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Although the Infrastructure-as-a-Service (IaaS) cloud offers diverse instance types to users, a significant
portion of cloud users, especially those with small and short demands, cannot find an instance type that
exactly fits their needs or fully utilize purchased instance-hours. In the meantime, cloud service providers
are also faced with the challenge to consolidate small, short jobs, which exhibit strong dynamics, to effectively
improve resource utilization. To handle such inefficiencies and improve cloud resource utilization, we propose
Cocoa (COmputing in COntAiners), a novel group buying mechanism that organizes jobs with complementary
resource demands into groups and allocates them to group buying deals predefined by cloud providers. Each
group buying deal offers a resource pool for all the jobs in the deal, which can be implemented as either a
virtual machine or a physical server. By running each user job on a virtualized container, our mechanism
allows flexible resource sharing among different users in the same group buying deal, while improving
resource utilization for cloud providers. To organize jobs with varied resource demands and durations into
groups, we model the initial static group organization as a variable-sized vector bin packing problem, and the
subsequent dynamic group organization problem as an online multidimensional knapsack problem. Through
extensive simulations driven by a large amount of real usage traces from a Google cluster, we evaluate the
potential cost reduction achieved by Cocoa. We show that through the effective combination and interaction
of the proposed static and dynamic group organization strategies, Cocoa greatly outperforms the existing
cloud workload consolidation mechanism, substantiating the feasibility of group buying in cloud computing.
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1. INTRODUCTION
The Infrastructure-as-a-Service (IaaS) cloud delivers bundled resources such as CPU,
memory, and storage in the form of virtual instances, and promises to save cost for users
in a pay-as-you-go model. By consolidating virtual instances to occupy fewer physical
servers, cloud service providers can also enhance resource utilization. Unfortunately,
these promises of IaaS are not fulfilled when dealing with small jobs with low resource
demands and short durations. Most small jobs have resource demands that seldom
exactly fit into the offered instance types, and may thus have to pay for resources they do
not use. Moreover, small jobs may have short durations of only several minutes [Wang
et al. 2013], and thus cannot fully utilize the entire instance period (e.g., 1 hour) they
pay for. Although CloudSigma [2014] allows users to customize their instances and
Google Compute Engine charges users in a per-minute manner, most cloud providers
offer fixed instance types and charge users on an hourly basis.

For cloud service providers, small jobs pose unique challenges to cloud workload
consolidation, which is traditionally done by packing virtual machines (VMs) of com-
plementary demands onto the same physical server [Meng et al. 2010]. However, small
jobs exhibit strong dynamics, even in their aggregated demand. The provider does not
always have jobs with complementary resources to pack onto a physical server. For
example, during those times when most user jobs are CPU-bound, VM consolidation
to improve memory utilization cannot be effectively performed, since it would bring a
high risk of service violation in terms of CPU. Moreover, the short job duration and
churning further make it difficult to consolidate VMs.

We propose Cocoa (COmputing in COntAiners), a lightweight container-based “group
buying” mechanism, to attract and consolidate small users with complementary re-
source demands in cloud computing. Group buying is a marketing strategy that
emerged in the last decade and has become popular in e-commerce. In group buy-
ing, consumers enjoy a discounted group price if they form a group to purchase a deal.
Similarly, using price discount incentives, a cloud service provider can offer various
group buying deals to attract users with complementary demands to form groups. If
such users can indeed coordinate with each other and collectively submit requests, con-
solidation is naturally performed with a better utilization of physical resources, and
thus the price discount offered in the first place can be warranted.

Thanks to the emerging container-based virtualization [Strauss 2013], cloud group
buying can be realized on existing IaaS platforms by the cloud provider (or a third-party
service broker) in a lightweight fashion. It is traditionally believed that virtualization
based on VMs is the only way to provide isolation for applications running on a server.
However, this assumption is quickly becoming outdated, as containers can now be
used as an alternative to VM-based virtualization to run multiple isolated applications
on a single operating system, with shared binary and library resources. Unlike VMs,
containers are much more efficient, as they do not require a full operating system image
for each job, and have such attractive features as lower overhead, shorter boot time,
higher consolidation ratio, and more flexible manageability. Therefore, in our group
buying mechanism, we load each small job onto a container, and pack such containers
into the predefined “group buying deals,” implemented as VMs or directly as physical
machines in the existing IaaS infrastructure.

Unlike traditional VM consolidation for stable large jobs [Xiao et al. 2013], we face
the unique challenge to group small and short workloads that may come and go dy-
namically. Live migration [Xu et al. 2014b], which is widely used in VM consolidation
to cope with workload dynamics, would be too costly to group small user jobs, consider-
ing their short durations and strong dynamics. Therefore, we combine both static and
dynamic grouping strategies in Cocoa. At the core of Cocoa, there is a job scheduler
that not only deals with the variety of user demands with a static batch-based grouping
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Fig. 1. The framework of proposed container-based group buying service.

strategy, but also handles job dynamics by packing user jobs into groups on the fly. We
formulate the initial static batch-based grouping as a variable-sized vector bin packing
problem, which turns out to be an NP-hard integer program that can be approximated
in polynomial time. The performance of the approximation scheme proves to be close
to optimal in our simulation. More importantly, with job dynamics, there will be many
resource “holes” left in the group buying deals due to job departures. To pack newly ar-
rived jobs into these resource “holes” in an online fashion, we formulate the hole-filling
process as an online knapsack problem to enhance utilization, and describe a practical
online scheme to handle job dynamics.

As a highlight of this article, we conduct extensive trace-driven evaluations of the
proposed mechanisms based on the workload traces collected from more than 12,000
Google servers in a 29-day period. We carefully evaluate the cost-saving percentage,
resource utilization, as well as service delay of Cocoa under different parameter set-
tings. The simulation results demonstrate that Cocoa can bring a significant amount
of cost savings to both cloud providers and users at the cost of only a moderate service
waiting time.

2. DESIGN PHILOSOPHIES
In this section, we provide an overview of our group buying mechanism. In reality,
restaurants may use Groupon, LivingSocial, or Tuangou (a web-based group buying
service based in China) to attract group purchases to increase the total sale, while
exploiting the reduced cost of serving a same predefined three-course meal in large
quantities. Using a similar idea, cloud service providers can offer group buying deals,
each aimed at accommodating a bunch of small users together, such that the sum of
the user resource requirements in all resource dimensions will not exceed the capacity
specified in the corresponding group buying deal.

Our cloud group buying framework is illustrated in Figure 1, where each user job
runs on a container and multiple containers can be placed onto a group buying deal,
which may be implemented as a VM or even a physical machine. The job organizations
are done through a smart interaction between static grouping and dynamic grouping
strategies.

Economic Incentives. Group buying can save costs for both users and cloud
providers due to several reasons. First, given limited instance types, the resource
demand of small jobs seldom exactly match any given instance. In most cases, only
part of resources in an instance paid for is used. For example, a memory-intensive task
on a small instance of Amazon EC2 may use only a small portion of the available CPU
resources. When jobs with complementary demands are grouped together, resource
wastage will be reduced, thus saving cost to both the cloud provider and users. Second,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 8, Publication date: February 2017.



8:4 X. Yi et al.

many small jobs only run for partial hours on an instance or have intermittent resource
usage. With the currently most popular hourly charging model, such users are actu-
ally charged for the whole instance-hour. To handle job dynamics, our group buying
mechanism not only packs user demands along different resource dimensions, but also
along the timeline. After a job finishes and departs from the group, its container will
be eliminated and the corresponding resources are released to accommodate new jobs.
When a new job is allocated to the group, a container can be launched in a few seconds
to quickly recycle idle resources.

Despite its potential benefits to both cloud providers and users, such benefits cannot
be realized without smart grouping strategies. Similar to existing group buying services
like Groupon and LivingSocial, we propose a new type of business model to be operated
by cloud providers. In this model, each small user interested in the group buying service
needs to submit his/her (rough) resource request for CPU cores (or “compute cycles” in
the case of RackSpace), memory, and other resources. Note that such resource requests
can take any value, not necessarily the ones in predefined VM types. The cloud provider
predefines several group buying deals, each with certain (relatively large) resource
provisioning. At the core of Cocoa is a scheduler, operated by the cloud provider, which
packs different jobs into as few group buying deals as possible so that the total service
cost is minimized.

