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Feedback-based reputation systems are widely deployed in E-commerce systems. Evidence shows that earn-

ing a reputable label (for sellers of such systems) may take a substantial amount of time, and this implies a

reduction of profit. We propose to enhance sellers’ reputation via price discounts. However, the challenges

are as follows: (1) The demands from buyers depend on both the discount and reputation, and (2) the demands

are unknown to the seller. To address these challenges, we first formulate a profit maximization problem via

a semi-Markov decision process to explore the optimal tradeoffs in selecting price discounts. We prove the

monotonicity of the optimal profit and optimal discount. Based on the monotonicity, we design a Q-learning

with forward projection (QLFP) algorithm, which infers the optimal discount from historical transaction data.

We prove that the QLFP algorithm convergences to the optimal policy. We conduct trace-driven simulations

using a dataset from eBay to evaluate the QLFP algorithm. Evaluation results show that QLFP improves

the profit by as high as 50% over both Q-learning and Speedy Q-learning. The QLFP algorithm also im-

proves both the reputation and profit by as high as two times over the scheme of not providing any price

discount.
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1 INTRODUCTION

Nowadays, E-commerce systems, e.g., Alibaba, Amazon, eBay, and Taobao, are becoming increas-
ingly popular. Such systems have generated tremendous economic values, e.g., Amazon and eBay
were ranked 29th and 172nd in a Fortune 500 ranking [11] in terms of total revenue. This article
considers eBay-like E-commerce systems, where a large number of sellers and buyers transact on-
line. To reflect the trustworthiness of sellers, a reputation system is maintained. In particular, a
feedback-based reputation system [23] is the most widely deployed, e.g., in eBay, Taobao, and so
on. Sellers of such systems are initialized with a low reputation and they must obtain a sufficiently
large number of positive feedbacks from buyers to earn a reputable label. For example, eBay and
Taobao use three-level feedbacks, i.e., {−1 (Negative), 0 (Neutral), 1 (Positive) }. Each seller is ini-
tialized with a reputation score of zero. A positive (or negative) rating increases (or decreases)
the reputation score by 1, while a neutral rating does not change the reputation score. To earn a
four-star label (i.e., a reputable label), a seller must increase his or her reputation score to at least
500 [10].

Often, buyers are less willing to buy products from low-reputation sellers. The authors of Ref-
erence [29] found that new sellers need to spend at least 700 days (on average) to earn a reputable
label. Hence, some sellers resort to “illegal means” to increase their reputation, i.e., authors in Ref-
erence [33] found that more than 11,000 sellers on Tabobao have conducted fake transactions. A
number of companies, e.g., Lantian, Shuake, and Kusha, even provide professional fake transac-
tion services and the per-year fake transaction volume is estimated to be more than six million per
company [33]. Fake transactions are illegal, and this motivates us to explore “legitimate means” to
enhance (new) sellers’ reputation.

We propose to enhance sellers’ reputation via “price discounts.” To illustrate, consider the eBay
reputation system and that a seller is reputable if and only if his or her reputation score is no less
than 500. A seller can attract 10 transactions per day if he or she is reputable; otherwise, he or
she can only attract 1 transaction per day. Assume each transaction earns a positive rating of 1.
Suppose the price of a product is $1 and its cost is $0.8. We have the following two cases:

Case 1 (No Discounts). For a new seller (initialized with a reputation score of zero) who does not

provide any discount, he or she needs to spend 500 days to earn a reputable label. The total profit in

the first 500 days is (1 − 0.8) × 1 × 500 = 100.

Case 2 (With Discounts). A new seller provides a discount of 40% before he or she earns a rep-

utable label, i.e., the price becomes 0.6, and he or she does not provide any discount after becoming

reputable. Assume this discount increases the transaction volume to 2 per day. He or she needs to spend

250 days to earn a reputable label. The profit in the first 250 days is (0.6 − 0.8) × 2 × 250=−100. The

total profit in the first 500 days is (0.6 − 0.8) × 2 × 250 + (1 − 0.8) × 10 × 250 = 400.

The above cases illustrate that (1) price discounts can enhance sellers’ reputation and (2) price
discounts may lead to profit losses in the short run, but the reputation effect can compensate the
profit in subsequent days. Note that in real-world E-commerce systems, the demands (i.e., per-day
transaction volumes) are dynamic, buyers may provide biased ratings, and the discount-dependent
demands (i.e., buyers’ preferences over discounts) are unknown, and so on. This article studies the
discount selection problem in such general settings, and we aim to answer the following: (1) How
do we quantify the optimal tradeoffs in selecting price discounts? (2) How do we characterize the
optimal profit and discount? (2) How do we perform online inference to determine the optimal
discount from historical transaction data? Characterizing the optimal profit and discount would
not only reveal fundamental understandings on the reputation and discount tradeoffs but also
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offer insights to design algorithms to infer the optimal discount with a fast learning speed. Our
contributions are as follows:

• We develop a mathematical model to capture important factors of an E-commerce system,
i.e., the demand dynamics, rating biases, and buyers’ preferences over discounts, and so on. We
formulate a profit maximization framework via an SMDP to quantify the optimal tradeoffs
in determining the optimal price discount.

• We prove the monotonicity of the optimal profit and discount with respect to the reputation
effect via convex optimization [4] and comparative statics [6].

• Based on the monotonicity of the optimal profit, we design a Q-learning with forward pro-
jection algorithm, which infers the optimal discount from historical transaction data. We
prove that the QLFP algorithm converges to the optimal policy.

• We conduct trace-driven simulations using a dataset from eBay to evaluate the QLFP algo-
rithm. Evaluation results show that QLFP improves the profit by as high as 50% over both
Q-learning and Speedy Q-learning. The QLFP algorithm also improves both the reputation
and profit by as high as two times over the scheme of not providing any price discount.

This article organizes as follows. Section 3 presents the system model and the problem formulation.
Section 4 analyzes the optimal price discount. Section 5 presents the design of our QLFP algorithm.
Section 6 presents the trace-driven simulation results using a dataset from eBay. Section 2 presents
the related work. Section 7 presents the proofs to theorems and lemmas. We conclude in Section 8.

2 RELATED WORK

Reputation systems [23] are important in E-commerce systems. Two typical models have been
proposed: (1) the feedback-based model [14, 26, 32, 35], which assesses reputation based on the
feedbacks (or ratings) from users, and (2) the transitive trust model [12, 17, 24, 34], which assesses
reputation based on the propagation of trust. The feedback-based model is widely deployed in E-
commerce systems. However, reputation manipulations or inflations exist and a number of works
have been proposed to address them. Xu et al. [33] uncovered a large volume of fake transactions
in E-commerce systems. A number of algorithms to defend against fake feedbacks (or transactions)
were proposed in References [9, 13, 34]. Miller et al. proposed a peer-prediction mechanism [20]
to mitigate dishonest feedbacks. A nice survey can be found in Reference [13].

Several works investigated the economic efficiency of reputation systems in E-commerce appli-
cations. Dellarocas [7] studied the impact of rating leniency (from buyers) on sellers’ advertising
behavior. Khopkar et al. [18] studied the impact of negative feedback ratings on the efficiency of
the eBay reputation system. Xie et al. [28–30] formulated the “ramp-up time” to quantify the effi-
ciency of reputation systems. Xie et al. [31] applied the stochastic bandit framework to select price
discount online subjected to various tradeoffs between the ramp up time and the short-term profit.
Our work develops a unified framework to maximize the long-term profit and we introduce a new
reinforcement learning framework, i.e., QLFP, to infer the optimal discount online.

From an economic perspective, our work is related to References [2, 16, 19]. Using a historical
transaction dataset from the wine market, Landon et al. [19] uncovered how the reputation of a
wine influences its price. In online auction markets, Ba et al. [2] found that a seller can have some
price premiums if he or she has a high reputation, and Jin et al. [16] studied how the reputation
influences the pricing behavior of sellers in Internet auctions. From a methodological perspective,
our work is related to Markov Decision Processes [22] and reinforcement learning [5, 27]. We
apply those techniques to study the reputation vs. discount tradeoffs in E-commerce applications.

A variety of RL algorithms were designed for SMDP models [5], such as classical Q-learning,
temporal difference learning, ATRDP, and their variants. We refer the reader to References [3, 5,
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27] for a thorough treatment on RL. This work considers using the RL approach to study the dis-
count and reputation tradeoffs. We start from classical Q-learning rather than its sophisticated
variants for the practical consideration that simplicity is important for real-world E-commerce
applications. We show that the classical Q-learning can already improve profit significantly. Fur-
thermore, inspired by our theoretical characterizations of the optimal profit, we design a QLFP
algorithm to speed up the convergence of Q-learning. The projection idea developed in QLFP can
also be applied to speed up the convergence of a variety of other RL algorithms. Through this
we demonstrate how theoretical characterizations can be applied to improve RL algorithms. We
believe that our work can inspire more effective reinforcement learning algorithms.

3 SYSTEM MODEL

We first model the baseline E-commerce system and buyers’ preferences over price discounts.
We then formulate a profit maximization framework via an SMDP to characterize the optimal
tradeoffs in selecting price discounts. Finally, we formulate an online discount selection problem,
which infers the optimal discount from a seller’s transaction data.

3.1 Baseline E-commerce System Model

Consider an E-commerce system like eBay and Taobao, where buyers purchase products from
online stores operated by sellers, and a feedback-based reputation system is maintained to reflect
the trustworthiness of sellers. Sellers set the selling price and advertise the quality of products in
their online stores and finally ship the ordered products to buyers. Let q ∈ R+ and c ∈ R+ denote
the price and overall cost of a product, respectively. The overall cost c captures the manufacturing
cost, shipment fee, and so on. We define the unit profit to the seller u ∈ R as the price minus

the cost, i.e., u � q − c . Sellers advertise product quality honestly and we aim to enhance sellers’
reputation via price discounts.

