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In recent years, we have witnessed a growing trend for online service companies to o!er “bundling sales”
to increase revenue. Bundling sale means that a company groups a set of products/services and charges
this bundle at a "xed price, which is usually less than the total price of individual items in the bundle. In
this work, our aim is to understand the underlying dynamics of bundling, particularly what is the optimal
bundling sale strategy and under what situations it will be more attractive than the separate sales. We focus
on online service markets that exhibit network e!ects. We formulate mathematical models to capture the
interactions between buyers and sellers, analyze the market equilibrium and its stability, and provide an
optimization framework to determine the optimal sale strategy for a service provider. We analyze the impact
of various factors on the pro"tability of bundling, including the network e!ects, operating costs, and variance
and correlation of customers’ valuations toward these services. We show that bundling is more pro"table
when the variance of customers’ valuations and the operational cost of the services are small. In addition,
a positive network e!ect and a negative correlation among customers’ valuation on services increase the
pro"tability of bundling, whereas the heterogeneity of services and the asymmetry of operating costs reduce
its advantage.
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1 INTRODUCTION
As the economy becomes more global and competitive, it is becoming more important for online
service companies to "nd new ways to increase their revenue. One way to achieve this is via
bundling service. Bundling service (or bundling sale) means that companies group a set of their
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Table 1. Example of Bundling Sales

Service A Service B Bundle
Customer 1 $5 $10 $15
Customer 2 $10 $5 $15

products/services and use a single price to sell these products/services. Usually, the price of this
bundling service is less than the total price of individual items. For online service markets, services
are provided over the Internet infrastructure. Typical services include instant messaging, online
social networks, online games, online recommendation systems, and so forth. Companies usually
want to expand the service scale so as to increase their market share. Although most online service
providers do not charge ordinary services, they do charge users for premium services. For example,
the largest movie recommendation network, IMDb, has an “IMDbPro” session where premium
services (“Get informed,” “Get connected,” and “Get discovered”) are provided to paid users only.
These premium services are often provided in a bundling manner. For example, customers are
not allowed to buy these three “Get” services separately, but they have to pay one single price to
obtain the premium services as a whole. In addition, for online services in telecommunications,
ISPs often bundle broadband access, VoIP, and TV together with a single price (also called the triple
play). Another example is that Microsoft bundles all software in O$ce as a suite (including Word,
PowerPoint, Excel, Access, etc.) in the O$ce365 online service, which has been a great commercial
success. Although the bundling sale strategy is common for online service markets, researchers
have limited understanding of the underlying rationales and dynamics.

There are many reasons service providers o!er bundling sales. An appealing reason is to reduce
cost. Online services usually share the same network or storage infrastructure, and therefore the
cost to provide an extra service on the same infrastructure is often marginal. Another reason is
that by bundling, service providers can reduce the variance of customers’ reservation prices on
the services, thereby increasing the revenue of the product. Here, a customer’s reservation price
refers to a value such that she will purchase the service if and only if its price is no higher than
this value. For example, if customer 1’s reservation price on service A is $5, and if the sale price
of service A is less than or equal to $5, then customer 1 will subscribe to this type of service. Note
that di!erent customers have di!erent reservation prices toward each service. In Table 1, we use
a simple example to illustrate this concept. Suppose that a company sells two services (A and B)
to two customers. The second and third columns depict both customers’ reservation prices on the
services. Assume a customer’s reservation price of the bundle is the sum of reservation prices
of individual services, and the two customers have the same reservation price on the bundle. If
the services are sold separately, they can be priced at $5 and attract both customers (hence, the
revenue is $20), or they can be priced at $10 and attract only one customer for each service (hence,
the revenue is also $20). In contrast, if services are bundled and priced at $15, then both customers
will purchase the bundled service, and the total revenue is $30. This shows that bundling can
reduce the variance of customers’ reservation prices on these services, and thus the company can
increase its revenue.

One important feature of online services is the “network e!ects.” This refers to the market e!ect
at the customer’s side where a particular customer’s interest on a service is in%uenced by other
customers’ purchasing decisions. For example, in online social networks (e.g., Facebook, LinkedIn,
Twitter, IMDb), when the number of membership increases, the bene"t that each member receives
also increases due to a higher degree of interaction and e$ciency of information spreading, and
this causes more users to subscribe to the service. This is a prime example for an online service
market in which a large population size indicates a positive in%uence on each customer’s valuation,
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and we call this the positive network e!ects.1 As we will show, this e!ect has a major impact on the
choice of pricing strategies for online service providers.

Several existing research works [1, 21, 22, 26] discussed bundling strategies, but most of them
focused on non-digital goods or services and were mainly based on graphical explanations, case
studies, or algorithmic approaches. Very limited work focused on formal mathematical models to
provide deeper insights. Furthermore, most existing works did not consider the impact of network
e!ects, so they can only provide limited insights for the online service market. In this article, we
aim to answer the following questions:
• Is it more pro"table for online service providers to bundle a number of services and sell

them at a single price?
• What are the factors that impact the optimal pricing strategy with network e!ects?

Our contributions are the following:
• We provide a mathematical model that captures the online service market with network

e!ects.
• We analyze the market equilibrium and formulate an optimization framework to determine

the optimal sale strategy.
• We discuss the impact of di!erent factors on the pro"tability of the bundling strategy. We

show that bundling is more pro"table when the variance of customers’ valuations and
the operational cost of the services are small. In addition, a positive network e!ect and
a negative correlation among customers’ valuation on services increase the pro"tability
of bundling, whereas the heterogeneity of services and the asymmetry of operating costs
reduce its advantage.

Our article is organized as follows. Section 2 presents a general model to capture customers’
purchasing decision and the service provider’s pro"t. Section 3 focuses on the online service mar-
ket, analyzes the market equilibrium and its stability, and presents an optimization framework
to capture the optimal sale strategies. In Sections 4 and 5, we analyze the role of network e!ects
and operating cost on the pro"tability of bundling. In Sections 6 and 7, we discuss the role of cus-
tomers’ valuations toward the services on the pro"tability of bundling. In particular, Sections 6 and
7 discuss the variance and the correlation of the valuations, respectively. Section 8 states related
work. Section 9 concludes and highlights several limitations on the assumptions of our modeling
approach.

2 GENERAL MODEL
We present a general model to characterize the Internet service market, as well as how customers
and the service provider make their purchasing/pricing decisions. Let us "rst provide some formal
de"nitions on sale strategies.

De"nition 2.1. Separate sale is a strategy by which a service provider sells each individual service
Si at price pi . Customers can choose to purchase such service or not.

De"nition 2.2. Bundling sale is a strategy by which a service provider o!ers to sell a set of ser-
vices as a single unit. The bundling service is priced at pb . Customers can only choose to purchase
the whole bundling service or not.

1There is also a negative network e!ect if a large number of users causes congestion. However, congestion is a physical-level
infrastructural problem but is not the focus of our article on the application-level pricing problem.
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2.1 Utility Functions of Separate Sales
Customers’ utility. A customer decides whether to purchase the service(s) provided by the ser-
vice provider. We consider a single service provider and a continuum of customers with di!erent
reservation prices on the service. The customers’ heterogeneity in reservation prices is represented
by their types—for instance, each in"nitesimal customer is characterized by a one-dimensional type
parameter θ ∈ Θ, which has a continuous distribution over Θ. The customer’s utility function de-
scribes her purchasing behavior: a customer subscribes to a service if and only if she achieves a
non-negative utility. This utility function depends on (1) the customer’s reservation price on the
service and (2) the sale price pi of the service. We assume customer θ ’s reservation price on Si is
vi (θ )ρi (δi ), where vi (θ ) is her intrinsic valuation on Si , δi is the fraction of customers that sub-
scribe to Si , and ρi (δi ) is a non-decreasing function in δi representing the network e!ects. We
choose the multiplication form to represent the reservation price for the following two reasons.
First, this form captures the fact that a customer with a higher intrinsic valuation is more sensitive
to the network e!ects. Consider a user of the “triple-play” telephone service. If the user has a high
“intrinsic value” for this service (or potentially a heavy user), then he would expect that many
users are also using the telephone, as the valuation of using this service highly depends on how
many other users can be reached by using the telephone service. In contrast, a light user may not
be impacted much by the number of other users who use the telephone service. Second, this form
represents that the reservation price is zero if no one uses it (or ρi (δi ) = 0). Consider the telephone
user again. If he is the only user of telephone, then he cannot make phone calls to anyone, and thus
the valuation for him is zero. We note that another commonly used model is in the additive form
(e.g., vi (θ ) + ρi (δi )). One can easily verify that an additive form cannot represent heterogeneous
sensitivity of network e!ects on users, nor can it represent a zero valuation of the service if no
one else uses it. We de"ne ui (θ ) as customer θ ’s utility on service Si :

ui (θ ) = vi (θ )ρi (δi ) − pi . (1)
Customers of di!erent types have di!erent intrinsic valuationsvi (θ ) on Si , and we assumevi (θ )

has a continuous distribution in θ over Θ. We further denote f (θ ) as the density function of θ and
de"ne

Hi (x ) !
∫

θ ∈Θ
1{vi (θ )≤x } f (θ )dθ (2)

as the cumulative distribution function of vi (θ )—that is, given any value x , Hi (x ) represents the
fraction of customers whose intrinsic valuation on service Si is less than or equal to x .
Service provider’s utility. The service provider determines whether it should provide a separate
or bundling sale and proposes the price(s) for the service(s). We model the service provider’s util-
ity as its total pro"t, and we will use “utility” and “pro"t” interchangeably in later analysis. We
consider two factors that impact the service provider’s utility: (1) the service fee received from
customers, which we model as piδi , (2) and the variable operating cost,2 which we model asmiδi .
Here,mi represents the per-unit variable cost,3 and we call it the unit operating cost or the unit cost
for short. We de"ne

Ui = (pi −mi )δi (3)

2Variable cost and "xed cost consist of the total cost. We consider the variable cost only because the "xed cost only
represents a linear shift on the utility and does not a!ect our conclusion.
3Some existing literature uses the term marginal cost to represent this concept. In fact, if the marginal cost is a constant,
its value is equal to the per-unit variable cost that we de"ne here.
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as the service provider’s utility on service Si . Suppose that we have services S1, S2, . . . , SI . Then
the service provider’s utility from all separate sale services is

Us =

I∑

i=1
(pi −mi )δi . (4)

2.2 Utility Functions of the Bundling Sale
In the previous section, we expressed the utilities of customers and service provider when ser-
vices are sold individually. We now consider the bundling strategy that combines all the services
S1, S2, . . . , SI . Customers often view the bundled services as a whole. We use the notation b to
denote the bundling service Sb . For consistency, we still assume that the network e!ect function
impacts the utilities of the bundle in a multiplication manner. By substituting b for i, we denote
the corresponding notations for Sb . In particular, ub (θ ), δb , and pb represent customer θ ’s utility
on purchasing Sb , the fraction of users purchasing Sb , and the price charged for Sb , respectively.
We have the customer’s and the service provider’s utility functions as

ub (θ ) = !
"

I∑

i=1
vi (θ )ρi (δb ) + ∆v#$ − pb and Ub = (pb −mb )δb , (5)

wherevi (θ )ρi (δb ) is the valuation of the service i . The term ∆v represents the extra valuation from
the bundle composition compared to total valuation of separate services. A positive ∆v means
that the services are complementary to each other, or that a service will have a higher value if
it is bought together with other services. Similarly, a negative ∆v indicates that the services are
substitutable. Now, customer θ ’s valuation of the bundle is ∑I

i=1vi (θ )ρi (δb ) + ∆v . Here we assume
that the network e!ect function ρi is the same for service i whether it is bundled or not. Moreover,
mb denotes the unit cost for Sb . In particular, we assumemb =

∑I
i=1 βimi ,where βi ∈ [0, 1] denotes

the scaling factors of the operating cost. In fact, βi ≤ 1 implies that bundling can reduce the unit
costs. For example, if we bundle a number of bandwidth-related functionalities in online game
services, then the services can rely on the same infrastructure and save cost. In addition, we de"ne
Fb (·;δb ) as the cumulative distribution function of customers’ valuation for the bundle when the
fraction of users who purchase the bundle is δb , where

Fb (x ;δb ) !
∫

θ ∈Θ
1{∑I

i=1 vi (θ )ρi (δb )+∆v≤x } f (θ )dθ . (6)

2.3 Market Equilibrium
Due to the network e!ects, and that customers subscribe to services at di!erent times, the preced-
ing model is in fact a dynamic system. We use the following de"nition to describe the steady state
of the system.