Application Scenario. In Cocoa, user submitted jobs may need to wait for a period
of time before they are allocated to a proper deal and can be executed. Therefore,
Cocoa is more suitable to serve non-interactive jobs. One application example would
be job batches for routine system maintenance such as periodical log analysis and
data backup. In addition, recent literature [Elmeleegy 2013] indicates that in modern
Hadoop-like big data systems [Yi et al. 2014], a large portion of the workloads are
small and short, which could also be served in Cocoa. This is mainly because those
systems are usually used as data warehouses to serve ad-hoc, short queries generated
by higher level query languages, which can typically be completed within a couple of
minutes [Chen et al. 2012]. The provider could provide an interface for job submission,
which allows users to specify the software stack and the amount of computing resources
required by the job, as well as a shell script to run the job. For a submitted job, the
cloud provider allocates it to a proper group buying deal with either static or dynamic
grouping strategy, and launches a container in the deal according to the user specified
requirements. Once the container is launched, the provider can execute the user-
submitted shell script to run the job. In addition to the compute service, modern cloud
service providers also offer cloud storage services (e.g., Amazon EFS and Microsoft
Azure Storage), which can be accessed from user launched container. Therefore, cloud
users could upload job required files (e.g., executable files and input data) to the cloud
storage service upon job submission. When the job is finished, the results can either be
stored in the cloud storage service or be transferred to a local on-premise server of the
user.

The benefits of cloud group buying do not come without concerns. In the group
buying market, users need to wait for a period of time to join in a group and get
served, especially in the batch-based grouping. We will show in Sections 4 and 6
that by using the dynamic grouping strategies, the service delay can be reduced to a
moderate extent. In addition, in our group buying mechanism, cloud users are required
to submit their resource requests before job execution, which may not be an accurate
estimate. However, demand estimation is also required in individual buying. As will
be mentioned later, container-based multiplexing in the same group can help alleviate
this problem.

In general, cloud group buying gives users an opportunity to execute small and
short jobs at a lowered price, at the cost of a compromise in service delay. However,
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Fig. 2. The static group buying strategy packs a batch of jobs in the waiting buffer into new opened deals.
The dynamic strategy tries to pack each new job into resource “holes” in existing group buying deals caused
by job departure. If there is no deal that a job can fit into, it will be added to the waiting buffer. Empty deals
with no job running will be eliminated.

our container-based group buying should be regarded as a complement to the current
“individual buying” mechanism rather than its competitor. For users with time-critical
tasks, or those who need to deal with workload spikes by dynamically scaling their
instances, traditional IaaS may still be a better choice.

Containerization, Isolation, and Multiplexing. We run each job inside a group
buying deal on a container to achieve isolation. Containers can now be used as an
alternative to VM-based virtualization to run multiple isolated systems on a single
host. Unlike VMs, containers do not require a full OS image for each job, multiple con-
tainers can share a single operating system, with little overhead associated with job
launching or termination. Therefore, the lightweight containers are more suitable to
handle job dynamics as compared to VMs. As containers within a single OS are much
more efficient, they may underpin the future of the cloud infrastructure industry in
place of VM architecture [Strauss 2013]. In fact, cloud providers such as Google Cloud
Platform, RackSpace, and dotCloud [Petazzoni 2013] have already adopted containers
to achieve isolation among hosted cloud applications. It is also reported that Google
is now running all its applications in containers [Morgan 2014]. In addition, several
leading IaaS vendors like AWS EC2, Google Compute Engine, and RackSpace Cloud
support containers to run on their VM instances [Docker 2014]. Therefore, our group
buying mechanism can be deployed directly upon existing IaaS platforms, by imple-
menting group buying deals as predefined VM instances, on which multiple containers
can be launched to run jobs.

The physical resources allocated to each container are configurable. For each con-
tainer, we set its resource upper limit to the user’s requested resources. However, the
actual resource usage of each job may not be exactly the same as its original esti-
mation. The actual resource demand of a job may exceed its container’s upper limit,
while some other job may not use up all the resources allocated to its container. For-
tunately, container schedulers have some features that allow different containers on
the same host to share resources more flexibly. For example, OpenVz [2014] can mon-
itor container resource usage and resize them accordingly with a low overhead. Some
LXC-based containers [Soltesz et al. 2007] allow unused resources in one container to
be used by other containers. And Parallels Virtuozzo containers [Virtuozzo 2014] are
able to use more resources than they are initially configured to when there are idle
resources in the system. Since not all jobs will have resource peaks at the same time,
jobs in the same group buying deal can multiplex their bursty demand to further save
cost.

Static vs. Dynamic Group Buying Strategies. As illustrated in Figure 2, to pack
user jobs into group buying deals, Cocoa combines the usage of two grouping strategies,
that is, the static grouping strategy and the dynamic grouping strategy. Initially, Cocoa
uses a static strategy to pack a batch of jobs into group buying deals. After that, there
will be both incoming jobs due to new submission and leaving jobs due to job completion.
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When a job departs from a deal, its container will be eliminated (i.e., delete container
image and release its allocated sources), thus leaving the corresponding resources idle.
To avoid wastage, Cocoa packs newly arrived jobs into existing group buying deals to
fill the resource “holes.” Upon the arrival of a new job, Cocoa uses a dynamic grouping
strategy to decide whether to pack it into existing deals and also which deal to pack it
into. If no running deal can accommodate the new job, then it will be put into a waiting
buffer. When there is a sufficient number of waiting jobs in the buffer, the provider
will resort to a static grouping strategy to pack all of the waiting jobs into new group
buying deals. In summary, the static strategy is used to pack a batch of waiting jobs
into new created deals, and the dynamic grouping strategy packs newly arrived jobs
into existing group buying deals.

Note that Cocoa immediately performs dynamic grouping upon job arrival. Thus,
for dynamically grouped jobs, they would only experience a computation delay when
Cocoa calculates the decision about which running deal to pack the job in. However,
in addition to the computation delay, jobs that are statically grouped will experience
an extra service queuing delay, since it has to wait for a certain amount of time in the
waiting buffer before being packed. Since all the jobs in Cocoa are delay tolerant, in
static grouping, we focus on minimizing the total deal cost to serve jobs while neglecting
the service latency. In Cocoa, to avoid high latency, we also set an upper bound for the
waiting time and immediately perform the static grouping when the waiting time of
any job reaches the upper bound. In Section 6.6, we conduct trace-driven simulation to
further demonstrate that the dynamic grouping strategy effectively avoids the queuing
delay for most of jobs in Cocoa.

It is also worth noting that the static and dynamic grouping strategies share the
same objective, which is to minimize the cost of serving all the jobs. In static grouping,
we pack a batch of jobs into as few deals as possible to minimize the cost of launching
deals. Therefore, it is modeled as a bin packing problem, as elaborated in Section 3.
In dynamic grouping, we pack newly arrived jobs into existing deals. By setting the
objective as maximizing the utilization of idle resources in running deals, we not only
minimize wastage of idle resources in running deals but also maximize the sum of
resource demand from jobs that are packed into existing deals. It also minimizes the
sum of resource demands from all the jobs that are not packed into existing deals, since
the total resource demand of newly arrived jobs (both packed and not packed jobs) is
fixed. Note that Cocoa creates new deals to serve jobs that are not packed in dynamic
grouping. By minimizing the total resource demands of not packed jobs, the dynamic
grouping strategy minimizes the need to open up new deals, thus saving the service
cost. For each new job, the dynamic grouping strategy first decides whether to pack the
job into existing deals or let it wait for being statically grouped into new deals. Then for
the jobs that should be packed into existing deals, it also needs to decide which deal to
pack in. As will be elaborated in Section 4, the dynamic group problem is more suitable
to be modeled as an online knapsack problem.

