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Various di!erentiated pricing schemes have been proposed for the Internet market. Aiming at replacing the
traditional single-class pricing for better welfare, yet, researchers have shown that existing schemes can bring
only marginal pro"t gain for the ISPs. In this article, we point out that a proper form of di!erentiated pricing
for the Internet should not only consider congestion, but more importantly, it should provide application
speci!c treatment to data delivery. Formally, we propose an “application-driven pricing” approach, where an
ISP o!ers a number of service classes in terms of a guaranteed quality of service and announces a unit usage
price for each class, and content providers are free to choose which class to use depending on the requirement
of their applications. Unlike previous studies, we point out that the revenue gain of multi-class pricing under
our scheme can be signi"cant. This is because we capture important aspects of application heterogeneity
and take the quality of service and price as control knobs. We identify key factors that impact the revenue
gain and reveal fundamental understandings on when and why an application-driven multi-class pricing can
signi!cantly increase the revenue of ISPs.
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1 INTRODUCTION
The Internet market is typically considered as a two-sided market, where Internet service providers
(ISPs) stand in between end-users and content providers (CPs). They charge end-users for Internet
access on the one side and CPs for content delivery on the other side. The traditional charging
schemes of ISPs are mainly based on the volume of tra$c [11] or the 95-percentile of bandwidth
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capacity [25]. They indeed achieved great economical success in the past, thanks to the tremendous
growth of user population and explosion of numerous applications over the Internet. However,
in recent years, ISPs are facing increasing pressure in revenue growth. Because the increase of
the user population has been slowing down signi"cantly, ISPs need to "nd alternative means of
economic growth. More importantly, as applications are becoming more heterogeneous in nature,
it becomes more problematic to transit tra$c for them using a single channel without any quality
guarantee. In fact, applications may di!er in many aspects: the amount of tra$c usage, the quality
requirement, the reservation price (or referred to as “willingness to pay price”), and so on. Using
a single channel to serve all applications leads to a common non-guaranteed service quality, with
some applications exceeding their real requirement causing resource wastage, while others being
in de"cit of service quality. This motivates, or in fact forces, some giant CPs (e.g., Facebook, Google,
Net%ix) to build their own data center interconnections and CDN infrastructures [4, 34] to deliver
their contents, taking away a lot of business that conventionally belong to ISPs.

We believe this situation is not merely a dilemma, but it implies potential business growth for
ISPs. On the one hand, it is not CPs’ expertise to build networks. If ISPs can do it (and potentially,
with lower constructing and operating costs), why won’t CPs be willing to buy such services?
On the other hand, if ISPs can provide individualized services for various applications, it becomes
possible to use di!erentiated prices to charge various applications, which can potentially lead to
a revenue increase, as dictated by traditional economic theory.

This inspires us to propose an “application-driven pricing approach”. Formally, an ISP o!ers a
number of di!erent service classes, and each CP can choose a particular class to deliver the data
for its application. The ISP guarantees the quality of service and determines a unit usage price
for each service class. This quality guarantee can be of multiple dimensions, e.g., throughput,
delay, packet drop rate, and the like.1 To ful"ll quality guarantee, the ISP needs to determine the
amount of resources (e.g., bandwidth capacity) allocated to each service class. Content providers,
on the other hand, are free to choose which class to use depending on the requirement of their
applications.

Beyond the di$culty in determining the optimal choices of CPs and ISPs, it is important to
answer whether this proposal can bring a “signi!cant” revenue gain to ISPs, since only in this
case ISPs will have incentives to make such change. However, there is no simple answer to this
question. On the one hand, the heterogeneity of applications indicates that a multi-class pricing
may be bene"cial; on the other hand, this approach divides applications into various categories,
reducing the utilization of statistical multiplexing of delivering the packets, which may reduce the
revenue.

Our proposal can be regarded as a new implementation of di!erentiated pricing, besides a num-
ber of well-studied forms, e.g., congestion pricing [16], Paris Metro Pricing [22], Di!Serv [3], and
so on. Although di!erent in objectives and methods, existing works share some technical simi-
larity with our proposal, and they seem to be reporting something negative: Despite the fact that
di!erentiated pricing is more pro"table than single-class pricing under certain conditions, many
of them [6, 13, 28, 35] show numerically that this gain is not signi"cant, making it hard to be
realized in practice. We will show completely di!erent conclusions: The revenue gain can be sig-
ni!cant under practical scenarios, making it meaningful for ISPs to make a change. This is because
we apply a more accurate model and take important factors into consideration. Our contributions
are:

1In general, QoS (quality of service) guarantee can be di$cult over the Internet. However, there is a trend that the majority
of contents will be directly transmitting between access ISPs and CPs without going through multiple ASes [7], so QoS can
be controlled by this access ISP. In the remainder of this article, we refer to this access ISP as ISP for short.
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• We develop a model to capture the heterogeneity of applications from multiple perspectives,
i.e., the reservation price, the volume of tra$c usage, and the quality requirement. We model
how an ISP and CPs make decisions and capture the interactions between them.

• We formulate a revenue maximization framework to determine the optimal choices of the
ISP and CPs.

• We analyze the impact of (1) heterogeneity of applications, (2) multiplexing, and (3) the
system capability.

• We show that our proposal can improve the revenue of the ISP signi"cantly (by as high as
over 20%), especially when (1) the ISP’s capacity is limited, (2) the applications are neutral
to multiplexing, (3) the number of CPs with strict quality requirement is moderately small,
and (4) CPs’ reservation prices are not very low.

This article is organized as follows: In Section 2, we discuss related work. In Section 3, we present
the system model, the design of application-driven pricing scheme, and an optimization framework
to capture the ISP’s decision. In Section 4, we analyze the optimal pricing problem of the ISP. In
Section 5, we extend our model to capture the quality requirement heterogeneity. In Section 6,
we study the revenue improvement quantitatively. In Section 7, we discuss net neutrality, service
classes selection, and dynamic demand. In Section 9, we conclude.

2 RELATED WORK
We "rst summarize the di!erence of our approach with four typical di"erentiated pricing ap-
proaches.

• Congestion Pricing. Congestion pricing charges users a high price when the congestion oc-
curs in data transmission. It reduces congestion because a high price discourages the us-
age. MacKie-Mason and Varian [16] showed that the congestion pricing scheme maximizes
net social bene"ts. Paschalidis and Tsitsiklis [23] obtained some conditions under which
the static pricing scheme achieves similarly good performance as the congestion pricing
scheme. Henderson et al. [12] surveyed several possible approaches to implement the con-
gestion pricing scheme. All these three works fall into the “single class setting”, i.e., an ISP
either provides one service class or provides multiple service classes without competition
among service classes. Di!erent from them, our approach considers multiple service classes
with such competition. Furthermore, it is technically non-trivial to extend congestion pric-
ing to this competitive multiple service class setting.

• Paris Metro Pricing (PMP). PMP partitions a resource (e.g., a train) into several classes (e.g.,
ordinary and premium compartments) and controls their service quality via prices, such that
a highly priced class will be with a high QoS, as fewer users will choose it. Odlyzko [22]
claimed PMP as the simplest solution to service di!erentiation. Gibbens et al. [10] showed
that PMP is not viable in a competitive market with multiple ISPs. Jain et al. [13] showed that
PMP improves the revenue for a monopoly ISP under the capacity sharing metric, while Ros
and Tu$n [27] showed an opposite result under the queuing latency metric. Shakkottai et al.
[28] obtained su$cient conditions under which a single class achieves similar performance
as PMP. Chau et al. [6] concluded that the viability of PMP for a monopoly ISP depends on
how users react to congestion externality. Ma [14] also studied the viability of PMP under
a more realistic model. Zhou et al. [35] considered the scenario that the ISP provides an
in"nite number of service classes with service qualities in a continuous domain, and applied
an optimal control framework to derive the optimal prices for each service class. Di!erent
from PMP which is content-agnostic, our approach depends on the nature of applications
so that requests can be better satis"ed based on their speci"c requirement. In addition,
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existing works either concluded theoretically the viability of PMP, or showed numerically
that the revenue gain of multi-class pricing is not signi"cant [6, 13, 28, 35], making it hard
to realize in practice. We show completely di!erent conclusions: The revenue gain can be
signi!cant under practical scenarios. This is because our approach and analysis capture
important aspects of application heterogeneity, as we will see later.

• Di"serv. Blake et al. [3] proposed the Di!serv architecture, which provides multiple service
classes over IP networks and marks packets to use a certain service class. Marbach [17, 18]
proposed priority classes to charge packets, under which a user paying higher can have
a higher priority to send its packets. Shu and Varaiya [29] proposed an auction-based ap-
proach to price di!erent service classes. Wang and Schulzrinne [31] proposed a dynamic
pricing scheme, which adjusts the price based on the usage, the level of service, and conges-
tion. Unlike Di!serv, which takes the price as the only exogenous parameter and quality,
can only be endogenous, we take QoS as an exogenous parameter. Di!serv o!ers options to
increase the priority in sending packets, but it does not provide service quality guarantees,
while our approach provides such guarantees. Furthermore, our approach provides a rea-
sonable isolation for applications, which di!erentiates them based on the requirement on
service quality. This isolation opens some potentials for better control design of the system.

• Premium Peering. Premium peering is a newly established business relationship where ac-
cess ISPs charge CPs for the premium quality of services beyond the best e!ort, which is in
fact a new form of di!erentiated service. In particular, Courcoubetis et al. [7] used a Nash
bargaining approach to determine the premium peering prices. One interesting insight is
that per service peering is a promising approach to resolve the interconnection tussles be-
tween ISPs and CPs, which shares a similar idea with our per-application pricing. Wang
et al. [32] uncovered conditions under which the Internet access providers should o!er CPs
the option of paid peering. The premium peering approach only provides service quality
guarantees for the superior class, leaving the inferior class without any service quality guar-
antee, while our approach provides service quality guarantees for all service classes. Unlike
the work [7] which determines prices only (via Nash bargaining), we use an optimization
framework to determine the optimal price, quality guarantee, and capacity for each service
class. Di!erent from the work [32] which studies the viability of paid peering, we focus on
study when multi-class pricing can bring signi"cant revenue gain.

Finally, we discuss some works that study the pricing problem in Internet applications, but do
not fall into any one of the above four categories. Bhargava and Sun [2] proposed a multi-class
pricing scheme with statistical QoS guarantees. Their model does not capture the congestion ex-
ternality, while our model captures this important factor. Nault and Zimmerman [21] proposed
a two-class pricing scheme. They assumed that there is no congestion externality in the superior
service class and thus the service quality can be guaranteed regardless of the tra$c volume. The
service quality of the inferior class is a!ected by the congestion externality. Our model is more
general in that the congestion externality exists in every service class. Wang et al. [30] studied
optimal two-sided pricing under congestion externality. Their work aims to optimize pricing de-
cisions from the ISP’s perspective. They focused on single class pricing and derived a number of
theoretical characterizations on the optimal pricing decisions.

