st+1 = Na(t).
Based on the reward and state transition in time slot t , the new
estimate of Q(st , at ) is r̂(st , at) + δ maxa∈Ã Q(st+1, a). Then,
in step 7, we update the estimate of Q(st , at) as a balance
between the old estimate Q(st , at) and the new estimate
[r̂(st , at ) + δ maxa∈Ã Q(st+1, a)], where γt ∈ (0, 1) is the
balancing factor (called the learning rate). In summary, the his-
torical transaction data is used to update the estimate of Q
function incrementally. More specifically, the transaction data
ht obtained in time slot t is used to update the least estimated
of Q function, which is calculated from {h0, h1, . . . , ht−1}.

Algorithm 1 Optimal Price Inference Using Q-Learning
Require: Discounting factor δ, learning rate γt ∈ (0, 1),

exploration probability εt ∈ (0, 1), initialization of the
Q(s, a).

1: for t = 0 to ∞ do
2: With probability εt , at ∼ UniformRandom(Ã), with

probability 1− εt , at ∈ arg maxa∈Ã Q(st , a).
3: Receive Nd (t) requests.
4: Allocate Na(t) units of cloud resources such that Na(t) =

S if Nd (t) > S, otherwise Na(t) = Nd(t).
5: Earn a per-slot revenue (or reward) r̂(st , at ) = at Na(t).
6: State transition st+1 = Na(t).
7: Update the Q function: Q(st , at )← (1− γt)Q(st , at ) +

γt
[
r̂(st , at) + δ maxa∈Ã Q(st+1, a)

]
.

8: end for

Remark: Algorithm 1 adopts the classical Q-learning to our
pricing problem. Note that under some ill-conditioned MDPs,
Q-learning does not converge to the optimal policy [17].
Lacking convergence guarantees is a serious problem for cloud
resource pricing, because it may lead to great revenue loss to
the cloud provider. In the next lemma, we tailor the Q-learning
to our pricing problem in that we establish sufficient conditions
on the model to guarantee that the Q-learning converges to the
optimal policy.

Lemma 7: Suppose 0 < Pr (a) < 1, 0 < Po(a) < 1,∀a ∈
A, and FNp (0|0) < 1. There exists γt and εt such that

ε̃t (s, a) → 0,
∞∑

t=0

ε̃t (s, a) =∞ (3)

∞∑

t=0

γ̃t(s, a) = ∞,
∞∑

t=0

γ̃ 2
t (s, a) <∞ (4)
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where γ̃t(s, a) and ε̃t (s, a) are defined as

[γ̃t(s, a), ε̃t (s, a)] !
{

[γt , εt ], if (st , at) = (s, a)

[0, 0], otherwise.

For each selection of γt , εt satisfying Condition (3) and (4),
Algorithm 1 converges to an optimal policy.

Lemma 7 is a simple extension of the classical results on
Q-learning [38]. We omit its proof due to the page limit.
Lemma 7 states sufficient conditions on the model parameters,
under which Algorithm 1 is asymptotically accurate in infer-
ring the optimal price. Note that these conditions are mild and
can be broadly satisfied in practice. In the following lemma,
we analyze the computational complexity of Algorithm 1.

Lemma 8: In each round t , the computational complexity
of Algorithm 1 is O(|Ã|).

Lemma 8 states that in time slot t , the computational
complexity of Algo. 1 is linear in the action space size |A|.

B. Speeding Up the Convergence

Algorithm 1 may converge slowly. It updates the estimate
of Q(s, a) only when a state-action pair (s, a) is visited
by a transaction data. Under large state space size or the
large action space size, it may take a very long time to
estimate the Q function across all state-action pairs accurately.
Speeding up the convergence of Algorithm 1 can lead to
higher revenue. This is because we consider the online setting,
where the cloud provider estimate the optimal price and
optimize the pricing decisions simultaneously. The revenue
during the learning period, i.e., each time slot is counted.
In other words, a suboptimal action in the learning period
can lead to revenue loss to the cloud operator. Improving the
convergence speed means that the operator can estimate the
optimal policy accurately using less rounds, which can help
the cloud operator avoid suboptimal actions or revenue loss.
We now incorporate the monotonicity of the optimal revenue
(Theorem 2) to speed up the convergence. Theorem 2 implies
the following monotone property of Q(s, a).