De"nition 2.3. Given price pi , δi > 0 is a market equilibrium if
∫

θ ∈Θ
1{ui (θ )≥0} f (θ )dδ = δi , (7)

where f (θ ) is the density function of θ , for i ∈ {1, . . . , I ,b}.
This de"nition states that for any given customer’s utility ui (θ ), if exactly δi fraction of cus-

tomers have a non-negative utility to purchase Si , then δi is a market equilibrium. This represents
the fraction of customers who purchase the service Si when the system reaches a steady state. For
instance, given this fraction, no customer has an incentive to change her decision. In the following,
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our analysis is based on this equilibrium. We will discuss pricing strategies under such a scenario.
Unless we state otherwise, we will use δi to denote the equilibrium in the remainder of this article.

Note that when δi = 0, it may also be a steady state with no user. But for this case, the service is
closed and there is no real market. Thus, we exclude δi = 0 from the de"nition of the equilibrium.
Now let us characterize the value of δi .

Lemma 2.4. Assume ρi (δi ) > 0 for any δi > 0 (i ∈ {1, . . . , I }). For separate sale, the value δi is an
equilibrium if and only if it satis"es δi = 1 − Hi ( pi

ρi (δi ) ), where Hi (·) is the cumulative distribution
function of vi (θ ). For bundling sale, the value δb is an equilibrium if and only if it satis"es δb =
1 − Fb (pb ;δb ).

Proof. Please refer to the appendix. !

The preceding lemma gives an implicit form to characterize and compute the equilibrium. In
later analysis, it is more convenient to use the following corollary.

Corollary 2.5. Assume Hi (·) is a strictly increasing function in [0,Vi ], and ρi (δi ) > 0 for any
δi > 0. For separate sale, given any price pi , if there exists an equilibrium δi , then it is a solution to
the following equation:

pi = Pi (δi ) !ρi (δi )H−1
i (1 − δi ), (8)

where H−1
i (·) is the inverse function of Hi (·) de"ned in [0, 1]. For bundling sale, given any price pb , if

there exists an equilibrium δb , then it is a solution to the following equation:

pb = Pb (δb ) ! F−1
b (1 − δb ;δb ), (9)

where F−1
b (x ;δb ) is the inverse function of Fb (x ;δb ) with respect to x de"ned in x ∈ [0, 1].

Until now, we have set up a general model to capture the customers’ and the service provider’s
utilities. Based on this model, we proceed to analyze the properties of the market.

3 ONLINE SERVICE MARKET: EQUILIBRIUM AND OPTIMAL SALE STRATEGY
In this section, we study an online service market. We "rst model the network e!ects and the
users’ valuation distribution, and then we analyze the market equilibrium. Last, we establish a
framework to determine the optimal sale strategies.

3.1 Network E!ects and Utility Functions
We model the network e!ects in the form of ρi (δi ) = δαi

i , whereαi ∈ [0,+∞) represents the shape
of the network e!ect function and the degree of network e!ects. A larger αi means that the network
e!ect function is more convex, which indicates stronger positive network e!ects. As discussed in
Section 2.2, we assume that bundling does not change the network e!ects for each included service,
which means that the parameters of network e!ects are still αi when the service Si is bundled.

We use the preceding form for a number of reasons. First, ui (θ ) = 0 if δi = 0—for instance, no
customer has an incentive to enter an empty market. This is a common fact in many interactive
applications, such as online social network or recommendation systems, and this also shows that
it is important for a service provider to promote the service and have some initial users when
launching the service. Second, δαi

i is increasing in δi , so it represents a positive network e!ect.
Last, but not least, this is an iso-elasticity function that allows us to use a single parameter αi to
model the elasticity, or the shape of the network e!ects. Large αi (or a convex function) means that
given a small δi , δαi

i is small and many users will lose their interest, so a large start-up population
is necessary. However, if αi is small (or a concave function), then δαi

i is large given a moderate or
small δi . This means that a small number of initial users is su$cient to induce a large network

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 31. Publication date: May 2019.



On the Profitability of Bundling Sale Strategy for Online Service Markets 31:7

e!ect, and later on, the service can potentially attract many more customers. Note that our model
generalizes the linear network e!ect models in many existing works [9, 14, 24, 25]; in fact, when
αi = 1, our model exactly represents the linear network e!ects.

Now, service Si is uniquely de"ned by (1) the users’ maximal intrinsic valuation Vi , (2) the
unit operating cost mi , and (3) the network e!ect parameter αi . In later analysis, we use a tuple
Si = 〈Vi ,mi ,αi 〉, i = 1, 2 to denote a separate sale service. Based on the preceding discussion,
customer θ ’s utility and the service provider’s utility on service Si are

ui (θ ) = vi (θ )δαi
i − pi , Ui = (pi −mi )δi (10)

and the service provider’s utility on all separate sales is

Us =

2∑

i=1
Ui =

2∑

i=1
(pi −mi )δi . (11)

For the bundling sale, the utility functions are

ub (θ ) = v1 (θ )δα1
b +v2 (θ )δα2

b + ∆v − pb , Ub = !
"pb −

2∑

i=1
βimi#$δb , (12)

respectively, where βi is the scaling factor of the operating cost, de"ned in the previous section.

3.2 Distributions of Users’ Valuations
Recall that we characterize the valuation of an customer θ on the bundle as ∑I

i=1vi (θ )ρi (δb ) + ∆v ,
given the customer intrinsic valuation on each individual service Si as vi (θ ). Let us "rst assume
the customers’ intrinsic valuation on di!erent services are independent. Note that in practice,
a user’s valuation for di!erent services cannot be entirely independent. The independence case
serves as a baseline that allows us to focus on other factors (e.g., network e!ects). With the inde-
pendence assumption, if we let Hi (x ) and FB (x ;δb ) be the cumulative distribution functions of
vi (θ ) and ∑I

i=1vi (θ )ρi (δb ), respectively, we have FB (x ;δb ) = (ρ1 (δb )H1 (x )) ⊗ (ρ2 (δb )H2 (x )) ⊗
· · · ⊗ (ρI (δb )HI (x )), where the convolution operation is de"ned by Hi (x ) ⊗ Hj (x ) =

∫
Hi (x −

t )dHj (t ).4 In Section 7, we will relax this assumption and consider the correlation among services.
Let Fb (x ;δb ) be the cumulative distribution of ∑I

i=1vi (θ )ρi (δb ) + ∆v . We have Fb (x ;δb ) =
FB (x − ∆v ;δb ). Namely, given ∆v , FB (x − ∆v ;δb ) is the fraction of users whose valuation for the
bundle is less than x . In what follows, we set ∆v = 0 and use Fb (x ;δb ) = FB (x − ∆v ;δb ) as the
baseline analysis. On the one hand, when the services are complementary (i.e., ∆v ≥ 0), the cu-
mulative distribution Fb (x ;δb ) = FB (x − ∆v ;δb ) is upper bounded by FB (x ;δb ). The “result 3” on
page 15 in Venkatesh and Kamakura [27]5 shows that if in this baseline analysis bundling achieves
a pro"t gain over the separate sale under a certain circumstance, then bundling can achieve at least
as good or even higher pro"t gain under the distribution Fb (x ;δb ). On the other hand, when the
services are substitutable (i.e., ∆v ≤ 0), Venkatesh and Kamakura [27] show that bundling is less
likely to be pro"table compared to our baseline distribution FB (x ;δb ). Correspondingly, we will
also use vb (θ ) =

∑I
i=1vi (θ ) as the baseline analysis in the remainder of this article.

We focus on bundling two services: S1 and S2. This model represents a wide range of bundling
strategy decisions, because any bundling of multiple services can be constructed by bundling
two services. For analytical tractability, we do not consider a general distribution of customers’

4This is a standard result in probability theory, and we omit its proof.
5Venkatesh and Kamakura [27] consider a similar model to ours and discuss the bundle of two items.
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Fig. 1. Cumulative distribution FB (x ;δb ),V1 = 2,V2 = 3, ρ1 (δb ) = ρ2 (δb ) = 1.

valuations represented by the abstractHi (x ) function6 but focus on some speci"c distributions. We
"rst consider the uniform distribution of customer’s intrinsic valuation, which is widely adopted in
economic literature. For example, throughout the work of Bakos and Brynjolfsson [2], uniform dis-
tribution is used to illustrate the pro"tability of bundling. In addition, in Section 2 of Matutes and
Regibeau [21] and Section 3 of Guérin et al. [14], the authors explicitly use an uniform distribution
to analyze bundling. Note that the uniform distribution cannot be “accurate” to capture a practical
valuation distribution. The choice of uniform distribution enables us to decouple the impact of
distribution from other important factors (e.g., operating cost, network e!ects). Furthermore, the
simple form of the uniform distribution helps us present our framework and clarify the key results.
Later in Section 6, we will extend our model to consider the Gaussian distribution of valuations
and discuss the impact of di!erent valuation distributions. In the following Sections 3, 4, and 5,
we consider the uniform distribution and de"ne the cumulative distribution of vi (θ ), i = 1,2 as

Hi (x ) =


0 if x < 0,
x/Vi if 0 ≤ x ≤ Vi ,
1 if x > Vi ,

(13)

where Vi (i = 1, 2) is the maximal intrinsic valuation of Si . Without loss of generality, we let
V1ρ1 (δb ) ≤ V2ρ2 (δb ), and we have the following lemma.

Lemma 3.1. The baseline distribution function FB (x ;δb ) is

FB (x ;δb ) =



0 if x < 0,
x2/(2V1ρ1 (δb )V2ρ2 (δb )) if 0 ≤ x ≤ V1ρ1 (δb ),
(2x −V1ρ1 (δb ))/(2V2ρ2 (δb )) if V1ρ1 (δb ) < x ≤ V2ρ2 (δb ),
1−(V1ρ1 (δb )+V2ρ2 (δb ))2/(2V1ρ1 (δb )V2ρ2 (δb )) if V2ρ2 (δb ) < x ≤ V1ρ1 (δb )+V2ρ2 (δb ),
1 if x > V1ρ1 (δb )+V2ρ2 (δb ).

Proof. The convolution operations on H1 (x )ρ1 (δb ) and H2 (x )ρ2 (δb ) directly lead to the
result. !

In Figure 1, we illustrate the shape of this distribution when ρ1 (δb ) = ρ2 (δb ) = 1. It shows that
FB (x ;δb ) increases more rapidly in the middle range of the interval; in other words, customers are
more concentrated to have a moderate valuation of the bundle, compared to the uniform distribu-
tion of separate services. This shows that bundling can reduce the variance of customers’ valuations,
and it is an important underlying reason to make bundling pro"table: if the service provider sets
a relatively low bundling price, then it will be easier for him to attract more customers because
there are a lot of customers with moderate valuations, and hence the service provider can make

6Although our model is general for any c.d.f. Hi (x ), analysis on general Hi (x ) is intractable. First, the c.d.f. of the valuation
of the bundle FB (x ; δb ) involves integration. Second, the optimal sale strategy in (15) is hard to analyze for a general Hi (x ).
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more pro"t. However, if the service provider only targets a small amount of customers with high
valuations, then bundling may not have an advantage. This is because FB (x ;δb ) indicates fewer
customers with high valuations compared to the uniform distribution.

3.3 Analysis of Market Equilibrium
In this section, we derive the conditions for the existence of the market equilibrium (or equilibria).

Theorem 3.2. Consider any service Si for separate sale, i ∈ {1, 2}. There exists a threshold p̄i =
Vi

αi+1 ( αi
αi+1 )αi such that for any given service price pi , we have

no. of equilibrium (or equilibria) =


0 if pi > p̄i ,
1 if pi = 0 or p̄i ,
2 if pi ∈ (0, p̄i ).

For the bundling sale Sb , there exists a threshold p̄b such that for any given service price pb , we have

no. of equilibrium (or equilibria)

= 0 if pb > p̄b ,
≥ 1 if pb = 0 or p̄b ,
≥ 2 if pb ∈ (0, p̄b ).

Proof. Please refer to the appendix. !

This theorem states that the condition for the existence of equilibrium is that the service price
cannot be too high; otherwise, no customer will purchase the service. We also note that if the
existence is guaranteed, then almost surely there are at least two equilibria for both the separate
sale and bundling sale. Next we discuss the stability property and explain why we are interested
in the largest equilibrium.
Discussion on stability. We say that an equilibrium δ is stable if there exists an ϵ > 0 such that
if at any time a non-equilibrium fraction δ ′ ∈ (δ − ϵ,δ + ϵ ) of customers subscribe to the service,
then the dynamic market will eventually reach the equilibrium δ . In fact, for the separate sale case,
if we consider the two equilibria δ 1

i < δ 2
i (i ∈ {1, 2}) for the preceding theorem, the only stable one

is δ 2
i . If the market is with δ 1

i − ϵ fraction of customers, then eventually all customers will leave
the market, and the service will be closed; if the market is with δ 1

i + ϵ fraction of customers, it will
not reach δ 1

i but will reach δ 2
i . Hence, δ 1

i is an unstable equilibrium. In contrast, if we consider the
market with any fraction δ 2′

i ∈ (δ 2
i − ϵ,δ 2

i + ϵ ) of users, the dynamic market will eventually reach
the equilibrium δ 2

i ; hence, δ 2
i is a stable equilibrium. For the bundling sale, we can show that the

largest equilibrium is stable, and in many cases it is the only stable equilibrium, as stated in the
appendix. Interested readers may also refer to the work of Easley and Kleinberg [9] for a detailed
discussion. In addition, the features of our equilibria are quite similar to discussions in the work
of Buragohain et al. [6]. In an online service market, a service provider will try his best to attract
potential users and operate the service with this stable equilibrium. Due to this stability property,
in later analysis we can safely focus our analysis for the largest equilibrium. We use max{δi (pi )}
to denote the maximal equilibrium for a given pi and de"ne max ∅ = 0 to capture an empty market
when the price is too high and the equilibrium does not exist.