To reflect the trustworthiness of sellers, a feedback-based reputation system tags each seller
with a reputation score s ∈ S, and this score is accessible by all buyers, where

S �
{
− Ŝ, . . . ,−1, 0, 1, . . . , S

}
,

and Ŝ, S ∈ N ∪ {∞}. For example, eBay and Taobao uses Ŝ = 0, S = ∞, in other words S =
{0, 1, . . . ,∞}. The higher the reputation score, the more reputable the seller is. When a seller joins
an E-commerce system, the reputation system initializes her reputation score as s = 0, i.e., a low
reputation. Buyers provide feedback ratings to reflect their evaluation on the overall transaction
quality (i.e., product quality, trustworthiness of the seller, etc.). Each feedback rating is drawn from
a discrete rating metric set,

M �
{
− M̂, . . . ,−1, 0, 1, . . . ,M

}
,

where M̂,M ∈N . For example, eBay and Taobao deploy M = {−1(Negative), 0(Neutral),
1(Positive)}. The higher the rating, the more satisfied the buyer is toward that seller. Consider
a seller who has a reputation score s; his or her reputation score becomes s +m once he or she re-
ceives a feedback ratingm ∈M. For example, in eBayM= {−1, 0, 1}, a rating of 1 (or −1) increases
(or decreases) the reputation score by 1, while a rating of 0 does not change the reputation score.

A seller’s reputation score is set as Ŝ when it drops below Ŝ , and it is set as S when it exceeds S .

3.2 Price Discount Model

To speed up the reputation accumulating process, a seller can set a price discount a ∈ A � [0, 1].
Precisely, a denotes the discount rate, and the product price under discount a is q × (1 − a). For
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example, a = 0.2 means 20% off, and the corresponding price is 0.8q. Also a = 0 captures that a
seller does not provide any discount. Let ũ (a) denote the unit profit under discount a. Then, we
have

ũ (a) � u − aq, ∀a ∈ A.

Modeling rating behavior under discounts. Human factors like personal preferences or even
biases need to be included in our model. Some buyers may provide higher ratings while other may
provide lower ratings. Let R (s,a) ∈ M denote a rating provided by buyers to the seller who has a
reputation score s ∈ S and sets a discount a ∈ A. The rating R (s,a) is a random variable, and we
define its cumulative distribution function (CDF) as

FR (m |s,a) � P [R (s,a) ≤ m] , ∀m ∈ M, s ∈ S,a ∈ A.

Note that sellers do not have any a priori knowledge on FR (m |s,a). For example, consider M=
{−1, 0, 1} and S= {0, 1, . . . ,∞}. Then, one example of FR (m |s,a) is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FR (−1|s,a) = [0.1/(1 + s )]1+a ,

FR (0|s,a) = [0.3/(1 + s )]1+a ,

FR (1|s,a) = 1.

(1)

Definition 1. Given two random variables X ,Y with the same sample space Ω ⊆ R. We say X is
larger than Y (written as X � Y ), iff P [X > x] ≥ P [Y > x] holds for all x ∈ Ω.

Definition 1 states that a random variable X is larger than Y if X is more likely to realize an
outcome with a large value than Y . Note that X � Y implies that E[X ] ≥ E[Y ].

Assumption 1. Given a ∈ A, R (s,a) � R (j,a) holds for all s > j, where s, j ∈ S. Given s ∈ S,

R (s,a) � R (s,b) holds for all a > b, where a,b ∈ A.

Assumption 1 captures (1) the herding behavior [21] that buyers give higher ratings to more
reputable sellers and (2) the price effect that buyers tend to become more lenient in providing
ratings under larger discounts. Equation (1) satisfies Assumption 1.

Modeling demand under discounts. We consider a dynamic demand from buyers and use
the transaction’s arrival process to model the demand. We define the transaction’s arrival process
through the inter-arrival time (or waiting time) of transactions. Precisely, letW (s,a) ∈R+ denote
the inter-arrival time of transactions to the seller who has a reputation score s ∈S and sets a
discount a ∈A. For example, W (0, 0) measures the amount of time a seller must wait until the
next transaction arrives when she has a reputation score s = 0 and does not provide any discount.
The inter-arrival timeW (s,a) is a random variable and we denote its CDF as

FW (w |s,a) � P [W (s,a) ≤ w], ∀w ∈ R+, s ∈ S,a ∈ A.

Note that sellers do not have any a priori knowledge on FW (w |s,a). One example of FW (w |s,a) is

FW (w |s,a) = 1 − exp(−λ(s,a)w ), (2)

which means thatW (s,a) follows an exponential distribution with a parameter λ(s,a) ∈ R+. This
also models the Poisson arrival of transactions. One example of λ(s,a) is

λ(s,a) =
1 +
√
a

1 + e−s
, ∀s ∈ S,a ∈ A. (3)

Assumption 2. Given a ∈ A, W (j,a) �W (s,a) holds for all s > j, where s, j ∈ S. Given s ∈ S,

W (s,b) �W (s,a) holds for all a > b, where a,b ∈ A.
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Assumption 2 captures (1) the reputation effect that buyers are more willing to transact with
reputable sellers and (2) the price effect that buyers are more willing to buy a product under a
larger discount. Consider Equation (2); Assumption 2 means that λ(s,a) increases in both s and a.
One example of such λ(s,a) is derived in Equation (3).

Assumption 3. There exists two constants ϵ > 0,δ > 0 such that FW (δ |s,a) ≤ 1 − ϵ for all s ∈
S,a ∈ A.

Assumption 3 states that it is impossible that an infinite number of transactions arrive to an
online store within a finite time. It eliminates the technical subtlety that an infinite number of
transactions arriving within a finite time leads the profit to be infinite. In real-world E-commerce
systems, Assumption 3 holds, because the number of transactions within a finite time is finite.
Consider Equation (2); Assumption 3 means that λ(s,a) is bounded, e.g., the λ(s,a) expressed in
Equation (3).

Modeling discount update. This article aims to enhance sellers’ reputation via price discounts.
The challenge is that sellers do not have any a priori knowledge on FR (m |s,a) and FW (w |s,a).
However, a seller can infer them from historical transaction data to optimize the price discounts.
We therefore focus on the scenario that a seller updates the discount only when a new transaction
arrives, i.e., gains some new data for inference. Under this scenario, we next introduce the formal
discount selection models for sellers.

3.3 The Seller’s Decision Model

The seller needs to select a discount for each transaction. Thus the decision space for the seller is
the discount set A.

Offline decision model. We first consider the full information scenario that FR (m |s,a) and
FW (w |s,a) are given. We formulate a profit maximization framework via an SMDP to characterize
the optimal tradeoffs in determining discounts.

We consider a continuous time system with infinite-horizon t ∈ [0,∞). Let ti denote the arrival
time of the ith transaction, where i ∈ N+. We say a seller is at state s ∈ S if she has a reputation
score s . Thus, the state space is S. Decision epochs correspond to the time immediately following
an arrival of a transaction. For example, the first decision epoch occurs at t1. The initial decision
epoch does not correspond to any transaction. Without any loss of generality, we index the initial
decision epoch with 0 and use t0 = 0 to denote its occurrence time. The seller is the decision maker
and the decision to be made at each decision epoch is setting a discount a ∈ A. We also call a the
action. Note that the action set at each decision epoch is the same A. When the seller chooses an
action a at state s , he or she receives a lump sum reward denoted by k (s,a), which can be expressed
as

k (s,a) = ũ (a), ∀s ∈ S,a ∈ A.

Note that the lump sum reward corresponds to the unit profit earned from the next transaction.
Namely, it is delayed to be payed in the next decision epoch.

Note that the inter-arrival (or waiting) time of decision epochs is W (s,a), which is a random
variable variable and has a CDF FW (w |s,a). Let p (j |s,a), where s, j ∈ S,a ∈ A, denote the state
transition probability

p (j |s,a) � P [next state is j |current state s , discount a] = FR (j − s |s,a) − FR (j − s − 1|s,a).

Namely, p (j |s,a) models the dynamics of the reputation score.
Setting price discounts may lead to some profit losses at the present decision epoch, but it

can speed up the reputation score accumulation process, which may improve sellers’ profit in
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subsequent decision epochs. To quantify the optimal discount and reputation tradeoff, we use an
expected infinite-horizon discounted profit for the seller. Precisely, we consider a continuous-time
discounting rate α ∈ R+ and define the expected infinite-horizon discounted profit as

vπ (s ) � E
⎡⎢⎢⎢⎢⎣
∞∑

i=0

e−αti+1k (si ,ai )
������ s0 = s,π

⎤⎥⎥⎥⎥⎦ , ∀s ∈ S,

where si ,ai denote the reputation score and discount at the ith decision epoch and π denotes
a policy [22], which prescribes a discount for each transaction (or decision epoch). We also
call vπ (s ) the long-term profit. For example, the long-term profit for a new seller is vπ (0). One
interpretation of the discounting rate α is inflation from economic perspectives. The discounting
rate α also reflects the willingness of a seller to trade discounts for reputation. Increasing α means
that the seller cares less about the future profit (or is more keen about the present profit). In other
words, she is less willing to trade discounts for reputation.

We define a stationary and deterministic (SD) policy as π = (d )∞, where d : S→A denotes a
Markovian deterministic decision rule, which maps each state to a price discount.

Problem 1 (Offline Discount Selection). Given the initial state s0, FR (m |s,a), and FW (w |s,a),
select price discounts to maximize the long-term profit. Formally,

maximize
π

vπ (s0)

subject to π ∈ Π,

where Π denotes a set of all possible SD policies.

Problem 1 optimizes the long-term profit over a special class of policies, i.e., SD policies, because
SD policies suffice to attain the global maximum long-term profit.

