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Abstract—Online social networks (OSNs) such as YouTube,
Instagram, Twitter, Facebook, etc., serve as important platforms
for users to share their information or content to friends
or followers. Oftentimes, users want to enhance their social
visibility, as it can make their contents, i.e., opinions, videos,
pictures, etc., attract attention from more users, which in turn
may bring higher commercial benefits to them. Motivated by
this, we propose a mechanism, where the OSN operator provides
a “social visibility boosting service” to incentivize “transactions”
between requesters (users who seek to enhance their social
visibility via adding new “neighbors”) and suppliers (users who
are willing to be added as a new “neighbor” of any requester
when certain “rewards” is provided). We design a posted pricing
scheme for the OSN provider to charge the requesters who use
such boosting service and reward the suppliers who make
contributions. The OSN operator keeps a fraction of the payment
from requesters and distributes the remaining part to
participating suppliers “fairly” via a rewarding rule based on
Shapley value. We consider two different objectives/problems of
the OSN provider, i.e., to select the optimal prices and supplier
set to maximize (1) the revenue or (2) the welfare increase, under
the requesters’ budget constraint on suppliers. We first show that
the problems are not simpler than NP-hard. We then
decomposed each problem into two sub-routines, where one
focuses on selecting the optimal set of suppliers, and the other one
focuses on selecting the optimal prices. We prove the hardness of
each sub-routine, and eventually design a computationally
efficient approximation algorithm to solve the problems with
provable theoretical guarantee on the revenue/welfare increase
gap. We conduct extensive experiments on four public datasets to
validate the performance of our proposed algorithms.

Index Terms—Approximation algorithms, revenue maximiza-
tion, social visibility, welfare maximization.

I. INTRODUCTION

ONLINE social networks (OSNs) such as YouTube, Insta-
gram, Twitter, Facebook, etc., serve as important platforms

for users to share their information or content with friends or fol-
lowers, e.g., users on Facebook can share their opinions or status
with their friends via the friendship network. Users on YouTube
can share their videos with their subscribers via the subscriber
network. A user’s friends or followers can further share the infor-
mation or content of this user with their friends or followers.
Hence, the information or content of a user can be propagated to
her direct friends or followers, or even multi-hop friends or fol-
lowers. In other words, a user is “socially visible” to her direct
friends or followers and somemulti-hop friends or followers.

Oftentimes, users want to enhance their social visibility, as
it can make their contents, i.e., opinions, videos, pictures, etc.,
attract attention from more users, which in turn may bring
higher commercial benefits to them. We call a user who wants
to enhance social visibility as a “requester”. One way to
enhance a requester’s social visibility is to attract some new
friends or followers. It is well known that the OSN is under
the “the rich gets richer” phenomenon, which makes it diffi-
cult for requesters, especially those with low social visibility,
to attract new friends or followers. Moreover, a user is reluc-
tant to connect to or follow requesters that she is not interested
in. But when the finical incentive is provided, some users
would be willing to be added as requesters’ new friends or fol-
lowers. We call such users “suppliers”. For example, Dou+,1

an official service provided by TikTok, implements this finical
incentive, where content creators (requesters) who want to
increase visibility can pay to gain more followers. Designing
appropriate finical incentives can benefit requesters, suppliers
and the whole OSN ecosystem, which in turn benefits the
OSN operator. However, no work has studied this finical
incentive design problem before. The objective of this work is
to fill in this blank.

We propose a mechanism, where the OSN operator pro-
vides a “social visibility boosting service” to incentivize the
transaction between requesters and suppliers. In this mecha-
nism, the visibility boosting service is provided via a posted
normalized pricing scheme ðp; qÞ, where p2½0; 1$ and q2½0; 1$.
Here, p is the price of unit social visibility improvement that
the operator charges a participating requester, and q is the
price of unit contribution to the total visibility improvement
that the operator rewards a participating supplier.

We consider the case that each participating supplier adds
links to all participating requesters and requesters have a bud-
get to add at most b 2 Nþ new friends or followers. In this
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work, we assume that users are all rational and requesters and
suppliers decide whether to participate or not by comparing
their valuations to the posted prices ðp; qÞ. In real-world OSN,
valuations can be solicited by incentive-compatible mecha-
nisms or estimated from users’ history responses using online
learning algorithms. In this work, we assume valuations of
users are accessible to the OSN operator. To design the social
visibility boosting service, the challenges the OSN operator
needs to address are: (1) select the prices ðp; qÞ and supplier
set so as to optimize certain objectives; and (2) divide the
reward “fairly” among all suppliers. In this paper, we consider
the following two typical objectives for the operator:

& the revenue which is defined as the difference between
the total payment from the requesters and the total
reward to the suppliers.

& the welfare increase which is defined as the sum of
the valuation increase of participating requesters. We
also add the constraint of non-negative revenue (a.k.a
weakly budget balanced) to this setting to make sure the
operator will not lose money in the service.

Note that, each objective is technically challenging to
achieve. One can observe that selecting the price ðp; qÞ and
supplier set involves a mixed optimization problem, i.e.,
with both continuous decision variables, i.e., p and q, and
set decision variables, i.e., supplier set. This implies that
gradient-based optimization methods do not work for this
problem. To illustrate the hardness of this optimization
problem, consider the case where p and q are given and our
objective is to select the supplier set. The number of candi-
dates may be much larger than budget b and the OSN oper-
ator needs to select at most b suppliers from them. Due to
the network externality effect of social visibility, suppliers
are not independent in enhancing the social visibility of a
requester. In other words, the total visibility increase con-
tributed by two suppliers does not necessarily equal to the
sum of the increase made by each individual supplier. As
one will see in Section III, this dependency among suppliers
makes this simplified problem NP-hard already. Also, this
dependency among suppliers also makes it challenging to
fairly divide the reward to suppliers. We address these chal-
lenges and our contributions are:

& We formulate a mathematical model to quantify social
visibility. To the best of our knowledge, we are the first
to propose a posted pricing scheme and formulate reve-
nue/welfare maximization problem for visibility boost-
ing service.

& We prove that the revenue/welfare maximization prob-
lem is not simpler than an NP-hard problem. We
decomposed it into two sub-routines, where one focuses
on selecting the optimal set of suppliers and the other
focuses on selecting the optimal price, and propose
approximation algorithms for each sub-problem with
theoretical guarantees. Finally, we prove that by com-
bining these approximation algorithms, we obtain an
algorithm to solve the revenue/welfare maximization
problem with provable theoretical guarantee on the
objective gap.