Corollary 1: Under the action space A, the function
Q(s, a) is nondecreasing in s, i.e., Q(s, a) ≤ Q(s + 1, a).

Corollary 1 states that the total reward for the cloud provider
is nondecreasing in s. It is trivial to show that under the
action space Ã, Theorem 2 and Corollary 1 still hold. We next
use the monotonicity of Q(s, a) to improve the accuracy of
estimating Q(s, a). Our ideas is to preserve the monotonicity
of the estimate of Q(s, a) after each update. More concretely,
each time when we update one element of the Q func-
tion, e.g., Q(s, a), the sequence Q(0, a), Q(1, a), . . . , Q(S, a)
may not be monotone. Thus, we project them such that the
monotonicity is preserved. Formally, we describe this idea
in Algorithm 2, which we call the VpQ-learning algorithm.
The input of Algorithm 2 and 1 are the same except for
one difference: We require that the initialized value Q(s, a)
must be monotone in s for each fixed a. Then, in each time
slot t , we apply the step 2 to 7 of Algorithm 1 to infer
the optimal price and update the estimated Q(st , at ). After
the update, suppose Q(0, at ), Q(1, at), . . . , Q(S, at ) are not

monotone. Then, in step 3 to 5, we propagate the value
of Q(st , at) upward to make the sequence Q(st , at), Q(st +
1, at), . . . , Q(S, at ) being monotone. In step 6–8 we propa-
gate the value of Q(st , at ) downward to make the sequence
Q(0, at ), Q(1, at), . . . , Q(st , at) being monotone. In the fol-
lowing theorem, we show that the VpQ-learning algorithm
converges to the optimal policy.

Algorithm 2 VpQ-Learning
Require: δ, γt , εt , Q(s, a) (must be monotone in s);
1: for t = 0 to ∞ do
2: Execute step 2–7 of Algorithm 1.
3: for j = st to S − 1 do
4: if Q( j + 1, at) < Q( j, at) then
5: Q( j + 1, at)← Q( j, at)
6: end if
7: end for
8: for j = st decreases to 1 do
9: if Q( j − 1, at) > Q( j, at) then

10: Q( j − 1, at)← Q( j, at)
11: end if
12: end for
13: end for

Remark: The VpQ-learning improves the Q-learning to
tailor the problem. More specifically, the projection of Q
function in VpQ-learning is valid only when Corollary 1 holds.
Note that in general Corollary 1 does not hold. For the pricing
problem considered in this article, Corollary 1 is proven to
hold.

The value projection component in VpQ-learning is pro-
posed by us. The major role of this projection component
is utilizing Corollary 1 to speed up the convergence. More
specifically, Corollary 1 states that for each given action a,
the Q(s, a) function is monotone with respect to state s.
This projection component utilizes this monotone property
to update multiple elements of the estimate of Q function
[even when an (s, a) pair is not visited] with one transaction
data. Note that Algorithm 1 updates only one element of the
estimate of Q function with one transaction data, i.e., update
the estimate of Q(s, a) when a transaction data visits a (s, a)
pair. Hence, this projection component can make the estimate
of the Q function converge faster to its groundtruth value.

Theorem 5: Under the same assumptions and conditions in
theorem 7, Algorithm 2 converges to an optimal policy.

Theorem 5 states sufficient conditions, under which Algo-
rithm 2 converges to an optimal policy. Note that the condi-
tions are the same as Theorem 7. With value projection, the
convergence is guaranteed without adding extra conditions. In
the following lemma, we analyze the computational complex-
ity of Algorithm 2.

Lemma 9: In each round t , the computational complexity
of Algorithm 2 is O(|Ã| + |S|).

Lemma 9 states that in each round t , the computational
complexity of Algorithm 2 is linear in the size of actions
|A| and linear in the size of state space |S|. Compared with
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Lemma 8, in each round t , Algorithm 2 uses |S| operations
than Algorithm 1.

VI. EXPERIMENTS ON REAL-WORLD DATA

We conduct experiments on a real-world cloud dataset and
compare the VpQ-learning algorithm with a variety of base-
lines, e.g., Q-learning, Speedy Q-learning, etc. Experiment
results show that the VpQ-learning algorithm improves the
revenue over the Q-learning, Speedy Q-learning and ARTDP
by as high as 50%. It can also achieve at least 80% revenue
of the asynchronous value iteration algorithm (i.e., Q-learning
with model parameters). Lastly, it improves the revenue over
the fixed pricing scheme by as high as 20%.