3 MODEL
In this section, we set up a general model on the interactions between one ISP and a set of CPs.
In particular, we model how CPs make decisions for content delivery services, and how the ISP

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 52. Publication date: November 2019.



An Application-Driven Pricing Approach for the Internet Economics 52:5

determines the number of service classes, as well as the price, capacity, and quality guarantee for
each service class.

3.1 The Marketplace and Decision Spaces
As we have mentioned, the Internet market is a two-sided market where ISPs stand in between
CPs and end-users. Accordingly, the pricing scheme of an ISP consists of two parts: How to charge
CPs and how to charge end-users. In this article, we focus on the "rst perspective. This is because
our proposal is application centric, which leads to a major change on the charging schemes to
CPs. Usually CPs have limited choices on which ISPs to connect to; in other words, the ISPs often
form an oligopoly market. As a "rst study, in this article, we consider only one ISP and focus on the
interactions between this ISP and a set of CPs. This ISP announces to provide a setN ! {1, . . . ,N }
of service classes, each class i ∈ N with a quality guaranteeqi and correspondingly a per unit usage
price pi . Namely, this multi-class pricing is a usage-based pricing scheme. Each CP may choose any
service class for its content delivery2 depending on the requirement of its application service. We
will model such choices later. We consider that the ISP uses the allocated capacity exclusively for
each service class due to the following reasons. First, each service class has a quality guarantee, no
matter it is a superior class or an inferior class. If we allow multiplexing, the service quality of some
service classes may not be guaranteed. Second, allocating capacity exclusively for each service
class also provides an isolation approach for applications, which di!erentiates them based on the
requirement on service quality. This isolation opens some potentials for better control design of
the system.

In general, a service quality guarantee might be multi-dimensional (e.g., throughput, delay,
packet loss rate, etc.). In this article, we consider a one-dimensional conceptual quality guaran-
tee measured by congestion level [15]. This is not only for mathematical tractability, but also be-
cause congestion is one of the most important features of the Internet. We will show later that
this simpli"ed model can already reveal a number of fundamental understandings. A larger value
of qi indicates a higher level of congestion, and thus a lower quality. If the ISP promises a quality
guarantee of qi , it means the congestion level is at most qi .

The ISP has a total bandwidth capacity of C and it devotes ci ! Cki to each service class i ,
where k ! (ki : i ∈ N ) ∈ K and K ! {k ∈ [0, 1]N : ∑i ∈N ki = 1}. We denote p ! (pi : i ∈ N ) ∈
RN
+ and q ! (qi : i ∈ N ) ∈ RN

+ as the vectors of prices and congestion levels for each service class
respectively. Without loss of generality, we label service classes from inferior to superior, i.e.,
q1 > q2 > · · · > qN .

To summarize, the decision space for any CP is which service class to choose for its content
delivery. The decision space for the ISP consists of the choices on the quality guarantee, price and
capacity for each service class.

3.2 Content Providers’ Choice Model
A particular CP k has a reservation price (or the willingness-to-pay) vk ∈ V ! [0, v̂], where v̂ is
the maximum possible value for vk . This vk re%ects the maximal unit usage price that a CP is
willing to pay for its content delivery. CPs may have di!erent reservation prices, for example, a
video streaming usually has a higher reservation price than a "le downloading service. If the ISP
proposes a price higher than that, the content provider will not use this class. Once a CP k has
chosen a service class with a unit usage price p and a congestion level q, we de"ne its utility of
using this service as its surplus (i.e., the di!erence between the actual fee it pays to the ISP, and

2We assume that each CP only operates one service. For CPs that provide multiple services, we can simply treat them as
multiple individual CPs.
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its willing-to-pay amount), in the following form:

uk (p,q) ! (vk − p)d̂kρk (q),

where d̂kρk (q) denotes the users’ demand under congestion q, which is the maximum possible
demand d̂k under no congestion (i.e., q=0), multiplied by a discount function ρk (q) ∈ [0, 1]. The
discount function ρk (q) models CP k’s quality requirement, i.e., it will reduce its total usage of a
content delivery service when the quality is not satisfactory, captured by the following assumption:

Assumption 1. ρk (q) : R+ → [0, 1] is continuous and decreasing in q. In addition, ρk (0) = 1 and
limq→∞ ρk (q) = 0.

To simplify the presentation, we de"ne a dummy service class 0 with pricep0 = 0 and congestion
q0 = +∞ to model the choice that a CP decides to opt out of all service classes. Formally, a CP k’s
choice is to select a service class ik for its data delivery that maximizes its own utility, i.e.,

ik ∈ arg max
j ∈N∪{0}

uk (pj ,qj ).

When there is a tie, i.e., | arg maxj ∈N∪{0} uk (pj ,qj ) | > 1, the CP can simply break it by choosing
the service class with the lowest price.

To summarize, we model the heterogeneity of applications from three perspectives: the reser-
vation prices vk , the maximum demand d̂k , and the quality requirement ρk (q). In what follows,
we will "rst assume a homogeneous discount function for all CPs, denoted by ρ (q), which can be
interpreted as the average quality requirement over the whole CP population. Under this simpli-
"cation, we reduce the extent of heterogeneity so as to deliver rigorous analytical results. We will
study the general setting with heterogeneous discount functions in Section 5 and Section 6.

3.3 Demand in Each Service Class
Now we investigate how many CPs will choose a particular service class and what is the total
demand they will incur. This is important because it has a major impact on the workload of the
ISP and thus in%uence the ISP’s decision. Recall that CP’s applications di!er in nature, and this
is represented by the reservation price vk and unconstrained demand d̂k for each CP. Due to this
heterogeneity, di!erent CPs may choose di!erent service classes and this choice only depends on
vk as d̂k is a linear coe$cient of a CP’s utility. Given qi < qj , we de"ne

vi j !
piρ (qi ) − pjρ (qj )

ρ (qi ) − ρ (qj )

as the boundary price, such that a CPk prefers service class i over j (i.e.,uk (pi ,qi )>uk (pj ,qj )) if and
only if vk >vi j . In other words, service classes i and j are indi"erent to any CP whose reservation
price is equal to vi j . Let us denote vmax

i ! max{vi j : 0 ≤ j < i}, i.e., the maximal boundary price
when service class i is compared with all inferior classes. Content providers with reservation prices
greater than vmax

i will not choose service classes inferior to class i . Then a CP k chooses class N
if vk > vmax

N . We derive the market segment for class N as (min{v̂,vmax
N }, v̂]. Similarly, we can

derive the market segment for class i , denoted by (Vi−1,Vi ], as

Vi =

{ v̂, if i = N ,

min {
Vi+1,v

max
i+1

}
, otherwise. (1)

We consider a continuum spectrum of CPs. Let FV (v ) denote the mass of the maximum demand
for all CPs having the reservation price less or equal to v . We assume a well-formed function
FV , such that FV is twice di!erentiable and increasing in v ∈ V . This continuum model is quite
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common in network service pricing works [6, 14]. In the following lemma, we derive the actual
demand of each service class.

Lemma 1. Given p and q, the aggregated demand for any non-dummy service class i is di =
Di (p, q), where Di (p, q) is de!ned as

Di (p, q) ! [FV (Vi ) − FV (Vi−1)] ρ (qi ), ∀i ∈ N .
Further, Di (p, q) is continuous, non-increasing in pi (qi ) and non-decreasing in pj (qj ) for all j ! i .

Proofs to lemmas and theorems can be found in Section 8. Lemma 1 states that the demand
for each service class is non-increasing in the price and congestion level of this class, and non-
decreasing in the price and congestion level of any other class.

3.4 Steady-State of the Market
Recall that the ISP’s decision space includes p, q, and k. These decision variables are inter-
dependent in the sense that any variable may have an impact on others, and in turn impacts itself
in a feedback loop. This is really a dynamic system, and we are interested in de"ning the “steady
state” of this market via the concept of equilibrium.

We "rst consider a particular service class with a "xed volume of aggregated demand of CPs
(denoted by di ), and a "xed amount of bandwidth capacity dedicated to this class (denoted by ci ).
It is natural to assume that the congestion qi is uniquely determined by di and ci . Formally, we
de"ne a congestion function Q (di , ci ) such that qi = Q (di , ci ).

Assumption 2. Q (di , ci ) : R2
+ → R+ is continuous, increasing in di , decreasing in ci and satis!es

Q (di , 0) = +∞.

We next de"ne the “implied demand”, which will be useful later to de"ne the market equilibrium.
De!nition 1. Given a congestion level qi and a capacity Cki , the implied demand of class i is

denoted by ∆(qi ,ki ) : R2
≥0 → R≥0. If Q (0,Cki ) ≤ qi , then ∆(qi ,ki ) is the unique demand which

satis"es qi = Q (∆(qi ,ki ),Cki ), otherwise ∆(qi ,ki ) = 0.
If this implied demand equals the actual demand, then, from the de"nition, we can see that the

actual congestion level equals the ISP’s commitment, so CPs have no incentives to change their
choices, and the system reaches a steady state.

De!nition 2. A tuple (p, q, k) is an equilibrium, if and only if it satis"es the following equations:
Di (p, q) = ∆(qi ,ki ), ∀i ∈ N .

We can see that in order to achieve an equilibrium, a tuple (p, q, k) has only two degrees of free-
dom, i.e., if any two vectors are properly given, then the third vector can be uniquely determined
at the equilibrium. In what follows, we state how to determine p if q and k are given.

Lemma 2. Suppose q and k are given such that ∆(qi ,ki ) > 0 for any ki > 0. Then a tuple (p, q, k)
is an equilibrium if and only if pi = Pi (q, k) holds for all i ∈N , where

Pi (q, k) ! 1
ρ (qi )

i∑

j=1

[
ρ (qj ) − ρ (qj−1)

]
F̄−1

V (θ j ), (2)

where θ j !
∑N

!=j ∆(q!,k! )/ρ (q! ) de!nes the aggregate implied maximum demand for all the service
classes having congestion no worse than class j, and F̄−1

V is the inverse of F̄V (v ) ! FV (v̂ ) − FV (v ).