3.4 An Optimization Framework for the Sale Strategies
In this section, we establish an optimization framework to determine the optimal sale strategies.
In natural way to model the optimal sales, the service provider aims to "nd a price (or prices) for
the separate or the bundling sale that maximizes its pro"t. For instance, the optimal separate or
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bundling sale Si , i ∈ {1, 2,b}, can be modeled as
max

pi
Ui (pi ) = (pi −mi ) max{δi (pi )},

subject to pi ≥ 0. (14)
However, this form is not easy to analyze, and we opt to change the decision variable from pi

to δi . We can transform (14) into the following problem7:
max

δi
Ui (δi ) = (Pi (δi ) −mi )δi ,

subject to 0 ≤ δi ≤ 1. (15)
For separate sales, according to (8) in Corollary 2.5, we have Pi (δi ) = ρi (δi )H−1

i (1 − δi ) for i ∈
{1, 2}. For bundling sale, we have Pb (δb ) = F−1

b (1 − δb ;δb ) from Easley and Kleinberg (9).
Since the preceding optimizations for i ∈ {1, 2,b} have continuous objective functions over a

compact set, they are guaranteed to have optimal solutions. By solving the preceding optimiza-
tions, we choose the largest equilibrium fraction for any given price, which is the stable one as we
desire.8 Until now, we have established an optimization framework to determine the optimal sale
strategies. In what follows, we useU ∗s andU ∗b to denote the maximal pro"t of the service provider
under the separate and bundling sales, respectively. If we could calculate U ∗s and U ∗b , then we can
determine whether bundling is more pro"table than separate sale by comparing their values. For-
mally, we have the following de"nition to capture the pro"t gain of bundling over the separate
sale.

De"nition 3.3. The pro"t gain ratioγ is the di!erence between the maximal pro"t of the bundling
sale and that of the separate sale, divided by maximal pro"t of the separate sale—that is,

γ = (U ∗b −U ∗s )/U ∗s . (16)
If γ > 0, it means the optimal bundling sale is more pro"table than the optimal separate sale and

vice versa. A larger value of γ indicates a larger pro"t gain by the bundling sale.
Note that this framework is critical for online service providers to evaluate their best sale strate-

gies, but we would also like to point out that it may not be easy to have general results at this stage,
particularly when a general αi induces di$culty in solving the optimizations. In the following sec-
tions, we explore the impact of various factors—that is, the network e!ect parameter αi and the
unit costmi on the pro"tability of bundling. Before we proceed, let us present the following lemma
that re%ects the scaling properties of the sales.

Lemma 3.4 (Scaling property). Let c be a positive number:

(1) If the equilibrium and pro"t of the optimal sale Si = 〈Vi ,mi ,αi 〉 are δ ∗i and U ∗i , then the
equilibrium and pro"t of the optimal sale S ′i = 〈cVi , cmi ,αi 〉 are δ ∗i and cU ∗i .

(2) If the pro"t gain ratio for bundling S1 = 〈V1,m1,α1〉 and S2 = 〈V2,m2,α2〉 isγ , then the pro"t
gain ratio for bundling S ′1 = 〈cV1, cm1,α1〉 and S ′2 = 〈cV2, cm2,α2〉 is also γ .

Applying the optimization framework, we can easily prove the preceding lemma. This lemma
points out that ifVi andmi increases (or decreases) by the same factor, then it does not impact the
equilibrium or the pro"tability of bundling. Hence, in later analysis, we can normalize V1 to be 1

7Although δi = 0 is excluded from Corollary 2.5, we can verify that if the solution to (14) is p∗i and max{δi (p∗i ) } = 0, then
the solution to (15) is 0.
8To see this, note if there exist δ 1

i < δ 2
i such that Pi (δ 1

i ) = Pi (δ 2
i ) ≥ mi , then obviously δ 1

i cannot be the solution to (15).
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and varyV2 so as to explore the whole design space. This simpli"es our analysis and does not lose
any generality.

4 IMPACT OF NETWORK EFFECTS
Up to now, we have formulated a framework to capture the pricing strategies and the market
equilibrium. In this and the following sections, we will discuss the impact of various factors on the
pro"tability of bundling. We "rst focus on the impact of network e!ects.

Many online service providers incur a much larger "xed cost compared to their variable cost. For
example, the telecommunication services in “triple-play” (broadband, telephone, TV) need a large
amount of investment to initially set up the hardware and infrastructure, but the cost is minimal
to support an additional user. In this section, we set the per-unit variable costmi = 0 and consider
Si = 〈Vi , 0,αi 〉. The service provider’s utility can be expressed as

Us = p1δ1 + p2δ2. (17)
This simpli"cation captures many features of a wide range of digital online services, and it allows
us to isolate di!erent factors to better understand the impact of network e!ects.

4.1 Homogeneous Network E!ects (α1 = α2 = α )

We start our discussion with the network e!ect functions ρ1 (δ ) = ρ2 (δ ) = δα . Such setting rep-
resents bundling two services with similar network e!ects. The following theorem shows that
bundling is more pro"table than separate sales under this setting.

Theorem 4.1. Consider S1 = 〈V1, 0,α〉 and S2 = 〈V2, 0,α〉. The pro"t gain ratio of the bundling sale
is γ > 0. In particular, when S1 = S2 = 〈V , 0,α〉, we have

(a) The optimal separate sale is

δ ∗i =
α + 1
α + 2 , p

∗
i =

V

α + 2

(α + 1
α + 2

)α
, U ∗s = 2δ ∗i p∗i .

(b) The optimal bundling sale is

δ ∗b =
2α + 2
2α + 3 , p

∗
b =

( 2α + 2
2α + 3

)α
√

2
2α + 3V , U

∗
b = δ ∗bp

∗
b .

(c) The pro"t gain ratio of the bundling sale is

γ (α ) =

√
2

4
(2α + 4)α+2

(2α + 3)α+3/2 − 1,

and it is an increasing function in α .

Proof. Please refer to the appendix. !

This theorem states that when α1 = α2, bundling is always more pro"table, and large α (i.e.,
a convex network e!ect function) indicates a high pro"t gain. Let us use examples to show how
bundling achieves a higher pro"t. In Figure 2, we consider S1 = 〈1, 0,α〉 and S2 = 〈V2, 0,α〉, where
we vary V2 ∈ {1, 2, 5} and α ∈ [0.1, 3.0]. We can see γ is always positive, and this validates our
results in Theorem 4.1. We can also observe that when there is a large gap between V1 andV2, the
pro"t gain ratio γ reduces. This is because the joint distribution HB (x ) becomes less concentrated
in the middle range, so bundling sale can attract fewer customers. Let us interpret these "ndings
in applications. For the bundle of “triple-play,” there exist positive network externalities for those
telecommunications services, which make bundling more pro"table. We can see that the network
e!ects play an important role in the success of the “triple-play.” In addition, the positive network
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Fig. 2. Impact of network e!ects, α1 = α2.

Fig. 3. Impact of network e!ects, α1 ! α2.

e!ects of Microsoft O$ce software increase the pro"tability of the O$ce bundle. To summarize,
we have the following observation.
Observation 1: The advantage of bundling becomes more apparent when the network e!ect func-
tion is more convex (i.e., larger α ); however, the heterogeneity in intrinsic valuation distributions
reduces the pro"t gain ratio of bundling.

4.2 Heterogeneous Network E!ects (α1 ! α2)

Now let us consider bundling two services with di!erent network e!ects. We "rst considerV1 = V2.
Let us show the impact of network e!ects on γ . In Figure 3(a), we consider S1 = 〈1, 0, 0.1〉 and

S2 = 〈1, 0,α2〉 where we vary α2 ∈ [0.1, 10.0]. When α2 increases from 0.1, γ also increases; this is
because a large network e!ect parameter has a positive impact on bundling. But when α2 is large,
γ begins to decrease and eventually becomes negative; this is because when α1 and α2 di!er a lot,
the optimal equilibria, δ ∗1 and δ ∗2 , are also di!erent. In such cases, it is not rational to bundle S1 and
S2, as the bundling sale needs to "nd a unique equilibrium δ ∗b , which is either far away from δ ∗1 or
far away from δ ∗2 , so bundling is not as pro"table as the separate sale.

Similar to the previous discussions, we also consider the services with di!erentVi . In Figure 3(b),
we consider S1 = 〈1, 0, 0.1〉 and S2 = 〈V2, 0,α2〉 where we vary α2 ∈ [0.1, 10] and V2 ∈ {1, 2, 5}. We
have similar observations: when α2 increases,γ "rst increases and then decreases. We also observe
that the in%ection point increases when V2 increases. This is because when V2 is large, service S2
has a major impact on the bundle, so the positive impact of α2 on bundling can be e!ective in a
larger range. To summarize, we have the following observation.
Observation 2: The heterogeneity of network e!ect functions reduces the pro"tability of
bundling.
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5 IMPACT OF OPERATING COST
In the previous section, we discussed the impact of network e!ects when the variable operating
cost equals zero. Although this approximation applies to many existing services, there might be
exceptions. For example, in online storage systems (e.g., Dropbox), the unit cost of storing the data
might not be negligible. In this section, we discuss how the operating cost impacts the pricing
strategies. Our discussions generalize the results we obtained in the previous section.

5.1 Impact of Operating Cost When α1 = α2 = α

We start our discussion when both services have the same network e!ect function (i.e., ρi (δi ) =
δα

i , i = 1, 2). We explore how our results in Theorem 4.1 can be generalized with non-zero unit
operating costs. According to Lemma 3.4, we can normalizeVi so that the e!ectiveness of the unit
cost is represented by mi

Vi
. We will discuss when m1 : m2 = V1 : V2 and m1 : m2 ! V1 : V2—that is,

symmetric and asymmetric unit costs, respectively (where the notationm1 : m2 is form1/m2). We
start from the symmetric case when m1 : m2 = V1 : V2.

Theorem 5.1. If α ≥ 1 andm1 : m2 = V1 : V2, then U ∗b ≥ U ∗s .

Proof. Please refer to the appendix. !

This theorem states that if S1 and S2 have the same convex network e!ect function and symmet-
ric unit costs, then the pro"t of the optimal bundling is no less than that of the optimal separate
sale. The key reason is that under this setting, the optimal separate sale always obtains an equilib-
rium larger than 1/2, so bundling can attract more customers. However, if αi < 1 and m is large,
then δ ∗i may be less than 1/2 and bundling may not be always pro"table. Let us use some ex-
amples to show this phenomenon. Since U ∗s may be zero, which leads γ = ∞, we opt to use the
pro"t gain, de"ned by ∆U ∗ = U ∗b −U ∗s , as the performance measure. In Figure 4(a), we consider
S1 = S2 = 〈1,m,α〉 and varym ∈ [0, 0.34], α ∈ {0.5, 1, 2}. We observe for any given α , ∆U ∗ reduces
with respect tom. This indicates that unit cost reduces the pro"t gain of bundling. When α = 1 or
2, bundling is always no worse than separate sale. This validates our result in Theorem 5.1. When
α = 0.5, ∆U ∗ can be negative when m is large. This indicates when the network e!ect functions
are concave, a large unit cost can make bundling less pro"table than separate sale.

Now let us consider the impact of asymmetric unit costs (i.e.,m1 : m2 ! V1 : V2). The asymmetry
induces di!erent equilibria, and bundling is not always more pro"table. It is not easy to quantify
the dominant domain of the bundling or the separate sales. We have the following theorem as a
su$cient condition to guarantee the pro"tability of bundling.

Theorem 5.2. Let δ ∗i , i = 1, 2 be equilibria of optimal separates sales S1 and S2. If β2
2−β2

δ ∗1 ≤ δ ∗2 ≤ δ ∗1
(where β2 is the scaling factor such thatmb = β1m1 + β2m2), then U ∗b > U ∗s .

Proof. Please refer to the appendix. !