3. STATIC GROUPING FOR BATCHES OF JOBS
Cocoa combines the usage of static and dynamic strategies to pack user jobs into
predefined group buying deals. The static grouping strategy is performed to pack a
batch of waiting jobs at the beginning of the group buying service, or whenever there is
a sufficient number of jobs waiting to join buying groups. In Section 3.1, we formulate
the static group buying problem as a variable-sized vector bin packing problem. We
adapt the literature of a branch-and-price framework to our problem and introduce an
optimal solution with relatively high computation complexity in Section 3.2. Based on
the framework, in Section 3.3, we present a polynomial-time approximation algorithm
for the static grouping problem.
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Table I. List of Major Notations

H number of running deals
T number of incoming jobs in each recycle interval
S the set of jobs in the current recycle interval
πi the value of job i
Ch the vector of idle resource capacity in deal h
xih a solution to the offline packing Problem (15)
x∗

ih the optimal solution to the offline packing Problem (15)

x̃∗
ih the optimal solution to the LP relaxation of the offline packing Problem (15)

Ph dual solution (price vector) corresponding to deal h

P̃∗
h the optimal dual solution corresponding to deal h in the LP relaxation of Problem (15)

xih(P) solution to Problem (15) under pricing vector P without considering deal capacity constraint

x f
ih(P) solution to Problem (15) under pricing vector P in the learn-and-pack strategy

Ŝ the set of jobs in the previous recycle interval

P̂h dual solution corresponding to deal h learned in the virtual packing problem

x̂ih(P̂) solution to Problem (19) under pricing vector P̂ without considering deal capacity constraint

x̂ f
ih(P̂) solution to Problem (19) under pricing vector P̂ in the learn-and-pack strategy

3.1. Problem Formulation
In our proposed group buying mechanism, a cloud provider can predefine multiple
types of group buying deals, each with specification on the amount of resources in all
dimensions, as well as the price of the deal. We assume the capacities of cloud providers
are sufficiently large such that deals of each type can always be provided upon request.
The major notations are listed in Table I.

We consider a batch of m waiting jobs. There are n types of group buying deals
in the market. The computing resources (e.g., CPU, memory, I/O) considered have
a dimension of d. We use a vector Cj = (c1 j, c2 j, . . . , cdj) to denote the computing
resources provided in a group buying deal of type- j, with j ∈ {1, . . . , n}, where ckj is
the amount of dimension-k computing resource offered in a type- j deal. In practice,
cloud service providers offer multiple types of instances; some of the instance types
provide relatively large amounts of computation resources, which can be used as group
buying deals. For instance, an m4.10xlarge instance in Amazon EC2 contains 40vCPUs
and 160GB memory. By running it as a group buying deal, we can launch multiple
containers to run cloud jobs concurrently. Assume that the cloud provider implements
each type- j group buying deal by launching a VM instance or directly using a PM at
the cost pj . Similarly, the demand of each user job i is also represented by a vector
Ri = (ri1, ri2, . . . , rid), where rik is user i’s demand on the dimension-k resource. We
assume that both rik and ckj are normalized to the maximum value of ckj among all
the types of deals, that is, max j∈{1,...,n} ckj = 1 for ∀k ∈ {1, ..., d}. Therefore, we have
0 < rik ! 1 and 0 < ckj ! 1.

The objective of the provider is to minimize the total cost of all the group buying
deals launched while satisfying all users’ demands, by allocating each job to a proper
deal. Let x js

i be a binary job-to-deal allocation variable: if user i’s job is allocated to
the sth type- j group buying deal, then x js

i = 1; otherwise, x js
i = 0. Let yjs be a binary

deal selection variable: if there is any user job allocated to the sth type- j group buying
deal, then yjs = 1; otherwise, yjs = 0. Apparently, for each type of group buying deal,
the number of deals used will be upper-bounded by the number of user jobs, that is, we
have s ∈ {1, . . . , m}.
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The static group buying organization can be formulated as a bin packing problem
in which the target is to pack a set of variable-sized items into a number of bins at a
minimal cost. If we consider group buying deals as bins and user demands as items, the
optimization problem we aim to solve in the static grouping strategy can be formulated
as:

min
∑

1! j!n

∑

1!s!m

pj yjs (1)

s.t.
∑

1! j!n

∑

1!s!m

x js
i = 1, i ∈ {1, . . . , m}, (2)

∑

1!i!m

rikx js
i ! ckj yjs,

j ∈ {1, . . . , n}, s ∈ {1, . . . , m}, k ∈ {1, . . . , d}, (3)
x js

i ∈ {0, 1},
j ∈ {1, . . . , n}, i ∈ {1, . . . , m}, s ∈ {1, . . . , m}, (4)
yjs ∈ {0, 1}, j ∈ {1, . . . , n}, s ∈ {1, . . . , m}. (5)

The objective Function (1) minimizes the aggregate cost of selected group buying deals.
Constraint (2) ensures that each user job is allocated to exactly one group buying deal.
Constraint (3) ensures that a group buying deal will be selected when there are jobs
allocated to it, and the resources offered in the deal can satisfy all the demands of user
jobs allocated to it.

3.2. An Optimal Branch-and-Price Algorithm
Problem (1) is equivalent to the variable-sized vector bin packing problem, which is
proved to be NP-hard. Fortunately, for a small number of jobs, we can use branch-and-
price [Barnhart et al. 1998], a framework to solve generalized assignment problems in
the literature, to obtain the optimal group organization. We now present a branch-and-
price algorithm particularly adapted to our Problem (1). Specifically, we reformulate
Problem (1) into a master problem and a set of subproblems with Dantzig-Wolfe de-
composition [Dantzig and Wolfe 1960]. We start with a heuristic initial solution, and
improve the solution by solving the master problem and subproblems iteratively. Since
the master problem is modeled as a linear programming problem, a branch-and-bound
framework is utilized to restrict the solution into an integer.

Dantzig-Wolfe decomposition: Before illustrating Dantzig-Wolfe decomposition,
we introduce some new concepts. Note that multiple user demands are organized into a
group and then allocated to a group buying deal. For a group of users, if their aggregate
demands can be satisfied by a type- j group buying deal, we call this group a feasible
allocation to type- j deals. Clearly, for each type of group buying deal, there are multiple
feasible allocations.

With Dantzig-Wolfe decomposition, our static group organization problem is de-
composed into a combination of an allocation-choosing master problem and multiple
allocation-generation subproblems. In the allocation-choosing master problem, we are
given a number of feasible allocations, from which we choose the proper ones to min-
imize the total group buying cost. Corresponding to each type of group buying deal,
there is an allocation-generation subproblem. In these subproblems, we properly gen-
erate feasible allocations to each type of group buying deals. The optimal solution will
be found through the interaction of the allocation-choosing problem and allocation-
generation problems. In the following, we will formulate these master and subproblems,
and show how they interact with each other.
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Allocation-choosing master problem: We use Bj
l = (bj

1l, bj
2l, . . . , bj

ml) to denote
the lth feasible allocation of type- j group buying deals. bj

il is a binary variable which
indicates whether job i is in Bj

l . We use qj to denote the number of feasible allocations
to type- j deals. We use λ

j
l to denote whether Bj

l is chosen. Note that in the master
problem, λ

j
l is a continuous variable, which means that its solution could choose only a

portion of a feasible allocation. We will show later how we use a branching strategy to
restrict the solution to an integer. After introducing the above variables, the allocation
choosing problem can be formulated as:

min
∑

1! j!n

∑

1!l!qj

pjλ
j
l (6)

s.t.
∑

1! j!n

∑

1!l!qj

bj
ilλ

j
l = 1, i ∈ {1, . . . , m}, (7)

0 ! λ
j
l ! 1 j ∈ {1, . . . , n}, l ∈ {1, . . . , qj}. (8)

The master problem is modeled as a linear programming (LP) problem with an
exponential number of variables, each corresponding to a feasible allocation. Even for
a small number of jobs, the problem would be too large to be solved directly. To address
this issue, we generate allocations dynamically by solving subproblems iteratively. In
each iteration, the subproblems only generate allocations that have the potential to
improve the existing solution. Hence, the master problem would have much fewer
variables than the original problem. It can be solved efficiently by linear programming
algorithms such as the simplex algorithm.