Online decision model. Now we relax problem 1 to the online decision making setting, in
which FW (w |s,a) and FR (m |s,a) of problem 1 are unknown to the seller. The seller can only access
his or her own historical transaction data and use his or her data to predict the optimal discount.
Precisely, the ithe transaction data item is associated with the following: (1) a discount ai−1 (note
that the discount of a transaction is set in the last decision epoch), (2) a reputation score si−1 at
which the seller sets ai−1, (3) a lump sum reward (i.e., profit) k (si−1,ai−1), (4) an arrival time ti , and
(5) a rating denoted bymi . For example, at the 0th decision epoch (i.e., the initial decision epoch),
the seller sets a discount a0 at state s0. When the first transaction occurs at time t1, the seller
obtains a lump sum reward (i.e., profit) k (s0,a0) and receives a rating m1. The first transaction

data item is then H1� {a0, s0,k (s0,a0), t1,m1}. In general, the ith transaction data item is Hi �
{ai−1, si−1,k (si−1,ai−1), ti ,mi }, i=1, 2, . . . ,∞. For the ease of presentation, we define H0� {t0, s0}
for the initial decision epoch. At the ith decision epoch, a seller observes Hi and she uses it to
infer the optimal discount.

Problem 2 (Online Discount Selection). Given an initial state s0, at the ith decision epoch,

where i = 0, 1, . . . ,∞,

• receiveHi and determine a discount ai based on transaction history {H0,H1, . . . ,Hi },

to maximize long-term profit E[
∑∞

i=0 e
−αti+1k (si ,ai ) |s0].

We will first study Problem 1. Through this we lay the foundation to address Problem 2.
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4 OPTIMAL OFFLINE DISCOUNTS

In this section, we study the offline discount selection problem. We first derive conditions that
optimal discounts must satisfy. We draw implications from the model to characterize these opti-
mality conditions. Finally, we characterize the optimal profit and apply techniques from convex

optimization [4] and comparative statics [6] to characterize optimal discounts.

4.1 Optimality Conditions

Let fW (w |s,a) denote the probability density function of the inter-arrival timeW (s,a) of transac-
tions

fW (w |s,a) � ∂FW (w |s,a)

∂w
, ∀w ∈ R+, s ∈ S,a ∈ A.

Given a seller is at state s and sets a discount a in the present decision epoch, let ϕ (s,a) denote the
expected discount factor for the next decision epoch, formally

ϕ (s,a) �
∫ ∞

0

e−αw fW (w |s,a)dw, ∀s ∈ S,a ∈ A.

Note that ϕ (s,a) ∈ (0, 1). We also call ϕ (s,a) the per-epoch discount factor. Economically, ϕ (s,a)
can be interpreted as the inflation in one decision epoch, and the larger the ϕ (s,a), the smaller the
inflation. Let r (s,a) denote the per-epoch discounted profit (or reward), which can be expressed as

r (s,a) �
∫ ∞

0

k (s,a)e−αw fW (w |s,a)dw = k (s,a)ϕ (s,a), ∀s ∈ S,a ∈ A.

Let π ∗ = (d∗)∞ denote an optimal SD policy. Note that if the seller has a reputation score s , then
the optimal discount is d∗ (s ). Let v∗ (s ) denote the maximum long-term profit for a given initial
reputation score s0 = s . For example, v∗ (0) is the maximum long-term profit for a new seller. The
maximum profit v∗ (s ) is a unique solution of the following Bellman equations [22]:

v∗ (s ) = max
a∈A

⎧⎪⎪⎨⎪⎪⎩r (s,a) + ϕ (s,a)
∑
j ∈S

p (j |s,a)v∗ (j )
⎫⎪⎪⎬⎪⎪⎭ = max

a∈A

{
ϕ (s,a)V (s,a)

}
, ∀s ∈ S,

where V (s,a) is defined as

V (s,a) � k (s,a) +
∑
j ∈S

p (j |s,a)v∗ (j ), ∀s ∈ S,a ∈ A.

Note that the above expression is of a product form, because the profit k (s,a) is delayed to be
payed in the next decision epoch, i.e., when the next transaction arrives. Furthermore, the optimal
policy (or optimal discount) satisfies

d∗ (s ) ∈ arg max
a∈A

{
ϕ (s,a)V (s,a)

}
, ∀s ∈ S.

The above optimality conditions enable us to derive a “scaling property” of the optimal discount.

Lemma 1. Suppose we scale the system such that q̃=ξq, c̃=ξc , F̃W (w |s,a)=FW (w |s,a), and

F̃R (m |s,a)=FR (m |s,a), where ξ ∈R+. Then the optimal discount and long-term profit for the scaled

system are d∗ (s ) and ξv∗ (s ), respectively.

Remark: Lemma 1 states that as we scale the selling price and product cost linearly at the same
rate, the optimal discount remain the same and the optimal long-term profit is scaled linearly at
the same rate. Therefore, we can simply normalize the selling price such that q = 1. This would
help us simplify the discussion in experiments. Intuitively, Lemma 1 holds, because we only scale
the price and cost linearly at the same rate, while keeping the other model parameters unchanged.
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4.2 Implications from the Model

Based on the properties of the transaction’s arrival process, we characterize the per-epoch discount
factor ϕ (s,a) and the per-epoch discounted profit r (s,a). These characterizations will enable us to
further characterize the optimal discount.

Lemma 2. We can derive ϕ (s,a) as

ϕ (s,a) = α

∫ ∞

0

e−αwFW (w |s,a)dw, ∀s ∈ S,a ∈ A,

where ϕ (s,a) is non-decreasing in s and a. If FW (w |s,a) is strictly concave in a, then ϕ (s,a) is strictly

concave in a.

Remark: Lemma 2 states that the per-epoch discount factor should be larger (i.e., a smaller in-
flation in a decision epoch) if the seller has a higher reputation score or he or she sets a larger
price discount. If FW (w |s,a) has a diminishing return in the price discount a, then the per-epoch
discount factor has a diminishing return in a as well.

Lemma 3. We can derive r (s,a) as

r (s,a) = αũ (a)

∫ ∞

0

e−αwFW (w |s,a)dw, ∀s ∈ S,a ∈ A.

If a ≤ u/q, then r (s,a) is non-decreasing in s ; otherwise, r (s,a) is non-increasing in s . If a ∈ [u/q, 1],
then r (s,a) is non-increasing in a. If FW (w |s,a) is strictly concave in a, then r (s,a) is strictly concave

in a ∈ (0,u/q).

Remark: Lemma 3 states that if the discount is not too large such that the per-unit profit ũ (a)
is positive, then the seller can earn profit per decision epoch as his or her reputation score in-
creases; otherwise (i.e., per-unit profit ũ (a) is negative), the seller will lose more profit per de-
cision epoch. If FW (w |s,a) has a diminishing return in the price discount a, then the per-epoch
discounted profit r (s,a) has a diminishing return in a as well (provided a ∈ (0,u/q)). In general,
whena ∈ [0,u/q], r (s,a) is not monotone ina, because the ũ (a) is non-negative and non-increasing
in a and FW (w |s,a) is non-decreasing in a.

The authors of Reference [30] found that the transactions in eBay follow a Poisson arrival pro-
cess via analyzing a dataset from eBay. In the following corollary, we study the Poisson arrival of
transactions.

Corollary 1. Suppose FW (w |s,a) satisfies Equation (2). We have

ϕ (s,a)=
λ(s,a)

λ(s,a) + α
, r (s,a)=

λ(s,a)ũ (a)

λ(s,a) + α
, ∀s ∈S,a ∈A.

If λ(s,a) is strictly concave in a, then ϕ (s,a) is strictly concave in a and r (s,a) is strictly concave in

a ∈ (0,u/q).

Remark: Corollary 1 states that given the Poisson arrival of transactions, if the arrival rate of
transactions has a diminishing return in the price discount a, then both ϕ (s,a) and r (s,a) have a
diminishing return a. For example, Equation (3) satisfies the conditions in Corollary 1.

4.3 Optimal Profit and Discounts

It is mathematically intractable to derive the closed-form expression for the maximum long-term
profit v∗ (s ). In the following theorem, we identify a monotone property of v∗ (s ).
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Theorem 1. For all s ≥ j, where s, j ∈ S, v∗ (s ) ≥ v∗ (j ) holds. Suppose we increase the α to α̃ , i.e.,

α̃ ≥ α , while keeping all the other model parameters unchanged. Then ṽ∗ (s ) ≤ v∗ (s ), where ṽ∗ (·)
denotes the value function corresponding to α̃ .

Remark: Theorem 1 states that the seller can earn more profit if his or her reputation score
increases or the inflation decreases. In other words, sellers always have incentive to increase their
reputation scores. Note that these monotone properties serve as an important building block for us
to characterize the optimal discount. Intuitively, Theorem 1 is a consequence of the monotonicity
of the rating and inter-arrival time of transactions with respect to the reputation s .

Definition 2. For each reputation score s ∈ S, we define the associated action-dependent long-
term profit as

Q (s,a) � ϕ (s,a)V (s,a), ∀s ∈ S,a ∈ A.
Given that a seller has a reputation score s , the Q (s,a) gives the maximum long-term profit she

can earn by setting a discount a. The optimal discount d∗ (s ) maximizes Q (s,a).

Lemma 4. Suppose a ∈ As , where As is defined as

As � {a |Q (s,a) > 0,a ∈ A}, ∀s ∈ S.
For all j >�≥s , where j, �, s ∈S, Q (j,a)≥Q (�,a) holds.

Remark: Lemma 4 states that given the same discount a ∈ As , the seller can earn more profit
if she has a higher reputation score. We formulate the following optimization problem to further
study the optimal discount.

Problem 3. Given s , select a to maximize lnQ (s,a):

maximize
a

lnQ (s,a) = lnϕ (s,a) + lnV (s,a)

subject to a ∈ A.
Remark: In Problem 3, we maximize the log function of the action-dependent long-term profit.

This treatment does not change the optimal discount and will facilitate the analysis.