A. Experiment Settings

1) The Dataset: We use the cloud trace dataset published by
Wolski and Brevik [39], [40]. The dataset contains the traces
of five clouds implemented using Eucalyptus. From them,
we select the traces collected from the one that has the largest
number of resources. The selected cloud has 31 nodes, and
each node has 32 cores. In total, a number of 16912 trace data
items were collected in one month. These data items are of two
types: 1) starting item, which contains the starting time stamp
and the instance ID; and 2) stopping item, which contains the
stopping time stamp and the instance ID.

2) Parameter Settings: We interpret each core as one unit
of resource. In total we have 31×32 = 992 units of resources.
Namely, the resource constraint is S = 992. We set the
length of each time slot to be one day. One can also set
the length to be one week, ten days, etc, which will scale
the demands. We use a parameterized model to infer the
distribution of the number of potential users. In particular,
we assume that the arrival of potential users follow a Poisson
distribution with a rate λ(s) for each given state s. To capture
the positive network externality [6], the rate λ(s) is increasing
in s. Furthermore, the rate λ(s) is concave in s to capture
diminishing return in the positive network effect. In this article
we choose λ(s) = λ(0)(1 + ln(1 + s)), which is a natural
choice to satisfy the monotone and concave properties. From
the dataset, we only have the ordering requests, from which
we infer λ(s). The dataset does not contain price information,
we thus consider the cloud provider uses a fixed price scheme
and we infer the probability of a potential orderer ordering
a resource as 0.5. Hence the arrival of ordering request also
follows a Poisson distribution with rate 0.5λ(s). The average
rate across all states is (0.5/S)

∑S
s=0 λ(0)(1+ ln(1+s)). From

the dataset we compute the empirical average rate as

λ̄ = total number of requests
total number of days

= 8448
33

= 256.

Then we have (0.5/S)
∑S

s=0 λ(0)(1+ ln(1+s)) = λ̄, implying
λ(0) = 2λ̄S/

∑S
s=0(1 + ln(1 + s)). Given S = 992 and

λ̄ = 256, we can calculate λ(0) = 74.074. Therefore, we have
λ(s) = 74.074(1 + ln(1 + s)).

The model parameters Pr (a) and Po(a) cannot be inferred
from the dataset because the dataset does not contain price
information. To the best of our knowledge, there is no public

dataset that contains price information. We, therefore, synthe-
size them in a systematic manner, in particular, capturing the
price sensitivity to ordering or renewing behavior. We consider
the following form of Pr (a) and Po(a)

Po(a) = 1− aα, Pr (a) = 1− aβ

where α ∈ R+ and β ∈ R+ model the potential orderers’ and
resource holders’ sensitivity to price respectively. Large value
of α (or β) implies they are less sensitive to the price. Note
that we consider this form of Pr (a) and Po(a), because the
price sensitivity is an important factor in affecting the revenue
of a pricing mechanism.

Note that these parameters are unknown to the cloud
provider and they will be used to simulate the model only.
In the simulation, we set Ã = {0.1, 0.2, . . . , 0.9}, s0 = 0,
δ = 0.999, Q(s, a) = 1, εt = 0.1/(Ñt (st ) + 1), and γt =
0.1/(Ñt (st , at) + 1), where Ñt (st ) and Ñt (st , at ) denote the
number of visits to state st and (st , at) pair up to the t-th time
slot.

3) Baselines and Metrics: We compare the VpQ-learning
algorithm with: 1) Q-learning [25]; 2) speedy Q-learning
[26]; 3) ARTDP [28]; and 4) Asynchronous value iteration.
Note that the asynchronous value iteration is used to under-
stand the limits of RL algorithms [28]. It is the Q-learning with
model parameters, i.e., in each iteration of the Algorithm 1,
the model parameters are given to compute E[Q(st , at)]. We
simulate the model and run these algorithms to set the price
in each time slot. For comparison studies, we define the profit
improvement of the VpQ-learning over the Q-learning as

ImpOverQL ! v(s0|VpQL)−v(s0|QL)

v(s0|QL)

where v(s0|QL) and v(s0|VpQL) denote the long term
profit when the operator sets the price using Q-learning
and VpQ-learning respectively. Similarly, we define the
improvement over speedy Q-learning, ARTDP, and asyn-
chronous value iteration as ImpOverSpeedy, ImpOverARTDP
and ImpOverAsy respectively. Note that we do not compare
with the Zap Q-learning [27] due to its high computation
complexity, making it not practical to infer the optimal price
in real-time.