& We show how to divide the reward to suppliers fairly via
a distribution rule based on the concept of Shapley value.

& We conduct experiments on real-world social network
datasets, and the results validate the effectiveness and
efficiency of our algorithms.

The remainder of this is organized as follows. Section II
presents the social visibility model and the formulation of the
revenue/welfare maximization problem. Section III presents
the hardness analysis of the revenue maximization problem
and approximation algorithms for the problem. Section IV
presents the hardness analysis of the welfare maximization
problem and approximation algorithms for the problem.
Section V presents algorithms for the fair division of contribu-
tion among suppliers. Section VI presents the performance
evaluation over real-world dataset. Section VII presents the
related work and Section VIII concludes.

II. MODEL & PROBLEM FORMULATION

In this section, we first present the social visibility model.
Then we present the social visibility pricing problem to maxi-
mize the revenue/welfare.

A. The Social Visibility Model

Online Social Network. Consider an OSN which is charac-
terized by an unweighted and directed graph G , ðU; EÞ, where
U , f1; . . . ; Ug denotes a set of U 2 Nþ users and E ' U ( U
denotes a set of edges between users. Note that a directed
edge from user v 2 U to user u 2 U is denoted by ðv; uÞ 2 E,
which can be interpreted as v following u in a Twitter-like
OSN. The above graph can be directly used to model directed
networks such as Instagram and Twitter. Note that it is also
able to model undirected networks such as Facebook and
DBLP, since each undirected edge between user u and v can
be represented by two directed edges ðu; vÞ and ðv; uÞ. We
focus on the case that there is no self-loop edge, i.e.,
ðu; uÞ =2 E; 8u 2 U.
Social Visibility.We denote a directed path in a graph G by

~p , ðu0 ! u1 ! . . .! unÞ;

where ðui; uiþ1Þ 2 E; 8i 2 f0; . . . ; n) 1g, and ui 6¼ uj; 8i; j.
Note that ui 6¼ uj; 8i; j captures that there is no self-loop
edges or circles in the path. Denote a set of all directed edges
on path~p as

F ð~pÞ , fðu0; u1Þ; ðu1; u2Þ; . . .; ðun)1; unÞg:

Let Lð~pÞ denote the length (i.e., number of hops) of path ~p,
which can be expressed as Lð~pÞ ¼ jF ð~pÞj. Let Pðv; uÞ denote
the set of all directed paths (without circles) from user v to
user u in G. Let Dðv; uÞ denote the distance from user v to
user u in graph G. We defineDðv; uÞ as the length of the short-
est path from v to u, i.e.,

Dðv; uÞ ,
min~p2Pðv;uÞ Lð~pÞ; if P(v,u) 6= ;
þ1; if P(v,u) = ;::

!
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Namely, when there is no directed path from v to u, the dis-
tance from v to u is infinite. Based on the distance between
nodes, we define user u being d-visible to user v if

Dðv; uÞ + d:

The d-visible set of user u is defined as the set of all users to
whom user u is d-visible, formally

Vðu; dÞ , v
"""v 2 U; Dðv; uÞ + d

n o
:

Let t 2 Nþ denote the social visibility threshold of an
OSN. This notion of social visibility threshold captures that
the information of a user can be propagated to its followers
and its followers may further propagate their own followers
and so on. Namely, user u is not visible to users whose dis-
tance to user u is larger than t. For example, t ¼ 1 models
that each user is only visible to its own followers, while t ¼ 2
models that each user is visible to its own one-hop and two-
hop followers. Based on t, we define the notation of visibility.
Definition 1: The visibility of user u is the cardinality of

her t-visible set.
For example, Fig. 1(a) shows that the 2-visible set of user 4

is f3; 5; 6g and the 3-visible set of user 4 is f3; 5; 6; 7g. If the
social visibility threshold is t ¼ 2, then the visibility of user 4
is 3 (cardinality of f3; 5; 6g).

B. Pricing the Social Visibility

The pricing scheme. A “requester” is a user in the set U
who seeks to increase her visibility by requesting other users
to be her new incoming neighbors. Let R ' U denote a set of

all requesters. A “supplier” is a user in the set U who is will-
ing to be a new incoming neighbor of any requester when a
certain finical incentive is provided. Let S ' U denote a set of
all suppliers. We assume the market is two-sided, i.e., R \
S ¼ ;, which captures that a user can not be both requester
and supplier. We consider the general case that there are some
users who are neither requesters nor suppliers, i.e., R [ S '
U. The OSN operator provides a “social visibility boosting
service”to incentivize the “transaction” between requesters
and suppliers. Specifically, the operator recruits participants
with a normalized pricing scheme, specifying that a participat-
ing requester would be charged p for unit visibility increase
and a participating supplier would be rewarded q for unit con-
tributionto boost the visibility of participating requesters. We
defer the details about quantifying contribution and distribut-
ing reward to Section V.

Requesters’ decision model. Each requester u 2 R has a
valuation pu 2 ½0; 1$ of per unit visibility increase. In other
words, pu is the highest price that requester u is willing to pay
for one unit visibility increase. Thus, a requester will use the
social visibility boosting service if her per unit valuation is not
lower than price p, i.e., pu , p. Let eRðpÞ denote the set of all
participating requesters under price p, formally

eRðpÞ , fujpu , p; u 2 Rg: (1)

We assume each requester is restricted to add at most b 2
Nþ incoming neighbors. Note that, we consider the case that
each participating supplier will add links to all participating
requesters. Let M be the set of participating suppliers. The
edges on the updated graph are E [ ðM( eRðpÞÞ. For example,
in Fig. 1(a), the participating requesters are f3; 4; 5g and the
participating suppliers are f8; 9g, then the updated network is
Fig. 1(b) with dashed lines to denote the newly added links.

Based on the change of the network, we now analyze the
visibility increase and welfare increase of requesters. For each
requester u 2 eRðpÞ, we use Iuðp; q;MÞ to denote the individ-
ual visibility increase of u under pricing scheme ðp; qÞ with
participating suppliersM. The visibility increase of u can be
derived as the following closed form:

Iuðp; q;MÞ ¼
[

l2M(eRðpÞ
Vðls; t ) 1)Dðle; uÞÞ n Vðu; tÞ

"""""""

"""""""
;

where ls and le are the start node and end node of link l
respectively.