This lemma guides the ISP to set the appropriate price to commit its quality guarantee for each
service class. Later, we will use this relationship at the equilibrium to analyze the optimal pricing
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strategies of the ISP. Note that, in this lemma, we require that q and k are given such that ∆(qi ,ki ) >
0 for all ki > 0. It requires that for any given capacity ci , the ISP proposes an appropriate quality
guarantee so as to attract a positive demand. Otherwise, this class does not bring any revenue.3
From an ISP’s perspective, it is equivalent to setting ki = 0 for this class. Thus, in our further
analysis, we can safely remove this trivial case from our consideration.

3.5 ISP’s Decision Model
The ISP’s objective is to select (p, q, k) to maximize its own revenue. We assume a volume-based
charging scheme, and de"ne the ISP’s revenue as the total income charged from CPs for delivering
their content in an equilibrium (p, q, k):

R (p, q, k) !
∑

i ∈N
piDi (p, q).

Thus, the ISP’s decision problem can be formulated as:
Problem 1. ISP’s revenue maximization at equilibrium.

maximize
p,q,k

R (p, q, k)

subject to Di (p, q) = ∆(qi ,ki ), ∀i ∈ N ,
p ∈ RN

+ , q ∈ RN
+ , k ∈ K .

Our further analysis, i.e., whether and to what extent di!erentiated pricing can bring higher
revenue for the ISP, will be based on this neat form. Note that this formulation implicitly assumes
that when making its own decision, the ISP takes the CPs’ decisions into consideration, which has
been re%ected in the equilibrium constraint. In fact, we are using a Stackelberg game model to
capture the interactions between the ISP and CPs: The ISP is the "rst mover who decides (p, q, k),
and CPs are second movers who decide which service class to select. Our above formulation will
lead to the solution (or the Stackelberg equilibrium) of this game.

As we will see later, analyzing this problem is non-trivial. We consider a "nite N , because in
reality an ISP can only provide a "nite number of service classes. The ISP can allocate zero capacity
to some service classes so as to close them. We call those with positive capacities as “active classes”,
which are our real focus. Later, we will use Na to represent the set of active classes and denote
Na = |Na |. We can see that based on this de"nition, analyzing Problem 1 can be divided into the
following two steps:

Step 1: Determine the optimal Na .
Step 2: Put Na classes into Na and solve:
Problem 2. Revenue maximization for active service classes.

maximize
p,q,k

R (p, q, k)

subject to Di (p, q) = ∆(qi ,ki ), ∀i ∈ Na ,

ki > 0,∆(qi ,ki ) > 0, ∀i ∈ Na ,

p ∈ RNa
+ , q ∈ RNa

+ , k ∈ K .
The above two steps not only clearly state whether multi-class pricing or single-class pricing is

preferred, but also ensure that any optimal solution to Problem 2 is an interior point. This is be-
cause each active class has a positive capacity (i.e., ki ∈ (0, 1],∀i ∈Na ), so a solution can be optimal

3A typical example is the queuing latency metric Q (di , ci ) = 1/(ci − di ) [6], where Q (di , ci ) = +∞ for all di ≥ ci . Sup-
pose qi is given to be 1/ci . The corresponding di has to be 0.

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 52. Publication date: November 2019.



An Application-Driven Pricing Approach for the Internet Economics 52:9

only if the revenue for each active class is positive, which implies that the price and quality guar-
antee must lie in the interior domain (i.e., pi ∈ (0, v̂ ),qi ∈ (0,∞),∀i ∈Na ). Ensuring that an optimal
solution is an interior point will make our further analysis easier.

Remark. Numerically, the ISP can solve Problem 1 to get the optimal price, quality guarantee
and capacity for each service class and solving Problem 1 does not rely on Equation (2). In other
words, for the numerical study purpose, the ISP does not need to follow the two-step process: (1)
determine the number of active service classes; (2) determine the optimal price, quality guarantee,
and capacity for each active service class via solving Problem 2. This two-step process and Equation
(2) are mainly developed to facilitate the theoretical analysis of Problem 1.

3.6 Physical Interpretation
The formulation can already reveal some fundamental factors that impact the decision of the ISP.

• Application Heterogeneity. Our model characterizes the application heterogeneity in terms
of the reservation price and maximum demand. If they are of high diversity, then Di can be
easily di!erentiated by setting proper prices. As economic theory dictates, this can bring a
revenue gain.

• Statistical Multiplexing. The demand function Di is constrained by the congestion func-
tion at the equilibrium. Thus, if the congestion function exhibits the statistical multiplexing
property (i.e., the tra$c that a service class can support increases more rapidly than its own
capacity), the total demand ∑

i Di (p, q) may decrease when Na is large, so the total revenue
may drop for the multi-class pricing scheme.

• ISP Capability. The maximal number of classes allowed (N ) and total capacity (C) impact the
value of Di through the implied demand function. Their e!ect on the preference/objection
of multi-class pricing is even more vague: once such parameters change, the revenues of
the single- and multi-class pricing change in the same trend, so it is di$cult to tell which
one will be preferred.

To summarize, there are really con%icting (i.e., heterogeneity vs. multiplexing) and unclear (i.e.,
ISP capability) factors that make it di$cult to determine whether the multi-class pricing can be
more pro"table. In later sections, we will decouple them and show their individual impacts.

4 OPTIMAL PRICING
In this section, we "rst analyze the number of active service classes, followed by a formal charac-
terization on the optimal pricing strategy of these active classes. We then characterize properties
of the maximal revenue of the ISP asymptotically.

4.1 Number of Active Service Classes
The number of active service classes is important because it indicates whether and how the multi-
class pricing scheme will be implemented. For example, if there are Na < N active classes, the
ISP does not really need to implement N service classes; instead, implementing Na classes is just
enough. In particular, if there is only one active service class, it indicates the traditional single-class
pricing scheme is already the best strategy. We will show that this number Na is deeply impacted
by the property of the congestion function Q . Recall that we have de"ned the implied demand
function ∆(qi ,ki ). Let us de"ne three families of congestion functions based on ∆(qi ,ki ).

De!nition 3. A congestion function Q is multiplexing-preferred, or multiplexing-neutral, or
anti-multiplexing, if the implied demand function satis"es that ∆(qi ,ki − k ′i ) + ∆(qi ,k ′i ) is less
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than, or equal to, or larger than ∆(qi ,ki ), where k ′i < ki , ∆(qi ,ki − k ′i ) > 0, ∆(qi ,k ′i ) > 0 and
∆(qi ,ki ) > 0.

This division is based on whether an ISP can support more demand by merging two service
classes of the same quality guarantee into one and keeping the quality unchanged. If yes, we call
Q “multiplexing-preferred”. If the demand that can be supported remains unchanged, it means that
applications are not sensitive to multiplexing and we call Q “multiplexing-neutral”. On the other
hand, if the demand reduces after merging, we call Q “anti-multiplexing”.

We consider two typically used congestion functions and relate them to the above de"nition.
• Queuing Latency Based. The congestion function based on the queuing latency model

Q (di , ci ) = 1/(ci − di ) is commonly used in prior works, e.g., [6], [14], [27], and [30], where
Q (di , ci ) = +∞ for all di ≥ ci . One can have ∆(qi ,ki ) = max{Cki − 1/qi , 0}. It can be simply
veri"ed to be multiplexing-preferred. This congestion function captures the total expected
waiting time (i.e., queuing plus service time) in an M/M/1 queue setting with service rate ci
and arrival rate di . It is suitable to capture the congestion in UDP-based applications, where
packets queue up and are served in a FIFO pattern.

• Capacity Sharing Based. Another commonly used congestion function (e.g., in [6], [13], [14],
[30], [32], and [35]) is based on the capacity sharing model Q (di , ci ) = di/ci . One can have
∆(qi ,ki ) = Ckiqi . It is simple to verify it as neutral to multiplexing. This metric models
that various applications share the capacity of network systems, and the ratio of bandwidth
allocated to each application is proportional to the individual demand. It is suitable to cap-
ture the congestion in TCP-based applications, where the data backs up when there is a
congestion, and are supposed to be delivered "nally.

Though the two aforementioned families of congestion functions were proposed to model net-
work congestion externality decades ago [13, 27], they are still commonly used in recent works [6,
14, 30, 32, 35]. The reason is that they are mathematical simple yet have strong physical meanings.
Thus, we will only focus on the two aforementioned families of congestion functions. We will not
discuss anti-multiplexing congestion functions since we don’t "nd any practical ones.

4.1.1 Multiplexing-Preferred Congestion Functions. We derive su$cient conditions under
which the best strategy of the ISP is to implement only one active service class.

Theorem 1. Suppose the congestion function Q satis!es

∆(qi ,ki − k ′i ) + ∆(q′i ,k
′
i ) < ∆(qi ,ki ), (3)

where ∆(qi ,ki − k ′i ) > 0, ∆(q′i ,k
′
i ) > 0, and ∆(qi ,ki ) > 0. If FV (v ) is convex, the ISP maximizes its

revenue only if there is only one active service class, i.e., Na = 1.

Theorem 1 states the conditions under which the best decision for the ISP is the conventional
single-class pricing.4 Note that in here, our requirement is even stricter than the de"nition of
multiplexing-preferred functions. Condition (3) states that the demand will reduce if the ISP par-
titions a service class into two subclasses, even if the quality guarantee of one subclass is allowed
to change. In other words, Condition (3) speci"es a subset of multiplexing-preferred congestion
functions and in fact, they are strongly multiplexing-preferred.

One may feel that our requirement in (3) is too strict to be realistic, but it is really practical.
In fact, the congestion function based on queuing latency model satis"es this condition, because
∆(qi ,ki − k ′i ) + ∆(q′i ,k

′
i ) = Cki − 1/qi − 1/q′i < ∆(qi ,ki ), and thus we have the following corollary.

4A similar idea was reported in [6]. However, the de"nition, model, and proof method di!er from our model.

ACM Transactions on Internet Technology, Vol. 19, No. 4, Article 52. Publication date: November 2019.



An Application-Driven Pricing Approach for the Internet Economics 52:11

Corollary 1. If Q (di , ci ) = 1/(ci − di ) and FV (v ) is convex, the ISP maximizes its revenue by
implementing only one active service class.

Requiring a convex FV (v ) implies that a signi"cant number of CPs have high reservation prices,
since FV (v ) is convex if and only if the density function fV (v ) ! d FV (v )

dv is non-decreasing. This
assumption is mainly for the mathematical tractability in our proof. Our simulation results show
that this might not be a necessary condition, though we lack a proof. In particular, in our sim-
ulation, we consider Q (di , ci ) = 1/(ci − di ) as well as a concave and an S-shaped instance of F ,
i.e.,

FV (v ) = vα , ∀α ∈ (0, 1),v ∈ [0, 1],

FV (v ) =
1
Z

1
1 + exp(−α (v − 0.5))

, ∀v ∈ [0, 1],α ∈ (0, 10],Z =
∫ 1

0

1
1 + exp(−α (v − 0.5))

dv .