4) Remark on Evaluating Learning Algorithms: Note that
we evaluate learning algorithm in an online setting. All the
above inferred parameters are used to simulate the online
learning environment. Each algorithm does not have any
a priori knowledge on the model parameters in inferring the
optimal price.

B. Comparision With Learning Algorithms

Fig. 1 presents the revenue and revenue improvement when
α varies from 0.1 to 1. Fig. 1(a) shows that the revenues for
the VpQ-learning algorithm and these four baseline algorithms
increase as the value of α increases. This implies that the cloud
provider can earn more revenue when potential orderers are
less sensitive to the price. This is because the cloud provider
can set higher prices while attracting the same number of
orderers. The revenue curve of the VpQ-learning algorithm lies
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Fig. 1. Impact of α on revenue and revenue improvement β = 0.5.
(a) Revenue. (b) Revenue improvement.

above that of the Q-learning, speedy Q-learning, and ARTDP
algorithm. This means that using the VpQ-learning Algo-
rithm, the cloud provider can earn more revenues. Fig. 1(b)
shows that the revenue improvement is significant, i.e., as
high as 50% and at least 20%. These results imply that the
VpQ-learning algorithm converges faster than the Q-learning,
speedy Q-learning, and ARTDP algorithm in estimating the
optimal price. The revenue improvement decreases in α.
Namely, the VpQ-learning algorithm can speed up the con-
vergence more, when potential orderers are more sensitive
to price. Fig. 1(b) shows that when α is no larger than
0.2, the VpQ-learning algorithm can improve the revenue
over the asynchronous value iteration by as high as 10%.
But, when α is larger than 0.2, the VpQ-learning algorithm
can achieve at least 80% revenue of the asynchronous value
iteration. Recall that the asynchronous value iteration needs to
input model parameters. Hence, the VpQ-learning algorithm
is highly efficient in inferring the optimal price.

Fig. 2 presents the revenue and the revenue improvement
when β varies from 0.1 to 1. Fig. 2(a) shows that the revenues
for each algorithm increases as the value of β increases. This
implies that the cloud provider can earn more revenues, when
resource holders are less sensitive to price. This is because
the cloud provider can set higher prices while attracting the
same amount of renewal requests. The revenue curve of the
VpQ-learning algorithm lies above that of the Q-learning,
speedy Q-learning, and ARTDP algorithm. This means that
using the VpQ-learning Algorithm, the cloud provider can earn
more revenues. Fig. 1(b) shows that the revenue improvement
is significant, i.e., as high as more than 30%. These results
imply that the VpQ-learning algorithm converges faster than
the Q-learning, speedy Q-learning, and ARTDP algorithm in
estimating the optimal price. Fig. 1(b) shows that when β is
no less than 0.7, the VpQ-learning algorithm can improve the
revenue over the asynchronous value iteration by as high as
5%. But, when β is less than 0.7, the VpQ-learning algorithm
can achieve at least 80% revenue of the asynchronous value
iteration. Recall that the asynchronous value iteration needs to
input model parameters. Hence, the VpQ-learning algorithm
is highly efficient in inferring the optimal price.

Lessons Learned: The cloud provider earns more revenues
when potential orderers (or resource holders) become less
sensitive to price. The VpQ-learning algorithm can improve
the revenue over the Q-learning, Speedy Q-learning and
ARTDP by as high as 50%. It can also achieve at least 80%
revenue of the asynchronous value iteration algorithm.

Fig. 2. Impact of β on revenue and revenue improvement α = 0.5.
(a) Revenue. (b) Revenue Improvement.

Fig. 3. Revenue improvement over the fixed pricing scheme. (a) β = 0.5.
(b) α = 0.5.