This theorem states that if the optimal equilibria of separate sales are close, then bundling is
more pro"table. The underlying reason is similar to the previous analysis: if two services are highly
asymmetric and have very di!erent equilibria, then it is not feasible to "nd a suitable service price
for the bundle, because the corresponding equilibrium δb of the bundle is either too far from δ ∗1
or too far from δ ∗2 ; only when δ ∗1 and δ ∗2 are close can bundling be more pro"table. Let us use
examples to show how the asymmetry impacts the pro"t gain. In Figure 4(b), we consider S1 =
〈1, 0.14,α〉, S2 = 〈1,m2,α〉 and vary m2 ∈ [0, 0.34] and α ∈ {0.5, 1, 2}. We can observe that when
m2 increases, the pro"t gain ∆U ∗ decreases; when m2 is greatly larger than m1, then ∆U ∗ can be
negative for α = 1 or 2. Comparing with Figure 4(a) where ∆U ∗ is always non-negative for α = 1
or 2, we can see the asymmetry in unit costs further reduces the pro"tability of bundling.
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Fig. 4. Impact of unit cost, α1 = α2.

Fig. 5. Impact of unit cost, α1 ! α2.

To summarize, we have the following observation.
Observation 3: Under the symmetric operating costs and homogenous network e!ects, the oper-
ating costs reduce the pro"tability of bundling; in particular, when the network e!ect function is
concave, bundling may be less pro"table than separate sales. When the operating costs are asym-
metric, the pro"tability of bundling is further reduced.

5.2 Impact of Operating Cost When α1 ! α2

In this section, we study the impact of the unit operating cost when the two services have di!erent
network e!ect functions. In particular, we show how our result in Figure 3(a) changes with the
consideration of the unit cost. To be consistent with Figure 3(a), we evaluate the pro"t gain ratio
γ . In Figure 5, we consider bundling S1 = 〈1,m1, 0.1〉 and S2 = 〈1,m2,α2〉. We "x β1 = β2 = 1 and
varyα2 ∈ [0.1, 10.0]. We consider three cases ofγ :γ = γ1 ifm1 =m2 = 0,γ = γ2 ifm1 = 0,m2 = 0.1,
and γ = γ3 ifm1 = 0.1,m2 = 0. We "rst note γ3 < γ1. This means that a unit cost on S1 discourages
bundling, which is the same as our "nding in the previous section. Next we focus on the curve
of γ2 and have some interesting observations. We note γ2 > γ1 when α2 is moderately large. This
shows that the unit cost of S2 can sometimes increase the pro"tability of bundling. The reason is
this unit cost reduces δ ∗2 , so the gap between δ ∗1 and δ ∗2 reduces. Therefore, the unit cost reduces
the asymmetry of S1 and S2, so it increases the pro"tability of bundling. However, when α2 is
large, the unit cost further reduces δ ∗2 and its negative impact on the pro"t becomes dominant. To
summarize, we have the following observation.
Observation 4: The operating costs play a signi"cant role when network e!ect functions are
di!erent. In particular, a moderate operating cost on the service with larger αi may increase the
pro"tability of bundling.

6 IMPACT OF VARIANCE OF CUSTOMERS’ VALUATIONS
In the previous two sections, we discussed the impact of the network e!ects and the operation
cost on the pro"tability of bundling. Recall that one important reason for bundling to be more

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 31. Publication date: May 2019.



On the Profitability of Bundling Sale Strategy for Online Service Markets 31:15

pro"table is that it can reduce the variance of customers’ valuations. One natural and interesting
question is the impact of the variance itself with the existence of network e!ects, which we will
focus on in this section.

6.1 Gaussian Distribution of Customers’ Intrinsic Valuations
Recall that we have been using the uniform distribution to capture the distribution of customers’
intrinsic valuations. This simple form has also been repeatedly used in the literature, capturing
users’ heterogeneity with mathematical tractability. However, this simple form does not allow us
to capture how users’ intrinsic valuations are distributed. Thus, in this section, we use a Gauss-
ian distribution to capture users’ intrinsic valuations. We will show that although it brings some
analytical di$culty, it will reveal important insights on the impact of variance of customers’ valu-
ations. In addition, it will enable us to capture correlations among services, which we will demon-
strate later.

Formally, let the cumulative distribution of vi (θ ) be

Hi (x ) = Φ

(
x − µi

σi

)
, i = 1, 2, (18)

where Φ(·) is the cumulative distribution function of standard Gaussian distribution, and µi and
σ 2

i (σi ≥ 0) are the mean and variance, respectively. We emphasize that Gaussian distribution has
also been used in the literature to capture users’ valuation distribution. For example, Schmalensee
[26] argues that “ the frequency with which normal distributions arise in the social sciences makes
the Gaussian family a plausible choice to describe the distribution of tastes in a population of
buyers.”

In this section, we study the services with the same network e!ects (i.e., α1 = α2 = α ). In addi-
tion, we assume that customers’ intrinsic valuations for these two services are independent. Hence,
the cumulative distribution function of the sum of intrinsic valuations v1 (θ ) +v2 (θ ) is

HB (x ) !Φ
!))
"
x − (µ1 + µ2)
√
σ 2

1 + σ
2
2

#**
$
, (19)

which is also a Gaussian distribution with mean µb ! µ1 + µ2 and variance σ 2
b ! σ 2

1 + σ
2
2 .

We want to emphasize that our analytical framework applies for a wide range of real-
istic distributions, such as Gaussian/gamma/chi-square/Poisson distributions. This is because
the sums of independent Gaussian/gamma/chi-square/Poisson random variables still follow
Gaussian/gamma/chi-square/Poisson distributions. If we want to answer the question “whether
bundling is more pro"table than separate sale,” what we need to compare are the valuation dis-
tributions for separate services versus the valuation distribution for the bundle. Under a family
of distributions (e.g., Gaussian), the valuation distribution of the bundle has the same form as the
valuation distributions of separate services, so we only need to compare the parameters to answer
the aforementioned question.

Now we can derive the cumulative distribution function of customers’ valuations as FB (x ;δb ) =
HB (x )δα

b . Our previous optimization framework also applies here. Similarly, we use δi as the deci-
sion variable. Then the problem for choosing i ∈ {1, 2,b} can be formulated based on (15), simply
by instantiating Pi (δi ) as δα

i

(
Φ−1 (1 − δi )σi + µi

)
, or

max
δi

Ui (δi ) = (δα
i

(
Φ−1 (1 − δi )σi + µi

)
−mi )δi ,

subject to 0 ≤ δi ≤ 1. (20)
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Fig. 6. Impact of variance of customers’ valuations, homogeneous case.

Similar to the previous sections, we use a tuple Si = 〈(µi ,σ 2
i ),mi ,α〉 to denote an individual

service and Sb = 〈(µb ,σ 2
b ),mb ,α〉 to denote the bundle of services with the same network e!ects.

Moreover, the scaling property in Lemma 3.4 still holds.
Lemma 6.1 (Scaling property under the Gaussian model). Let c > 0. If the pro"t gain ratio for

bundling S1 = 〈(µ1,σ 2
1 ),m1,α〉 and S2 = 〈(µ2,σ 2

2 ),m2,α〉 is γ , then the pro"t gain ratio for bundling
S ′1 = 〈(cµ1, (cσ1)2), cm1,α〉 and S ′2 = 〈(cµ2, (cσ2)2, cm2,α〉 is also γ .

It is easy to prove this lemma via a similar approach we used previously.

6.2 Homogeneous Variance (σ 2
1 = σ 2

2 = σ 2)

Let us "rst discuss when the variances are homogeneous (i.e., σ 2 ! σ 2
1 = σ 2

2 ). Recall that the net-
work e!ects for the two products are characterized by a single parameter α (i.e., α1 = α2 = α ). For
the other factors, we set c1 = c2 = 0 and µ1 = µ2 = µ. This setting corresponds to the scenario of
bundling two similar services. We make the mild assumption that the mean valuation for the prod-
uct is non-negative (i.e., µi ≥ 0,∀i). Then, based on Lemma 6.1, without loss of generality, we can
normalize the customers’ intrinsic valuation distribution to be N (1, (σ/µ )2), with the coe$cient
of variation σ/µ as the only parameter.

Let us "rst investigate in the impact of variance of valuations on the optimal separate sale. In
Figure 6(a), we vary the normalized standard deviation σ/µ and observe the maximal pro"t under
separate sales. We can see that the maximal pro"t "rst decreases and then increases when σ/µ
increases for di!erent network e!ects. This impact of the variance of customers’ valuations is
discussed and explained in other works [17, 26]. These works found that bundling bene"ts for
thin-tailed valuations distributions (small σ/µ) but not for heavy-tailed valuation distributions
(large σ/µ).

Recall that bundling reduces the customers’ valuations. Thus, for any point on the curve in
Figure 6(a), by bundling two independent and identical services, the maximal pro"t of the bundle
should be some point to the left of the original point on the curve. Thus, bundling can be more
(or less) pro"table if the normalized standard deviation σ/µ of the separate service has (or has
not yet) reached the turning point in Figure 6(a). Moreover, we can see that the network e!ect
parameter α determines such turning point in the curve. If a service has a more convex network
e!ect function (larger α ), the turning point will be at a larger coe$cient of variation, which means
that bundling is pro"table even when the variance of customers’ valuations is high. Formally, we
have the following theorem.

Theorem 6.2. Consider two independent services S1 = S2 = 〈(1, (σ/µ )2), 0,α〉 (the mean of valu-
ations is 1 and the variance of valuations is (σ/µ )2, the marginal cost is 0 and the network e!ect
parameter is α ), where α ≥ 0:
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(1) If σ/µ <
√

2/π · (α + 1), then U ∗b > U ∗s ;
(2) If σ/µ > 2/√π · (α + 1), then U ∗b < U ∗s .

Proof. Please refer to the appendix. !

This theorem explicitly states the relationship between the pro"tability of bundling and the net-
work e!ects. When the network e!ect function is more convex, there is a larger range of variance
for bundling to be more pro"table. It has similar consequences to the case when the distribution
of customers’ valuation is uniform. However, this theorem also states that if the variance of cus-
tomers’ intrinsic valuations is large, bundling two identical services is not always more pro"table
even when c = 0. This is di!erent from our previous results that bundling two services with zero
operational cost can always be more pro"table if their intrinsic valuation distributions are uniform.
Furthermore, the pro"tability of bundling depends on both the variance of customers’ valuations
and the network e!ects. In particular, when the variance is small or the network e!ects are strongly
positive, bundling is more pro"table. However, when the variance is large or the network e!ects
are not strongly positive, bundling is less pro"table.

We use numerical examples to illustrate our "nding. In Figure 6(b), we vary the coe$cient of
variation σ/µ and investigate the pro"t gain ratio of the bundling sale, We can see that there is a
turning point of σ/µ and bundling is more pro"table if and only if σ/µ is smaller than this turning
point. Furthermore, a larger α indicates a higher pro"t gain of bundling and a larger range of
variance for bundling to be more pro"table. To summarize, we have the following observation.
Observation 5: When customers’ valuations follow a Gaussian distribution with high variance,
bundling can be less pro"table than separate sales even if the marginal cost is zero. In particular,
when the network e!ect function is more convex, there is a larger range of variance for bundling
to be more pro"table.

6.3 Heterogeneous Variance (σ 2
1 ! σ 2

2 )
So far, we have discussed the pro"tability of bundling when the variances of valuations are the
same for di!erent services. Now let us explore the case when services are with di!erent variance
of customers’ valuations, which is not explored by previous works [17, 26] that study the impact
of valuation distributions on bundling.

Theorem 6.3. Consider two bundles: L: services 〈(µ, (σ − ∆L )2), 0,α〉 and 〈(µ, (σ + ∆L )2), 0,α〉,
H : services 〈(µ, (σ − ∆H )2), 0,α〉 and 〈(µ, (σ + ∆H )2), 0,α〉, where ∆L < ∆H ≤ σ , α ≥ 0. LetγL,γH

be the pro"t gain ratios of bundle L and H , respectively. If γH > 0, then γL > γH .

Proof. Please refer to the appendix. !

The parameter ∆L (or ∆H ) represents the heterogeneity of valuation variances for the services
in the bundle L (or H ). This theorem states that the pro"tability of bundling decreases when the
heterogeneity of valuation variance increasesfor various degrees of positive network e!ects. In
Figure 7, we have two services, S1 = 〈(1,σ 2

1 ), 0,α〉 and S2 = 〈(1,σ 2
2 ), 0,α〉, where the variances σ 2

1
and σ 2

2 could be di!erent. Figure 7(a) is the contour plot of the pro"t gain ratio corresponding to
a di!erent standard deviation con"guration (σ1,σ2) of the services. In the contour plot, points on
the same curve indicates the same value of pro"t gain ratio. We can observe that only when σ1
is close to σ2 is the pro"t gain ratio positive. In Figure 7(b), we "x σ1 = 0.5 and vary σ2 ∈ [0, 2].
Figure 7(b) is in fact a projection of Figure 7(a) on a one-dimensional space where σ1 = 0.5. We can
see that for α ∈ {0, 1, 2}, the pro"t gain ratio of bundling reaches the highest when σ2 is close to
σ1. When σ2 is far di!erent from σ1, the pro"t gain decreases, and bundling may be less pro"table
than separate sales. Furthermore, as we can see from Figure 7(b), if the network e!ect function is

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 31. Publication date: May 2019.