Allocation-generation subproblems: In each iteration, there would be multiple
subproblems, each corresponding to one type of group buying deals. The subproblem
corresponding to type- j group buying deals is a multidimensional knapsack problem,
and it can be formulated as:

max
∑

1!i!m

uizi − pj (9)

s.t.
∑

1!i!m

rikzi ! ckj, k ∈ {1, . . . , d}, (10)

zi ∈ {0, 1}. (11)

In the subproblem, the parameters ui are the dual variables of the solution to the
allocation choosing problem. Applying the primal-dual theory, the value of ui (1 ! i ! m)
can be calculated efficiently from the solution to the master problem, that is, λ

j
l , by

solving the following equations:
∑

1!i!m

ui =
∑

1! j!n

∑

1!l!qj

pjλ
j
l ,

∑

1!i!m

uib
j
il = pj, j ∈ {1, . . . , n}, l ∈ {1, . . . , qj}.

The solution Z = (z1, z2, . . . , zm) is a new feasible allocation of type- j group buying
deals. If Z can achieve a positive value of objective Function (9), then Z is an allocation
that has the potential to further improve the solution.

If feasible allocations with positive objective function values are found, a new iter-
ation starts. The feasible allocations found in the last iteration will be added into the
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allocation choosing problem in the new iteration. With the results of allocation choos-
ing problem, subproblems will be solved to find new feasible allocations. The algorithm
progresses in such an iterative way until no feasible allocation can be found in any of
the subproblems. The solution to the allocation choosing problem in the last iteration
is then the optimal solution [Barnhart et al. 1998].

However, it is very likely that the solution is not integral. So, we need a branching
strategy to restrict the solution to an integer when the solution is fractional. According
to Ryan and Foster [1981], if the solution is fractional, then we can always find a job
pair i and i′ which satisfy:

0 <
∑

∀l, j:bj
il=1,bj

i′l=1

λ
j
l < 1. (12)

In this situation, we can generate a pair of branching constraints given by:
∑

∀l, j:bj
il=1,bj

i′l=1

λ
j
l = 1, and (13)

∑

∀l, j:bj
il=1,bj

i′l=1

λ
j
l = 0. (14)

This branching scheme has a natural physical interpretation in the group buying
problem. Equation (12) indicates that in any fractional solution, there always exists
such a pair of jobs i and i′ that satisfies: (1) among all the deals chosen in the solution,
there is at least one deal that contains both i and i′, and (2) in the meanwhile, there is
also at least one deal which contains only one of the jobs. Accordingly, in the branching
constraints, the branch corresponding to Equation (13) requires that if a deal contains
i, it should also contain i′. In other words, i and i′ should always be allocated to the same
group buying deals. The other branch, which corresponds to Equation (14), requires
that if an allocation contains i, then it should not contain i′, and vice versa. Therefore,
i and i′ are always required to be allocated to different deals. For any solution, if no
such job pairs can be found, then it must be an integer.

A branch-and-bound framework is used to handle branches. In each branch, a similar
allocation generation method is used to solve the respective allocation choosing prob-
lem. The algorithm stops when the optimal integral solution is found. The efficiency
of a branch-and-bound algorithm largely depends on the bounds of the LP relaxation
problem at each node in the branch tree. In the branch-and-price algorithm, the LP
bounds of the problem after Dantzig-Wolfe decomposition are quite tight [Dantzig and
Wolfe 1960], thus limiting the branch tree to a small size. An algorithm with a smaller
tree size would be more efficient, since there are fewer branches to explore. In Section 6,
we will further evaluate the convergence speed of the branch-and-price algorithm via
trace-driven simulation. The framework of our static group organization algorithm is
presented in Algorithm 1.

3.3. An Approximation Algorithm
Although the aforementioned branch-and-price solution is optimal, in practice, it is
impractical to organize group buying for a large batch of user jobs, since we require
the solutions to both the master problem and subproblems to be integral. In particular,
in the allocation generation subproblem, for each job, the algorithm needs to decide
whether to add it into the generated allocation; therefore, the computation complexity
is O(2n). In the branching strategy of the master problem, for each pair of jobs, there are
two corresponding branches. Therefore, the algorithm needs to explore O(2n2 ) branches
in the worst case.
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ALGORITHM 1: Optimal Static Group Buying Organization
1: Generate an initial set of feasible allocations with heuristic algorithm
2: Solve the allocation-choosing problem
3: Calculate dual variables
4: Solve the allocation-generation subproblems
5: if new feasible allocations are found, then
6: goto 2
7: end if
8: if the solution of restricted master problem is fractional, then
9: Branch and goto 2
10: end if
11: Stop

Leveraging the branch-and-price framework, in Cocoa, we adopt an approximation
algorithm in Patt-Shamir and Rawitz [2012] to solve the static grouping problem in
polynomial time. Although for both the master problem and the subproblem, calcu-
lating the integral solutions are proved to be NP-hard, their fractional solutions can
be obtained in polynomial time. In Cocoa, we leverage the fractional solutions to get
approximate integral solutions to the master problem and subproblems. In particular,
to avoid the complexity of calculating the optimal integral solution to the subproblems,
the algorithm exploits a polynomial time approximation scheme (PTAS) to generate
feasible allocations. With the generated allocations, we can get the fractional solution
to the master problem in polynomial time. From the fractional solution, we will de-
rive an approximate integral solution via a greedy process, to avoid the complexity of
exploring the branches in the branch-and-bound framework.

A PTAS of the subproblem. For each type of group buying deal, Cocoa applies the
PTAS to the corresponding allocation generation Subproblem (9). Specifically, for type- j
group buying deals, to achieve an approximation of 1 − ε, the algorithm generates can-
didate allocations from all the subset G of jobs that satisfies |G| ! q = min {m, ⌈d/ε⌉},
where ε > 0 is an arbitrary real number. Recall that m is the number of user jobs and d
is the dimension of resources. The algorithm discards any G that cannot be packed into
a type- j group buying deal. For each remaining G, we generate a candidate allocation
that contains all jobs in G. In particular, we first pack jobs in G into a type- j deal, and
then pack some of the leftover jobs, whose coefficient (ui) is no bigger than any job in G,
into the remaining deal capacity. We pack leftover jobs by solving the LP relaxation of
a knapsack problem and rounding down all the fractional values. Jobs in G, along with
leftover jobs packed into the deal, are considered as a candidate allocation. Among all
candidate allocations generated from all the possible Gs, the algorithm chooses the one
that maximizes the objective Problem (9) as the approximation solution. This process
can achieve a 1 − ε approximation to the optimal solution in polynomial time [Patt-
Shamir and Rawitz 2012].

A greedy approximation for the master problem. Using PTAS for all the
subproblems, we can get the approximate fractional solution to the master problem
in polynomial time [Plotkin et al. 1995]. From the fractional solution, we calculate
an approximation integral solution to the master problem in a greedy manner. Let
B+ be the set of all the allocations with non-zero values in the fractional solution.
B′ j

l = (b′ j
1l, b′ j

2l, . . . , b′ j
ml) denotes the lth feasible allocation of type- j group buying deals in

B+, where b′ j
il is a binary variable indicating whether user job i is in B′ j

l . Let G, which is
initially empty, be the set of allocations finally chosen in the approximate solution. For
all the feasible allocations in B+, the algorithm greedily chooses the one with largest
(
∑

1!i!m uib
′ j
il )/pj and adds it to G. ui is the dual variable corresponding to job i, which
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is derived from the solution to the master problem. The greedy scheme keeps progress-
ing until

∑
B′ j

l ∈G pj < ln 2d · W∗, where W∗ is the value of the objective Function (6)
obtained from the approximate fractional solution to the master problem. For each
feasible allocation B′ j

l in G, we open a type- j group buying deal and allocate all the jobs
in B′ j

l into the deal. For the residual jobs not contained in any feasible allocation in G,
the algorithm opens new group buying deals and packs them in a first-fit manner.

The approximation algorithm solves the static group buying problem in polynomial
time with an approximation ratio of ln 2d + 3 in the worst case [Patt-Shamir and
Rawitz 2012], where d is the number of resource types considered. In Section 6, we
will show through simulations that the approximation algorithm almost achieves the
same performance as the branch-and-price algorithm does, while saving running time
by 60×.