We "nd that Theorem 1 still holds.

4.1.2 Multiplexing-Neutral Congestion Functions. Now let us discuss what is the number of ac-
tive service classes when the congestion function is neutral to multiplexing.

Theorem 2. If the congestion function Q is neutral to multiplexing, the ISP maximizes its revenue
only if the number of active service classes is Na = N .

Theorem 2 states that if the congestion function is neutral to multiplexing, then the ISP will
simply activate all service classes so as to increase its revenue. Recall that a capacity-sharing-based
congestion function is multiplexing-neutral. Thus, we have the following corollary:

Corollary 2. If Q (di , ci ) = di/ci , the ISP maximizes its revenue by implementing N service
classes.

Please note that our conclusion does not depend on the value of N . Thus, if N is large, the ISP
will provide a large number of service classes. In other words, if N can be chosen, theoretically
the ISP may want to provide an in"nite number of active service classes to increase its revenue.
However, we will show in next subsection that the increase of revenue is bounded with respect
to the number of active service classes. In addition, o!ering a large number of service classes
often means a heavy operational cost. We therefore conclude that it is only realistic for the ISP to
activate a limited number of service classes. The above observations are similar to two previous
works in the nonlinear pricing literature: (1) Wilson [33] proved that increasing the number of
tari! options always increases the revenue; (2) Miravete [19] found that a "nite number of tari!
options is o!ered in practice, due to the cost in o!ering tari! options such as commercialization
cost.

Physical Interpretation. Recall that there are con%icting (heterogeneity vs. multiplexing) and un-
clear factors (ISP capability parameters) for adopting or rejecting multi-class pricing. In this sec-
tion, we decouple them and only focus on the impact of multiplexing e!ect. Our results show that
when the congestion function exhibits a “strong” multiplexing property, the ISP does not need to
consider multi-class pricing; when the congestion function is neutral to multiplexing, the ISP al-
ways prefer multi-class pricing. This result does not depend on any particular shape of the function
FV (v ) or the ISP’s capability parameters. We do not conduct further analysis on other congestion
functions, since the commonly applied ones have already been captured.

We have taken an initial step in understanding the optimal pricing strategy of the ISP, i.e.,
whether the ISP should provide single or multiple active service classes. Given the number of
active service classes, we next analyze the optimal pricing decisions (p, q, k).
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4.2 Optimal Pricing for Active Service Classes
Note that we have determined the number of active service classes Na , now we proceed to analyze
Problem 2. Recall that the optimal solution must be an interior solution to Problem 2, since each
active class has a non-zero capacity. By using the KKT conditions, we have the following theorem:

Theorem 3. Consider Problem 2. If (p, q, k) is an optimal solution, for any active class i ∈ Na , we
have the following:



[
θi+1F̄

−1
V (θi+1) − θi F̄

−1
V (θi )

] 1
Bi
=

∑i

j=1
Aj , ∀i ∈ Na ,

Ci

∑i

j=1
Aj = C1A1, ∀i ∈ Na ,

where Aj ,Bi , and Ci are de!ned as:

Aj ! [ρ (qj ) − ρ (qj−1)]
∂θ j F̄−1

V (θ j )

∂θ j
, Bi !

1
ρ ′(qi )

∂∆(qi ,ki )/ρ (qi )

∂qi
, Ci !

1
ρ (qi )

∂∆(qi ,ki )

∂ki
.

Theorem 3 states a necessary condition for q and k to be optimal, in forms of an array of equa-
tions. Once we have q and k, the optimal price p can be calculated base on Equation (2). One can
solve these equations to obtain the optimal q and k. In some scenarios, it might be computationally
more e$cient than solving the original optimization problem directly. Furthermore, we can utilize
it to calculate the optimal single-class quality guarantee.

Corollary 3. Consider single-class pricing N = 1. Problem 1 has at least one optimal solution.
The optimal single-class quality guarantee q satis!es ϵF̄ = ϵρ/ϵ∆ − 1 where

ϵF̄ ! dF̄V

dp

p

F̄V
, ϵρ ! dρ

dq

q

ρ
, ϵ∆ ! ∂∆(q, 1)

∂q

q

∆(q, 1)
.

If ϵF̄ is decreasing in p, ϵρ is non-increasing in q and ϵ∆ is non-increasing in q, then the optimal
single-class quality guarantee q uniquely satis!es ϵF̄ = ϵρ/ϵ∆ − 1.

Corollary 3 states su$cient conditions under which the optimal single-class quality guarantee
q is unique. Under these conditions, one can design bi-section algorithms to locate the optimal
single-class quality guarantee q.

4.3 Asymptotic Analysis of Maximum Revenue
We have revealed some insights to calculate the optimal decision variables for the multi- and
single-class pricing. It is mathematically intractable to analyze the revenue improvement in general
since we lack closed-form optimal decision variables. Asymptotically, we can analyze the maxi-
mum revenue without closed-form optimal decision variables, and through this we draw some
insights on the revenue improvement. In particular, we characterize the impact of the ISP’s capa-
bility parameters, i.e., C and N , on the maximum revenue.

Theorem 4 (Impact of Capacity). The ISP’s maximal revenue increases in C and approaches
maxp pF̄ (p) as C → ∞.

Theorem 4 states that the ISP can increase its revenue by expanding its capacity, but this in-
crement is upper bounded. Note that this result holds regardless of the value of N . It implies that
the single-class pricing scheme approaches this limit as well, so the multi-class pricing will have a
marginal revenue gain over the single-class pricing when the capacity is su$ciently large. Thus,
the ISP does not need to consider multi-class pricing when the capacity is su$ciently large.
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Theorem 5 (Impact of Number of Service Classes). The maximal revenue of the ISP is non-
decreasing with respect to N and is upper bounded by maxp pF̄V (p) as N → ∞.

Recall that when Q is multiplexing-neutral, the ISP can always increase revenue by providing
one more service class. Theorem 5 states that this increase is upper bounded when N approaches
in"nity, or the revenue improvement has a diminishing return to scale e!ect. This statement is sim-
ilar to a previous work by Wilson [33], where Wilson proved that the revenue improvement by
increasing the number of tari! options decreases in the number of tari! options. Taking the oper-
ating cost into the consideration, the ISP will provide a limited number of service classes in reality.

We have revealed some insights on revenue improvement in asymptotic cases. What remains
unknown are: (1) In general, how ISP’s capability parameters impact revenue improvement; and (2)
how application heterogeneity impacts revenue improvement. Let’s proceed to investigate them.

5 EXTENSIONS
Recall that we pointed out three aspects of application heterogeneity, i.e., the reservation price, the
maximum demand and the quality requirement. Our model thus far captures the "rst two aspects,
showing that multi-class pricing can always improve revenue when applications are neutral to
multiplexing. In order to quantitatively study the revenue improvement in practical scenarios,
now let us generalize our model to capture the heterogeneity in quality requirement.

5.1 Model Extensions
Our model has assumed that all CPs have the same discount function ρ (q). Now we extend it to
capture the heterogeneity of applications in quality requirement. Let the discount function for CP
k be denoted by ρk (q)!ρ (wk ,q), where wk ∈W! [0, ŵ] models CP k’s quality requirement, and
ŵ denotes the maximum possible value forwk . A larger value ofwk means that a CP has a stricter
quality requirement. We have the following assumption.

Assumption 3. ρ (wk ,q) : R2
+ → [0, 1] is continuous and decreasing inwk . In addition, ρ (0,q) = 1

for all q.

We de"ne the aggregate maximum demand for all CPs having reservation prices no larger than
v and quality requirements no larger than w as

FV ,W (v,w ) !
∑

k

1{vk ≤v,wk ≤w }d̂k . (4)

Accordingly, we generalize ISP’s decision problem (i.e., Problem (1)) via generalizing the demand
function Di (p, q) as

Di (p, q) =

∫ ŵ

0

∫ Vi (w )

Vi−1 (w )
fV ,W (v,w )ρ (w,qi )dvdw, (5)

where fV ,W (v,w ) ! ∂2FV ,W (v,w )
∂v∂w and Vi (w ) is obtained by replacing ρ (qi ) in Equation (1) with

ρ (w,qi ). By using the KKT conditions, we characterize the optimal solution for the generalized
ISP decision problem as follows:

Theorem 6. A tuple (p, q, k) maximizes the ISP’s revenue, only if it satis!es


∂R (p, q, k)

∂pi

/
∂G

∂pi
=
∂R (p, q, k)

∂pi+1

/
∂G

∂pi+1
, i = 1, . . . ,Na − 1,

∂R (p, q, k)

∂pi

/
∂G

∂pi
=
∂R (p, q, k)

∂qi

/ (
∂G

∂qi
− Hi

)
, i ∈ Na ,
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where G and Hi are de!ned as

G !
∑

j ∈Na

D j (p, q)

/
∂∆(qj ,kj )

∂kj
, Hi ! Di (p, q)

∂2∆(qi ,ki )

∂qi∂ki

/ [
∂∆(qi ,ki )

∂ki

]2
− ∂∆(qi ,ki )

∂qi

/
∂∆(qi ,ki )

∂ki
,

and Di (p, q) is derived in Equation (5).

One can solve these equations to obtain the optimal decision variables. In some scenarios, it
might be computationally more e$cient than solving the original optimization problem directly
(e.g., by using the gradient methods.).

It is di$cult to gain further insights from an abstract form of the CPs distribution FV ,W (v,w ).
Thus, we seek a reasonable instantiation of such distribution so that we can later show the revenue
gain of multi-class pricing. Before that, let us "rst state some scaling properties, based on which
we can realize such instantiation.

5.2 Scaling Properties
We "rst present some scaling properties to simplify the presentation of the instantiation on
FV ,W (v,w ).

Theorem 7. Suppose (p, q, k) is an optimal solution. If we scale v̂ by ξ > 0 such that ṽ ∈ [0, ξv̂],
and F̃V ,W (ṽ,w ) = FV ,W (ṽ/ξ ,w ), then after scaling, (ξp, q, k) is an optimal solution and the maxi-
mum revenue scales by ξ .

Theorem 7 states that as we scale the reservation price linearly, the maximal revenue also scales
linearly. Thus, we can normalize the reservation price to be inV = [0, 1].

Let us consider a quintessential form ρ (w,q) = e−wq of demand discount function, which has
been used to study congestion externality of product market [26] and has been applied to network
service pricing [14, 15].