31:18 L. Ye et al.

Fig. 7. Impact of heterogeneous variance, σ1 ! σ2, µ1 = µ2 = 1.

Fig. 8. Impact of heterogeneous variance, µ1 ! µ2,
σ2
µ2
∝σ1

µ1
,α = 1,σ1 = 0.5.

more convex, then the value of the pro"t gain ratio will increase when the variance of customers’
valuations is heterogeneous.

We also explore the impact of heterogeneous variance where the mean valuation of customers
is no longer "xed. In Figure 8, we consider one "xed service, S1 = 〈(1, 0.52), 0,α〉, and vary the
other S2 = 〈(µ2,σ 2

2 ), 0,α〉while keeping σ2
µ2
∝ σ1

µ1
. This setting characterizes the scenario where the

products have di!erent scales of valuations. In Figure 8, we still see that pro"tability of bundling
decreases as the heterogeneity of products increases. To summarize, we have the following
observation.
Observation 6: The heterogeneity of variance in customers’ valuations reduces the pro"tability
of bundling. Still, the pro"t gain increases as the network e!ect function becomes more convex.

7 IMPACT OF CORRELATION OF CUSTOMERS’ VALUATIONS
Recall that a key factor of bundling’s advantage is that it may potentially reduce the variance of cus-
tomers’ valuations. This is true when the services are independent, but what if such valuations are
correlated? Correlations among the bundled items are common. In the example of Microsoft O$ce,
it is rare that one is interested in using all software (Word, PowerPoint, Excel, Access, etc.); instead,
an individual usually uses only a small subset of them. In other words, people’s valuation toward
these products are often negatively correlated. There is evidence on the negative correlation of val-
uations between Word and Excel [12]. In this section, we study the impact of the correlation of
valuations, especially with the existence of network e!ects. Note that the impact of correlation of
customers’ valuations has been studied in various works [22, 26]. Our work di!ers from the others
with regard to network e!ects. In addition, the impact of correlation with network e!ects was also
studied in other works [14, 25]. Di!erent from those works, our work generalizes their linear form
of network e!ects, which enables the study of the impact of the “degree of network e!ects.”
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To capture the correlation of customers’ valuations, we generalize the previous Gaussian valu-
ation distribution of a single service to a multivariate Gaussian valuation distribution for multiple
services. We choose the Gaussian form to better present our theoretical results. As a complement,
for uniform distribution, other works [14, 25] conducted comprehensive studies about the impact
of correlation on the pro"tability of bundling with network externalities (or network e!ects), al-
though they look at a linear form of network e!ects. In the case of two products, it is a bivariate
Gaussian valuation distribution. Formally, if θ ∈ Θ is a random customer, then the intrinsic val-
uation of θ on the two products is a random vector (v1 (θ ),v2 (θ )) following bivariate Gaussian
distribution with mean vector (µ1, µ2) and covariance matrix Σ = [ σ 2

1 ρσ1σ2
ρσ1σ2 σ 2

2
], where ρ ∈ [−1, 1]

is the correlation coe#cient. If we bundle these two products, then the distribution of customers’
intrinsic valuation is still a Gaussian distribution

vb (θ ) ! v1 (θ ) +v2 (θ ) ∼ N
(
µ1 + µ2,σ

2
1 + σ

2
2 + 2ρσ1σ2

)
.

Hence, the cumulative distribution function of vb (θ ) is

HB (x ) !Φ
!))
"

x − (µ1 + µ2)
√
σ 2

1 + σ
2
2 + 2ρσ1σ2

#**
$
. (21)

In this section, we study the services with the same network e!ects (i.e., α1 = α2 = α ), so we have
FB (x ;δb ) = HB (x )δα

b . Note that the marginal distribution of v1 (θ ) and v2 (θ ) are the same as the
case without bundling. In particular, when ρ = 0, the valuations v1 (θ ) and v2 (θ ) are independent.
As ρ increases from −1 to 1, the correlation varies from strictly negative to strictly positive.

7.1 Impact of Correlation When σ 2
1 = σ 2

1
We study the impact of correlation, especially with the existence of network e!ects. Let us "rst
consider when di!erent services have the same variance of customers’ valuations (i.e., σ 2

1 = σ 2
2 ).

In Figure 9(a), we vary the correlation coe$cient ρ and observe the pro"t gain ratio γ under dif-
ferent coe$cient of variation σ/µ and network e!ects parameter α . When σ/µ is small and α is
large (e.g., σ/µ = 0.5 and α = 0.5), γ monotonically decreases as ρ increases. The reason is that a
stronger negative correlation of customers’ valuations for the products indicates a larger reduction
of variance of customers’ valuations, and hence a higher pro"t. When σ/µ is large and α is small
(e.g., σ/µ = 1.5 and α = 0), as ρ increases from −1 to 1, the pro"t gain ratio γ "rst decreases and
then increases to zero. In addition, when σ/µ is large and α is small, bundling is more pro"table
than separate sales only when the correlation of di!erent products is negative enough. We have
observed that the impact of correlation on the pro"t of bundling is related to both the network
e!ects and the coe$cient of variation. We formally quantify the impact of correlation with the
existence of network e!ects using the following theorem.

Theorem 7.1. Consider two dependent services S1 = 〈(µ,σ 2), 0,α〉 and S2 = 〈(µ,σ 2), 0,α〉, where
ρ is the correlation coe#cient and α ≥ 0. Let γ (ρ) be the pro"t gain ratio of the bundle with respect
to ρ, and ρ̄ = supρ ∈[0,1]{ρ |γ (ρ) > 0}. Then we have

(1) γ (ρ) > 0 if and only if ρ ∈ [−1, ρ̄);.
(2) γ (ρ) decreases as ρ increases when ρ ∈ [−1, ρ̄).
(3) If

√
2/π (α + 1) > σ/µ, then ρ̄ = 1.

(4) If
√

2/π (α + 1) ≤ σ/µ, then ρ̄ ≤ 4(α+1)2

π (σ /µ )2 − 1 ≤ 1.

Proof. Please refer to the appendix. !
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Fig. 9. Impact of correlation, homogeneous case, σ1 = σ2, µ1 = µ2.

Fig. 10. Impact of correlation, heterogeneous case, σ1 ! σ2, µ1 = µ2 = 1.

This theorem has the following physical meanings. First, there exists a unique threshold ρ̄ on
the correlation coe$cient to di!erentiate whether bundling is either more or less pro"table than
separate sales. Second, in the pro"table region ρ ∈ [−1, ρ̄), the pro"t gain ratio is monotonically
decreasing as correlation coe$cient increases. This is consistent with the phenomena we observed
in Figure 9(a). Third, for a "xed coe$cient of variation, such a threshold is determined by the
convexity of the network e!ect function represented by α . On the one hand, when the network
e!ect function is highly convex (i.e., α is large), we have ρ̄ = 1, which means bundling is always
more pro"table for any correlation. On the other hand, when the network e!ect parameter α is
small, bundling is more pro"table only if the correlation is su$cient negative.

Let us use some numerical examples to further illustrate the impact of correlation. In Figure 9(b),
we show how the variance of valuation a!ects the threshold of correlation coe$cient. We vary
the normalized standard deviation σ/µ ∈ [0, 8], and plot both ρ̄ and the upper bound of ρ̄, which is
4(α+1)2

π (σ /µ )2 − 1. When σ/µ <
√

2/π (α + 1), ρ̄ = 1, as indicated by our theorem. When σ/µ ≥ √2/π (α +

1), we can see that the ρ̄ is smaller than its upper bound. Moreover, comparing the cases α = 0 and
α = 2, we could see the threshold ρ̄ is larger when the network e!ect function is more convex. This
is in accordance with our bound in Theorem 7.1. To summarize, we have the following observation.
Observation 7: The correlation of customers’ valuation on di!erent services is an important fac-
tor to determine how large the pro"t gain of bundling is. Bundling is more pro"table when the
coe$cient of correlation is smaller than a certain threshold. The threshold value is allowed to be
higher when the network e!ect function is more convex.

7.2 Impact of Correlation Coe!icient When σ 2
1 ! σ 2

2
We also consider the impact of correlation when two services have heterogeneous variances of
customers’ valuations. In Figure 10, we set µ1 = µ2 = 1 and show the impact of correlation coe$-
cient ρ on the pro"t gain ratio γ for di!erent values of σ1 and σ2. The pro"t gain "rst decreases
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and then increases as the correlation coe$cient increases, which is similar to our observation in
Figure 9(a). The di!erence for the case of heterogeneous variances is that bundling tends to be less
pro"table even if there is a strictly negative correlation. For example, in Figure 10, when σ1 = 1
and σ2 = 2, γ < 0 even if ρ = −1. This is because the pro"t gain of bundling reduces to negative
when the variances of customers’ valuations become heterogeneous, as discussed in Section 6.3,
and a negative correlation in valuations is not able to alter this result.
Observation 8: When two services have di!erent variances in customers’ valuations, the im-
pact of correlation is similar to the homogeneous setting. However, the impact of heterogeneous
variances might be signi"cant, making bundling less pro"table even if there is a strictly negative
correlation.

8 RELATED WORK
Bundling strategy has been discussed in economic community. Adams and Yellen [1] took the "rst
step in analyzing the commodity bundling in a monopoly market, and use graphical and numerical
analysis to show the reason for bundling and its ine$ciency in social welfare. Later works [22]
and Guiltinan [15] discussed mixed bundling and provided a framework for the "rm to choose the
appropriate bundling strategy. Matutes and Regibeau [21] extended the results from monopoly
market to duopoly. Schmalensee [26] used a Gaussian distribution on users’ reservation price and
compared various bundling and separate sale using graphical illustration and numerical results.
Bakos and Brynjolfsson [2] discussed bundling strategies for digital goods where unit cost could
be ignored. Later works were extended to competitive markets under non-zero [19] or zero [3]
unit cost. In the area of networking, Niyato et al. [23] studied bundling strategies for smart data
pricing of IoT technologies. The rationale for bundling to be more pro"table is that customers’
valuations become more concentrated for the bundle so that the seller’s pricing strategy can be
more e$cient. The concentration property for a sum of independent distributions is also applied
in inventory/risk pooling [5, 10, 13], where the aggregation of demands across locations allows a
reduced inventory. For inventory/risk pooling, the negative correlation among items are known
to increase the value of pooling, which is similar to the its impact on the pro"tability of bundling.

Various factors that determine the pro"tability of bundling are studied. First, the impact of mar-
ginal costs was investigated. Bakos and Brynjolfsson [2] found out that bundling is pro"table when
marginal cost is small. Fang and Norman [11] found that “the higher the marginal cost and the
lower the mean valuation, the less likely that bundling dominates separate sales,” which was also
stated by Schmalensee [26]. Second, the distribution of valuations is also an important factor. Most
of the studies of bundling focused on the uniform or Gaussian distributions [2, 14, 21, 26, 27]. In
the case of thin-tailed valuation distributions, Bakos and Brynjolfsson [2] showed that bundling
any greater number of goods will further increase the seller’s pro"ts. Other works considering
thin-tailed distributions [8, 11, 16] also showed that bundling can be more pro"table. However,
under heavy-tailed valuations, Ibragimov and Walden [17] pointed out that separate sale can be
more pro"table than bundling sale. Since risk pooling could be regarded as a form of bundling, it is
not surprising to see that risk pooling has lower bene"ts for heavy-tailed distributions, as shown
in the work of Bimpikis and Markakis [5]. Third, the impact of correlation on the pro"tability of
bundling was also studied by many previous works by Schmalensee [26], McAfee et al. [22], and
Bakos and Brynjolfsson [2]. They showed that bundling is pro"table when the valuations of bun-
dled items are independent or negatively correlated. Banciu and Ødegaard [4] pointed out that if
customers’ valuations are positively correlated, the pro"tability of bundling can be arbitrarily low.
The impact of other factors, such as the complementarity of valuations on di!erent products [27],
were also analyzed. All the preceding works did not consider the network e!ects.
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Network e!ects [9] (or network externalities) have also been discussed by researchers. In par-
ticular, the work of Katz and Shapiro [18] might be the earliest in%uential work that de"ned and
discussed the impacts of network e!ects. Liebowitz and Margolis [20] concluded that direct and
indirect network e!ects may result in market failure. Candogan et al. [7] discussed optimal pricing
on divisible goods with positive network e!ects. There are a number of works on speci"c appli-
cation analysis. For example, Wang et al. [28] discussed the impact of network e!ects in instant
messaging service; in another work, Wang et al. [29] focused on network externality in mobile
telecommunication innovation.