Theorem 2. Suppose FW (w |s,a) is strictly concave with respect to a and FR (m |s,a) is convex with

respect to a. Problem 3 has a unique optimal solution, implying a unique policy.

Remark: Theorem 2 derives sufficient conditions to guarantee the uniqueness of the optimal
discount for each given s . This uniqueness enables us to further characterize the optimal discount
via comparative statics. When the optimal discount is unique, it is algorithmically easy to locate
it. For example, Equation (1) satisfies the condition on FR (m |s,a). Theorem 2 is a consequence of
that the objective function lnQ (s,a) is strictly concave with respect to a.

Corollary 2. Suppose FW (w |s,a) satisfies Equation (2). If λ(s,a) is strictly concave in a and

FR (m |s,a) is convex in a, then there exist a unique optimal discount for each reputation score s .

Remark: Corollary 2 states that given the Poisson arrival of transactions, if the transaction’s
arrival rate λ(s,a) has a diminishing return in the discount a, then the optimal discount is unique
for each reputation score. For example, Equation (3) satisfies the condition on λ(s,a).

To apply comparative statics to further characterize the optimal discount, we define the follow-
ing notation.

Definition 3. We define the hazard function of Q (s,a) with respect to the discount a as

h(s,a)�−∂Q (s,a)

Q (s,a)
/∂a=−∂Q (s,a)

∂a

1

Q (s,a)
, ∀s ∈S,a ∈As .

ACM Transactions on Internet Technology, Vol. 20, No. 4, Article 37. Publication date: October 2020.



A Learning Approach to Optimize Discount and Reputation Tradeoffs in E-commerce 37:11

The hazard function h(s,a) measures the proportional reduction in the discount-dependent
long-term profit (i.e., −∂Q (s,a)/Q (s,a)) with respect to the marginal change in the price discounts
(i.e., ∂a).

Theorem 3. Suppose the conditions in Theorem 2 hold. If h(s,a) is non-decreasing in α , then the

unique optimal discount d∗ (s ) is non-increasing in α . If h(s,a) is non-decreasing in s , then the unique

optimal discount d∗ (s ) is non-increasing in s .

Remark: Theorem 3 states sufficient conditions under which the unique discount is non-
increasing in the discounting rate α and non-increasing in reputation score s . One interpretation
is that the seller sets smaller discounts when the inflation increases or she is more keen about the
present profit. Furthermore, more reputable sellers set smaller discounts.

5 ONLINE DISCOUNT SELECTION

We first apply the Q-learning algorithm to infer the optimal discount from historical transaction
data. To speed up the convergence, we design a QLFP algorithm, which extends the Q-learning
to incorporate the characterizations in the last section. We prove the convergence of our QLFP
algorithm.

ALGORITHM 1: Discount Selection Via Q-learning

Require: Discounting rate α , learning rate ηi , exploration probability ϵi , initialization Q (0) (s,a);
1: for i = 1 to∞ do

2: Compute the waiting time wi ← ti − ti−1.

3: ϕ̂ (si−1,ai−1) ← e−αwi .

4: r̂ (si−1,ai−1) ← e−αwi (u − ai−1q).
5: Update reputation score si ← si−1 +mi .

If si < −Ŝ , si ← −Ŝ . If si > S , si ← S .

6: Q (i ) (si−1,ai−1) ← ϕ̂ (si−1,ai−1) maxa∈A Q (i−1) (si ,a) + r̂ (si−1,ai−1).

7: If s � si−1 or a � ai−1, Q (i ) (s,a) ← Q (i−1) (s,a),

otherwise Q (i ) (si−1,ai−1) ← ηi−1Q
(i ) (si−1,ai−1) + (1 − ηi−1)Q (i−1) (si−1,ai−1).

8: With probability ϵi , ai ∼ UniformRandom(A),

with probability 1 − ϵi , ai ∈ arg maxa∈A Q (i ) (si ,a).
9: end for

5.1 Q-learning for Online Discount Selection

We apply the Q-learning algorithm [5] to infer the optimal discount. Recall that for each given rep-
utation score s , the optimal discount d∗ (s ) maximizes the Q (s,a) and that in each decision epoch
the seller observes the transaction dataHi . Once receivesHi , the seller first uses it to update the
estimation of Q (s,a) and then selects a discount based on the latest estimation of Q (s,a). We for-
mally outline this idea in Algorithm 1. To illustrate, suppose a seller is in the ith decision epoch, i.e.,

receivesHi � {ai−1, si−1,k (si−1,ai−1), ti ,mi }. Step 2 computes the waiting time of the ith transac-

tionwi = ti − ti−1. Step 3 estimates the per-epoch discount factor, i.e., ϕ̂ (si−1,ai−1) = e−αwi . Step 4

estimates the per-epoch discounted profit, i.e., r̂ (si−1,ai−1) = ϕ̂ (si−1,ai−1)k (si−1,ai−1) = e−αwi (u −
ai−1q). Step 5 updates the reputation score. Step 6 computes a new estimation of the Q (si−1,ai−1)

as Q (i ) (si−1,ai−1) = r̂ (si−1,ai−1) + ϕ̂ (si−1,ai−1) maxa∈A Q (i−1) (si ,a). Step 7 updates the estimation

of Q (si−1,ai−1) by combining the old Q (i−1) (si−1,ai−1) and new estimation Q (i ) (si−1,ai−1) with a

learning rate ηi ∈ R+. Step 8 selects a discount to maximize Q (i ) (si ,a) with probability 1 − ϵi , and
it selects a discount uniformly at random with probability ϵi (i.e., this corresponds to the explo-

ration step in reinforcement learning). Note that Algorithm 1 is suitable for finite discount set A
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and finite reputation score set S, because we need to storeQ (s,a) for all s ∈ S and a ∈ A. For our
problem, we can discretize the discount set and truncate the reputation score to be finite. We next
state that under mild assumptions on rating bias FR (m |s,a), Algorithm 1 converges to the optimal
policy, i.e., it selects the optimal discount asymptotically.

Lemma 5. Suppose M̂,M > 0 and FR (m |s,a) is strictly increasing in m and assumption 3 holds.

Suppose ϵi and ηi satisfy

lim
i→∞

ϵ̃i (s,a) → 0,

∞∑
i=0

ϵ̃i (s,a) = ∞,
∞∑

i=0

η̃i (s,a) = ∞,
∞∑

i=0

η̃2
i (s,a) < ∞,

where ϵ̃i (s,a) � ϵi , η̃i (s,a) � ηi if (si ,ai ) = (s,a); otherwise, ϵ̃i (s,a) � 0, η̃i (s,a) � 0. The estima-

tionQ (i ) (s,a) produced by Algorithm 1 converges toQ (s,a),∀s,a, almost surely (i.e., with probability

1) as i goes to infinity.

Lemma 5 implies that when sellers’ reputation goes up and down, Algorithm 1 can converge
to an optimal policy, i.e., the optimal action will be selected. The condition on FR (m |s,a) is to
guarantee that each state action pair will be visited infinitely often as i goes to infinite. Selecting
ηi an ϵi is based on the stochastic approximation theory [25], which is a standard result.

5.2 Q-learning with Forward Projection

Improving the above Q-learning algorithm, i.e., Algorithm 1, can improve a seller’s profit. We now
apply the insights obtained in last section to improve Algorithm 1. Recall that Theorem 4 states that
given a reputation score s and a discount a, if Q (s,a) ≥ 0, then Q (j + 1,a) ≥ Q (j,a) holds for all
j ≥ s . Algorithm 2 applies this observation to further improve the prediction ofQ (s,a) via forward
projection, which we call QLFP for short. For the input of Algorithm 2, we require the initial

Q (0) (s,a) to satisfy Theorem 4. Step 2 executes steps 2–7 of Algorithm 1 to obtain an estimation

of Q (i ) (s,a) based on {H0,H1, . . . ,Hi }. Steps 3–7 makes the Q (i ) (s,a) to satisfy Theorem 4 via

forward projection, i.e., propagate the value of Q (i ) (si−1,ai−1) upward in terms of the reputation
score. Our QLFP algorithm improves Algorithm 1, because this forward projection increases the
accuracy of estimating Q (s,a). We next prove the convergence of Algorithm 2.

ALGORITHM 2: QLFP Algorithm

Require: α , ηi , ϵi , Q (0) (s,a) (satisfies Theorem 4);

1: for i = 0, 1 to∞ do

2: Execute step 2–7 of Algorithm 1.

3: if Q (i ) (si−1,ai−1) ≥ 0 then

4: for j = si−1 + 1 to S do

5: if Q (i ) (j,ai−1) < Q (i ) (j − 1,ai−1) then

6: Q (i ) (j,ai−1) ← Q (i ) (j − 1,ai−1).
7: end if

8: end for

9: end if

10: Execute step 8 of Algorithm 1.

11: end for

Theorem 4. Consider the same assumptions and conditions in Lemma 5. The estimation Q (i ) (s,a)
produced by Algorithm 2 converges to Q (s,a),∀s,a, almost surely as i goes to infinity.

QLFP converges, because the forward projection makes the Q satisfies the monotone property,
and thus it does not disturb the convergence of the Q function. Furthermore, QLFP converges
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Fig. 1. The distribution of number of transactions.

Table 1. Reputation Score vs. the Number of Stars

# of stars 0 1 2 3 4 5
min. # rat. 0 10 50 100 500 103

6 7 8 9 10 11 12
5 · 103 104 2.5 · 104 5 · 104 105 5 · 105 106

faster than the Q-learning, because the forward projection utilizes the monotone property of the

Q function to improve the accuracy Q (i ) in estimating Q . The forward projection idea is generic
and can be applied to speed up the convergence of other algorithms like variants of Q-learning,
adaptive real-time dynamic programming [5], and so on. Similarly with the isotonic regression,
the QLDP algorithm aims to learn a monotonic objective function. Unlike the isotonic regression,
we consider the bandit feedback setting, i.e., the data arrive sequentially and the price discount
influences subsequent data. Under this bandit setting, one needs to balance the exploration vs.
exploitation tradeoff.