Next, we take the requester’s valuation of unit visibility
increase into consideration, and define the individual welfare
increase for each requester. Given the setM of participating
suppliers, the individual welfare increase of requester u 2
eRðpÞ, denoted by Wuðp; q;MÞ, is defined as the product of
visibility increase Iuðp; q;MÞ and valuation of unit visibility
increase pu, formally,

Wuðp; q;MÞ , puIuðp; q;MÞ:

Fig. 1. A toy example.
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The welfare Wuðp; q;MÞ characterizes the happiness of
requester u. For each requester u 2 eRðpÞ, the utility is defined
as u’s welfare increase minus u’s payment:

Uuðp; q;MÞ , ðpu ) pÞIuðp; q;MÞ:

It is obvious that, no matter what M is, requesters in eRðpÞ
would get non-negative utility by choosing to participate; and

requesters in R n eRðpÞ would get negative utility if they par-
ticipate. Thus the criterion of selecting participating requesters
in (1) satisfies the assumption that all the users are rational.

Supplier’s decision model. Each supplier u 2 S has a unit
valuation of qu 2 ½0; 1$ on the unit contribution she made. In
other words, qu is the lowest price that supplier u is willing to
“trade out” her unit contribution. Note that, all participating
suppliers make a total contribution, i.e., the total visibility
increase of participating requesters. Quantifying contribution
among participating suppliers is a non-trivial problem due to
the following reasons: (1) some participating suppliers may
have a larger number of followers while others may have a
smaller one; and (2) the network structure poses an externality
effect, causing the contribution of participating suppliers to be
correlated. To incentivize suppliers to participate, one needs
to divide total visibility increase fairly among suppliers. We
use f to denote a “fair” division mechanism, which prescribes
the contribution denoted by fuðp;MÞ for each participating
supplier u 2 M. In order to avoid distracting readers, we defer
the detailed explanation of f to the next section. Given the fair
division mechanism f, a supplier is willing to participate in
the visibility boosting service if her valuation of unit contribu-
tion is lower than price q. Let eSðpÞ be the set of potential par-
ticipating suppliers under price q, formally

eSðqÞ , fujqu + q; u 2 Sg:

Optimal pricing. We have mentioned the two objectives of the
OSN operator in Section I. With the definitions of the individ-
ual visibility increase and the individual welfare increase of a
participating requester, we are ready to give the formal defini-
tions of the two objectives. Given a pricing scheme ðp; qÞ and
participating suppliersM, the visibility increase of all partici-
pating requesters, denoted by Iðp; q;MÞ, is defined as the sum
of the individual visibility increase of all the participating
requesters, formally,

Iðp; q;MÞ ,
X

u2eRðpÞ
Iuðp; q;MÞ:

Given the posted pricing scheme ðp; qÞ, since the total contri-
bution is exactly the visibility increase Iðp; q;MÞ, the revenue
of the OSN operator is

Rðp; q;MÞ , pIðp; q;MÞ ) qIðp; q;MÞ: (2)

The welfare increase is defined as the sum of the individual
welfare increase of all the participating requesters, formally,

W ðp; q;MÞ ,
X

u2eRðpÞ
Wuðp; q;MÞ:

Moreover, we have the constraint of non-negative revenue to
make sure the operator will not lose money and such a service
can be sustainable. According to (2), this constraint is satisfied
if and only if p , q hold. Finally, we use Rðp; q;MÞ and
W ðp; q;MÞ as the objective functions to formulate the follow-
ing pricing problems for the OSN operator:
Problem 1 (Optimal pricing for revenue): Given a budget

b, select pricing scheme ðp; qÞ and participating suppliersM
to maximize the revenue Rðp; q;MÞ:

max
p;q;M

Rðp; q;MÞ

s:t: M ' eSðqÞ; Mj j + b;

p 2 ½0; 1$;
q 2 ½0; 1$:

Problem 2 (Optimal pricing for welfare): Given a budget b,
select pricing scheme ðp; qÞ and participating suppliersM to
maximize the welfare increaseW ðp; q;MÞ.

max
p;q;M

Wðp; q;MÞ

s:t: M ' eSðqÞ; Mj j + b;

p 2 ½0; 1$;
q 2 ½0; 1$;
p , q:

One can observe that Problems 1 and 2 are mixed optimiza-
tion problems, i.e., with both continuous and set decision
variables.
Remark. In this work, we focus on the setting where valua-

tions of users are accessible to the OSN operator, for the pur-
pose of studying the algorithmic aspect of the visibility
pricing problem. We leave the game-theoretic aspect of this
problem with unknown valuations as future work. It needs
substantial amounts of work to design incentive-compatible
mechanisms to make users report their valuations truthfully.

III. ALGORITHMS FOR OPTIMAL PRICING FOR REVENUE

In this section, we present the analysis and the solution to
Problem 1. We first show that Problem 1 is not simpler than
an NP-hard problem. Then we decompose Problem 1 into two
sub-problems. We prove the hardness of each sub-problem
and propose approximation algorithms for each sub-problem.
Finally, we prove that by combining these approximation
algorithms, we can obtain an algorithm to solve Problem 1
with a provable theoretical guarantee on the revenue gap.

A. Hardness Analysis

Hardness analysis. Recall that Problem 1 is a mixed optimi-
zation problem with both continuous decision variables, i.e., p
and q, and set decision variable, i.e., M. This implies that
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gradient-based optimization methods does not work. To illus-
trate the hardness of Problem 1, we consider a sub-problem
where pricing scheme ðp; qÞ is given, which is stated as
follows:
Problem 3 (Optimal supplier set M for revenue): Given

pricing scheme ðp; qÞ and budget b, select participating suppli-
ersM from potential participating suppliers to maximize the
revenue of the operator:

max
M

Rðp; q;MÞ

s:t: M ' eSðqÞ;
Mj j + b:

Namely, Problem 3 only selects the optimal set of suppliers
to maximize the revenue. Note that the set of potential partici-
pating suppliers eSðqÞ is determined as p and q are given. In
the following theorem, we analyze its hardness.
Theorem 1: Problem 3 is NP-hard and Problem 1 is not eas-

ier than NP-hard.
Theorem 1 states that it is NP-hard to locate the optimal set

of suppliers for Problem 3. In other words, it is computation-
ally expensive to find an exact solution for Problem 3. Since
Problem 3 is just a sub-problem of Problem 1, Problem 1 is
not easier than Problem 3. Therefore, locating the exact opti-
mal solution for Problem 1 is computationally expensive. We
resort to approximation algorithms with theoretical guarantees
to solve Problem 1.