4. HANDLE JOB DYNAMICS WITH AN ONLINE KNAPSACK ALGORITHM
Different from conventional VM-based workload consolidation, Cocoa uses a dynamic
grouping strategy, in addition to the proposed static strategy, to cope with job arrivals
and departures on the go with an online knapsack algorithm. Although the static group
buying strategy can pack a batch of jobs into as few group buying deals as possible to
minimize the total deal cost, jobs usually do not finish at the same time; resource
utilization may degrade as some jobs depart from a deal, leading to resource “holes.”
Therefore, a dynamic strategy is needed to allocate incoming jobs to group buying
deals to fill these resource “holes” caused by departed jobs. In this section, we first
describe the framework we use in the dynamic grouping strategy to schedule user
jobs. Then, we formulate the problem to solve in the dynamic grouping strategy as an
online multidimensional knapsack problem. After that, we propose the learn-and-pack
algorithm, which is designed to make dynamic grouping decisions. Later in Section 5,
we will analyze the competitiveness of the proposed learn-and-pack algorithm.

For all the running group buying deals, Cocoa periodically eliminates containers with
finished jobs and recycles the released resources to launch containers for newly arrived
jobs. In practice, some cloud services also perform resource reorganization periodically.
For example, in Amazon EC2 Spot instance, the provider updates the service price and
reallocates cloud resources in every 5-minute interval [Amazon 2014]. Considering the
fluctuation of job arrival rate, in Cocoa, we adopt an adjustable recycle interval. We
use short intervals during periods of high arrival rates to serve more jobs, and longer
intervals for low arrival rates to reduce overhead. Specifically, we perform resource
recycling whenever a predefined number of T jobs have arrived since the last recycle
is performed.

The framework for dynamic grouping: Before illustrating the dynamic grouping
problem, we first provide an overview of the dynamic scheduling framework for jobs
and deals in Cocoa. Recall that in the static grouping strategy, Cocoa creates new group
buying deals to pack jobs. We maintain a running queue for all the active group buying
deals. Within each recycle interval, for each job that finishes during the interval, Cocoa
eliminates its corresponding container at the end of the interval so as to free up idle
resources. If all the containers in a deal are eliminated, then we also eliminate the deal
and remove it from the running queue. At the beginning of each recycle interval, we
check each group buying deal in the running queue for its amount of idle resources.
Upon the arrival of a new job, we use a learn-and-pack algorithm to decide whether
to allocate it to the running deals and which deal it should be allocated to. The details
of the learn-and-pack algorithm will be elaborated later in this section. Once a job is
allocated to a deal, a container will be launched according to the resource demand of
the job. Thanks to modern virtualization technology, the process of container creation
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and setup is efficient and the corresponding overhead is small. The users of Cocoa are
willing to accept this overhead since their jobs are delay tolerant. Cocoa also maintains
a buffer (i.e., the waiting queue) for the jobs that are not packed into any running
deals. Once the number of jobs in the waiting queue reaches a predefined threshold,
Cocoa will use the static grouping strategy to pack them into newly created deals.
Recall that Cocoa avoids a high queuing delay for jobs waiting in the queue by setting
an upper bound for waiting time. When the waiting time of any job reaches the upper
bound, Cocoa immediately performs the static grouping. For jobs that are dynamically
grouped, they are allocated to a deal upon their arrival, thus will not have a queuing
delay.

Problem Formulation: With each recycle interval, if we consider each group buy-
ing deal with idle resources as a knapsack and each incoming user job as an item, the
dynamic grouping problem can be formulated as a multi-dimensional multiple knap-
sack problem, where new user jobs are packed into resource “holes” with an objective
of maximizing the resource utilization at the end of the recycle interval. Assume there
are H group buying deals with the vector Ch = (c1h, c2h, . . . , cdh) denoting the amount
of idle resources in the hth deal in all d resource dimensions. Let S be the set of jobs
arrived in the interval and Ri = (ri1, ri2, . . . , rid) be the resource demand vector of ith

job. For resource dimension k, we assume that both rik and ckh are normalized to the
largest value of ckh for all h from all the intervals, thus 0 < rik ! 1 and 0 < ckh ! 1. The
problem we aim to solve in the dynamic grouping strategy can be formulated as:

max
∑

i∈S

∑

1!h!H

πixih (15)

s.t.
∑

i∈S

rikxih ! ckh,

k ∈ {1, . . . , d}, h ∈ {1, . . . , H}, (16)
∑

1!h!H

xih ! 1, i ∈ S, (17)

xih ∈ {0, 1}, i ∈ S, (18)

where πi is the value earned by the provider if job i is packed into any running deal.
Recall that the objective of the dynamic grouping is to maximize the utilization of idle
resource in running deals so as to maximize the accommodated resource requirements
from newly arrived jobs. Therefore, πi should be interpreted as the resource demand of
job i. Considering multiple resource dimensions, we calculate πi as a weighted sum of
job i’s resource usage in all resource dimensions. In practice, the provider can set the
weight of each resource dimension according to its price or resource scarcity. In this
article, we set all the weights of resource dimensions equal to one for simplicity. Our
dynamic grouping strategy works as long as πi is a weighted sum of job i’s resource
usage in all resource dimensions.

Constraint (16) ensures that the total resource demand of jobs allocated to a deal is no
bigger than its capacity of idle resources. Constraint (17) ensures that a job is allocated
to at most one running deal. In Cocoa, we deal with the online version of Problem (15).
Upon the arrival of each incoming job, a carefully designed online strategy is adopted
to make proper decisions on whether to pack the incoming job into any running deals
and which deal to pack it into.

A Learn-and-Pack Strategy: We propose an online algorithm for the knapsack
problem to pack each new job in a recycle interval into a proper deal by learning from
a virtual offline packing problem of the jobs in the previous interval. The framework
of the learn-and-pack strategy is presented in Figure 3. For the tth recycle interval, to
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Fig. 3. The framework of the learn-and-pack strategy. At the beginning of each interval, Cocoa learns the
pricing vector of each running deal by virtually packing jobs in the previous interval to the deals. The learned
pricing vector is used to pack new coming jobs in an online manner.

learn from jobs in the (t − 1)th interval, we consider a virtual offline knapsack problem,
which is a linear program that virtually packs all jobs in the (t − 1)th interval into
the idle resources in the present running group buying deals. Let Ŝ be the set of user
jobs that arrived at the (t − 1)th interval. Let R̂i = (̂ri1, r̂i2, . . . , r̂id) be the resource
demand vector of ith job. For resource dimension k, we assume that r̂ik is normalized
to the largest value of ckh for all h from all the intervals, thus 0 < r̂ik ! 1. The virtual
knapsack problem is formulated as:

max
∑

i∈Ŝ

∑

1!h!H

π̂i x̂ih (19)

s.t.
∑

i∈Ŝ

r̂ikx̂ih ! ckh,

k ∈ {1, . . . , d}, h ∈ {1, . . . , H}, (20)
∑

1!h!H

x̂ih ! 1, i ∈ Ŝ, (21)

x̂ih " 0, i ∈ Ŝ. (22)

The objective Function (19) maximizes the total value (resource demand) of jobs that
are packed into existing deals. Constraint (20) ensures that the capacity of idle re-
sources in a deal is no smaller than the demand of jobs allocated to it. Note that the
problem is a linear program; one job can be allocated to multiple deals, with each deal
accommodating a portion of it. Constraint (21) ensures that for each job, the sum of all
the portions allocated to existing deals is no more than one, that is, a job is allocated for
at most once. Constraint (22) is a relaxation of the integer constraint in the knapsack
problem; it allows the solution (̂xih) to be fractional.

Consider the dual problem of Problem (19), which can be formulated as the following:

min
∑

1!k!d

∑

1!h!H

ckh p̂kh +
∑

i∈Ŝ

ŷi (23)

s.t.
∑

1!k!d

r̂ik p̂kh + ŷi " π̂i,

i ∈ Ŝ, h ∈ {1, . . . , H}, (24)
p̂kh, ŷi " 0. (25)
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Fig. 4. When a new job comes, Cocoa tries to allocate it to running deals class by class. The learn-and-pack
strategy is used within each class. If there is no deal that a job can be allocated to, it is added to the tail of
the waiting queue.