6 TRACE-DRIVEN EVALUATION

We evaluate the QLFP algorithm on a dataset from eBay. Evaluation results show that the QLFP
improves the profit by as high as 50% over Q-learning and Speedy Q-learning and by as high as
four times over the scheme of not providing any price discount.

6.1 Evaluation Settings

Datasets. We use a dataset from eBay [30], which contains 19,217,083 transactions of 4,586
sellers. For each seller, the dataset contains all her transactions up to April 2013. Each transaction
data item contains a sellerID, a buyerID, a timestamp, and a feedback rating provided by buyers.
Each feedback rating is drawn from {−1, 0, 1}. Figure 1 plots the distribution of the number of
transactions.

Model parameters. To assist buyers to assess sellers’ reputation, eBay adopts a 12-star label
system [10] summarized in Table 1. The authors of Reference [30] found that the transactions in
eBay follow a Poisson arrival process. Thus, we consider a Poisson arrival of transactions, and we
infer the transaction’s rate (without discounts) across the number stars via the empirical mean,

Trans. rate|n stars =
# of trans. to sellers with n stars

total # of days to accumulate these trans.
.
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Table 2. Transaction’s Rate across Number of Stars

# of stars 0 1 2 3 4 5
trans. rate 0.05 0.18 0.33 0.68 1.29 2.37

6 7 8 9 10 11 12
4.57 8.13 15.59 28.69 89.39 − −

Table 3. The Frequency of Each Rating

Rating −1 0 1
Fraction 0.23% 0.34% 99.43%

Table 2 presents the inferred per-day transactions’ rate. From Table 2, one can observe that when
the number of stars is less than 4, the transaction’s rate is less than one per day. This verifies
that when the reputation is low, it is difficult for sellers to attract buyers. Note that no seller has
ever achieved a reputation score of more than 500,000, i.e., the number of 11 or 12 stars. Thus, the
transaction’s rate for these stars are missing. We synthesize the corresponding transaction’s rate to
capture that further increasing the reputation of highly reputable sellers increases the transactions
slightly, i.e.,

Trans. rate|11 stars = 1.1 × Trans. rate|10 stars = 98.329

Trans. rate|12 stars = 1.05 × Trans. rate|11 stars = 103.245.

In eBay, sellers with a reputation score or 106 or above have the same number of stars, i.e.,

12 stars. We thus truncate the reputation score set to be S = {0, 1, . . . , 106}. Let λ̃s denote the
transaction’s rate to a seller who has a reputation score s and does not provide any discounts. We
infer it as the empirical transaction’s rate, i.e.,

λ̃s = Trans. rate|n stars, ∀s is associated with n stars.

Note that eBay adopts a three-level rating metric, i.e., {−1, 0, 1}. Thus, we set M = {−1, 0, 1}.
Table 3 summarizes the fraction of each rating level in our dataset. From Table 3, one can observe
that 99.43% ratings are positive. Namely, the variation in the feedback rating is very small. This
implies a very small bias in providing feedback ratings. Thus, we set the rating distribution as the
empirical fraction of rating levels, i.e.,

FR (−1|s,a) = 0.0023, FR (0|s,a) = 0.0057, FR (1|s,a) = 1, (4)

holds for all s ∈ S,a ∈ A. This treatment of the rating distribution is model free and does not
introduce parameter tuning. It is suitable only when the rating bias is small, else one needs to
sophisticated models.

To study the impact of rating bias in general, we also synthesize the feedback rating as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
FR (−1|s,m) =

[
1/(1 + η + η2)

]1+γ a
,

FR (0|s,a) =
[
(1 + η)/(1 + η + η2)

]1+γ a
,

FR (1|s,a) = 1,

(5)

where η = θ + ln(1 + s ),θ ∈ [1,∞), and γ ∈ R+. For example, when s = 0, a = 0, and θ = 1, the
rating will be of −1, 0, 1 with equal probability 1/3. The θ models the baseline rating bias under
no discounts. The larger the θ , the higher the probability of providing a high rating, i.e., a smaller
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Fig. 2. Impact of β on the profit and ImpOverQL and ImpOverSpeedyQL.

rating bias. The γ models the sensitivity of buyers’ rating leniency over discounts. The larger the
γ , the higher the probability of providing a high rating.

By the linear-scaling property (i.e., Lemma 1), we normalize the baseline price to be q = 1 with-
out any loss of generality. Furthermore, we set the cost and the discount set to be c = 0.6,A =
{0.02k |k = 0, 1, . . . , 25}. Note that in this section, we focus on demonstrating how to apply our
method to set discount for one product. Through this, we can simplify the presentation. If a seller
has multiple products, then he or she may use our method to set discount for each product individ-
ually. With discounts, we still consider a Poisson arrival of transactions, i.e., FW (w |s,a) satisfies

Equation (2), with a transaction’s rate λ(s,a) = (1 + a)β λ̃s ,where β ∈ R+. The β models the buyer’s
sensitivity to discounts. The larger the β , the more transactions will be attracted given the same
discount. We set a discounting factor α = 0.001 and initial state s0 = 0 by default. We set a learn-

ing rate η̃i = 1/(Ni (s,a) + 1), an exploration probability ϵ = 0.1/(Ñi (s ) + 1) and an initialization

Q (0) (s,a) = 1, where Ni (s,a) and Ñi (s ) denote the number of visiting (s,a) pair and state s up to
ith iteration.

We use the above parameters to simulate the model and run Algorithm 1 and 2 to predict dis-
counts. Through this we obtain one sample of the long-term profit. We simulate the model for
multiple rounds and use the sample average to estimate the long-term profit.

Baselines and metrics. We compare our QLFP algorithm with: (1) Q-learning [5], (2) Speedy
Q-learning [1], and (3) the case of not providing any discount. We do not compare with the Zap
Q-learning [8], because it needs to invert a square matrix of order 26 · 106 in each iteration, making
it not practical to infer the optimal discount. We define the profit improvement of QLFP over the
Q-learning as

ImpOverQL � v∗ (s |QLFP ) −v∗ (s |Q-learning)

v∗ (s |Q-learning)
,

where v∗ (s |Q-learning) denotes the long-term profit under the Q-learning algorithm, i.e., Algo-
rithm 1. Similarly, we define the improvement over Speedy Q-learning and no discount as ImpOv-
erSpeedyQL and ImpOverND respectively.

6.2 Impact of Demand

We study the impact of demand (i.e., parameter β). We consider the rating bias stated in
Equation (4). Figure 2 shows the long-term profit and the profit improvement when β varies
from 0.1 to 2. Figure 2(a) shows that the long-term profit under QLFP, Q-learning, and Speedy
Q-learning increases as β increases (i.e., buyers become more sensitivity to discounts). Among
these three algorithms, our QLFP algorithm has the largest long-term profit. This implies that
our QLFP converges faster than Q-learning and Speedy Q-learning. The reason is that the QLFP
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Fig. 3. Impact of β on profit and ImpOverND.

algorithm preserves the monotonicity of the Q function in each decision epoch. Preserving this
monotonicity can improve the estimation of Q more accurate, and thus the QLFP algorithm can
estimate the optimal discount with a higher accuracy. From Figure 2(b), one can observe that
the relative profit improvement is as high as 50%. The relative profit improvement decreases in
β . Namely, the benefit of the forward projection decreases as buyers become more sensitive to
discounts. This is because the forward projection preserves the monotonicity, and its benefit is
large when the Q (s,a) is flat in s (i.e., when buyers are not very sensitive to discounts).

Figure 3 shows the long-term profit and the profit improvement over no discount. Figure 3(a)
shows that the long-term profit is invariant of β when a seller does not provide any discount,
while the long-term profit under our QLFP algorithm increases significantly in β . Namely, using
our QLFP algorithm, the sellers can earn more profit when buyers becomes more sensitive to
discounts. Observe that when β is around 1 (i.e., buyers are not sensitive to discounts), our QLFP
algorithm has a slightly smaller long-term profit than the case of not providing any discount. This
uncovers a “cost” in inferring buyers’ discount preferences from historical transaction data. Note
that to balance the exploration vs. exploitation tradeoff, QLFP needs to selects some sub-optimal
discounts, resulting in small profit in such decision epochs. The benefit the QLFP is that it selects
discount dynamically based on the state, which takes buyers behavior into consideration. When
buyers are not sensitive to discounts (i.e., setting a discount only slightly improves the transaction
volume), the cost of exploration (i.e., small profit in exploration decision epochs) is larger than the
benefit of providing discounts. Figure 3(b) shows that the profit improvement increases in β and
the improvement can be as high as 4 times.

Now we study the reputation improvement and short-term profit loss of our QLFP algorithm.
Let s (t ) and v (s0, t ) denote the expected reputation score and discounted profit up to time t ∈ R+.
Figure 4 shows s (t ) and v (0, t ) as the time t varies from 0 to 1,000 days, where we set β = 3. From
Figure 4(a), one can observe that given the same amount of time our QLFP algorithm can earn a
higher reputation score than the case of not providing any discount. In particular, when t = 1, 000,
the reputation score under our QLFP algorithm is around three times of that under no discounts.
This reputation score improvement becomes larger as time t increases. Figure 4(b) shows that our
QLFP algorithm loses a very small amount of short-term profit compared to the long-term profit.
This shows that the seller will not be in risk of losing a large amount of short-term profit under
the QLFP algorithm.

Lessons learned: Our QLFP algorithm improves the profit over the Q-learning and Speedy
Q-learning by as high as 50%, and over the case of not providing any price discount by as high as
four times. Furthermore, it improves the reputation by two times over the case of not providing
any discount while loses a small amount of profit in a short term.
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Fig. 4. The reputation and short-term profit.