Although network e!ects and bundling sale have been both extensively studied, there are very
few works that combine them. We "nd two recent works [24, 25] closely related to ours. Prasad
et al. [24] discussed bundling strategy of technological products with network externality. Their
work presented interesting "ndings, but they mainly relied on numerical and graphical explana-
tions, and their analysis was restricted to some special cases. Meanwhile, the linear and additive
form of network externality applied in their work is in a special form that does not capture all im-
portant features of online services. Hence, we need a more accurate model on the network e!ects
to capture today’s online market. In the work of Guérin et al. [25] and the follow-up journal version
[14], the authors provided insightful results exploring how correlation in customers’ valuation af-
fects the pro"tability of bundling with network e!ects. For uniform distribution, they described
the equilibrium by equations for general correlations, and they also considered customers’ extra
utilities from the network e!ects. In their work, this customers’ extra utilities was implicitly as-
sumed to be linear with respect to the fraction of users who have adopted the service. In our model
of network e!ects, the degree of network externalities is captured by the parameter α that allows
us to study the impact of various degrees of network externalities. More importantly, their results
revealed practical insights by thorough discussions and graphical explanations, whereas our work
emphasizes on the analytical framework.

Our work di!ers from previous works in that (1) we build a formal optimization framework that
captures the optimal separate sale and bundling strategies; (2) we give rigorous analytical results
based on the multiplication form of network e!ects; (3) with the existence of network e!ects,
we characterize various important factors, including the network e!ect itself, operating cost, the
variance and correlation of costumers’ valuations; and (4) we further analytically show how these
factors impact the pro"tability of bundling.

9 CONCLUSION
In this article, we discuss the bundling sale strategy for online service markets that exhibit net-
work e!ects. In such a market, a customer’s purchasing decision is in%uenced by other customers’
purchasing decisions. We formulate a formal optimization framework to characterize the optimal
sale strategies, which allows the service providers to determine their best sale strategies. Based
on this, we analyze and quantify the impact of the key factors. Our important "ndings include the
following. First, when the network e!ect function is more convex, the pro"t gain of bundling over
separate sales becomes larger. Second, the operating cost usually plays a negative role toward
bundling, but when the two services have di!erent network e!ects, a moderate operating cost on
a particular service may increase the pro"tability of bundling. Third, the variance of customers’
valuation is signi"cant in determining whether bundling is more pro"table than separate sales. In
particular, bundling is less pro"table when the variance is larger than some threshold determined
by the degree of network e!ects. Fourth, the correlation of customers’ valuation determines the
extent to which bundling can be more pro"table than separate sales; a negative correlation indi-
cates a larger pro"t gain, provided that bundling is more pro"table than separate sales. Fifth, the
asymmetry in operating costs, and the heterogeneity in valuation distributions or network e!ects,
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reduces the pro"tability of bundling and can make bundling even less pro"table than separate
sales. We believe that these "ndings provide valuable insights for online service providers to design
e!ective pricing schemes, and we plan to better explore bundling sales via real data analytics.

Here we also state the limitations of our work and hope that this serves as the basis for future
work. Due to the complex nature of bundling sale, our modeling approach can not cover all aspects
and has several limitations. First, the complementarity/substitutability of the bundled products
represented by the parameter ∆v is assumed to be homogeneous for every customer. Second, our
results do not cover mixed bundling, where the provider allows the customers to either buy prod-
ucts separately or to buy the bundle. Third, our model does not consider the competitions among
di!erent providers. Last but not least, this work only considers some speci"c forms of distributions
of customers’ valuations (e.g., uniform and Gaussian) to make the analysis tractable.

APPENDIX

Proof of Lemma 2.4. Since for any δi > 0 we have ρi (δi ) > 0, so the condition vi (θ )ρi (δi ) ≥
pi is equivalent to vi (θ ) ≥ pi

ρi (δi ) . According to the de"nition of equilibrium, we have δi =∫
θ ∈Θ 1{vi (θ )≥ pi

ρi (δi ) }
f (θ )dθ . By noting the preceding equation and recalling the de"nition of Hi (x )

in Equation (2), we can prove the separate sale part of the lemma.
Now we discuss the equilibria for the bundling case. Recall that in (6) we have de"ned Fb (·,δb )

as the cumulative distribution function of customers’ valuation of the bundle when the fraction of
adopters of the bundle is δb . When the price of the bundle is pb , in the equilibrium the following
equation holds:

Fb (pb ;δb ) = 1 − δb . (22)

It means that the fraction of customers whose valuations are less than the price pb is 1 − δb , or in
other words the fraction of customers whose valuations are higher than the price pb is δb . !

Proof of Theorem 3.2. We start with the case of separate sale. According to Corollary 2.5, δi
is an equilibria if and only if it satis"es

pi = δαi
i H−1

i (1 − δi ), (i = 1, 2),

where H−1
i (1 − δi ) = Vi (1 − δi ).

Let дi (x ) = xαiH−1
i (1 − x ), i = 1, 2. Then the equilibrium δi is a solution to

pi = дi (δi ). (23)

By letting д′i (x ) = 0, i = 1, 2, we see there is a unique solution x∗i =
αi

αi+1 in (0, 1].
Note that for i ∈ {1, 2}, дi (0) = 0,дi (1) = 0,дi (x ) > 0 if 0 < x < 1, and that д′i (x ) = 0 has at most

one solution in (0,1], we conclude that дi (x ) has one and only one maxima when x ∈ (0, 1). Let us
denote this value as p̄i . Thus, when x increases from 0 to 1, дi (x ) "rst increases from 0 to p̄i and
then decreases from p̄i to 0. Therefore, when pi > p̄i , Equation (23) has no solution; when pi = p̄i
or 0, Equation (23) has only one solution; when 0 < pi < p̄i , Equation (23) has two solutions. In
particular, we have p̄i = дi ( αi

αi+1 ) = Vi
αi+1 ( αi

αi+1 )αi for i = 1, 2, which completes the proof for the
separate sale.

According to Equation (22), we know in the equilibrium that we have

pb = F−1
b (1 − δb ;δb ).
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We observe that pb is equal to a well-de"ned function of δb denoted as Pb (δb ) ! F−1
b (1 − δb ;δb ),

where δb ∈ [0, 1]. Moreover, the function Pb (δb ) has the following form:

Pb (δb ) = pb =



√
2(1 − δb ) (V1δ

α1
b V2δ

α2
b ) if 0 ≤ pb ≤ V1δ

α1
b ,

(1 − δb )V2δ
α2
b +V1δ

α1
b /2 if V1δ

α1
b < pb ≤ V2δ

α2
b ,

V1δ
α1
b +V2δ

α2
b −

√
2V1V2δ

(1+α1+α2 )
b if V2δ

α2
b < pb ≤ V1δ

α1
b +V2δ

α2
b .

(24)

Let us provide some properties of the function Pb (δb ). We "rst claim that Pb (δb ) is a continuous
function. In fact, the cumulative function Fb (x ;δb ) is a continuous function with respect to x and
δb . Therefore, the inverse function F−1

b (y;δb ) is continuous with respect to y and δb . Since 1 − δb
is continuous with respect to δb , the composition function F−1

b (1 − δb ;δb ) is also continuous with
respect to δ , which is our function Pb (δb ). Second, one can verify that Pb (0) = 0. In fact, when
δb = 0, Pb (δb ) = 0 for all three equations in (24). This is because when δb = 0, the valuations of
customers are 0 and the only possible price should be 0. Third, we have Pb (1) = 0 from (24). The
reason is that if we want all customers to be willing to adopt the service, the price should be as
low as zero.

The continuous function Pb (δb ) de"ned in the closed interval δb ∈ [0, 1] has its maximal value.
Let p̄b = maxδb ∈[0,1] Pb (δb ) be this maximal value, let and δ̄b = arg maxδb ∈[0,1] Pb (δb ) be the maxi-
mizer. Recall that Pb (δb ) = pb in the equilibrium. First, when pb > p̄b , the formula Pb (δb ) = pb has
no solution, and therefore there is no equilibrium. Second, when pb = p̄b , the formula Pb (δb ) = pb
has at least one solution (i.e., δb = δ̄b ). Hence, there is at least one equilibrium. Third, when
0 ≤ pb < p̄b , there exists δ 1

b ∈ [0, δ̄b ) such that Pb (δ 1
b ) = pb , and there exists δ 2

b ∈ (δ̄b , 1] such that
Pb (δ 2

b ) = pb by the intermediate value theorem for continuous functions. We have found two so-
lutions δ 1

b ! δ 2
b of the formula, and therefore the market has at least two equilibria. Note that for

a given price of the bundle, there can be multiple equilibria for the fraction of adopters, but if we
observe a certain fraction of adopters, we can derive the unique price of the bundle. !

Explanation on the stability of the largest equilibrium for bundling. Suppose that δ ∗b is
the largest equilibrium for the bundling sale that satis"es Pb (δ ∗b ) = pb . We claim that for any
δ ′b ∈ (δ ∗b , 1], Pb (δ ′b ) < pb . Otherwise, if there is any δ ′b > δ ∗b such that Pb (δ ′b ) ≥ pb , then we can "nd
some δ ′′b ∈ [δ ′b , 1] such that Pb (δ ′′b ) = pb . In other words, δ ′′b is a larger equilibrium than “the largest
equilibrium” δ ∗b , which leads to a contradiction. Moreover, one can verify that Pb (δb ) de"ned in
(24) is a di!erentiable function. The derivative P ′b (δ ∗b ) = limϵ→0+

Pb (δ ∗b+ϵ )−Pb (δ ∗b )

ϵ ≤ 0, which indi-
cates the negative slope of the function at δ ∗b . For the case where P ′b (δ ∗b ) = 0, the point δ ∗b is the
local maximum and mathematically can be an “unstable” equilibrium. But the local maximum of
P ′b (δ ∗b ) = 0 is not likely to be the maximal solution of (15), which means that the case P ′b (δ ∗b ) = 0
rarely happens when the bundling strategy is selected by our optimization framework. In addition,
in practice, the seller can always do some small adjustment to avoid such a “local maximum” case
and the adjustment has little impact on the pro"t. Due to these reasons, we then focus on the case
P ′b (δ ∗b ) < 0.

On the one hand, if the fraction of adopters increases to δ ′b ∈ [δ ∗b ,δ
∗
b + ϵ ) (ϵ is small), then

we have p ′b = Pb (δ ′b ) < pb , where 1 − Fδ ′b (p ′b ) = δ ′b . We can see that for pb > p ′b , 1 − Fδ ′b (pb ) < δ ′b ,
which means that the fraction of adopters when the price is still pb will be less than δ ′b . Namely,
the market will move down toward the equilibrium δ ∗b if the market is perturbed to have a larger
fraction δ ′b ∈ [δ ∗b ,δ

∗
b + ϵ ) of adopters. On the other hand, if the fraction of adopters decreases to

δ ′b ∈ (δ ∗b − ϵ,δ ∗b ], then we have p ′b = Pb (δ ′b ) > pb . Similarly, the market will move up to the equi-
librium δ ∗b if the market is perturbed to have a smaller fraction δ ′b ∈ (δ ∗b − ϵ,δ ∗b ] of adopters. Com-
bining these two scenarios, we have shown that the largest equilibrium δ ∗b is stable.
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Proof of Theorem 4.1. We "rst prove the second part of the theorem. By applying the opti-
mization framework, we see the optimal separate sale is a solution to

max
δi

Ui (δi ) =
2∑

i=1
δi

(
δα

i − δα+1
i

)
,

subject to 0 ≤ δi ≤ 1. (25)

We can easily obtain the solution as δ ∗i = α+1
α+2 and have p∗i = V

α+2 ( α+1
α+2 )α ,U ∗s = 2p∗i δ ∗i . Similarly, we

can solve the optimal bundling sale. By noting the de"nition of γ and taking the forms of U ∗s and
U ∗b into Equation (16), we can derive the pro"t gain ratio γ (α ) as desired. By taking the derivative
of logγ (α ) with respect to α , it is easy to show that γ (α ) is increasing in α .

Now we prove the "rst part of the theorem. For any given α , we have δ ∗1 = δ ∗2 =
α+1
α+2 , and we

denote this value as δ ∗. Obviously, δ ∗ > 1/2, and we have

U ∗s = δ ∗ρ1 (δ ∗)H−1
1 (1 − δ ∗) + δ ∗ρ2 (δ ∗)H−1

2 (1 − δ ∗). (26)

We consider a bundling sale with price pb such that the largest equilibrium is δ ∗. For the case
where α1 = α2 = α , we de"ne

HB (x ) !