The set of dual variables P̂h = ( p̂1h, p̂2h, . . . , p̂dh) (i.e., the pricing vector) corresponding
to deal h can be used to indicate whether a newly arrived job in the tth interval should be
allocated to group buying deal h. p̂kh can be interpreted as the unit price of dimension-k
idle resource in deal h in the virtual packing problem. In the learn-and-pack strategy
we estimate the cost of packing the newly arrived job i into group buying deal h as∑

1!k!d rik p̂kh. For each deal h, the utility of allocating job i to deal h is calculated as
wih = πi −

∑
1!k!d rik p̂kh. In Cocoa, we allocate job i to the deal it can fit into and where

it achieves the largest utility. If there is no deal that can either achieve a positive
utility or be able to pack the job, then we add the job to the tail of the waiting queue.
We will illustrate later in Section 5 that for any ϵ > 0, the learn-and-pack algorithm
can achieve 1 − 5ϵ competitive to the optimal offline algorithm.

A Prioritized Learn-and-Pack Strategy: Unfortunately, the learn-and-pack strat-
egy may still result in resource inefficiency, when the total user demand is constantly
decreasing. When the total demand decreases, all the deals will have “holes.” In this
case, the system should scale down by flushing and removing some of the deals, while
keeping other deals running at a high level of utilization. However, in the above learn-
and-pack strategy, the incoming jobs have similar chances to be packed into all the
deals. When the total demand decreases, the number of jobs in each deal is decreasing
at a similar rate. In the end, all the deals will have a low utilization with only a few
jobs running.

As shown in Figure 4, in Cocoa, we use a dynamic grouping strategy that comple-
ments the learn-and-pack strategy by prioritizing group buying deals. Specifically, we
further divide deals in the running queue into classes of a fixed size. When a new
job arrives, we check a class which is closer to the head of the running queue with a
higher priority. Within each class, a learn-and-pack strategy is used to allocate the job
to the proper deal. If the new job is not packed into any deal in the class, then the
next class is checked. In this way, when the demand decreases, the deals in classes
near the head of the queue have a higher priority to accommodate new jobs, and
thus can maintain higher resource utilization. In the meantime, the deal classes near
the tail will receive fewer incoming jobs and will eventually be eliminated as jobs
leave.

Deal Management in the Running Queue: Cocoa organizes deals in the running
queue in the form of ordered classes. We move running deals among classes in two
situations: when new deals are created or existing deals are eliminated. Cocoa places
newly created deals into the first class in the running queue. To make room for the
newly created deals, we will move existing deals with lower utilization from the first
class to subsequent classes. Recall that Cocoa performs static grouping to create new
deals and pack jobs in the waiting queue into them. Since the static grouping strategy
is near-optimal, new deals often have a high resource utilization, and thus are not
likely to be freed up soon. Hence, we place new deals into the first class. On the other
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hand, when a deal is freed up, we move the deal with the highest utilization in the
subsequent class to the current class, so as to maintain the predefined number of deals
in the class.

5. COMPETITIVE ANALYSIS OF THE LEARN-AND-PACK ALGORITHM
In this section, we analyze the competitiveness of the learn-and-pack algorithm. Specif-
ically, we prove that under the random permutation model, for any ϵ > 0, the learn-
and-pack algorithm can obtain a solution that is at least 1 − 5ϵ times of the value of
the optimal offline solution.

The permutation model is widely adopted in the competitiveness analysis of online
algorithms [Ho and Vaughan 2012; Mahdian and Yan 2011; Goel and Mehta 2008]. It
assumes that new jobs arrive in a random order, which is uniformly distributed over
all job arrive orders. It is worth noting that the above competitive ratio also applies
to the case where the resource demand of all jobs is drawn independently from some
unknown distribution, that is, when the strategy is used to pack i.i.d. jobs into group
buying deals.

THEOREM 5.1. For any ϵ > 0 that satisfies Condition (26), the learn-and-pack algo-
rithm is 1 − 5ϵ competitive to the optimal offline algorithm in the random permutation
model for all inputs, where

C = minh,kckh " 4dHlog(T/ϵ)
ϵ2 . (26)

In Condition (26), T is the number of incoming jobs in each recycle interval. Let x f
ih(P̂)

be the solution of the learn-and-pack strategy using the pricing vectors P̂ obtained
from the virtual packing problem. Then, Theorem 5.1 implies that the expectation of
the solution value under the learn-and-pack strategy is at least 1 − 5ϵ times of the
solution value under the optimal offline solution:

E

⎡

⎣
∑

i∈S

∑

1!h!H

πix
f

ih(P̂)

⎤

⎦ " (1 − 5ϵ)OPT . (27)

We first present an overview of the steps we take to prove Theorem 5.1. In
Lemmas 5.2 and 5.3, we assume that the optimal dual solution p̃∗

kh to LP relaxation of
the offline packing Problem (15) is known, and prove that learning from the dual solu-
tions is adequate to obtain a near-optimal online solution. However, in Cocoa, decisions
on dynamic job packing are made in an online manner, and the dual solutions cannot
be acquired before decision making. Therefore, in the learn-and-pack strategy, we use
the dual solutions in the virtual packing Problem (19). In Lemma 5.4, we prove that, by
using the dual solutions in the virtual packing Problem (19), the learn-and-pack strat-
egy can obtain a solution close to the optimal offline solution, with a high probability.
After that, we will illustrate how to get the claim in Theorem 5.1 from Lemma 5.4.

Next, we introduce some concepts and definitions. Let x̃∗
ih denote the optimal solution

to the linear programming relaxation of the offline actual packing problem (15). Let
x f

ih(P) be the solution of the learn-and-pack strategy using a given pricing vector P.
Note that P = (P1, P2, . . . , PH) with each Ph corresponding to the pricing vector of
the running deal h. We also consider another online packing strategy, which does
not consider the capacity of running deals and simply allocate jobs to the deal that
generates the maximal positive utility. We denote the solution of this strategy as xih(P).
Note that xih(P) might not be a feasible solution, since it may violate the deal capacity
constraints.
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LEMMA 5.2. For the LP relaxation of the offline packing Problem (15), given the
optimal pricing vector P̃∗, if a job is packed in the solution of the online strategy that
does not consider the capacity constraint (xih(P̃∗)), it will also be packed in the optimal
offline solution (̃x∗

ih). Furthermore, there are at most d ∗ H jobs which are packed in x̃∗
ih,

while not packed in xih(P̃∗). In other words,
∑

1!h!H xih(P̃∗) ! ∑
1!h!H x̃∗

ih for all i and
∑

1!h!H xih(P̃∗) ̸=
∑

1!h!H x̃∗
ih by no more than d ∗ H values of i.

PROOF. For a new coming job i, we consider two possible cases. For the first case,
where (P̃∗

h )T Ri ̸= πi for all h, we prove that
∑

1!h!H xih(P̃∗) =
∑

1!h!H x̃∗
ih. For the

second case, where there exists at least one h such that (P̃∗
h )T Ri = πi, we prove that∑

1!h!H xih(P̃∗) ! ∑
1!h!H x̃∗

ih. After that, we show that
∑

1!h!H x̃∗
ih and

∑
1!h!H xih(P̃∗)

differ by no more than d ∗ H values of i.
According to the complementarity slackness conditions in the primal-dual theory,

for the optimal solution x̃∗
ih to the LP relaxation of primal Problem (15) and optimal

solution ( p̃∗
kh, ỹ∗

i ) to the dual, we have:

∑

1!h!H

x̃∗
ih

∏

1!h!H

⎛

⎝
∑

1!k!d

p̃∗
khrik + ỹ∗

i − πi

⎞

⎠ = 0, (28)

⎛

⎝1 −
∑

1!h!H

x̃∗
ih

⎞

⎠ ỹ∗
i = 0. (29)

For the first case where (P̃∗
h )T Ri ̸= πi for all h, we consider two possible situations. In

the first situation, that is, (P̃∗
h )T Ri > πi for all h, we have

∑
1!h!H xih(P̃∗) = 0, since job

i will not be packed if no deal can achieve a positive utility. According to Equation (28),
we also have

∑
1!h!H x̃∗

ih = 0. Therefore, we have
∑

1!h!H x̃∗
ih =

∑
1!h!H xih(P̃∗). In the

second situation, where there exists some h such that (P̃∗
h )T Ri < πi, there must be some

h′ that satisfies xih′(P̃∗) = 1. This is because, when deal capacity is not considered, a
job will eventually be allocated to a deal if it can achieve positive utility. Therefore, we
have

∑
1!h!H xih(P̃∗) = 1. By Constraint (24) and the complementarity Condition (29),

we also have ỹ∗
i > 0 and

∑
1!h!H x̃∗

ih = 1. Combining the conclusions in the two possible
situations, we have

∑
1!h!H x̃∗

ih =
∑

1!h!H xih(P̃∗) in the first case.
For the second case, where there exists at least one h such that (P̃∗

h )T Ri = πi, if
there exists some h such that (P̃∗

h )T Ri < πi, similar to the second situation in the first
case, we have

∑
1!h!H xih(P̃∗) =

∑
1!h!H x̃∗

ih. Otherwise, if (P̃∗
h )T Ri " πi for all h, then

we have
∑

1!h!H xih(P̃∗) ! ∑
1!h!H x̃∗

ih, since
∑

1!h!H xih(P̃∗) = 0 and
∑

1!h!H x̃∗
ih " 0.