Fig. 5. Impact of rating bias on profit and ImpOverQL and ImpOverSpeedyQL.

6.3 Impact of Rating Bias

Now we study the impact of rating bias (i.e., parameter θ and γ ). We fix β = 1 and consider the
rating bias stated in Equation (5). Figure 5 shows the long-term profit (of QLFP, Q-learning, and
Speedy Q-learning) and the profit improvement. Figure 5(a) and and (c) shows that the long-term
profit (of QLFP, Q-learning, and Speedy Q-learning) increases in both θ andγ . This implies that the
seller can earn more profit when buyers providing higher ratings. Furthermore, our QLFP has the
largest long-term profit among these three algorithms. From Figure 5(b) and (d), one can observe
that the profit improvement is as high as 30%. This further justifies that our QLFP converges faster
than Q-learning and Speedy Q-learning.

Figure 6 shows the long-term profit (for QLFP and no discount case) and the profit improve-
ment. From Figure 6(a), one can observe that the long-term profit increases in θ . Namely, the
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Fig. 6. Impact of rating bias on profit and ImpOverND.

seller can earn more profit when buyers provide higher ratings, i.e., becomes less bias. The curve
corresponding to our QLFP algorithm lies above the case of not providing any discount. Namely,
our QLFP algorithm improves the long-term profit over no discounts even under large rating

bias. From Figure 6(b), one can observe that this improvement drops as θ increases. Figure 6(c)
shows that the long-term profit under no discounts is invariant of γ and the long-term profit
under our QLFP algorithm increases in γ . Namely, the seller can earn more profit (using our
QLFP algorithm) when buyers’ leniency is more sensitive to discount. Figure 6(d) shows that our
QLFP algorithm can improve the long-term profit over no discounts by as high as 200% and this
improvement increases as buyers’ leniency becomes more sensitive to discount.

Lessons learned: Our QLFP algorithm improves the long-term profit over the no discount case,
Q-learning, and Speedy Q-learning under different levels of rating biases.

7 PROOF FOR LEMMAS AND THEOREMS

Proof of Lemma 1. Let k̃ (s,a) denote the lump sum reward for the scaled system. Then, we have

k̃ (s,a) = q̃ − c̃ − aq̃ = ξ (q − c − aq) = ξk (s,a). Let ϕ̃ (s,a) denote expected discount rate. Then, we

have ϕ̃ (s,a) = α
∫ ∞

0
e−αw F̃W (w |s,a)dw = α

∫ ∞
0

e−αwFW (w |s,a)dw = ϕ (s,a). Let r̃ (s,a) denote the

per-epoch discounted profits for the scaled system. Then, we have that r̃ (s,a) = k̃ (s,a)ϕ̃ (s,a) =
ξr (s,a). Let p̃ (s,a) denote the state transition probability for the scaled system. Then,
we have

p̃ (j |s,a) = F̃R (j − s |s,a) − F̃R (j − s − 1|s,a) = FR (j − s |s,a) − FR (j − s − 1|s,a) = p (j |s,a).
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Then, we verify that ṽ∗ (s ) = ξv∗ (s ) satisfies the optimality condition:

r̃ (s,a) + δ
∑
j ∈S

p̃ (j |s,a)ṽ∗ (j ) = ξr (s,a) + δ
∑
j ∈S

p (j |s,a)ξv∗ (s )

= ξ

⎡⎢⎢⎢⎢⎢⎣r (s,a) + δ
∑
j ∈S

p (j |s,a)v∗ (s )

⎤⎥⎥⎥⎥⎥⎦ = ṽ
∗ (s ).

Last, we verify that d̃∗ (s ) = d∗ (s ) satisfies the optimality condition:

arg max
a∈A

⎧⎪⎪⎨⎪⎪⎩r̃ (s,a) + δ
∑
j ∈S

p̃ (j |s,a)ṽ∗ (j )
⎫⎪⎪⎬⎪⎪⎭ = arg max

a∈A
ξ
⎧⎪⎪⎨⎪⎪⎩r (s,a) + δ

∑
j ∈S

p (j |s,a)v∗ (j )
⎫⎪⎪⎬⎪⎪⎭ = d

∗ (s ) = d̃∗ (s ).

This proof is then complete. �

Proof of Lemma 2. First we have that

∂FW (w |s,a)e−αw

∂w
= fW (w |s,a)e−αw − αFW (w |s,a)e−αw .

Note that ∫ ∞

0

∂FW (w |s,a)e−αw

∂w
dw = FW (w |s,a)e−αw ��∞0 = 0.

Thus, we have that

ϕ (s,a) = α

∫ ∞

0

e−αwFW (w |s,a)dw .

Note that Assumption 2 implies that FW (w |s,a) is non-decreasing in s and a. Thus, ϕ (s,a) is non-
decreasing in s and a. We can derive the second-order derivative of ϕ (s,a) with respect to a as

∂2ϕ (s,a)

∂a2
= α

∫ ∞

0

e−αw ∂
2FW (w |s,a)

∂a
dw < 0.

We thus conclude the concavity of ϕ (s,a) with respect to a. �

Proof of Lemma 3. We can derive r (s,a) as

r (s,a) = k (s,a)ϕ (s,a) = ũ (a)ϕ (s,a) = αũ (a)

∫ ∞

0

e−αwFW (w |s,a)dw .

The remaining proof is similar to that of Lemma 2. �

Proof of Corollary 1. Note that FW (w |s,a) = 1 − e−λ (s,a)w . Then we can derive ϕ (s,a) as

ϕ (s,a) = α

∫ ∞

0

e−αwFW (w |s,a)dw = α

∫ ∞

0

e−αw (1 − e−λ (s,a)w )dw

= α

∫ ∞

0

e−αwdw − α
∫ ∞

0

e−αwe−λ (s,a)wdw = 1 − α

λ(s,a) + α
=

λ(s,a)

λ(s,a) + α
.

With a similar derivation, we obtain r (s,a). To conclude the concavity, we derive the second-order
derivative as

∂2ϕ (s,a)

∂a2
= − 2α

(λ(s,a) + α )3

(
∂λ(s,a)

∂a

)2

+
α

(λ(s,a) + α )2

∂2λ(s,a)

∂a2
< 0.
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Thus, we conclude the concavity of ϕ (s,a) with respect to a. To study the concavity of r (s,a),
we use the fact that r (s,a) = ũ (a)λ(s,a). Note that the first and second derivatives of ũ (a) are
ũ ′(a) = −q and ũ ′′(a) = 0. Then, we derive the second-order derivative of r (s,a) with respect toa as

∂2r (s,a)

∂a2
= ũ ′′(a)λ(s,a) + 2ũ ′(a)

∂λ(s,a)

∂a
+ ũ (a)

∂2λ(s,a)

∂a2
= ũ (a)

∂2λ(s,a)

∂a2
− 2q
∂λ(s,a)

∂a
< 0.

This proof is then complete. �

Proof of Theorem 1. We prove this theorem by induction. Given initial state s0 = s , let v∗i (s )
denote the maximum expected discounted profits up to the first ith decision epochs. Then,v∗0 (s ) =
0, and v∗i (s ) converges to the long-term profits v∗ (s ) as i goes to infinity, i.e.,

v∗ (s ) = lim
i→∞

v∗i (s ).

To conclude this theorem, it suffices to show that for each i = 0, 1, . . . ,∞, v∗i (s ) is non-decreasing
in s . We next show this by induction.

Consider the case i = 0. Note that v∗0 (s ) = 0 for all s . Thus v∗0 (s ) is non-decreasing in s and
v∗0 (s ) ≥ 0. Suppose that v∗i (s ) is non-decreasing in s and v∗i (s ) ≥ 0,∀s ∈ S. Based on it, we need to
show that v∗i+1 (s ) is non-decreasing in s and v∗i+1 (s ) ≥ 0,∀s ∈ S. Observe that

v∗i+1 (s ) = max
a∈A

⎧⎪⎪⎨⎪⎪⎩r (s,a) + ϕ (s,a)
∑
j ∈S

p (j |s,a)v∗i (j )
⎫⎪⎪⎬⎪⎪⎭ = max

a∈A

{
ϕ (s,a)Vi (s,a)

}
,

where Vi (s,a) is defined as Vi (s,a) � k (s,a) +
∑

j ∈S p (j |s,a)v∗i (j ). Let F̄R (m |s,a) � 1 − FR (m |s,a)

denote the complementary CDF of R. Consider the case that s − M̂ ≥ −Ŝ and s +M ≤ S . We can
derive Vi (s,a) as

Vi (s,a) = k (s,a) +
s+M∑

j=s−M̂

p (j |s,a)v∗i (j ) = ũ (a) +
s+M∑

j=s−M̂

[F̄R (j − s |s,a) − F̄R (j − s + 1|s,a)]v∗i (j )

= ũ (a) +
s+M∑

j=s−M̂+1

F̄R (j − s |s,a)[v∗i (j + 1) −v∗i (j )] +v∗i (s − M̂ ).

Assumption 1 implies that FR (m |s,a) is non-increasing in s . Given s̃ > s , then it follows that

F̄R (j − s̃ |s̃,a) ≥ FR (j − s |s̃,a) = 1 − FR (j − s |s̃,a) ≥ 1 − FR (j − s |s,a) = F̄R (j − s |s,a).