0 if x < 0,
x2/(2V1V2) if 0 ≤ x ≤ V1,
(2x −V1)/(2V2) if V1 < x ≤ V2,
1− (V1+V2−x )2/(2V1V2) if V2 < x ≤ V1+V2,
1 if x > V1 +V2.

(27)

One can verify that FB (x ;δb ) = HB (x )δα
b for any x ,δb . The service provider’s utility in the optimal

bundling sale satis"es
U ∗b ≥ δ ∗ρb (δ ∗)H−1

B (1 − δ ∗). (28)

Given the form ofHi (x ) andHB (x ), one can easily verify that H−1
i (1−δ ∗ )

Vi
<

H−1
B (1−δ ∗ )
V1+V2

for δ ∗ > 1/2.
Therefore, we have H−1

1 (1 − δ ∗) + H−1
2 (1 − δ ∗) < H−1

B (1 − δ ∗). Since ρ1 (δ ) = ρ2 (δ ) = ρb (δ ) = δα ,
we have

2∑

i=1
δ ∗ρi (δ ∗)H−1

i (1 − δ ∗) < δ ∗ρb (δ ∗)H−1
B (1 − δ ∗). (29)

Combining inequalities (26), (28), and (29), we have U ∗b > U ∗s and therefore the pro"t gain ratio
γ > 0. !

Proof of Theorem 5.1: Let us denote m1
V1
= m2

V2
=m. According to Lemma 3.4, the equilibria of

separate sales satisfy δ ∗i = δ ∗2 and we denote it as δ ∗. Based on the optimization formulation, we
know that δ ∗ is a solution to the following optimization:

max
δ

U (δ ) = δα+1 − δα+2 −mδ ,

subject to 0 ≤ δ ≤ 1. (30)

We next show δ ∗ = 0 or δ ∗ > 1/2. Note that U (δ ) = δд(δ ), where д(δ ) = δα − δα+1 −m. Let us
consider that if δ ∗ = 0 is not the unique solution, then д(δ ∗) ≥ 0. By taking "rst- and second-order
derivatives, we can derive that д(δ ) achieves the unique maximal value in [0, 1] when δ = α

α+1 .
Let us suppose that δ ∗ < α

α+1 , then 0 ≤ д(δ ∗) < д( α
α+1 ), so δ ∗д(δ ∗) < α

α+1д( α
α+1 ), which isU (δ ∗) <

U ( α
α+1 ). This contradicts our assumption that U (δ ∗) is the maximal value in [0,1]. Therefore, we

have δ ∗ = 0 or δ ∗ ≥ α
α+1 > 1/2.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 31. Publication date: May 2019.



31:26 L. Ye et al.

If δ ∗ = 0, then the optimal separate sale achieves a pro"t of zero, which is obviously no larger
than the optimal bundling sale; if δ ∗ > 1/2, then using the same approach in the proof of Theo-
rem 4.1, we can prove that the optimal bundling sale is more pro"table than the optimal separate
sale. Combining the preceding two cases, we prove the theorem. !

Proof of Theorem 5.2. We "rst analyze the bundling sale with price pbi such that the
equilibrium δbi = δ ∗i , i = 1, 2. Given the forms of Hi (·) and HB (·) where HB is de"ned in (27)
and FB (x ;δb ) = HB (x )δα

b ), we have H−1
i (1−δ ∗i )

Vi
<

H−1
B (1−δ ∗i )
V1+V2

. Since pbi = δ ∗αi H−1
B (1 − δ ∗i ) and p∗i =

δ ∗αi H−1
1 (1 − δ ∗i ), we have pbi > p∗i

V1+V2
Vi

, so the service provider’s utility under this setting satis"es
Ubi >

(
p∗i (V1 +V2)/Vi − β1m1 − β2m2

)
δ ∗i . (31)

Since the preceding settings (δb1,δb2) are two realizations in the bundling strategy, we have that
the optimal bundling utility satis"es

2U ∗b ≥ Ub1 +Ub2 > p∗1δ
∗
1 (V1 +V2)/V1 + p

∗
2δ
∗
2 (V1 +V2)/V2 − β1 (δ ∗1 + δ

∗
2 )m1 − β2 (δ ∗1 + δ

∗
2 )m2. (32)

Therefore, we have
2(U ∗b −U ∗s ) > (V2 −V1)

(
p∗1δ
∗
1/V1 − p∗2δ ∗2/V2

)

−((β1 − 2)δ ∗1 + β1δ
∗
2 )m1 − ((β2 − 2)δ ∗2 + β2δ

∗
1 )m2. (33)

Let us consider another service S0 = 〈1, 0,αi 〉, and assume that its optimal equilibrium is δ ∗0 .
Since the increase of unit cost reduces the value of the optimal equilibrium, and that δ ∗2 ≤ δ ∗1 , we
have δ ∗0 ≥ δ ∗1 ≥ δ ∗2 . Since δ ∗1 , and δ ∗2 are also two sale strategies of S0, and that δ ∗1 is nearer to the
optimal separate sale, we have p∗1 δ ∗1

V1
≥ p∗2 δ ∗2

V2
. Recalling V2 ≥ V1, we have

(V2 −V1)
(
p∗1δ
∗
1/V1 − p∗2δ ∗2/V2

) ≥ 0. (34)

Since β1 ≤ 1, β2 ≤ 1,δ ∗1 ≥ δ ∗2 , we have ((β1 − 2)δ ∗1 + β1δ ∗2 )m1 ≤ 0. Since 2−β2
β2

δ ∗1 ≤ δ ∗2 , we have
((β2 − 2)δ ∗2 + β2δ ∗1 )m2 ≤ 0. Therefore, we have

((β1 − 2)δ ∗1 + β1δ
∗
2 )m1 + ((β2 − 2)δ ∗2 + β2δ

∗
1 )m2 ≤ 0. (35)

Combining (33), (34), and (35), we conclude that U ∗b −U ∗s > 0. !

Proof of Theorem 6.2. Let U (δ , 〈(µ,σ 2), c,α〉) ! [δα (Φ−1 (1 − δ )σ + µ ) − c] × δ be the pro"t
when δ is the equilibria for service 〈(µ,σ 2), c,α〉, and let

U ∗ (〈(µ,σ 2), c,α〉) ! max
δ ∈[0,1]

[δα (Φ−1 (1 − δ )σ + µ ) − c] × δ

be the optimal pro"t for service 〈(µ,σ 2), c,α〉. The equilibrium achieving this optimal pro"t is
δ ∗ (〈(µ,σ 2), c,α〉) ! arg max

δ ∈[0,1]
U (δ , 〈(µ,σ 2), c,α〉).

Let us "rst prove the following three lemmas. !

Lemma A.1. δ ∗ 1
ϕ (Φ−1 (1−δ ∗ )) − (α + 1)Φ−1 (1 − δ ∗) is a strictly monotonically increasing function of

δ ∗.

Proof. Consider the function д(t ) = 1−Φ(t )
ϕ (t ) − (α + 1)t , where ϕ (t ) = Φ′(t ). We have д′(t ) =

t (1−Φ(t ))
ϕ (t ) − (α + 2).When t ≤ 0, obviously д′(t ) < 0. When t > 0,

д′(t ) =
t
∫ +∞

t ϕ (x )

ϕ (t )
− (α + 2) ≤

∫ +∞
t xϕ (x )

ϕ (t )
− (α + 2) =

−ϕ (+∞) + ϕ (t )

ϕ (t )
− (α + 2) = −(α + 1) < 0.

(36)
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Hence, д(·) is monotonically strictly decreasing in (−∞,+∞).
Let t (δ ∗) = Φ−1 (1 − δ ∗) be a strictly monotonically decreasing function of δ ∗. Then the following

function of δ ∗,

д(t (δ ∗)) = д(Φ−1 (1 − δ ∗)) = δ ∗
1

ϕ (Φ−1 (1 − δ ∗)) − (α + 1)Φ−1 (1 − δ ∗),

is strictly monotonically increasing with respect to δ ∗, which concludes the lemma. !

Lemma A.2. For any given α ≥ 0, δ ∗ (〈(µ,σ 2), 0,α ) is a strictly decreasing function with respect to
σ
µ .

Proof. To simplify the notation, we denote
δ ∗ ! δ ∗ (〈(µ,σ 2), 0,α〉).

Obviously, U ∗ (〈(µ,σ 2), 0,α〉) > 0 (in fact, letting δ0 = 1 − Φ( 1−µ
σ ), we have U (δ0, 〈(µ,σ 2), 0,α〉) =

δα+1
0 > 0). Note that when δ = 0, U (δ , 〈(µ,σ 2), 0,α〉) = 0. When δ = 1, U (δ , 〈(µ,σ 2), 0,α〉) = −∞.

Therefore, δ ∗ ! 0 and δ ∗ ! 1, so δ ∗ ∈ (0, 1). Write down the optimality condition for the following
optimization problem:

δ ∗ = arg max
δ ∈(0,1)

U (δ , 〈(µ,σ 2), 0,α〉).

A necessary and su$cient condition for δ ∗ is

0 = U ′(δ ∗, 〈(µ,σ 2), 0,α〉) = (α + 1) (δ ∗)α [Φ−1 (1 − δ ∗)σ + µ] − (δ ∗)α+1
[

1
ϕ (Φ−1 (1 − δ ∗))σ

]
.

Then we have
σ

µ
=

α + 1
δ ∗ 1

ϕ (Φ−1 (1−δ ∗ )) − (α + 1)Φ−1 (1 − δ ∗)
≥ 0. (37)

We can see that σ
µ is represented as a function of δ ∗. From Lemma A.1, we know that

δ ∗ 1
ϕ (Φ−1 (1−δ ∗ )) − (α + 1)Φ−1 (1 − δ ∗) as the denominator is strictly monotonically increasing in δ ∗.
Let us regard δ ∗ as the hidden function of σ

µ . From (37), we know that σ
µ is strictly monotonically

decreasing in δ ∗ for all δ ∗ in the natural domain, which satis"es

δ ∗
1

ϕ (Φ−1 (1 − δ ∗)) − (α + 1)Φ−1 (1 − δ ∗) > 0.

Reversely, δ ∗ is also monotonically decreasing in σ
µ , which concludes the lemma. !

Lemma A.3. In the region σ ∈ [0, µ
√

2/π (α + 1)],U ∗ (〈(µ,σ ), 0,α〉) is a strictly monotonically de-
creasing function of σ . In the region σ ∈ [µ

√
2/π (α + 1),+∞), U ∗ (〈(µ,σ ), 0,α〉) is a strictly mono-

tonically increasing function of σ .

Proof. Let δ ∗ = 1
2 in Equation (37), then σ

µ =
√

2
π (α + 1). Because of the monotonicity in

Lemma A.2, we know that when σ < µ
√

2
π (α + 1), δ ∗ > 1

2 . Similarly, when σ > µ
√

2
π (α + 1),

δ ∗ < 1
2 .

Let δ ∗1 = δ ∗ (〈(µ,σ 2
1 ), 0,α〉) and δ ∗2 = δ ∗ (〈(µ,σ 2

2 ), 0,α〉).
First, suppose that σ1 < σ2 < µ

√
2/π (α + 1). According to the strict monotonicity in Lemma A.2,

δ ∗1 > δ ∗2 >
1
2 . Then we have Φ−1 (1 − δ ∗2 ) < 0. Hence,

U ∗ (〈(µ,σ 2
2 ), 0,α〉) = U (δ ∗2 , 〈(µ,σ 2

2 ), 0,α〉) = (δ ∗2 )α+1 (Φ−1 (1−δ ∗2 )σ2+µ ) < (δ ∗2 )α+1 (Φ−1 (1−δ ∗2 )σ1+µ )

= U (δ ∗2 , 〈(µ,σ 2
1 ), 0,α〉) ≤ U (δ ∗1 , 〈(µ,σ 2

1 ), 0,α〉) = U ∗ (〈(µ,σ 2
1 ), 0,α〉). (38)
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We see that U ∗ (〈(µ,σ 2
2 ), 0,α〉) < U ∗ (〈(µ,σ 2

1 ), 0,α〉). By de"nition, U ∗ (〈(µ,σ ), 0,α〉) is a strictly
monotonically decreasing function with respect to σ in the region σ ∈ [0, µ × √2/π (α + 1)].

Second, suppose that µ
√

2/π (α + 1) < σ1 < σ2, then 1
2 > δ ∗1 > δ ∗2 according to Lemma A.2.