Therefore, we have
∑

1!h!H x̃∗
ih ! ∑

1!h!H xih(P̃∗) in the second case.
Note that

∑
1!h!H x̃∗

ih ̸=
∑

1!h!H xih(P̃∗) only in the second case, that is, when there
exists some h such that (P̃∗

h )T Ri = πi. According to Devanur and Hayes [2009], we can
safely assume that for each running deal h, there are at most d values of i such that
(P̃∗

h )T Ri = πi, with arbitrarily small impact on the solution. Since there are H running
deals, we have at most d∗ H values of i such that (P̃∗

h )T Ri = πi for some h. Then, we can
get the conclusion that

∑
1!h!H x̃∗

ih and
∑

1!h!H xih(P̃∗) differ by no more than d ∗ H
values of i.

LEMMA 5.3. For the LP relaxation of the offline packing Problem (15), given the
optimal pricing vector P̃∗, if a job is packed in the solution of the learn-and-pack strategy
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(x f
ih(P̃∗)), it will also be packed in the optimal offline solution (̃x∗

ih). Furthermore, there
are at most 2d ∗ H jobs which are packed in x̃∗

ih, while not packed in x f
ih(P̃∗). In other

words,
∑

1!h!H x f
ih(P̃∗) ! ∑

1!h!H x̃∗
ih for all i and

∑
1!h!H x f

ih(P̃∗) ̸=
∑

1!h!H x̃∗
ih by no

more than 2d ∗ H values of i.

PROOF. It is obvious that
∑

1!h!H x f
ih(P̃∗) ! ∑

1!h!H xih(P̃∗), since every job i packed
in the learn-and-pack strategy will also be packed in the strategy that does not consider
deal capacity. Combined with the conclusion in Lemma 5.2, we have

∑
1!h!H x f

ih(P̃∗) !∑
1!h!H x̃∗

ih.
In the following, we show that

∑
1!h!H x f

ih(P̃∗) and
∑

1!h!H xih(P̃∗) differ by no more
than d ∗ H values of i. First, define Sd = {i|

∑
1!h!H xih(P̃∗) = 1,

∑
1!h!H x f

ih(P̃∗) = 0},
as the set of jobs which are packed in the strategy that does not consider ca-
pacity constraints, but are not packed in the learn-and-pack strategy. Let l fkh =
ckh −

∑
i∈S rikx f

ih(P̃∗) be the left capacity in resource dimension k of deal h in the learn-
and-pack strategy at the end of the recycle interval. Since, for each job i in set Sd, there
is no group buying deal it can fit into, we have for ∀h ∈ {1, . . . , H},∀i ∈ Sd, ∃k ∈ {1, . . . , d}
such that rik > l fkh. Considering all the jobs in Sd, there must exist at least one resource
dimension, denoted as dimension κ, such that for running deal h, the number of jobs
that satisfies riκ > l fκh is at least |Sd|/d, where d is the number of considered resource
dimensions.

Next, our proof proceeds using the method of reduction to absurdity. In particular, let
us assume that

∑
1!h!H x f

ih(P̃∗) and
∑

1!h!H xih(P̃∗) differ by more than d ∗ H values,
that is, |Sd|/d > H. Then, for resource dimension κ, there are at least H jobs that
satisfy riκ > l fκh. Therefore, corresponding to each deal h, we can have a unique job
i(h) ∈ Sd, such that ri(h)κ > l fκh. Thus, we have:

∑

1!h!H

∑

i∈S

riκ x f
ih(P̃∗) +

∑

1!h!H

ri(h)κ =
∑

1!h!H

(
∑

i∈S

riκ x f
ih(P̃∗) + ri(h)κ

)

(30)

>
∑

1!h!H

(
∑

i∈S

riκ x f
ih(P̃∗) + l f κh

)

(31)

=
∑

1!h!H

cκh. (32)

According to the definition of Sd, we have
∑

1!h!H

∑

i∈S

riκ x f
ih(P̃∗) +

∑

1!h!H

ri(h)κ <
∑

1!h!H

∑

i∈S

riκ x f
ih(P̃∗) +

∑

i∈Sd

riκ =
∑

1!h!H

∑

i∈S

riκ xih(P̃∗).

(33)

According to Lemma 5.2, we also have
∑

1!h!H

∑

i∈S

riκ xih(P̃∗) !
∑

1!h!H

∑

i∈S

riκ x̃∗
ih. (34)

Then, we get to the following conclusion:
∑

1!h!H

∑

i∈S

riκ x̃∗
ih >

∑

1!h!H

cκh. (35)
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Equation (35) implies that x̃∗
ih is not a feasible solution to the LP relaxation of the of-

fline packing Problem (15). This is in conflict with x̃∗
ih’s definition as the optimal solution

to the LP relaxation of Problem (15). Therefore, the assumption that
∑

1!h!H x f
ih(P̃∗)

and
∑

1!h!H xih(P̃∗) differ by more than d ∗ H values leads to an incorrect conclu-
sion. Then, we get the conclusion that

∑
1!h!H x f

ih(P̃∗) and
∑

1!h!H xih(P̃∗) differ by no
more than d ∗ H values of i. Combined with the result of Lemma 5.2, we have that∑

1!h!H x f
ih(P̃∗) and

∑
1!h!H x̃∗

ih differ by no more than 2d ∗ H values of i.

LEMMA 5.4. For the learn-and-pack strategy with pricing vector P̂ learned from jobs
in the previous recycle interval, with probability 1 − ϵ, the solution of the following is
near-optimal:

∑

i∈S

∑

1!h!H

πix
f

ih(P̂) " (1 − 4ϵ)OPT.

given C " 4dHlog(T/ϵ)
ϵ2 .

PROOF. Recall that P̂ is the pricing vector learned by virtually packing jobs in the
previous interval into the current running deals. We use x̂ f

ih(P̂) to denote the obtained
solution to the virtual packing problem using the learn-and-pack strategy and pricing
vector P̂. Note that x̂ f

ih(P̂) is a binary solution, though the virtual packing problem is
a linear program. Consider the virtual packing Problem (19), since x̂ih is the optimal
primal solution and P̂ is the corresponding dual solution, by the complementarity
conditions of the linear program; if p̂kh > 0, there will be

∑
i∈Ŝ r̂ikx̂ih = ckh, where Ŝ is

the set of jobs that arrive in the (t − 1)th interval. Recall that 0 < r̂ik ! 1; by applying
Lemma 5.3 to the virtual packing problem, if p̂kh > 0, we have

∑

i∈Ŝ

r̂ikx̂ f
ih(P̂) "

∑

i∈Ŝ

r̂ikx̂ih − 2d ∗ H = ckh − 2d ∗ H. (36)

Then, by the constraint on C in Lemma 5.4, we further have
∑

i∈Ŝ

r̂ikx̂ f
ih(P̂) " ckh − 2d ∗ H " ckh − ϵ

2log(T/ϵ)
ϵC " ckh − ϵC " (1 − ϵ)ckh. (37)

Next, we fix p̂kh, k and h and show that, in the permutation model, when p̂kh > 0,
the possibility that