Remark. The sub-problem is not a set cover problem and it
can not be mapped into an equivalent Set Cover problem
when there are multiple participating requesters. This is
because a given supplier would have different effects on dif-
ferent participating requesters and the objective is to maxi-
mize the sum of cardinalities of all participating requesters’
new visible set. Thus, one can not apply existing Set Cover
algorithms to solve our sub-problem.

Our approach. To address Problem 1, we decompose it into
two sub-problems, where each sub-problem serves as a sub-
routine. In particular, Problem 3 is the first sub-problem. Since
Theorem 1 shows that Problem 3 is NP-hard, we aim to design
an approximation algorithm for it, denoted by OptSupRðp; qÞ
(the detail is postponed to Section III-B). Algorithm OptSupR
ðp; qÞ takes the pricing scheme ðp; qÞ as an input, and returns
an approximately optimal set of participating suppliers under
ðp; qÞ. Then we use OptSupRðp; qÞ as an oracle to search for
the optimal pricing scheme ðp; qÞ. Formally, we aim to solve
the second sub-problem defined as follows:
Problem 4 (Optimal pricing for revenue with oracle):

Given the algorithm OptSupRðp; qÞ, select pricing scheme
ðp; qÞ so to maximize the revenue of the OSN operator:

max
p;q

Rðp; q; OptSupRðp; qÞÞ

s:t: p 2 ½0; 1$;
q 2 ½0; 1$:

Note that OptSupRðp; qÞ returns an approximately the opti-
mal set of suppliers for each given ðp; qÞ, so Problem 4 returns

an approximately optimal price. We also design an algorithm
for Problem 4, denoted by OptPrice(OptSupR)(the detail
is postponed to Section III-C). One needs to supply OptPri-

cewith oracle OptSupR, and OptPrice(OptSupR)

returns an approximately optimal ðp; qÞ. We next proceed
to present the design and analysis of OptSupRðp; qÞ and
OptPriceðOptSupRÞ.

B. Design & Analysis of OptSupRðp; qÞ
Submodular analysis. First, note that once p and q are given,

the set of participating requesters eRðpÞ and the set of potential
participating suppliers eSðqÞ are fixed. Our objective is to

selectM - eSðqÞ with constraint jMj + b, so as to maximize
the revenue. We first derive the closed form of the revenue.
The revenue of the operator can be derived as

Rðp; q;MÞ ¼ ðp) qÞ
X

u2eRðpÞ
Iuðp; q;MÞ

¼ ðp) qÞ
X

u2eRðpÞ

"" [
l2M(eRðpÞVðl

s; t ) 1)Dðle; uÞÞ n Vðu; tÞ
"":

(3)

Based on the above closed-form expressions of the revenue,
we have the following theorem which shows the sub-modular-
ity and monotonicity of the revenue with respect toM.
Theorem 2: Given the pricing scheme ðp; qÞ, the revenue

Rðp; q;MÞ is monotonously increasing and submodular with
respect to participating suppliersM.

The OptSupRðp; qÞ algorithm. With Theorem 2, we design
Algorithm 1 to implement the oracle OptSupRðp; qÞ. The core
idea of Algorithm 1 is that we select suppliers one by one and
each time we select the supplier that achieves the largest mar-
ginal improvement in the revenue.

The following theorem presents the theoretical guarantees
for Algorithm 1.
Theorem 3: Given a pricing scheme ðp; qÞ, the output M̂.

of Algorithm 1 satisfies:

Rðp; q;M̂.Þ , 1) 1

e

# $
Rðp; q;M.Þ;

whereM. denotes the exact the optimal set of suppliers under
the pricing scheme ðp; qÞ.

Theorem 3 states that Algorithm 1 is able to locate a set of
suppliers with an approximation ratio of at least 1) 1=e. The
proof of this approximation ratio is based on the property of

Algorithm 1: OptSupR ðp; qÞ
1: initM ¼ ;
2: for t ¼ 1 to b do
3: u.  argmax

u2eSðqÞRðp; q;M[ fugÞ )Rðp; q;MÞ
4: M M[ fu.g
5: end for
6: return M̂.  M
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submodularity and monotonicity. The technique used to prove
Theorem 3 is original from [1].

C. Design & Analysis of OptPriceðOptSupRÞ
Perfect search. Now we assume the case that given oracle

OptSupRðp; qÞ outlined in Algorithm 1, we are able to obtain
the exact optimal pricing scheme for Problem 4. Next, we
give the following theorem, which states the impact of the
proximity of OptSupRðp; qÞ on finding the optimal pricing
scheme. We state this impact in the following theorem.
Theorem 4: Let ðp̂.; q̂.Þ denote the exact optimal pricing

scheme of Problem 4 using oracle OptSupRðp; qÞ outlined in
Algorithm 1. We have:

Rðp̂.; q̂.;M̂.ðp̂.; q̂.ÞÞ , 1) 1

e

# $
Rðp.; q.;M.Þ;

where ðp.; q.;M.Þ denotes one ground truth optimal solution
to the Problem 1.

Theorem 4 states that with OptSupRðp; qÞ outlined in Algo-
rithm 1, an optimal solution of Problem 4 obtains an approxi-
mation ratio of ð1) 1=eÞ of the optimal solution of Problem 1.
However, the optimal solution of Problem 4 is not easy to
obtain. One challenge is that the closed-form expression of the
revenue with respect to variables p and q is not available, let
alone its gradient. Thus, we resort to gradient-free methods to
solve Problem 4, in particular, the discretized search method.
We leave it as future work to study other advanced methods
such as Monte Carlo optimization to address this challenge.