C. Comparison With Fixed Pricing Scheme

Here, we compare the VpQ-learning algorithm with a fixed
pricing scheme. Note that we do not compare to existing
dynamic pricing schemes, because they either apply to dif-
ferent cloud models, e.g., auction model, or have different
design objectives, e.g., welfare maximization. Please refer
to Section II for more justifications on this point. A cloud
provider can fix the price at any price in Ã. The cloud provider
does not have any a priori knowledge on which price can
lead to a large revenue. We thus study the average revenue
improvement of the VpQ-learning algorithm over the fixed
pricing scheme

RevImpOverFP ! v(s0|QLVP)− v(s0|Fixed)

v(s0|Fixed)

where v(s0|Fixed) ! ∑
a∈Ã v(s0|a)/|Ã| is defined as the

average revenue for the fixed pricing scheme and v(s0|a)
denotes the revenue when the price is fixed at a. Fig. 3 presents
the revenue improvement RevImpFP when we vary α and β
from 0.1 to 1. From Fig. 3(a) we can observe that the revenue
improvement is as high as 20% and it decreases in α (i.e.,
potential orderers become less sensitive to price). It implies
that the optimal price is more difficult to infer when potential
orderers become less sensitive to price. This is because the
price effect becomes less distinguishable as α increases. From
Fig. 3(b) we can observe that the revenue improvement is as
high as 15%, and it increases as β increases (i.e., resource
holders become less sensitive to price). It implies that the
optimal price is easier to infer when resource holders become
less sensitive to price. This is because in each time slot,
the number of resource holders is known to the cloud provider,
and the cloud provider can predict the demand more accurate
as resource holders become less sensitive to price.
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Lessons Learned: The revenue improvement of the
VpQ-learning algorithm over the fixed pricing scheme is as
high as 20%. This revenue improvement increases as potential
orderers become more sensitive to price or resource holders
become less sensitive to price.

VII. CONCLUSION

This article develops an RL framework to price cloud
resources with positive network externality effect. We
formulate a probabilistic model to quantify the positive
network externality effect in cloud applications and we
formulate a revenue maximization framework via an MDP
to determine the optimal price. We analytically show that:
1) under the positive network externality effect, the value
function (i.e., optimal long-term revenue) increases in the
state (i.e., resource usage level) of the MDP; and 2) under
certain regularity conditions on the transition probability (i.e.,
resource demand from cloud users) of the MDP, the optimal
price is unique and monotone in the state of the MDP.
We apply the classical Q-learning algorithm to infer the
optimal price and derive sufficient conditions on the model
to guarantee the convergence to optimal price. However,
the Q-learning may converge slowly because each transaction
data is used to update one element of the Q function. To speed
up the convergence, we incorporate the monotonicity of the
Q function to update the estimate of the Q function, leading
to the VpQ-learning algorithm. The VpQ-learning updates
at most |S| elements of the estimate of Q function with
one transaction data. We derive sufficient conditions, under
which the VpQ-learning algorithm converges to the optimal
policy. These conditions serve as guidance to set parameters
for the VpQ-learning algorithm. We conduct experiments on
a real-world dataset to compare the VpQ-learning algorithm
with a variety of baselines. Experimental results show that the
cloud provider earns more revenues when potential orderers
(or resource holders) become less sensitive to price. The
VpQ-learning algorithm can improve the revenue over the
Q-learning, Speedy Q-learning and ARTDP by 50%. It can
also achieve at least 80% revenue of the asynchronous value
iteration algorithm (i.e., Q-learning with model parameters).
This revenue improvement ratio increases as potential orderers
become more sensitive to price or resource holders become
less sensitive to price. Lastly, it can improve the revenue over
a fixed pricing scheme by 20%. This revenue improvement
ratio increases as potential orderers become more sensitive to
price or resource holders become less sensitive to price.

One limitation of this work is that only one cloud provider is
considered. In practice, there can be multiple cloud providers
in the market. If these cloud providers are willing to cooperate,
i.e., aggregate their resource as a whole to set price, they
can be treated as a super cloud provider and our method can
directly be applied. If these cloud providers compete against
each other, our method cannot be directly applied, but we
believe that our method can serve as a building block to study
the pricing problem under competition. We like to remark that
extending our method to study price competition is highly
nontrivial and we leave it as our future work.
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