Theorem 8. Suppose ρ (w,q)=e−wq , Q (di , ci )=di/ci and (p, q, k) is an optimal solution. If we
scale C and ŵ such that C̃=ξC , w̃ ∈ [0, ξŵ] and F̃V ,W (v, w̃ )=FV ,W (v, w̃/ξ ), then after scaling,
(p, q/ξ , k) is an optimal solution with the maximal revenue unchanged.

Theorem 8 states if we scale the capacity and quality requirement linearly at the same rate,
the optimal prices, capacities, and the maximal revenue keep unchanged, and the optimal quality
guarantee scales. Thus, we normalize the quality requirement to be inW = [0, 1].

Theorem 9. Let Q (di , ci )=di/ci and (p, q, k) is an optimal solution. If we scaleC and FV ,W (v,w )
such that C̃=ξC and F̃V ,W (v,w )=ξFV ,W (v,w ), then after scaling, (p, q, k) is an optimal solution
and the maximal revenue scales by ξ .

Theorem 9 states that whenC and FV ,W (v,w ) scale linearly at the same rate, the optimal pricing
scheme does not change and the maximal revenue scales linearly. Thus, we normalize the CPs
distribution such that FV ,W (v̂, ŵ ) = 1.

To summarize, we normalize FV ,W (v,w ) such that (v,w ) ∈ [0, 1]2 and FV ,W (1, 1) = 1 without
loss of any generality. In other words, FV ,W (v,w ) can be treated as a probability distribution over
(v,w ) ∈ [0, 1]2. Based on it, we next instantiate the CPs distribution FV ,W (v,w ).

5.3 Instantiation on the Distribution of CPs
Now let us consider how to construct a reasonable distribution of CPs via function FV ,W (v,w ). It
is important to capture the heterogeneity in (1) reservation prices and (2) quality requirements, as
well as their correlations. Since FV ,W (v,w ) is a probability distribution over (v,w ) ∈ [0, 1]2, we use
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the marginal distribution FV (v ) to model price heterogeneity, the marginal distribution FW (w ) to
model quality requirement heterogeneity, and the Kendall tau correlation coe$cient [1] to quantify
the correlation:

τ ! P [(V − Ṽ ) (W − W̃ ) > 0]−P [(V − Ṽ ) (W − W̃ ) < 0],
where (V ,W ), (Ṽ ,W̃ )∼FV ,W (v,w ). The value of τ ∈ [−1, 1], where τ >0 (τ <0) models positive
(negative) dependency. For example, consider the following FV ,W (v,w ) [1]:

FV ,W (v,w ) = exp
[
−

(
(−α lnv )θ + (−β lnw )θ

) 1
θ
]
, (6)

where (v,w ) ∈ [0, 1]2 and θ ≥ 1. It characterizes the price heterogeneity, quality requirement het-
erogeneity and dependency via parameters α , β and θ , respectively. First, the marginal price distri-
bution is FV (v ) = vα ,v ∈ [0, 1]. Thus, α models the distribution of CPs with respect to the reser-
vation price. For example, α = 1 corresponds to a uniform distribution of CPs’ reservation prices,
and α < 1 (α > 1) corresponds the distribution leaning towards low (high) values. Second, the mar-
ginal quality requirement distribution is FW (w ) = wβ ,w ∈ [0, 1]. Last, the Kendall tau correlation
coe$cient is τ = 1 − 1

θ with θ ≥ 1. It captures the full regime of positive dependency, i.e., a high
(or low) reservation price tends to accompany a strict (or loose) quality requirement.

6 REVENUE IMPROVEMENT
We aim at a quantitative study on the amount of revenue gain of multi-class pricing over single-
class pricing, so we can understand under what scenarios our proposal is meaningful to implement.
Note that in this section, we consider the general setting with heterogeneous discount functions.

6.1 Experiment Se!ings
We have revealed the impact of multiplexing. Since the congestion function based on the queuing
model always prefers single-class pricing, we will not discuss it in this section. Instead, we will
focus on the congestion function based on the capacity sharing model, i.e.,Q (di , ci ) = di/ci . As we
have stated, this form represents TCP-like applications, which is the majority of today’s Internet
tra$c. We have shown that the revenue gain has a diminishing return to scale e!ect with respect to
the number of service classes. Thus, in this section, we will focus on the revenue gain of two-class
pricing over single-class pricing. Formally, we de"ne the revenue improvement as

RevImp !
R∗2 − R∗1

R∗1
, (7)

where R∗1 and R∗2 denote the maximal revenue under single- and two-class pricing, respectively.
We consider one ISP and a continuum spectrum of CPs with heterogeneous requirement on

service quality, i.e., they are described by the model in Section 5. The aggregate maximum de-
mand FV ,W (v,w ) satis"es Equation (4) and the demand function Di (p, q) satis"es Equation (5).
We extend Problem 1 to determine the optimal price, quality guarantee, capacity and revenue,
where we replace the demand function in Problem 1 with Equation (5). By the scaling properties
in Section 5.2, we normalize the aggregate maximum demand FV ,W (v,w ) such that (v,w ) ∈ [0, 1]2

and FV ,W (1, 1) = 1. Furthermore, we consider the instance of aggregate maximum demand FV ,W
expressed in Equation (6). As the aggregate maximum demand from all the CPs is normalized to
FV ,W (1, 1) = 1, we consider a capacity varies from 0 to 2, i.e., C ∈ [0, 2], where C = 2 models that
the capacity is abundant.

Though captured asymptotically, we are still unaware how the capacity will impact the revenue
improvement in general cases. Also, we have not discussed the impact of application heterogeneity.
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Fig. 1. Impact of C on revenue improvement.

Therefore, our focus in this section is to investigate the impact of capacity and the heterogeneity
of applications on the revenue improvement.

6.2 Impact of Capacity
We "rst examine the impact of capacity on revenue improvement. In this study, we choose typical
cases of FV ,W (v,w ) to characterize application heterogeneity:

• The distribution of the reservation price parameter α leans towards a low value (α =0.5), or
it is uniform (α =1), or it leans towards a high value (α =2);

• The distribution of the quality requirement parameter β leans towards a low value (β =0.5),
or it is uniform (β =1), or it leans towards a high value (β =2); and

• The reservation price and quality requirement are positively dependent and the degree of
dependency is low (τ =0.2), or medium (τ =0.4), or high (τ =0.8).

Figure 1 plots the revenue improvement when the capacity varies. From Figure 1, we observe
more than 10% revenue improvement when the capacity is small. When C increases, RevImp re-
duces till around 2%. This implies that when the capacity is limited (or abundant), the improvement
is signi"cant (or marginal). This is natural since when C becomes small (or large), providing high
QoS is di$cult (or easy) and it is meaningful (or meaningless) to do di!erentiation. Also, note that
in reality, due to increasing demand, bandwidth has always been a competing resource, so there is
a high chance to gain a signi"cant revenue improvement. The impact of application heterogeneity
(i.e., α , β and τ ) on revenue improvement is non-trivial, which is our remaining focus.

Lessons learned. The revenue improvement can be signi"cant (i.e., more than 10% in general, and
as high as over 15%) when the capacity is limited.

6.3 Impact of "ality Requirement Heterogeneity
Now we "x C = 0.1 (i.e., the capacity is limited) and investigate the impact of application hetero-
geneity (α , β, and τ ). We "rst study the impact of β , which captures the distribution of CPs with
respect to the quality requirement. Figure 2 plots the revenue improvement when β varies. We can
observe that when β is moderately small, the revenue improvement can be more than 20%. This
indicates that when a moderately small number of CPs have strict quality requirements, the ISP
can improve the revenue signi"cantly by two-class pricing. This is because strict (or loose) quality
requirements often indicate high (or low) reservation prices, which can be satis"ed by a superior
(or inferior) service class. Given that the superior class charges at a higher price, when the number
of CPs in the superior class is moderately small, the total revenue from the two classes are com-
parable and thus both are signi"cant. If changing to a single-class pricing, the ISP deems to lose
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Fig. 2. Impact of β on revenue improvement.

Fig. 3. Impact of α on revenue improvement.

revenue from either of the original two classes. When β is very small or very large, the revenue
improvement becomes marginal, i.e., around 4%. It implies that when CPs’ quality requirement
distribution is concentrated, the diversity of quality requirement is low, so single-class pricing is
su$cient. We also observe that the price heterogeneity and dependency have a non-trivial impact
on revenue improvement. We next investigate their roles.

Lessons learned: The revenue improvement is signi"cant (i.e., more than 10% in general, and as
high as over 20%) when a moderately small number of CPs have strict requirement on the service
quality.

6.4 Impact of Reservation Price Heterogeneity
Now let us investigate the impact of α , which captures the distribution of CPs with respect to
the reservation price. Figure 3 plots the revenue improvement when α varies. Similar to the pre-
vious subsection, we "x C = 0.1 and β at proper values. From Figure 3, we observe more than
10% revenue improvement when: (1) α is not very small; and (2) β is small, which further veri"es
our observations in the last subsection. This implies that when most CPs’ reservation prices are
not very low, the revenue improvement can be signi"cant. We also observe that when α is very
small, the revenue improvement is marginal, i.e., around 4%. This implies that when the reservation
price distribution leans closely towards a low value, the ISP does not need to consider multi-class
pricing. When the α increases from a small value, the revenue improvement increases. This is
because the diversity of reservation price increases as α increases. However, when α further in-
creases, the revenue improvement starts decreasing. This is because when α becomes large, the
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Fig. 4. Impact of τ on revenue improvement.

reservation price distribution leans closely towards a high value, or its diversity becomes low
again. Last, the correlation coe$cient τ has a signi"cant impact on the improvement, which we
will further investigate.

Lessons learned. The revenue improvement is signi"cant (i.e., more than 10% in general, and as
high as over 15%) when CPs’ reservation prices are not very low.

6.5 Impact of Dependency
Now we investigate the impact of τ , which quanti"es the dependency between the reservation
price and the quality requirement. Figure 4 plots the revenue improvement when τ varies. Simi-
larly we "xC = 0.1 and set α , β at proper values. From Figure 4, we observe more than 10% revenue
improvement when τ is not very small. This implies that the revenue improvement can be signif-
icant when the dependency between the reservation price and quality requirement is not very
weak. It can be even more than 15% when τ is large, i.e., they are strongly positively correlated.
This is because the ISP can use a superior (or inferior) class to satisfy CPs with high (or low) reser-
vation prices and strict (or loose) quality requirements. The revenue improvement curves exhibits
a complicated trend, some of which are monotone while others are not. One reason is that when
τ varies, the revenues of both single-class and two-class pricing vary in the same trend, and their
ratio may exhibit a non-monotone feature.