Discretized search.We therefore discretize the domain of p,
i.e., [0,1], uniformly:

Að!pÞ , 0; !p; 2!p; . . . ;
j 1

!p

k
!p; 1

! %
;

and discretize the domain of q, i.e., [0,1], uniformly:

Að!qÞ , 0; !q; 2!q; . . . ;
j 1

!q

k
!q; 1

! %
;

where !p; !q 2 ð0; 1$ are the search step of p and q respectively.
By varying !p; !q, the OSN operator can adjust the number of
searched prices in Að!pÞ and Að!qÞ. The OSN operator can
search the discretized pricing space to locate the optimal pric-
ing scheme, denoted by ðp.D; q.DÞ. Algorithm 2 outlines this
discretized search algorithm. The set of suppliers is then
M̂.ðp.D; q.DÞ. The following theorem states the theoretical
guarantee of this method.
Theorem 5: Given ! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2p þ !2q

q
, suppose the objective

function Rðp; q;M̂.ðp; qÞÞ is b-Lipschitz with respect to

ðp; qÞ 2 ½0; 1$2, then the output ðp.D; q.D;M̂
.ðp.D; q.DÞÞ of Algo-

rithm 2 satisfies

Rðp.D; q
.
D;M̂

.ðp.D; q
.
DÞÞ , Rðp̂.; q̂.;M̂.ðp̂.; q̂.ÞÞ ) b!:

Theorem 5 states that when Rðp; q;M̂.ðp; qÞÞ is b-Lipschitz
with respect to ðp; qÞ, the revenue gap between the discretized
search method and the perfect search method is bounded by

b!. A favorable property of this algorithm is that the OSN
operator can make this gap arbitrarily small by selection !p
and !q which can induce small enough !. However, smaller !
leads to a larger computational complexity. Thus, Theorem 5
serves as a building block for an OSN operator to make a
trade-off between computational complexity and approximate
optimal value achieved. Combining them all, we prove
the revenue gap between the approximate optimal pricing
scheme output by Algorithm 2 and the ground truth optimal
pricing scheme for Problem 1.
Corollary 1: Given OptSupRðp; qÞ outlined in Algorithm

1. Suppose Rðp; q;M̂.ðp; qÞÞ is b-Lipschitz with respect to p
and q The output ðp.D; q.D;M̂

.ðp.D; q.DÞÞ of Algorithm 2 satis-
fies that

Rðp.D; q
.
D;M̂

.ðp.D; q
.
DÞÞ , 1) 1

e

# $
Rðp.; q.;M.Þ ) b!:

IV. ALGORITHMS FOR OPTIMAL PRICING FOR WELFARE

In this section, following a similar flow as Section III, we
present the hardness analysis of Problem 2 and design approx-
imation algorithms for it.

A. Hardness Analysis

Hardness analysis. To illustrate the hardness of Problem 2,
we consider a sub-problem where pricing scheme ðp; qÞ is
given, which is stated as follows:
Problem 5 (Optimal supplier setM for welfare increase):

Given pricing scheme ðp; qÞ and budget b, select participating
suppliers M from potential participating suppliers to maxi-
mize the welfare increase:

max
M

W ðp; q;MÞ

s:t: M ' eSðqÞ;
Mj j + b:

We have the following theorem about the hardness of Prob-
lems 5 and 2.
Theorem 6: Problem 5 is NP-hard is not easier than NP-

hard.
Our approach. Theorem 6 indicates that Problem 5 is time-

consuming to locate an exact optimal solution. We aim to
design an approximation algorithm for Problem 5, denoted by

Algorithm 2: OptPrice ðOptSupRÞ
1: Opt 0
2: for ðp; qÞ 2 Að!pÞ (Að!qÞ do
3: M OptSupRðp; qÞ
4: if Rðp; q;MÞ , Opt then
5: p.D  p; q.D  q;M̂.ðp.D; q.DÞ M
6: Opt Rðp; q;MÞ
7: end if
8: end for
9: return p.D; q

.
D;M̂

.ðp.D; q.DÞ
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OptSupWðp; qÞ. Then we use OptSupWðp; qÞ as an oracle to
search for the optimal pricing parameter ðp; qÞ for Problem 2.
Formally, we define the second sub-problem as follows.
Problem 6 (Optimal pricing for welfare with oracle):

Given the algorithm OptSupWðp; qÞ, select ðp; qÞ so to maxi-
mize the welfare increase:

max
p;q

W ðp; q; OptSupWðp; qÞÞ

s:t: p 2 ½0; 1$;
q 2 ½0; 1$;
p , q:

We also design an algorithm for Problem 6, denoted by
OptPrice(OptSupW), which takes OptSupWðp; qÞ as an
oracle. We next proceed to present the design and analysis of
OptSupWðp; qÞ and OptPriceðOptSupWÞ.

B. Design & Analysis of OptSupWðp; qÞ
Submodular analysis. Given p and q are given, we first

derive the closed form of the welfare increase Wðp; q;MÞ as

W ðp; q;MÞ
¼

X

u2eRðpÞ
puIuðp; q;MÞ

¼
X

u2eRðpÞ
pu
"" [

l2M(eRðpÞ Vðl
s; t ) 1)Dðle; uÞÞ n Vðu; tÞ

"": (4)

The following theorem shows the submodularity and monoto-
nicity of the welfare increase with respect toM.
Theorem 7: Given a pricing scheme ðp; qÞ, the revenue

W ðp; q;MÞ is monotonously increasing and submodular with
respect to participating suppliersM.

The OptSupWðp; qÞ algorithm. Based on Theorem 7, we
modify Algorithm 1 slightly to implement OptSupWðp; qÞ,
which is outlined in Algorithm 3. The only difference is that
each time we select the supplier that achieves the largest mar-
ginal improvement in welfare increase rather than revenue.

The following theorem presents the theoretical guarantees
for Algorithm 3.
Theorem 8: Given a pricing scheme ðp; qÞ, the output M̂.

of Algorithm 3 satisfies:

W ðp; q;M̂.Þ , 1) 1

e

# $
W ðp; q;M.Þ;

whereM. denotes the exact the optimal set of suppliers under
the pricing scheme ðp; qÞ.

C. Design & Analysis of OptPriceðOptSupWÞ
To design OptPriceðOptSupWÞ to solve Problem 6, we

can directly use the discretized search algorithm proposed in
Section III-C. We can improve the search for this problem by
the following strategy: if there exists a pricing scheme ð!p; !qÞ
which has been computed by Algorithm 3 and satisfies that

eSðqÞ ¼ eSð!qÞ and eRðpÞ ¼ eRð!pÞ, then we can directly take the
result of OptSupWð!p; !qÞ as the result of OptSupWðp; qÞ. More-
over, Algorithms 3 and 1 have the same approximation ratio
according to Theorems 8 and 3. Thus, the theoretical guaran-
tees in Theorems 4, 5, and Corollary 1 still hold for the welfare
increase version.