Hence, Φ−1 (1 − δ ∗1 ) > 0. Similarly,
U ∗ (〈(µ,σ 2

1 ), 0,α〉) = U (δ ∗1 , 〈(µ,σ 2
1 ), 0,α〉) = (δ ∗1 )α+1 (Φ−1 (1−δ ∗1 )σ1+µ ) < (δ ∗1 )α+1 (Φ−1 (1−δ ∗1 )σ2+µ )

= U (δ ∗1 , 〈(µ,σ 2
2 ), 0,α〉) ≤ U (δ ∗2 , 〈(µ,σ 2

2 ), 0,α〉) = U ∗ (〈(µ,σ 2
2 ), 0,α〉). (39)

We see that U ∗ (〈(µ,σ 2
2 ), 0,α〉) > U ∗ (〈(µ,σ 2

1 ), 0,α〉). By de"nition, U ∗ (〈(µ,σ ), 0,α〉) is a strictly
monotonically increasing function of σ in the region σ ∈ [µ × √2/π (α + 1),+∞).

The maximal pro"t of separate sale is U ∗s = 2U ∗ (〈(µ,σ 2), 0,α〉), and the maximal pro"t after
bundling is U ∗b = U

∗ (〈(2µ, 2σ 2), 0,α〉) = 2U ∗ (〈(µ, (
√

2
2 σ )2, 0,α )〉):

(1) When σ
µ <

√
2
π (α + 1),

√
2

2 σ < σ < µ
√

2
π (α + 1). According to Lemma A.3, U ∗s < U ∗b , so

γ > 0.
(2) When σ

µ >
2√
π (α + 1), µ

√
2
π (α + 1) <

√
2

2 σ < σ . According to Lemma A.3,U ∗b < U ∗s , soγ <
0. !

Proof of Theorem 6.3. For ease of presentation, let us de"ne the following functions:
hδ (σ ) = U (δ , 〈(1,σ 2), 0,α〉); h(σ ) = U ∗ (〈(1,σ 2), 0,α〉) = max

δ ∈[0,1]
hδ (σ ).

Note that we regard α as an constant here. Let us prove the following four lemmas "rst. !

Lemma A.4. h(σ ) is a convex function with respect to σ .

Proof. Note that hδ (σ ) = δα+1 (Φ−1 (1 − δ )σ + µ ) is an a$ne function of σ . We have
hδ (tσ1 + (1 − t )σ2) = thδ (σ1) + (1 − t )hδ (σ2),∀t ∈ [0, 1]. (40)

Due to maximum property, we have hδ (σ1) ≤ h(σ1) and hδ (σ2) ≤ h(σ2). Hence,
hδ (tσ1 + (1 − t )σ2) ≤ th(σ1) + (1 − t )h(σ2),∀δ ∈ [0, 1]. (41)

Since [0, 1] is a compact set, maximum is attainable. We have
h(tσ1 + (1 − t )σ2) = max

δ ∈[0,1]
hδ (tσ1 + (1 − t )σ2) ≤ th(σ1) + (1 − t )h(σ2). (42)

According to de"nition, h(σ ) is a convex function of σ . !

Lemma A.5. h(σ + ∆H ) + h(σ − ∆H ) ≥ h(σ + ∆L ) + h(σ − ∆L ).
Proof. We can see that

σ − ∆L =
∆H + ∆L

2∆H
(σ − ∆H ) +

∆H − ∆L

2∆H
(σ + ∆H ), σ + ∆L =

∆H − ∆L

2∆H
(σ − ∆H ) +

∆H + ∆L

2∆H
(σ + ∆H ),

where ∆L+∆H
2∆H

, ∆H−∆L
2∆H

∈ [0, 1].
Because of the convexity of h(·) proven in Lemma A.4, we have

h(σ − ∆L ) ≤ ∆H + ∆L

2∆H
h(σ − ∆H ) +

∆H − ∆L

2∆H
h(σ + ∆H ),

h(σ + ∆L ) ≤ ∆H − ∆L

2∆H
h(σ − ∆H ) +

∆H + ∆L

2∆H
h(σ + ∆H ). (43)

By summing them up, we have h(σ + ∆H ) + h(σ − ∆H ) ≥ h(σ + ∆L ) + h(σ − ∆L ). !

Lemma A.6. If γH > 0, then
√

1
2 (σ 2 + ∆2

H ) ≤
√

2
π (α + 1).
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Proof. We prove it by contradiction. Let us suppose that
√

1
2 (σ 2 + ∆2

H ) >
√

2
π (α + 1), and we

know that σ ≥
√

1
2 (σ 2 + ∆2

H ) because ∆H < σ . Now we have

σ ≥
√

1
2
(
σ 2 + ∆2

H

)
>

√
2
π

(α + 1). (44)

According to Lemma A.3,

h !"
√

1
2
(
σ 2 + ∆2

H

)#
$ = U

∗
(〈(

1, 12
(
σ 2 + ∆2

H

))
, 0,α

〉)
≤ U ∗

(
〈(1,σ 2), 0,α〉

)
= h(σ ). (45)

Because of convexity, we also have
h(σ + ∆H ) + h(σ − ∆H ) ≥ 2h(σ ). (46)

Therefore, we have h(σ + ∆H ) + h(σ − ∆H ) ≥ 2h
(√

1
2 (σ 2 + ∆2

H )
)

from (45) and (46). This means
that bundling is less pro"table than separate sale—for instance, γH ≤ 0, which is a contradiction
to γH > 0. This concludes our lemma. !

Lemma A.7. If γH > 0 and ∆L < ∆H , then h(
√

2
2

√
σ 2 + ∆2

L ) > h(
√

2
2

√
σ 2 + ∆2

H ).

Proof. Note that
√

2
2

√
σ 2 + ∆2

L <
√

2
2

√
σ 2 + ∆2

H ≤ σ . According to Lemma A.6, we have
√

2
2

√
σ 2 + ∆2

L <

√
2

2

√
σ 2 + ∆2

H ≤
√

2
π

(α + 1). (47)

According to Lemma A.3,

h !"
√

2
2

√
σ 2 + ∆2

H
#
$ = U

∗
(〈(

1, 12
(
σ 2 + ∆2

H

))
, 0,α

〉)
< U ∗

(〈(
1, 12

(
σ 2 + ∆2

L

))
, 0,α

〉)

= h !"
√

2
2

√
σ 2 + ∆2

L
#
$ . (48)

Here we have h(
√

2
2

√
σ 2 + ∆2

L ) > h(
√

2
2

√
σ 2 + ∆2

H ), which concludes our lemma. !

Now, let us write down the pro"t gain ratios:

γL =
2 × h(

√
2

2

√
σ 2 + ∆2

L )

h(σ + ∆L ) + h(σ − ∆L )
− 1, γH =

2 × h(
√

2
2

√
σ 2 + ∆2

H )

h(σ + ∆H ) + h(σ − ∆H )
− 1.

Thanks to the previous lemmas, we are able to compare γL and γH . In particular, we know that the
numerator h(

√
2

2

√
σ 2 + ∆2

L ) > h(
√

2
2

√
σ 2 + ∆2

H ) based on Lemma A.7, and according to Lemma A.5,
the denominator h(σ + ∆L ) + h(σ − ∆L ) ≤ h(σ + ∆H ) + h(σ − ∆H ). As a result, γL > γH .

Proof of Theorem 7.1. For services S1 = S2 = 〈(µ,σ 2), 0,α〉, the bundle could be regarded as
a single service Sb = 〈(2µ, 2(1 + ρ)σ 2), 0,α〉. With the de"nitions in the proof of Theorem 6.2, we
"rst de"ne the pro"t gain ratio γ as a function of the correlation coe$cient ρ:

γ (ρ) =
U ∗ (〈(2µ, 2(1 + ρ)σ 2), 0,α〉)

2 ×U ∗ (〈(µ,σ 2), 0,α〉) − 1.
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Denote δ ∗b (ρ) ! δ ∗ (〈(2µ, 2(1 + ρ)σ 2), 0,α〉) as the optimal equilibria for the bundle. Let us "rst
prove the following two lemmas. !

Lemma A.8. For correlation coe#cient ρ0 ∈ [−1, 1], if γ (ρ0) > 0, then
√

2(1+ρ0 )
2 σ < µ

√
2
π (α + 1).

Proof. Suppose otherwise that
√

2(1+ρ0 )
2 σ ≥ µ

√
2
π (α + 1). Then, σ ≥

√
2(1+ρ0 )

2 σ ≥ µ
√

2
π (α + 1).

According to Lemma A.3,

U ∗
(
〈(2µ, 2(1 + ρ0)σ 2), 0,α〉

)
= 2 ×U ∗ !)

"
〈!)
"
µ, !"

√
2(1 + ρ0)

2 σ#$
2#*
$
, 0,α

〉#*
$
≤2 ×U ∗

(
〈(µ,σ 2), 0,α〉

)
.

(49)
Therefore, bundle is less pro"table and γ (ρ0) ≤ 0, which contradicts to γ (ρ0) > 0. Hence, the
lemma must hold. !

Lemma A.9. If γ (ρ0) > 0 for correlation coe#cient ρ0 ∈ [−1, 1], then γ (ρ ′) > γ (ρ0) > 0 for any
ρ ′ ∈ [−1, ρ0).

Proof. From Lemma A.8, we know that
√

2(1 + ρ ′)
2 σ <

√
2(1 + ρ0)

2 σ < µ

√
2
π

(α + 1).

Then by Lemma A.3, we have

U ∗ !)
"
〈!)
"
µ, !"

√
2(1 + ρ ′)

2 σ#$
2#*
$
, 0,α

〉#*
$
> U ∗ !)

"
〈!)
"
µ, !"

√
2(1 + ρ0)

2 σ#$
2#*
$
, 0,α

〉#*
$
. (50)

The preceding equalities says that the pro"t under ρ ′ is higher than the pro"t under ρ0. Fur-
thermore, correlation does not a!ect the separate sale, so γ (ρ ′) > γ (ρ0) > 0. Hence, the lemma
holds. !

Now let us begin our proof to the theorem:

(1) According to Lemma A.9, we conclude that the correlation coe$cient region for the bun-
dle to be more pro"table S = {ρ |γ (ρ) > 0} is a continuous region [−1, ρ̄). Otherwise, let
ρmax = sup{ρ |γ (ρ) > 0}, then [−1, ρmax) ⊂ S because of Lemma A.9. If [−1, ρmax) ! S,
then ∃ρ̂ ≥ ρmax such that ρ̂ ∈ S, γ (ρ̂) > 0. It is easy to verify that γ (·) is a continuous
function. As a result, ∃ϵ > 0 such that γ (ρ̂ + ϵ ) > 0, where ρ̂ + ϵ > ρmax. Here, a contra-
diction to the maximum of ρmax. As a result, S = [−1, ρ̄).

(2) From Lemma A.9, we also know that γ is a decreasing function of ρ when ρ ∈ [−1, ρ̄).
(3) When σ

µ <
√

2
π (α + 1),

√
2(1+ρ )

2 σ<σ<µ
√

2
π (α + 1),∀ρ ∈ [−1, 1). From Lemma A.3, we

know that

U ∗s = 2U ∗
(
〈(µ,σ 2), 0,α〉

)
< 2U ∗ !)

"
〈!)
"
µ, !"

√
2(1 + ρ)

2 σ#$
2#*
$
, 0,α

〉#*
$

= U ∗
(
〈(2µ, 2(1 + ρ)σ 2), 0,α〉

)
= U ∗b .

We can see from the preceding inequalities that when ρ ∈ [−1, 1), γ (ρ) > 0. Moreover,
when ρ = 1, γ = 0 . Hence, S = {ρ |γ (ρ) > 0} = [−1, 1), which means that ρ̄ = 1.

(4) Let us "rst prove the following lemma.
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Lemma A.10. If σ
µ >

2√
π (1+ρ )

(α+1), then γ (ρ) < 0.

Proof. Letting
√

2(1+ρ )
2

σ
µ =

√
2
π (α+1), we have σ

µ =
2√

π (1+ρ )
(α+1). As a result, when

σ
µ >

2√
π (1+ρ )

(α + 1),
√

2(1+ρ )
2 σ>µ

√
2
π (α+1). Hence, σ >

√
2(1+ρ )

2 σ > µ
√

2
π (α + 1). Thus, by

Lemma A.3, we have

U ∗b = U
∗ (〈(2µ, 2(1 + ρ)σ 2), 0,α〉

)
= 2U ∗ !)

"
〈!)
"
µ, !"

√
2(1 + ρ)

2 σ#$
2#*
$
, 0,α

〉#*
$
< 2U ∗

(
〈(µ,σ 2), 0,α〉

)
= U ∗s .

(51)

From the preceding inequalities, we know that bundling is less pro"table than separate sales, so
γ (ρ) < 0. !

From Lemma A.10, we know that when ρ > 4(α+1)2

π (σ /µ )2 − 1, we have γ (ρ) < 0. Therefore, ρ ≤
4(α+1)2

π (σ /µ )2 − 1 is a necessary condition for γ (ρ) > 0. As a result, ρ̄ = sup{ρ |γ (ρ) > 0} ≤ 4(α+1)2

π (σ /µ )2 − 1.
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