Lessons learned: The revenue improvement is signi"cant (i.e., more than 10% in general, and as
high as over 15%) when the dependency between reservation price and quality requirement is not
very weak.

6.6 Impact of the Number of Service Classes
Now we investigate the number of services classes N . Table 1 shows the optimal revenue and rev-
enue improvement when the number of service classes varies from 1 to 4. Similarly, we "x c = 0.1
and set α , β,τ at proper values. From Table 1, we observe that the optimal revenue increases in the
number of service classes N . This further validates our analytical results. Increasing the number of
service classes from N = 1 to N = 2 can increase the revenue by as high as 15.85%, i.e., signi"cant
revenue improvement. The revenue improvement is around 3% when the number of service classes
increases from N = 2 to N = 3, and around 1% when the number of service classes increases from
N = 3 to N = 4. In other words, further increasing the number of service classes beyond three
only brings marginal revenue improvement. This implies a strong diminishing return of revenue
improvement, i.e., the revenue improvement by increasing the number of service classes decreases
rapidly in the number of service classes. This observation is similar to two previous works in the
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Table 1. Impact of the Number of Service Classes on Revenue Improvement (C = 0.1)

Parameters Revenue Revenue improvement
α β τ R∗1 R∗2 R∗3 R∗4

R∗2−R∗1
R∗1

R∗3−R∗2
R∗2

R∗4−R∗3
R∗3

0.5 0.5 0.4 0.007168 0.007918 0.008134 0.008223 10.46% 2.73% 1.08%
1 0.5 0.4 0.011051 0.012379 0.012761 0.012918 12.02% 3.09% 1.23%
2 0.5 0.4 0.016313 0.018282 0.018851 0.019086 12.07% 3.11% 1.25%
2 0.5 0.4 0.016313 0.018282 0.018851 0.019086 12.07% 3.11% 1.25%
2 1 0.4 0.012931 0.013955 0.014256 0.014383 7.92% 2.16% 0.89%
2 2 0.4 0.011116 0.011632 0.01178 0.011846 4.65% 1.29% 0.54%
2 0.5 0.2 0.017620 0.019466 0.020002 0.020227 10.47% 2.76% 1.12%
2 0.5 0.4 0.016313 0.018282 0.018851 0.019086 12.07% 3.11% 1.25%
2 0.5 0.8 0.014502 0.016801 0.017514 0.017813 15.85% 4.24% 1.71%

nonlinear pricing literature: (1) Wilson [33] theoretically proved that the revenue improvement by
increasing the number of tari! options decreases rapidly in the number of tari! options; (2) Courty
and Paglieo [8] found empirical evidences for this theoretical result of Wilson in the context of of-
fering multi-class pricing for concert tickets. Even though our context and model are di!erent from
theirs, our idea is similar to theirs, i.e., using multi-class pricing to extract surplus from consumers
(i.e., CPs in our context) so as to improve the revenue. For our setting, the intuitive explanation
for the strong diminishing return of revenue improvement is the following. Revenue improvement
by increasing the number of service classes is achieved by using more service classes to extract
more surplus from CPs. Note that the total amount of surplus from CPs is "nite. As the number of
service classes increases, there is less and less surplus from CPs left. Furthermore, providing one
more service classes becomes less and less “attractive” to CPs as there may already exists some
comparable alternative service classes, making the newly added service class less and less pow-
erful in extracting surplus from CPs. Lastly, the revenue improvement is always positive, which
implies an ISP should provide as many classes of service as possible. We will show in Section 7 that
this strong diminishing return of revenue improvement together with the cost of o!ering service
classes leads to a "nite number of service classes being provided in reality.

Lessons learned. The revenue improvement is signi"cant (i.e., more than 10% in general, and as
high as over 15%) when the number of service classes increases from one to two. Further increasing
the number of service classes beyond three only brings marginal revenue improvement.

7 DISCUSSION
Selecting the Number of Services Classes. Consider the capacity sharing congestion model. Even
though increasing the number of service classes can always increase the revenue (Theorem 2),
in practice an ISP may o!er a small number of service classes, due the cost in o!ering service
classes. Formally, let C̃ (N ) ∈ R+ denote the cost of o!ering N classes of service. Let R∗N − C̃ (N )
denote the pro"t of o!ering N classes of service. The ISP selects N to maximize the pro"t. Table 2
shows the impact of N on the ISP’s pro"t. One can observe that when the cost function is C̃ (N ) =
0.0015(N − 0.5)2, i.e., convex, the pro"t decreases as N increases from 1 to 4. This implies that the
ISP should o!er one service class in order to attain the maximum pro"t. Similarly, when the cost
function is C̃ (N ) = 0.0015(N − 0.5), i.e., linear, the ISP should o!er two service classes. When the
cost function is C̃ (N ) = 0.0015(N − 0.5)0.5, i.e., concave, the ISP should o!er three service classes.

Comparing the Revenue with Other Pricing Schemes. One may suggest to compare the revenue
of our pricing scheme with the pricing schemes summarized in Section 2. However, we "nd it
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Table 2. Impact of N on the ISP’s Profit (α = 2, β = 0.5,τ = 0.8, c = 0.1)

Pro!t
Cost function R∗1 − C̃ (1) R∗2 − C̃ (2) R∗3 − C̃ (3) R∗4 − C̃ (4)

Convex: C̃ (N ) = 0.0015(N − 0.5)2 0.0141 0.0134 0.0081 −0.0006
Linear: C̃ (N ) = 0.0015(N − 0.5) 0.0138 0.0146 0.0138 0.0126

Concave: C̃ (N ) = 0.0015(N − 0.5)0.5 0.0034 0.0150 0.0151 0.0150

di$cult to conduct a fair and meaningful comparison of revenues, as these pricing schemes con-
sider di!erent scenarios or models. Some of the reasons are the following:

• As discussed in Section 2, the congestion pricing falls into the “single class setting”. It ad-
justs the price according to the real-time congestion dynamically. In other words, it sets
price to control the evolving dynamics of the congestion. However, our pricing scheme sets
pricing parameters based on the congestion equilibrium. In other words, our pricing scheme
controls the equilibrium of congestion. Adapting the congestion pricing into our model, we
obtain a single class pricing scheme. This adaption loses the key feature of the congestion
pricing, i.e., controlling the evolving dynamics of the congestion, leading to unfair compar-
isons.

• As discussed in Section 2, the Di!serv considers a model at the packet routing level, where
setting the pricing parameters requires the adjustment of priority in sending packets. How-
ever, our model is at the tra$c volume level, i.e., abstracts a CP’s total tra$c packets as a
real number. Under this abstraction our model isolates the tra$c volumes based on their
service quality requirement and it does not involve priority adjustment in sending packets.
Thus, it is di$cult to adapt the Di!erv into our model and select the appropriate parameters
for it.

• As discussed in Section 2, the premium peering provides two classes of service, i.e., a su-
perior class and an inferior class. It provides service quality guarantees for the superior
class, leaving the inferior class without any service quality guarantee. However, our pric-
ing scheme aims to provide service quality guarantees for all service classes. Thus, it is
di$cult to select appropriate parameters for premium peering to achieve a fair comparison.

• As discussed in Section 2, existing works either concluded theoretically the viability of PMP,
or showed numerically that the revenue gain of multi-class pricing is not signi"cant, mak-
ing it hard to realize in practice. We show completely di!erent conclusions: The revenue
gain can be signi"cant under practical scenarios. This is because our approach and analysis
capture important aspects of application heterogeneity.

• In the end of Section 2, we summarize several multi-class pricing schemes that provide
service quality guarantees. These pricing schemes do not consider congestion externality.
Our approach considers a more realistic setting of multi-class pricing under congestion
externality. Adapting these pricing schemes into model leads to the failure of providing
service quality guarantees.

Net Neutrality. The motivation of net neutrality is to provide fair and e$cient operation envi-
ronment for all applications, promoting a healthy growth of the ecosystem. Note that in practice,
there is no consensus on the exact de"nition of neutrality means [24]. One common (and strict)
de"nition that we "nd is “Network neutrality refers to the principle of an agnostic network, that is,
one which does not discriminate against the content which travels across it or the applications or
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hardware which engage with and connect to it [5].” It means that the Internet should be regarded
as a utility like electricity, and that every one has the right to use it equally. There are arguments
on whether net neutrality is the right way to achieving the motivation. For example, Crowcroft
says that “we never had network neutrality in the past, and I do not believe we should engineer
for it in the future either” [9]. Misra states that “network neutrality issue is really about economics
rather than freedom or promoting/sti%ing innovation [20].”

In terms of real implementation, rules di!er across countries. In U.S., the debate of whether/how
to perform regulation is still in debate. FCC regulated that “data transmission is transparent; ISPs
cannot enforce unreasonable interference or disadvantage end customers”, etc., but did not regulate
specialized services. In practice, FCC only imposed regulation rules on the ISP-user side, but did
not impose rules on the ISP-CP side. One of the reason is that there have been many complicated
and hidden commercial contracts between ISPs and CPs (people call it “premium peering”), making
it extremely di$cult, if not impossible, to request publicity of all these commercial secrets, not to
mention to remove all of them. Even for the regulation on the ISP-user side, there have been many
years of debate and and recently, FCC has lifted all regulations regarding network neutrality. In
Europe, competition between "xed and mobile broadband providers works much better than in
the US, so there is less concern about neutrality.

Our proposal may not be considered as fully satisfying the strict net neutrality de"nition in [5].
However, it aligns with the FCC’s previous regulations (which we think was a very strict regu-
lation implementation in the real market). Most importantly, in regard of the initial motivation
of net neutrality, we would like to emphasize that if implemented, our pricing scheme does not
only increase ISPs’ revenue, but it is bene"cial to the whole ecosystem. CPs do not need to con-
struct their own networks any more, but they can buy specialized services with lower costs. As
applications are delivered with quality guarantee, users’ quality of experience will be improved. In
summary, this can potentially increase the social welfare of the entire Internet ecosystem, which
is the original motivation of the net neutrality.

Dynamic Demand. Once the behaviors of CPs (e.g., dk ) change, one can input the new parameter
regarding CPs (e.g., dk ) into our framework to re-con"gure the price accordingly. This provides a
simple solution to setting that the behaviors of CPs change over time. A more formal method to
handle this setting is the dynamic pricing, which is one of the future works on this article.