V. ALGORITHMS FOR FAIR DIVISION OF CONTRIBUTION

In this section, we discuss how to divide the contribution,
i.e., total visibility Iðp.D; q.D;M̂

.ðp.D; q.DÞÞ fairly to suppliers.
Problems 1 and 2 share the same challenge, so the solution
proposed in this section applies to both of them. Note that fair
division is a necessary part of the service. Without this fair
division part, it is non-trivial for the operator to distribute
rewards fairly, i.e., suppliers who contribute more should be
rewarded more.

A. Shapley Value-Based Rewarding Rule

Our results so far can locate the approximate optimal price
and supplier set, i.e., ðp.D; q.D;M̂

.ðp.D; q.DÞÞ. The remaining
issue is how to divide the contribution to the network among
participating suppliers fairly. As we mentioned in Section II
that a “fair” division mechanism is important to incentivize
the participation of suppliers. The OSN operator needs to
divide the total contribution among all participating suppliers.
Note that the naive equal division, i.e., participating suppliers
equally share the total contribution is not a fair division. This
is because: (1) some participating suppliers may have a larger
number of followers while others may have a small number of
followers; (2) the network structure poses an externality
effect, causing the contribution of participating suppliers to be
correlated. To achieve fair division, we apply the Shapley
value [2]. The concept builds upon cooperative game theory
where players are allowed to form coalitions in order to
increase their payoffs in the game. One fundamental question
in cooperative game theory is how to distribute the surplus
achieved by cooperation among the players. To this end, Shap-
ley in [2] proposed to reward agents with payoffs that corre-
spond to their individual marginal contributions, known as the
Shapley value.

With the concept of Shapley value, the key idea of our
rewarding rule is to define a cooperative game on the solution
ðp.D; q.D;M̂

.ðp.D; q.DÞÞ output by our algorithms. Here, M̂.

ðp.D; q.DÞ is called grand coalition and shortened as M̂. in this
section for simplicity. We next define a characteristic function
F which assigns to every coalition C ' M̂. a real number rep-
resenting the contribution of C. We take the total visibility

Algorithm 3: OptSupW ðp; qÞ
1: initM ¼ ;
2: for t ¼ 1 to b do
3: u.  argmax

u2eSðqÞWðp; q;M[ fugÞ )Wðp; q;MÞ
4: M M[ fu.g
5: end for
6: return M̂.  M
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increase as the total contribution of the grand coalition, and
the contribution of a coalition C ' M̂. is modeled as FðCÞ ¼
Iðp.D; q.D; CÞ. The OSN operator needs to divide a total contri-
bution of FðM̂.Þ ¼ Iðp.D; q.D;M̂

.Þ among the participating
suppliers and reward them q per unit contribution.

Now we are ready to show how to compute the reward for
each supplier. As we have mentioned, the computation of
Shapley value is taken as the individual marginal contribution.
More specifically, for a given player the individual marginal
contribution is measured as the weighted average marginal
increase in the payoff of any coalition that this agent could
potentially join. We use fuðM̂.Þ to denote the u’s Shapley
value when the grand coalition is M̂.. Formally, in the game
modeled for our problem, each participating supplier u 2 M̂.

gets the following share of F:

fuðM̂.Þ ¼
X

M'M̂.nfug

jMj!ðjM̂.j) jMj) 1Þ!
jM̂.j!

( FðM[ fugÞ )FðMÞð Þ:

Shapley value is a division scheme that meets the following
desirable criteria in our problems: (1) efficiency: total reward
qFðM̂.Þ achieved by the grand coalition M̂. is distributed
among them; (2) symmetry: the rewards to suppliers do not
depend on their identity; and (3) null player: suppliers with
zero marginal contributions to all coalitions receive zero
reward. Readers can refer to [2] for more details about Shap-
ley value.

B. Computational Complexity

One challenge is that the computational complexity of eval-
uating fuðM̂.Þ is exponential in the cardinality of M̂.. To
address this computational challenge, we propose to use the
sampling algorithm [3] to approximate fuðM̂.Þ. Let s ¼
ðu1; . . . ; uebÞ denote an ordering of the participating suppliers,

where eb ¼ minfb; jM̂.jg and ui 2 M̂. denotes the participat-
ing supplier in the i-th order. Denote the set of players ranked
before player ui in the order s as

Ssui , fall players ranked before ui in the order sg:

Based on [3], for each supplier u 2 M̂., the Shapley value
fuðM̂.Þ can be rewritten as

fuðM̂.Þ ¼ Es/UniformðVÞ½FðSsu [ fugÞ )FðSsuÞ$; (5)

where V denotes the set of all orderings of participating sup-
pliers, and UniformðVÞ denotes a uniform distribution over
V. Based on Eq. (5), we use Algorithm 4 to approximate the
Shapley value fuðM̂.Þ of each supplier u 2 M̂. n f!sg, where
supplier !s is selected randomly from M̂.. Then, we set the
contribution of !s as f̂!sðM̂.Þ ¼ Iðp.D; q.D;M̂

.Þ )
P

u2M̂.nf!sg
f̂uðM̂.Þ to guarantee that the sum of the contributions of sup-
pliers in M̂. is equal to Iðp.D; q.D;M̂

.Þ.
The following theorem states the theoretical guarantee for

the approximation accuracy of Algorithm 4.

Theorem 9: The estimated contribution satisfies

X
u2M̂. f̂u ¼ Iðp.D; q

.
D;M̂

.Þ:

Furthermore, for each u 2 M̂. n f!sg, it holds that

jf̂uðM̂.Þ ) fuðM̂.Þj

+ maxs2V½FðSsu [ fugÞ )FðSsuÞ$ffiffiffiffiffi
K
p

ffiffiffiffiffiffiffiffiffiffiffi
1

2
ln
2

d

r
;

with a probability of at least 1) d, where d 2 ð0; 1$.
Theorem 9 states that one can control the approximation

error of Algorithm 4 arbitrarily small by selecting sufficiently
large simulation roundsK.