Note thatv∗i (j + 1) ≥ v∗i (j ). Then it follows that the term
∑s+M

j=s−M̂+1
F̄R (j − s |s,a)[v∗i (j + 1) −v∗i (j )]

is non-decreasing in s for all s satisfies s − M̂ ≥ −Ŝ and s +M ≤ S . Note that v∗i (s − M̂ ) is non-

decreasing in s for all s satisfies s − M̂ ≥ −Ŝ and s +M ≤ S . Thus Vi (s,a) is non-decreasing in s
for all s satisfies s − M̂ ≥ −Ŝ and s +M ≤ S . With a similar derivation as the above, we can extend
this monotone property ofVi (s,a) to the case s − M̂ ≤ −Ŝ and the case s +M ≥ S . Namely,Vi (s,a)
is non-decreasing in s for all s ∈ S. Recall that ϕ (s,a) is non-decreasing in s for all s ∈ S. To
maximize ϕ (s,a)Vi (s,a), the discount must satisfy that Vi (s,a) ≥ 0. This is because Vi (s, 0) ≥ 0
and λ(s,a) > 0. Let d∗i (s ) denote the optimal discount to maximize v∗i (s ). Then it follows that

v∗i+1 (s + 1) = max
a∈A

{
ϕ (s + 1,a)Vi (s + 1,a)

} ≥ ϕ (s + 1,d∗i+1 (s ))Vi (s + 1,d∗i+1 (s ))

≥ ϕ (s,d∗i+1 (s ))Vi (s,d∗i+1 (s )) = v∗i+1 (s ).

Thus, we conclude the monotonicity of v∗ (s ) in s .
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Consider another system with α̃ ≥ α . Let ṽ∗ (s ) denote the maximum profits corresponding to
the system with α̃ . Our objective is to show ṽ∗ (s ) ≤ v∗ (s ). Let ṽ∗i (s ) and v∗i (s ) denote the max-
imum profits up to the ith decision epoch. It suffices to show that ṽ∗i (s ) ≤ v∗i (s ) holds for all
i = 0, 1, . . . ,∞, because

ṽ∗i (s ) ≤ v∗i (s ) ⇒ lim
i→∞

ṽ∗i (s ) ≤ lim
i→∞

v∗i (s ) ⇒ ṽ∗ (s ) ≤ v∗ (s ).

We prove ṽ∗i (s ) ≤ v∗i (s ) via induction. Consider the case that i = 0. Then, we have that ṽ∗i (s ) = 0
and v∗i (s ) = 0 for all s ∈ S. Namely, ṽ∗i (s ) ≤ v∗i (s ) holds for all s ∈ S. Suppose that ṽ∗i (s ) ≤ v∗i (s )

holds for all s ∈ S. It suffices to show ṽ∗i+1 (s ) ≤ v∗i+1 (s ). Let d̃∗i (s ) denote the optimal discount

to maximize ṽ∗i (s ) and ϕ̃ (s,a) denote the expected discount rate for the system with α̃ . Then,

we have that ṽ∗i+1 (s ) = maxa∈A
{
ϕ̃ (s,a)Ṽi (s,a)

}
, where Ṽi (s,a) is defined as Ṽi (s,a) � k (s,a) +∑

j ∈S p (j |s,a)ṽ∗i (j ). Note that ṽ∗i (s ) ≤ v∗i (s ). Thus, we have Ṽi (s,a) ≤ Vi (s,a). Observe that

∂ϕ (s,a)

∂a
= −

∫ ∞

0

we−αw fW (w |s,a)dw < 0.

This implies that ϕ̃ (s,a) < ϕ (s,a). Note that Ṽi (s, d̃∗i+1 (s )) > 0 and ϕ (s,a) > 0. Then it follows that

ṽ∗i+1 (s ) = ϕ̃ (s, d̃∗i+1 (s ))Ṽi (s, d̃∗i+1 (s )) ≤ ϕ (s, d̃∗i+1 (s ))Ṽi (s, d̃∗i+1 (s ))

≤ ϕ (s, d̃∗i+1 (s ))Vi (s, d̃∗i+1 (s )) ≤ max
a∈A

{
ϕ (s,a)Vi (s,a)

}
= v∗i+1 (s ).

This proof is then complete. �

Proof of Lemma 4. Note that Q (s,a) = ϕ (s,a)V (s,a). Note that ϕ (s,a) > 0. Thus, V (s,a) ≥ 0
holds for all a ∈ As . With a similar derivation as Theorem 1, we can obtain that V (s,a) is non-
decreasing in s . Then it follows that for each a ∈ As ,V (j,a) ≥ 0 holds for all j ≥ s , where s, j ∈ S.
Given a ∈ As , for all j > s , where s, j ∈ S, we have that

Q (j,a) = ϕ (j,a)V (j,a) ≥ ϕ (s,a)V (j,a) ≥ ϕ (s,a)V (s,a) = Q (s,a).

This proof is then complete. �

Proof of Theorem 2. Note that the implicit constraint for Problem 3 is thatQ (s,a) > 0. Namely,
the feasible discounts for Problem 3 isAs . Let us first study the feasible discount setAs . Note that
ϕ (s,a) > 0. This implies that

Q (s,a) > 0⇔ ϕ (s,a)V (s,a) > 0⇔ V (s,a) > 0.

Namely,As can be derived asAs = {a |V (s,a) > 0}. To further studyAs , we next show thatV (s,a)
is concave. Let us first consider the case that s − M̂ ≥ −Ŝ and s +M ≤ S . We can derive V (s,a) as

V (s,a) = k (s,a) +
s+M∑

j=s−M̂

p (j |s,a)v∗ (j ) = ũ (a) +
s+M∑

j=s−M̂

[FR (j − s |s,a) − FR (j − s − 1|s,a)]v∗ (j )

= ũ (a) +
s+M−1∑
j=s−M̂

FR (j − s |s,a)[v∗ (j ) −v∗ (j + 1)] +v∗ (s +M ).

Note that ũ ′′(a) = 0. Then we can derive the second-order derivative of V (s,a) with respect to a
as

∂2V (s,a)

∂a2
=

s+M−1∑
j=s−M̂

∂2FR (j − s |s,a)

∂a2
[v∗ (j ) −v∗ (j + 1)] ≤ 0,
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where the last inequality follows that FR (j − s |s,a) is convex in a, i.e.,
∂2FR (j−s |s,a)

∂a2 ≥ 0 and v∗ (s )
is non-decreasing in s , i.e., v∗ (j ) ≤ v∗ (j + 1). Thus, V (s,a) is concave with respect to a. For the

case of s − M̂ ≤ −Ŝ and the case of s +M ≥ S , with a similar derivation, we can also have V (s,a)
is concave with respect to a. This implies that the set As = {a |V (s,a) > 0} is a convex set. Note
thatV (s, 0) > 0. Then we can conclude that if {a |V (s,a) = 0,a ∈ [0, 1]} = ∅,As = [0, 1]; otherwise,
As = [0,min{a |V (s,a) = 0,a ∈ [0, 1]}).

To conclude this theorem, the remaining thing is to show that the objective function lnQ (s,a)
is strictly concave in As . Let use derive the first-order derivative of lnQ (s,a) with respect to a as

∂ lnQ (s,a)

∂a
=

1

ϕ (s,a)

∂ϕ (s,a)

∂a
+

1

V (s,a)

∂V (s,a)

∂a
.

Then the second-order derivative can be derived as

∂2 lnQ (s,a)

∂a2
=

1

ϕ (s,a)

∂2ϕ (s,a)

∂a2
− 1

ϕ2 (s,a)

(
∂ϕ (s,a)

∂a

)2

+
1

V (s,a)

∂2V (s,a)

∂a2
− 1

V 2 (s,a)

(
∂V (s,a)

∂a

)2

.

Note that FW (w |s,a) is strictly concave in a. Applying Theorem 2, we obtain that ϕ (s,a) is strictly

concave in a, i.e.,
∂2ϕ (s,a)

∂a2 < 0. We also have shown that V (s,a) is concave with respect to a, i.e.,
∂2V (s,a)

∂a2 ≤ 0. Observe that ϕ (s,a) > 0 and V (s,a) > 0 hold for all a ∈ As . We then conclude that
∂2 ln Q (s,a)

∂a2 < 0, i.e., the objective function lnQ (s,a) is strictly concave in a. �

Proof of Corollary 2. Note that FW (w |s,a) = 1 − e−λ (s,a)w . Applying Theorem 2, it suffices to
show that FW (w |s,a) is strictly concave with respect to a. Let us derive the second-order derivative
with respect to a as

∂2FW (w |s,a)

∂a2
= we−λ (s,a)w ∂

2λ(s,a)

∂a2
−w2e−λ (s,a)w

[
∂λ(s,a)

∂a

]2

< 0.

This proof is then complete. �

Proof of Theorem 3. Recall that in the Proof of Theorem 2, we showed that the feasible
domain of Problem 3 is As and if {a |V (s,a) = 0,a ∈ [0, 1]} = ∅, As = [0, 1]; otherwise, As =

[0,min{a |V (s,a) = 0,a ∈ [0, 1]}).
Let us first consider the case {a |V (s,a) = 0,a ∈ [0, 1]} = ∅, i.e., As = [0, 1]. In this case, the

optimal discount d∗ (s ) falls into one of the three cases: (1) d∗ (s ) = 0, (2) d∗ (s ) = 1, (3) d∗ (s ) ∈
(0, 1) and h(s,d∗ (s )) = 0. Note the the third case is actually the first-order optimality condi-

tion, because h(s,a) = − ∂ ln Q (s,a)
∂a

. Note that conditions in Theorem 2 hold. This means that
h(a) is strictly decreasing in [0, 1]. Consider the third case d∗ (s ) ∈ (0, 1) and h(s,d∗ (s )) = 0.
Note that {a |V (s,a) = 0,a ∈ [0, 1]} = ∅ implies that {a |V (s + 1,a) = 0,a ∈ [0, 1]} = ∅. ThusAs+1 =

[0, 1]. Note that h(s,a) is non-decreasing in s . Then we have that h(s + 1,d∗ (s )) ≥ h(s,d∗ (s )) =
0. Consider the case h(s + 1,d∗ (s )) = 0; we conclude that d∗ (s + 1) = d∗ (s ) due to the concav-
ity of lnQ (s,a). Consider the case h(s + 1,d∗ (s )) > 0. If the optimal discount d∗ (s + 1) satisfies
h(s + 1,d∗ (s + 1)) = 0, then d∗ (s + 1) < d∗ (s ) due to that h(s + 1,a) is non-decreasing in a. If
d∗ (s + 1) does not satisfyh(s + 1,d∗ (s + 1)) = 0, thenh(s + 1,a) > 0 holds for alla ∈ [0, 1]. Namely,
∂ ln Q (s,a)

∂a
< 0 holds for all a ∈ [0, 1]. This implies that d∗ (s + 1) = 0, i.e., d∗ (s + 1) ≤ d∗ (s ). Thus,

we conclude that d∗ (s + 1) < d∗ (s ). Now consider the case d∗ (s ) = 0. This means that h(s,a) > 0
holds for all a ∈ (0, 1]. Consider a ∈ (0, 1]; we have that h(s + 1,a) ≥ h(s,a) > 0. This implies that
d∗ (s + 1) = 0. Last, we consider the case d∗ (s ) = 1. This case is trivial, because d∗ (s ) ≤ 1.