8 PROOFS OF LEMMAS AND THEOREMS
Proof of Lemma 1. Note that if a CP k’s reservation price vk is in segment [Vi−1,Vi ), it will

choose service class i . Hence, the aggregate maximum demand for service class i is FV (Vi ) −
FV (Vi−1). We obtain Di (p, q) by noting that all CPs choosing class i have the same discount func-
tion ρ (qi ). Observe that both Vi and Vi−1 are continuous in pi (qi ) and pj (qj ). Hence, Di (p, q) is
continuous inpi (qi ) andpj (qj ). Whenpi increases,uk (pi ,qi ) decreases. Based on the choice model,
we know the amount of users choosing class i will not increase. Hence, Di (p, q) is non-increasing
in pi . Similarly, we reach the monotonicity conclusion. !

Proof of Lemma 2. The tuple (p, q, k) is an equilibrium if and only if it satis"es FV (Vi ) −
FV (Vi−1) = ∆(qi ,ki )/ρ (qi ),∀i ∈ N . The remaining task is to solve this equation array to obtain
the price pi . Note that FV (Vi ) − FV (Vi−1) = ∆(qi ,ki )/ρ (qi ) implies that ∑N

!=i [FV (Vi ) − FV (Vi−1)] =∑N
!=i ∆(qi ,ki )/ρ (qi ) Then, it follows that FV (v̂ ) − FV (Vi−1) =

∑N
!=i ∆(q!,k! )/ρ (q! ). By solving

this equation, we have Vi−1 = F̄−1
V (

∑N
!=i ∆(q!,k! )/ρ (q! )) = F̄−1

V (θi ). Note that q, k are given
such that ∆(qi ,ki ) > 0. Hence, we have that Vi > Vi−1. Recall that the utility function uk (p,q)
is linear with respect to the reservation price vk . Then it follows that Vi = [pi+1ρ (qi+1) −
piρ (qi )]/[ρ (qi+1) − ρ (qi )]. Hence, we havepiρ (qi ) − pi−1ρ (qi−1) = [ρ (qi ) − ρ (qi−1)]F̄−1

V (θi ), which
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implies that ∑i
j=1[piρ (qi ) − pi−1ρ (qi−1)] = ∑i

j=1[ρ (qi ) − ρ (qi−1)]F̄−1
V (θi ). Observe thatp0ρ (q0) = 0.

Hence, we have piρ (qi ) =
∑i

j=1[ρ (qj ) − ρ (qj−1)]F̄−1
V (θ j ). Thus, we complete the proof. !

Proof of Theorem 1. In order to achieve the conclusion, we only need to show that, for each
Na > 1, R (p, q, k) < R∗1. To facilitate the analysis, we apply Lemma 2 to transform Problem 2 into
the following form:

maximize
q,k

γ (q, k) !
∑

i ∈Na

[ρ (qi ) − ρ (qi−1)]θi F̄
−1
V (θi )

subject to θ1 ≤ FV (v̂ ), q ∈ RNa
+ , k ∈ K .

Based on this formulation, our objective is to show that γ (q, k) < R∗1,∀Na > 1. For simplicity of
presentation, we de"ne R̃ (x ) ! xF̄−1

V (x ). Let us "rst use the fact that the function R̃ (x ) is concave
in x . We shall prove this fact later. We can derive an upper bound for the revenue as follows:

γ (q, k) =
∑

i ∈Na

[ρ (qi ) − ρ (qi−1)]R̃(θi ) = ρ (qNa )
∑

i ∈Na

ρ (qi ) − ρ (qi−1)

ρ (qNa )
R̃ (θi )

≤ ρ (qNa )R̃ ,-
.
∑

i ∈Na

ρ (qi ) − ρ (qi−1)

ρ (qNa )
θi
/0
1
, (8)

where the last inequality holds because R̃ (x ) is concave in x , (ρ (qi ) − ρ (qi−1))/ρ (qNa ) ≥ 0 and∑
i ∈Na (ρ (qi ) − ρ (qi−1))/ρ (qNa ) = (ρ (qNa ) − ρ (q0))/ρ (qNa ) = 1. Note that for any given Na , we

have θi =
∑Na

!=i ∆(q!,k! )/ρ (q! ). Then, it follows that

∑

i ∈Na

ρ (qi ) − ρ (qi−1)

ρ (qNa )
θi = θNa +

Na−1∑

i=1

ρ (qi ) (θi − θi+1)

ρ (qNa )

= θNa +

Na−1∑

i=1

ρ (qi )

ρ (qNa )
,
.

Na∑

!=i

∆(q!,k! )

ρ (q! )
−

Na∑

!=i+1

∆(q!,k! )

ρ (q! )
/
1

= θNa +

Na−1∑

i=1

ρ (qi )

ρ (qNa )

∆(qi ,ki )

ρ (qi )
=

∑Na
i=1 ∆(qi ,ki )

ρ (qNa )
<

∆(qNa , 1)

ρ (qNa )
,

where the last inequality holds due to Condition (3). Note that the implied demand func-
tion ∆(qi ,ki ) increases in ki . Hence, there exists a k ′ < 1 such that ∑Na

!=i ∆(qi ,ki )/ρ (qNa ) =
∆(qNa ,k

′)/ρ (qNa ). We can further derive the upper bound of γ (q, k) expressed in inequality (8) as

γ (q, k) ≤ ∆(qNa ,k
′)F̄−1

V

(
∆(qNa ,k

′)

ρ (qNa )

)

The left side corresponds to the revenue of a single class pricing with capacity k ′C and quality
guarantee qNa . Not that k ′ < 1, then we have

γ (q, k) ≤ max
qNa

∆(qNa ,k
′)F̄−1

V

(
∆(qNa ,k

′)

ρ (qNa )

)
< max

q
∆(q, 1)F̄−1

V

(
∆(q, 1)

ρ (q)

)
= R∗1,

where the last inequality holds because of the fact that the maximum revenue for single class
pricing is increasing in capacity C (we will formally prove it in Theorem 4). This concludes the
main result of this theorem.
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Finally, let us show R̃ (x ) = xF̄−1
V (x ) is concave in x . The second order derivative of R̃ (x ) is

R̃′′(x ) = 2
dF̄−1

V (x )

dx
+ x

d2F̄−1
V (x )

dx2 .

We can derive d F̄ −1
V (x )
dx as

dF̄−1
V (x )

dx
=

1
F̄ ′V (F̄−1

V (x ))
< 0,

where the last inequality holds because F̄V (x ) is decreasing in x . We can derive d2 F̄ −1
V (x )

dx 2 as

d2F̄−1
V (x )

dx2 = −
F̄ ′′V (F̄−1

V (x ))

(F̄ ′V (F̄−1
V (x )))3 < 0,

where the last inequality holds because that F̄V (x ) is decreasing in x and concave in x (since FV (x )
is convex in x ). Hence, we have R̃′′(x ) < 0, or R̃ (x ) is concave in x .

Now we complete the proof. !

Proof of Theorem 2. Our main idea is to show that the ISP can always increase its revenue by
adding an inferior service class over the optimal class pricing for any given Na . To facilitate the
analysis, we use the equivalent formulation of Problem 2 used in the proof of Theorem 1. Note that
in this formulation we only need to determine the optimal quality guarantee and the capacity for
each active service class, as the optimal price p can be calculated base on them via Equation (2). Let
q, k denote the optimal quality guarantee and the capacity, respectively. Now suppose we divide
the capacity of class 1, i.e., k1C (which is the class with the lowest quality guarantee), to form two
new service classes, where the "rst one is with quality guarantee q1 and capacity k1 − ka , and the
second one is with quality guarantee qa > q1 and capacity kaC < k1C . The revenue after capacity
dividing is

γ̂ (qa ,ka ) !
Na∑

i=2
[ρ (qi ) − ρ (qi−1)]R̃(θi ) + ρ (qa )R̃ (θa ) + [ρ (q1) − ρ (qa )]R̃

(
θ2 +

∆(q1,k1 − ka )

ρ (q1)

)
,

where θi =
∑N

!=i ∆(q!,k! )/ρ (q! ), ∀i ≥ 2, θa = θ2 + ∆(q1,k1 − ka )/ρ (q1) + ∆(qa ,ka )/ρ (qa ), and
R̃ (x ) = xF̄−1

V (x ). Then one can observe that γ̂ (qa , 0) = γ (q, k) is the maximum revenue be-
fore capacity dividing. We next show that, given qa > q1, there exists a ka ∈ (0,k1) such that
the revenue after capacity dividing become larger, i.e., γ̂ (qa , 0) < γ̂ (qa ,ka ). It su$ces to show
limka→0+

∂γ̂ (qa,ka )
∂ka

> 0. Now let us prove it.
Note that the congestion function is neutral to multiplexing, i.e., ∆(qi ,ki − k ′i ) + ∆(qi ,k ′i ) =

∆(qi ,ki ). This implies that ∆(qi ,ki ) is a linear function of ki . In particular, the implied demand
function can be written in form of ∆(qi ,ki ) = Ckiζ (qi ), where ζ (qi ) : R+ → R+ is a decreasing
function of qi . Then we have
∂γ̂ (qa ,ka )

∂ka
= ρ (qa )R̃′(θa )

(
Cζ (qa )

ρ (qa )
− Cζ (q1)

ρ (q1)

)
− (ρ (q1) − ρ (qa ))R̃′

(
θ2 +

∆(q1,k1 − ka )

ρ (q1)

)
Cζ (q1)

ρ (q1).

Note that

lim
ka→0+

θa = lim
ka→0+

[
θ2 +

∆(q1,k1 − ka )

ρ (q1)
+

∆(qa ,ka )

ρ (qa )

]
= θ2 +

∆(q1,k1)

ρ (q1)
= θ1,

lim
ka→0+

[
θ2 +

∆(q1,k1 − ka )

ρ (q1)

]
= θ2 +

∆(q1,k1)

ρ (q1)
= θ1.
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Then it follows that

lim
ka→0+

∂γ̂ (qa ,ka )

∂ka
= ρ (qa )R̃′(θ1)

(
Cζ (qa )

ρ (qa )
− Cζ (q1)

ρ (q1)

)
− [ρ (q1) − ρ (qa )]R̃′ (θ1)

Cζ (q1)

ρ (q1)

= CR̃′(θ1) [ζ (qa ) − ζ (q1)] .

Observe that ζ (qa ) > ζ (q1) (since qa > q1). Hence, to show limka→0+
∂γ̂ (qa,ka )

∂ka
> 0, we only need

to show R̃′(θ1) > 0.
Note that q, k are optimal solutions. By applying the KKT conditions, we know that q, k must

satisfy ∂γ (q,k)
∂qNa

= 0. The physical intuition is that the ISP has no incentives the adjust the quality
guarantee qNa . By expanding this equation, we have

∑

i ∈Na

[ρ (qi ) − ρ (qi−1)]R̃′(θi )
∂θi

∂qNa

+ ρ ′(qNa )R̃ (θa ) = 0.