C. Utility Performance

With the reward rule proposed, we are now ready to discuss
the utility of suppliers. Using our proposed Shapley value-
based rewarding rule, a supplier u 2 M̂. would be distributed
a reward of q.DfuðM̂.Þ. The valuation qu of a supplier u can
be interpreted as the cost of the unit contribution. We then
define the utility of supplier u 2 M̂. as

Uu ¼ ðq.D ) quÞfuðM̂.Þ:

First, the condition for a supplier u 2 S to be a potential par-
ticipating supplier in ~Sðq.DÞ is qu < q.D and participating sup-
pliers M̂. are selected from ~Sðq.DÞ, so we have the term
q.D ) qu , 0; u 2 M̂. ' ~Sðq.DÞ. Secondly, the Shapley value
is always non-negative, so we have fuðM̂.Þ , 0; u 2 M̂..
Thus, the utility (i.e., the product of the above two terms) of
each selected supplier must be non-negative for both of Prob-
lems 1 and 2. Thus, the fair division is a necessary part to
guarantee that suppliers with qu lower than q would all be will-
ing to participate in the service since we assume users are
rational. Other division methods, e.g., the naive average divi-
sion would cause some suppliers to get negative utility and
suppliers would be unwilling to participate in the service,
which can cause a loss of revenue and social welfare increase
in the long run.

VI. PERFORMANCE EVALUATION

In this section, we conduct experiments on real-world data-
sets to evaluate the performance of our algorithms, and results
show their superior performance.

Algorithm 4: Approximating fuðM̂.Þ.
1: f̂u ¼ 0
2: for k ¼ 1 toK do
3: generate an ordering s uniformly at random from V
4: f̂u  ½ðk) 1Þf̂u þFðSsu [ fugÞ )FðSsuÞ$=k
5: end for
6: return f̂u
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A. Experimental Settings

Datasets. We evaluate our algorithms on four public data-
sets, whose overall statistics are summarized in Table I.

& Residence [4].This dataset contains friendship connec-
tions between 217 residents, who live at a residence hall in the
Australian National University campus.

& Blogs [4].This dataset contains hyperlinks between blogs
in the context of the 2004 US election. Blogs are mapped as
nodes and hyperlinks are mapped as directed links.

& DBLP [5].This dataset contains a sub-network of the co-
author network of the DBLP network. Scholars who have pub-
lished papers in major conferences (those considered in
DBLP) are mapped as nodes. Each co-author relationship
between two scholars is mapped as two directed edges
between these two scholars with different directions.

From Table I, one may argue that the scales of the above four
datasets are not large. We intentionally make this choice
because: (1) we have already proved the quality gap; (2) to com-
pare with baseline algorithms such as the brute force method,
the OSN has to be small to make it computationally feasible.

Parameter setting. To reflect the real-world setting that only
a small portion of users in an OSN are interested in the social
visibility boosting service, we select g fraction of users uni-
formly at random from the user population U as requesters R,
and another g fraction of users uniformly at random from the
user population U as suppliers S. We set g as 0.25, 0.1 and
0.05 for dataset Residence, Blogs, and DBLP respectively.
We set the social visibility threshold t ¼ 2 by default and also
vary t from 1,2 to 3 in Section VI-E to study the impact of t
on the performance of our proposed algorithms.

To generate synthetic valuation pu for each requester u 2 R
and qu for each supplier u 2 S, we define functions based on
their visibility respectively. Specifically, we synthesize the
valuation of a requester with visibility v as

pðvÞ ,
ð1þ v=vmaxÞ"

2"
2 ½0; 1$; (6)

and synthesize the valuation of a supplier with visibility v as

qðvÞ , 1) ð1þ v=vmaxÞ"

2"
2 ½0; 1$; (7)

where v is the visibility of the user, vmax is the largest visibility
in the network and "ð" > 0Þ is a parameter of the function to
control the relationship between of u’s visibility and pu or qu.
For any " > 0, (6) models that a requester with larger visibility
tends to have a larger valuation pu for unit visibility increase,
and (7) models that a supplier with smaller visibility tends to
have a larger valuation qu for a unit contribution made.

Metrics & baselines. We use the revenue and the total wel-
fare increase achieved as the evaluation metrics. First, to
understand the accuracy and efficiency of OptSupR (Algo-
rithm 1) and OptSupW (Algorithm 3), we compare them with
the following two baselines under each given pricing scheme
ðp; qÞ: (1) Brute, which selects the optimal set of participat-
ing suppliers via exhaustive search; (2) TopVis, which
selects potential participating suppliers who rank top-b by
their social visibility. Secondly, to evaluate our OptPrice
algorithm, i.e., Algorithm 2 and study the parameters of algo-
rithms, we vary the search step !p ¼ !q ¼ ! from 0.2, 0.1 to
0.05. Then, we also study the impact of the functions to syn-
thesize valuations for requesters and suppliers by varying the
parameter " from 1,2 to 3. Lastly, we study the impact of the
social visibility threshold t by varying t from 1,2 to 3.

B. Evaluating OptSupR/OptSupW

We first compare our algorithms OptSupR and OptSupW

with two baselines (1) Brute and (2) TopVis. In this sub-
section, we fix the search step as ! ¼ 0:05 and set the parame-
ter " ¼ 2 for valuation functions in (6) and (7). Note that
algorithm Brute is computationally expensive, so we do not
run Brute for the setting with relatively large budgets and
large network sizes. Fig. 2 shows the revenue and the welfare
increase achieved by different methods of finding optimal sup-
plier set on datasets Residence, Blogs, and DBLP. From Fig. 2
(a), we can observe that the revenue achieved by OptSupR

TABLE I
STATISTICS OF FOUR DATASETS

Fig. 2. Algorithms to select optimal set (" ¼ 2, ! ¼ 0:05).
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and TopVis are both nearly the same as Brute algorithm,
i.e., ground truth optimum, which indicates that OptSupR
and TopVis both perform very well on dataset Residence.
From Fig. 2(b), we can observe that the welfare increase
achieved by OptSupW is slightly lower than Brute and
higher than TopVis, which shows the effectiveness of Opt-
SupW. For the larger dataset Blog, since it is too time-consum-
ing to run Brute for budgets larger than 2, we leave the
corresponding bar blank. Fig. 2(c) shows that OptSupR and
TopVis both perform closely on dataset Blogs and achieve
the ground truth optimum for small budgets 1 and 2. Fig. 2(d)
shows that OptSupW achieves the same welfare increase as
Brute for small budgets 1 and 2, and achieves much higher
values than TopVis on Blogs. Fig. 2(e) shows the revenue
performance on dataset DBLP, where OptSupR performs
similarly well as Brute and better than TopVis for larger
budgets. Fig. 2(f) shows OptSupW achieves the same welfare
increase as Brute for small budgets 1 and 2, and achieves
much higher values than TopVis on DBLP.