Now we consider the case As = [0,min{a |V (s,a) = 0,a ∈ [0, 1]}). In this case, the optimal dis-
count d∗ (s ) falls into one of the following two cases: (1) d∗ (s ) = 0; (2) d∗ (s ) ∈ [0,min{a |V (s,a) =
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0,a ∈ [0, 1]}) and h(s,d∗ (s )) = 0. The proof is similar to the above case, i.e., {a |V (s,a) = 0,a ∈
[0, 1]} = ∅. Finally, the above proof can be easily extended to prove that the optimal discount is
non-increasing in α . �

Proof of Lemma 5. It suffices to prove that Q (i ) (s,a) converges to Q (s,a),∀s ∈ S,a ∈ A. It
follows from ϵ̃i (s,a) > 0,

∑∞
i=0 ϵ̃i (s,a) = ∞ that each state action pair (s,a) will be visited in-

finity often. Precisely, for each (s,a), we can find η̃i (s,a) > 0 such that
∑∞

i=0 η̃i (s,a) = ∞ and∑∞
i=0 η̃

2
i (s,a) < ∞. Note that Ŝ and S are finite. With a similar method as in Reference [3] this lemma

can be concluded by showing that Q̄i (s,a),∀s,a, i, is finite almost surely. Let amax denote the maxi-
mum discount inA. Consider the scenario that the arrival time of a reward follows the distribution
F (w |S,amax ), and each time a reward u + q is generated. Letwi denote the waiting time of the ith
reward and Q̄0 = 0. Furthermore, a reward is Q̄i+1 = (1 − τi )Q̄i + τi (Q̄ie

−αwi+1 + (u + q)e−αwi+1 ).
Assumption 3 implies that E[e−αwi+1 ] < 1. Then, following some standard stochastic approxima-
tion argument, we have that Q̄i+1 converges almost surely to a finite value if τi > 0,

∑∞
i=0 τi = ∞

and
∑∞

i=0 τ
2
i < ∞ [25]. This means that Q̄i+1 is finite almost surely. �

Proof of Theorem 4. Note that from the proof of theorem 5, we know that Q (i ) (s,a),∀i, s,a
are bounded almost surely. We extend the method developed in Reference [3] to prove this the

convergence of Q (i ) (s,a),∀i, s,a.

Note that Q (i ) (s,a),∀i, s,a are bounded almost surely, then there exists a D0, such that
|Q (i ) (s,a) −Q (s,a) | < D0 holds for all i, s,a. We next show via induction that there exists ĩ and
a constant c < 1 such that |Q (i ) (s,a) −Q (s,a) | < cD0 holds for all i ≥ ĩ, s,a. Repeating this induc-

tion, we can make the diameter of |Q (i ) (s,a) −Q (s,a) | shrinks to zero. Without loss of generality,

we focus on one action a, and consider all the state-action pair (−Ŝ,a), . . . , (S,a). Note that our

forward projection algorithm, i.e., Algorithm 2, never updates the value ofQ (i ) (−Ŝ,a), because the

state Ŝ is the smallest possible state. Thus, with a similar method as that in Reference [3], we have

that for any c1 > 0, there exists î1 such that |Q (i ) (−Ŝ,a) −Q (−Ŝ,a) | < (ϕ (S,amax ) + c1)D0 holds
for all i > î1. Here c1 is carefully selected such that ϕ (S,amax ) + c1 < 1.

Now we show that for any c2 > c1, there exists î2 such that |Q (i ) (1 − Ŝ,a) −Q (1 − Ŝ,a) | <
(ϕ (S,amax ) + c2)D0 holds for all i ≥ î2. If the value of Q (i ) (1 − Ŝ,a) is adjusted by forward pro-
jection finite number of times, then with a similar method as that in Reference [3] we have the

desired result. Now let us consider Q (i ) (1 − Ŝ,a) is adjusted by an infinite number of forward pro-
jections. Now we consider i ≥ î1. For the ease of presentation, in the following proof, each subscript
i represents i + î1. Let

wi (1 − Ŝ,a) =
{
r̂ (1 − Ŝ,a) + ϕ̂ (1 − Ŝ,a) max

a′ ∈A
Q (i ) (si+1,a)

− E[r̂ (1 − Ŝ,a) + ϕ̂ (1 − Ŝ,a) max
a′ ∈A

Q (i ) (si+1,a)]
}
× I{(si ,ai )=(1−Ŝ,a) } .

Let us define the error sequence as

W0 (1 − Ŝ,a) = 0,Wi+1 (1 − Ŝ,a) = [(1 − η̃i (1 − Ŝ,a))Wi + η̃i (1 − Ŝ,a)wi (1 − Ŝ,a)]+.

In the following proof, we will use the basic property thatWi (Ŝ + 1,a) converges to 0 almost surely
[15]. Let us define another sequence

Y0 = D0,Yi+1 = (1 − η̃i (1 − Ŝ,a))Yi + η̃i (1 − Ŝ,a) (ϕ (S,amax ) + c2)D0.

We only consider appropriate ϵ2 such that ϕ (S,amax ) + c2 < 1. Then via induction, one can

easily show that Yi ≥ (ϕ (S,amax ) + c2)D0. Then we claim Q (i+1) (1 − Ŝ,a) < Q (1 − Ŝ,a) + Yi+1 +

Wi+1 (1 − Ŝ,a). We prove this claim via induction. Note that Q0 (1 − Ŝ,a) ≤ D0 +Q (1 − Ŝ,a) =
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Q (1 − Ŝ,a) + Y0 +W0 (1 − Ŝ,a). Suppose our claim hold for all 0, 1, . . . , i . We next show it holds

for i + 1. Suppose Q (i+1) (1 − Ŝ,a) is not updated, then η̃i (1 − Ŝ,a) = 0. This implies that Yi+1 = Yi

and Wi+1 =Wi . Namely, our claim holds. Suppose we update Q (i+1) (1 − Ŝ,a) via projection, then
we have

Q (i+1) (1 − Ŝ,a) ≤ Q (−Ŝ,a) + (ϕ (S,amax ) + c1)D0 ≤ Q (1 − Ŝ,a) + (ϕ (S,amax ) + c2)D0

≤ Q (1 − Ŝ,a) + Yi+1 +Wi+1 (1 − Ŝ,a).

Now, suppose we update Q̂ (i+1) (1 − Ŝ,a) is not via projection,

Q (i+1) (1 − Ŝ,a) ≤ Q (1 − Ŝ,a) + η̃i (Ŝ + 1,a)ϕ (S,amax )D0 + (1 − η̃i (1 − Ŝ,a)) (Yi +Wi (1 − Ŝ,a))

+ η̃i (Ŝ + 1,a)wi (1 − Ŝ,a)

≤ Q (1 − Ŝ,a) + η̃i (Ŝ + 1,a) (ϕ (S,amax ) + c2)D0 + (1 − η̃i (1 − Ŝ,a))Yi

+ (1 − η̃i (1 − Ŝ,a))Wi (1 − Ŝ,a) + η̃i (Ŝ + 1,a)wi (1 − Ŝ,a)

= Q (1 − Ŝ,a) + Yi+1 +Wi+1 (1 − Ŝ,a).

Note that Wi (1 − Ŝ,a) converges to 0 almost surely [15]. Also observe that Yi converges to
(ϕ (S,amax ) + c2)D0. Thus, we have

lim sup
i→∞

Q (i ) (1 − Ŝ,a) ≤ Q (1 − Ŝ,a) + (ϕ (S,amax ) + c2)D0.

Note that the forward projection increases the value of Q (i ) (Ŝ + 1,a) as compared to the case of
without projection. For the case of without forward projection, implies a finite number of projec-
tion, thus a lower bound is

lim inf
i→∞

Q (i ) (1 − Ŝ,a) ≥ Q (1 − Ŝ,a) − ϕ (S,amax )D0.

Repeating this argument sequentially for 2 − Ŝ, . . . , S , we have that there exists ĩ and c < 1 such

that |Q (i ) (s,a) − Q̂∗ (s,a) | < cD0 for all i > ĩ, s . Finally, repeating the above whole argument for
other actions, we complete this proof. �

8 CONCLUSION

This article develops an online framework to optimize the reputation & discount tradeoffs. We
formulated a profit maximization problem via an SMDP to explore optimal tradeoffs in selecting
price discounts. We proved the monotonicity of the optimal profit and discount. Based on the
monotonicity, we designed a QLFP algorithm, which infers the optimal discount from historical
transaction data. We proved that the QLFP algorithm converges to the optimal policy. We conduct
trace-driven simulations to evaluate the QLFP algorithm using a dataset from eBay. Evaluation
results show that QLFP improves the profit by as high as 50% over both Q-learning and Speedy
Q-learning. The QLFP algorithm also improves both the reputation and profit by as high as two
times over the scheme of not providing any price discount.
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