Note that
∂θi

∂qNa

=
∂∆(qNa ,kNa )/ρ (qNa )

∂kNa

= C
ζ (qNa )

ρ (qNa )
> 0.

Hence, ∑i ∈Na [ρ (qi ) − ρ (qi−1)]R̃′(θi ) > 0. Similarly, by applying the KKT conditions, we know that
q, k must satisfy the equation ∂γ (q,k)

∂k1
=

∂γ (q,k)
∂kNa

also. The physical intuition is that the ISP has no
incentives to change the capacity allocation between class 1 and class Na . By expanding this equa-
tion, we have

ρ (q1)R̃′ (θ1)
∂θ1
∂k1
=

∑

i ∈Na

[ρ (qi ) − ρ (qi−1)]R̃′(θi )
∂θi

∂kNa .

Note that
∂θi

∂kNa

=
∂∆(qNa ,kNa )/ρ (qNa )

∂kNa

= C
ζ (qNa )

ρ (qNa )
.

Hence, the sign of R̃′ (θ1) is the same as ∑
i ∈Na [ρ (qi ) − ρ (qi−1)]R̃′(θi ) > 0. Thus, we complete the

proof. !

Proof of Theorem 3. We prove this theorem by analyzing the KKT conditions on the equiv-
alent formulation of Problem 2, which is used in the proof of Theorem 1. First we show that the
constraint θ1 ≤ FV (v̂ ) cannot hold in equality θ1 = FV (v̂ ) in the optimal pricing. This is because
that θ1 = FV (v̂ ) implies that the price of class 1 is p1 = 0. Intuitively, this cannot be optimal be-
cause the ISP invests a positive capacity k1 while obtaining zero revenue from it (we will formally
prove the maximum revenue increases with respect to the capacity in Theorem 4). Hence, it is only
possible to have θ1 < FV (v̂ ) under the optimal pricing. Based on it, by applying KKT conditions,
we can see that q, k are optimal only if they satisfy



∂γ (q, k)

∂qi
= 0, ∀i ∈ Na ,

∂γ (q, k)

∂ki
=
∂γ (q, k)

∂k1
, ∀i ∈ Na .

The equation ∂γ (q,k)
∂qi

= 0 means that the ISP has no incentives to adjust the quality guarantee. By
expanding it, we have

i∑

j=1
[ρ (qj ) − ρ (qj−1)]R̃′(θ j )

∂∆(qi ,ki )/ρ (qi )

∂qi
+ ρ ′(qi )

[
R̃ (θi ) − R̃ (θi+1)

]
= 0.
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Then, by rearranging terms, we have that [θi+1F̄−1
V (θi+1) − θi F̄−1

V (θi )] 1
Bi
=

∑i
j=1 Aj . The equation

∂γ (q,k)
∂ki

=
∂γ (q,k)
∂k1
,∀i ∈ Na , means that the ISP has no incentives to adjust the capacity for each

service class. By expanding this equation, we have
i∑

j=1
[ρ (qj ) − ρ (qj−1)]R̃′(θ j )

∂∆(qi ,ki )/ρ (qi )

∂ki
= [ρ (q1) − ρ (qi )]R̃′(θ1)

∂∆(q1,k1)/ρ (q1)

∂k1.

Then, by rearranging terms, we have that Ci
∑i

j=1 Aj = C1A1. !

Proof of Corollary 3. By applying Theorem 3, we obtain the necessary optimality condition
for q. Now we prove its uniqueness. Our objective to show that ϵF̄ = ϵρ/ϵ∆ − 1 has a unique so-
lution q. It su$ces to show that ϵF̄ − ϵρ/ϵ∆ is increasing in q. Note that ϵF̄ is decreasing in p, and
that p = F̄−1

V (∆(q, 1)/ρ (q)) is decreasing in q. Hence, ϵF̄ is increasing in q. Note that ϵρ is negative
and non-increasing in q, and that ϵ∆ is positive and non-increasing. Thus, ϵρ/ϵ∆ is non-increasing
in q. Thus, we complete the proof. !

Proof of Theorem 4. We "rst prove the increasing property of the maximum revenue in ca-
pacityC . To facilitate the analysis, we "rst transform Problem 2. As we have shown in the proof of
Lemma 2, Vi = [pi+1ρ (qi+1) − piρ (qi )]/[ρ (qi+1) − ρ (qi )],∀i . By solving these equations, we have
pi =

1
ρ (qi )

∑i
j=1[ρ (qj ) − ρ (qj−1)]Vj−1. By applying this result, we can transform Problem 2 into the

following equivalent form:
maximize

q,k,V

∑

i ∈Na

[ρ (qi ) − ρ (qi−1)]Vi−1F̄V (Vi−1)

subject to F̄V (Vi−1) =
N∑

j=i
∆(qj ,kj )/ρ (qj ), ∀i ∈ Na

Vi > Vi−1, ∀i ∈ Na .

q ∈ RNa
+ , k ∈ K ,V ∈ VNa .

Now the decision variables are the quality guarantee q, the capacity k, and the market segmen-
tation V ! (Vi−1 : i ∈ Na ). Given q, k, and V, we next show how to increase the revenue if we in-
crease the capacity by C̃ > 0. We invest all capacity increased, i.e., C̃ , to class Na . Then, the capacity
dividing vector becomes k̃i =

ki C
C+C̃
,∀i = 1, . . . ,Na − 1 and k̃Na =

kNa C+C̃
C+C̃

. As the capacity for class
Na increases, we can reduceqNa such thatVNa−1 remains unchanged, i.e., choosing q̃Na < qNa such
that ∆(q̃Na , k̃Na )/ρ (q̃Na ) = ∆(qNa ,kNa )/ρ (qNa ). Then, it follows that if (q, k,V) is an optimal so-
lution before increasing the capacity, then the tuple (q̃, k̃,V), where q̃ = (q1, . . . ,qNa−1, q̃Na ) is an
optimal solution after we increase the capacity. Then, the revenue improvement after increasing
capacity is (ρ (q̃Na ) − ρ (qNa ))VNa−1F̄V (VNa−1) > 0. Hence, the maximum revenue increases with
respect to the capacity.

Now we show that limC→∞ R∗Na
= maxp pF̄ (p). First, observe thatVi F̄V (Vi ) ≤ maxp pF̄ (p). Note

that ρ (qi ) > ρ (qi−1). Then, it follows that
∑

i ∈Na

[ρ (qi ) − ρ (qi−1)]Vi−1F̄V (Vi−1) ≤
∑

i ∈Na

[ρ (qi ) − ρ (qi−1)] max
p

pF̄ (p)

= ρ (qNa ) max
p

pF̄ (p) < max
p

pF̄ (p)

This implies the following upper bound:
lim

C→∞
R∗Na
≤ max

p
pF̄ (p).
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On the other hand, it is easy to observe that limC→∞ R∗1 = maxp pF̄ (p) and R∗Na
≥ R∗1. This implies

the following lower bound:
lim

C→∞
R∗Na
≥ max

p
pF̄ (p).

Hence, limC→∞ R∗Na
= maxp pF̄ (p). !

Proof of Theorem 5. It is straightforward to see that increasing the maximum number of
service classes N does not reduce the maximum revenue. Note that Theorem 4 does not depend
on the number of active classes. Thus, the maximum revenue is maxp pF̄ (p). !

Proof of Theorem 6. The optimal solution (p, q, k) must satisfy the following KKT conditions:



∂R (p, q, k)

∂pi
+

∑

j ∈Na

uj
∂D j (p, q)

∂pi
= 0,∀i ∈ Na

∂R (p, q, k)

∂qi
+

∑

j ∈Na

uj

[
∂D j (p, q)

∂qi
− ∂∆(qj ,kj )

∂qi

]
= 0,∀i ∈ Na

uNa+1
∂
∑

j ∈Na kj

∂ki
−

∑

j ∈Na

uj
∂∆(qj ,kj )

∂ki
= 0,∀i ∈ Na

ui ∈ R,∀i = 1, . . . ,Na + 1

By eliminating the variablesu1, . . . ,uNa , we can simplify the above equations into the follow form:



∂R

∂pi
+ uNa+1

∑

j ∈Na

∂D j (p, q)

∂pi

/
∂∆(qj ,kj )

∂kj
= 0,∀i ∈ Na

∂R

∂qi
+ uNa+1

∑

j ∈Na

∂D j (p, q)

∂qi

/
∂∆(qj ,kj )

∂kj
− uNa+1

∂∆(qj ,kj )

∂qi

/
∂∆(qj ,kj )

∂kj
= 0,∀i ∈ Na

uNa+1 ∈ R
Note that

∂G

∂qi
=

∑

j ∈Na

∂D j (p, q)

∂qi

/
∂∆(qj ,kj )

∂kj
− Di (p, q)

∂2∆(qi ,ki )

∂qi∂ki

/ (
∂∆(qi ,ki )

∂ki

)2
.

Then it follows that


∂R (p, q, k)

∂pi
+ uNa+1

∂G

∂pi
= 0, ∀i ∈ Na

∂R (p, q, k)

∂qi
+ uNa+1

(
∂G

∂qi
− Hi

)
= 0, ∀i ∈ Na .

By eliminating the variable uNa+1, we reach the conclusion. !

Proofs of Theorems 7, 8 and 9. It is easy to verify that (ξp, q, k) is a feasible solution after
scaling if and only if (p, q, k) is a feasible solution before scaling. Note that under solution (ξp, q, k)
for the scaled problem, the market segment will also scale by ξ , as compared to the problem be-
fore scaling under solution (p, q, k). Hence, the demand for each service class Di (p, q) remains
unchanged. We then obtain that the revenue will be scaled by ξ . This implies that if (ξp, q, k) op-
timal after scaling if and only if (p, q, k) is optimal before scaling. Thus we reach the conclusion
for Theorem 7. Similarly, we can prove Theorems 8 and 9. !
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9 CONCLUSION
In this article, we propose an application-driven pricing scheme as a potential business model for
the future Internet. It provides “pay as your service needs” %exibility so that content providers
can %exibly choose particular service classes with various quality guarantees and prices for their
applications. This pricing scheme can be bene"cial to the entire Internet ecosystem since ISPs can
increase revenues, CPs can deliver their contents with required quality guarantee, and end-users
can improve their quality of experience. Our analytical and numerical investigations reveal that
our scheme can signi"cantly (by as high as over 20%) increase an ISP’s revenue compared with
the traditional single-class pricing, especially when: the ISP’s capacity is limited; the applications
are neutral to multiplexing; the reservation prices of applications are not very low; the number of
CPs with strict quality requirement is moderately small.
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