Next, we will zoom in on all searched pricing schemes
and take a closer look at OptSupR/OptSupW and Brute.
Fig. 3 are the results on dataset Residence where we fix " ¼
2, ! ¼ 0:05 and b ¼ 3. Fig. 3(a) and (b) show the intermedi-
ate results when we search for the optimal pricing scheme
to maximize the revenue using OptSupR and Brute

respectively. For most searched pricing schemes the optimal
revenue is very close. This shows that the subproblem Prob-
lem 3 are well solved by OptSupR. Fig. 3(c) and (d) show
the intermediate results when we search for the optimal
pricing scheme to maximize the welfare increase using
OptSupW and Brute respectively. For most searched pric-
ing schemes the optimal welfare increase is very close. This
shows that the subproblem Problem 3 can be well solved by
OptSupW.

C. Evaluating OptPrice

We study the impact of the search step on OptPrice, i.e.,
Algorithm 2. We vary the search step !p ¼ !q ¼ ! from 0.2,
0.1 to 0.05 on all datasets. From Fig. 4(a) we can observe that
on dataset Residence, all the three algorithms Brute, Opt-
SupR and TopVis, achieve the same optimal revenue under
different search steps 0.2, 0.1, and 0.05. Fig. 4(c) and (e) show
that the revenue achieved by all tested methods increase as !
decreases on dataset Blogs and DBLP. In contrast, the perfor-
mance of welfare increase is not sensitive to !. From Fig. 4(b),
(d), and (f), we can observe that on all three datasets, all the
three algorithms Brute, OptSupW, and TopVis, achieve
almost the same optimal total welfare increase under different
search steps 0.2, 0.1 and 0.05, which indicates a total welfare
increase is not sensitive to the search step !.
Note that smaller ! causes larger search space and larger

computational costs. The above observation can be instructive
to set an appropriate value for ! in Algorithm 2 due to the fol-
lowing reasons. (1) Problem 1 is more sensitive to search step
! than Problem 2. Reducing the step size can be effective to
improve the performance when we search for the optimal pric-
ing scheme for revenue while may not make a difference to
the performance when we search for the optimal pricing
scheme for welfare increase. (2) When we decrease ! in the
setting of maximizing revenue, there is not much difference in
revenue improvement for small datasets like Residence, while

Fig. 3. Intermediate results on residence (" ¼ 2, ! ¼ 0:05, b ¼ 3).

Fig. 4. Performance under different ! (" ¼ 2, b ¼ 4).
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it can bring larger improvement on larger datasets like Blogs
and DBLP. Thus, one can choose a larger ! for smaller data-
sets to balance the computational cost and the improvement.

D. The Impact of Valuation Functions

We compare the different functions to synthesize pu and qu.
We fix budget b ¼ 4 and search step ! ¼ 0:05, and vary the
function parameter " from 1,2 to 3. Different " means differ-
ent sensitivity to visibility. Fig. 5 shows the results on the
three datasets. On all three datasets, we can observe that for
both revenue and welfare increase and all algorithms larger "
causes lower optimal objective values. This is because " has
an impact on the distribution of pu and qu. Specifically, with
larger ", the requesters tend to have lower valuations for unit
visibility increase and the suppliers tend to have higher valua-
tions for unit contribution, which means there tend to be fewer
suppliers and requesters under the same pricing scheme.

E. The Impact of t

We study the impact of social visibility threshold t. We fix
budget b ¼ 4 and search step ! ¼ 0:05, and vary t from 1 to 3.
Fig. 6(a), (c), and (e) show the revenue achieved on three data-
sets. One can observe that a larger threshold t leads to higher
revenue for both algorithms on all three datasets. Fig. 6(b),
(d), and (f) show the total welfare increase on three datasets.
On datasets Blogs and DBLP, one can observe that both

algorithms achieve higher total welfare increase under larger
t. However, on the dataset Residence, OptSupW achieves
higher revenue in t ¼ 2 than t ¼ 3. The reasons are as fol-
lows. It is very likely that most users in 2-visible set of partici-
pating suppliers are already in the requester’s 3-visible set,
which leads to a smaller visibility increase. Such overlap tends
to occur in a small network. Moreover, from Fig. 6(a) and (b),
one can observe a jump in both revenue and total welfare
increase on the largest dataset DBLP when we increase t from
2 to 3, which indicates the parameter t has a larger impact on
larger datasets.

VII. RELATED WORK

The notion of social visibility defined in this paper is closely
related to social influence [6], [7], [8], [9]. One key difference
is that when a user is visible to a set of users, it does not mean
this user can influence this set of users. The objective of the
influence maximization problem is to find a subset of nodes
that could maximize the spread of information under certain
influence diffusion models. But our problem focuses on the
pricing of the social visibility service. The idea of adding new
links to enhance social visibility is closely related to link pre-
diction [10], [11], [12], and friend recommendation [13], [14],
[15], [16], The objectives of link prediction and friend recom-
mendation are to predict future or missing links. Our work
adds links that can improve social visibility. Note that such
links may have nothing to do with predicting the future or
missing links.

Fig. 5. Performance under different " (! ¼ 0:05, b ¼ 4).

Fig. 6. Performance under different t (! ¼ 0:05, b ¼ 4, " ¼ 2).
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Technically, our work is closely related to revenue manage-
ment [17]. Different from classical revenue management liter-
atures [17], which focuses on understanding the structure of
optimal pricing, our work formulates a new revenue maximi-
zation framework and we focus on designing approximation
algorithms to solve this problem. Similar to influence maximi-
zation [6], [7], [9], the core technique in selecting the supplier
set is submodular analysis. Our contribution is in proving that
our problem has the submodular property and show how the
submodular property impacts the search optimal pricing.

VIII. CONCLUSION

This article proposes a posted pricing scheme for the OSN
operator to price its social visibility boosting service. We for-
mulate revenue/welfare increase maximization problems for
the OSN operator to select the optimal pricing scheme. We
show that revenue/welfare increase maximization problems
are not simpler than an NP-hard problem. We decomposed
revenue/welfare increase maximization problems into two
sub-routines respectively, where one focuses on selecting the
optimal set of suppliers, and the other one focuses on selecting
the optimal prices. We prove the hardness of each sub-routine,
and eventually design a computationally efficient approxima-
tion algorithm to solve the problems with provable theoretical
guarantee on the revenue/welfare increase gap. We conduct
extensive experiments on four public datasets to validate the
performance of our proposed algorithms.
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