∑
i∈S rikx f

ih(P̂) ! (1 − 4ϵ)ckh is no bigger than ϵ
dHT Hd . First, define

Yih = rikx f
ih(P̂) if i ∈ S, and Yih = r̂ikx̂ f

ih(P̂) if i ∈ Ŝ. Zih = (2−4ϵ)ckhYih∑
i∈S Yih

. We have

P

⎛

⎝
∑

i∈Ŝ

Yih " (1 − ϵ)ckh,
∑

i∈{Ŝ∪S}

Yih ! (2 − 4ϵ)ckh

⎞

⎠

= P

⎛

⎝

∣∣∣∣∣∣

∑

i∈Ŝ

Yih − 1
2

∑

i∈{Ŝ∪S}

Yih

∣∣∣∣∣∣
" ϵckh,

∑

i∈{Ŝ∪S}

Yih ! (2 − 4ϵ)ckh

⎞

⎠

! P

⎛

⎝

∣∣∣∣∣∣

∑

i∈Ŝ

Yih − 1
2

∑

i∈{Ŝ∪S}

Yih

∣∣∣∣∣∣
" ϵckh,

∑

i∈{Ŝ∪S}

Zih ! (2 − 4ϵ)ckh

⎞

⎠

! P

⎛

⎝

∣∣∣∣∣∣

∑

i∈Ŝ

Zih − 1
2

∑

i∈{Ŝ∪S}

Zih

∣∣∣∣∣∣
" ϵckh

∣∣∣∣∣∣

∑

i∈{Ŝ∪S}

Zih = (2 − 4ϵ)ckh

⎞

⎠ .
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In the permutation model, we can regard Zih, i ∈ Ŝ as a sample from Zih, i ∈ {Ŝ ∪ S}
without replacement. According to the Hoeffding-Bernstein’s inequality for sampling
without replacement [van der Vaart and Wellner 1996], we further have:

P

⎛

⎝

∣∣∣∣∣∣

∑

i∈Ŝ

Zih − 1
2

∑

i∈{Ŝ∪S}

Zih

∣∣∣∣∣∣
" ϵckh

∣∣∣∣∣∣

∑

i∈{Ŝ∪S}

Zih = (2 − 4ϵ)ckh

⎞

⎠ ! 2exp
(

− ϵ2ckh

2 − 3ϵ

)

! ϵ

dHT Hd . (38)

The last inequality is because of the constraint made on C. Note that Equation (38) is
obtained for a fixed combination of p̂kh, k and h. By summing over all the T Hd distinct
prices [Orlik and Terao 1992], k ∈ {1, . . . , d} and h ∈ {1, . . . , H}, we have the conclusion
that for all k and h, if p̂kh > 0, then

∑
i∈{Ŝ∪S} Yih " (2 − 4ϵ)ckh with a probability no

smaller than 1 − ϵ.
Since x̂ f

ih(P̂) is a feasible solution to the virtual packing Problem (19), we have∑
i∈Ŝ Yih =

∑
i∈Ŝ rikx f

ih(P̂) ! ckh. Therefore, for all k and h, if p̂kh > 0, then we have:

P

(
∑

i∈S

rikx f
ih(P̂) " (1 − 4ϵ)ckh

)

" P

⎛

⎝
∑

i∈{Ŝ∪S}

Yih " (2 − 4ϵ)ckh,
∑

i∈Ŝ

Yih ! ckh

⎞

⎠

" (1 − ϵ). (39)

With the above conclusion, we can construct the following linear program:

max
∑

i∈S

∑

1!h!H

πix′
ih (40)

s.t.
∑

i∈S

rikx′
ih ! c′

kh,

k ∈ {1, . . . , d}, h ∈ {1, . . . , H}, (41)
0 ! x′

ih ! 1, i ∈ S, (42)

0 !
∑

1!h!H

x′
ih ! 1, i ∈ S, (43)

where c′
kh =

∑
i∈S rikx f

ih(P̂) if p̂kh > 0, and c′
kh = max{

∑
i∈S rikx f

ih(P̂), ckh} if p̂kh = 0. In
the constructed Problem (40), we aim to pack jobs in the current interval into deals with
resource capacity C ′

h = (c′
1h, c′

2h, . . . , c′
dh), 1 ! h ! H. It is worth noting that Problem (40)

corresponds to neither the virtual packing problem nor the actual packing problem. We
construct it only to prove the near-optimality of the learn-and-pack strategy. According
to the definition of c′

kh, we can get the conclusion that c′
kh " (1−4ϵ)ckh with a probability

no smaller than 1−ϵ for all h and k. In addition, x f
ih(P̂) and P̂ are the optimal primal and

dual solution to linear Problem (40), since they satisfy all complementarity conditions.
With a probability no smaller than 1− ϵ, c′

kh " (1−4ϵ)ckh holds for all h and k. Given
x∗

ih as the optimal solution to the offline actual packing Problem (15), (1 − 4ϵ)x∗
ih will be

a feasible solution to Problem (40). Since x f
ih(P̂) is the optimal solution to Problem (40),

we have
∑

i∈S

∑

1!h!H

πix
f

ih(P̂) "
∑

i∈S

∑

1!h!H

πi(1 − 4ϵ)x∗
ih " (1 − 4ϵ)OPT. (44)
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According to Lemma 5.4, with probability 1 − ϵ, we have:
∑

i∈S

∑

1!h!H

πix
f

ih(P̂) " (1 − 4ϵ)OPT.

Denote this event by ε, where P(ε) " 1 − ϵ. We can get the expected solution value of
the learn-and-pack strategy:

E

⎡

⎣
∑

i∈S

∑

1!h!H

πix
f

ih(P̂)

⎤

⎦ " (1 − 4ϵ)P(ε)OPT " (1 − 5ϵ)OPT. (45)

Then, we can have the conclusion in Theorem 5.1 that the learn-and-pack algorithm is
1 − 5ϵ competitive to the optimal offline algorithm.

6. PERFORMANCE EVALUATION
We perform extensive trace-driven simulations based on a large amount of real-world
traces to evaluate the performance of the proposed group buying organization strate-
gies. In our simulation, we use the Google cluster workload trace data, which are
publicly available [Reiss and Hellerstein 2011]. The trace set contains the information
of resource usage in a Google cluster of 12,583 physical servers, which was collected
during a period of 29 days in May 2011.

6.1. Dataset Preprocessing
The dataset records the resource usage of 933 Google users in the cluster. Users submit
their demands as jobs. Each job consists of several tasks, each of which has a demand
on computing resources such as CPU and memory. In our simulations, we deem each
job in the dataset as a cloud user and organize the jobs into groups to perform group
buying. We calculate the resource demand of a job by summing up the demands of all its
tasks. We collect the information of resource demand, submission time, and completion
time of jobs during the first week in the trace.

In the trace, there are 89,768 submitted jobs that are successfully executed in the
first week. The distribution of jobs is highly skewed in terms of resource demand and
lifetime. There are a few jobs with large demand while the majority have moderate
demands. The distribution of job lifetimes has a similar pattern. Since Cocoa aims to
organize small and short jobs into groups, we rule out jobs with large demands (the nor-
malized demand larger than 0.1 in either CPU or memory) and long durations (longer
than 900 seconds). In the trace, there is a “scheduling class” attribute corresponding
to each job to specify its tolerance to service delay with a range from 0 to 3. Since
Cocoa is designed to serve delay tolerant jobs, we remove delay-sensitive jobs with the
value of a “scheduling class” larger than 2. Note that in the Google trace, a moderate
service delay is acceptable even for jobs whose “scheduling class” value is 3. There is
also a “different-machine constraint” attribute to indicate whether two tasks in a job
can be allocated to the same machine. In Cocoa, we allocate tasks of a job into one
container. Therefore, we remove those jobs whose tasks are required to be allocated to
different machines in the trace. After preprocessing, we get 52,183 remaining jobs in
our simulation.

Since the resource usage in the trace is normalized by the amount of resources in the
largest Google physical server, we assume the biggest servers have 32 CPU cores with
128GB memory. Accordingly, we can calculate the actual resource demand of each job,
shown in Figure 5. The demand still has a skewed distribution after removing large
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Fig. 5. The distribution of user demands for CPU and memory resources in the Google cluster workload
traces.

Table II. Group Buying Deal Settings

Name CPU resource Memory resource Cost
CPU Large 12.8 cores 12.8GB 0.57$/hr
CPU Small 4.8 cores 9.6GB 0.24$/hr
Balanced 6.4 cores 25.6GB 0.42$/hr

Memory Small 3.2 cores 19.2GB 0.25$/hr
Memory Large 4.8 cores 38.4GB 0.44$/hr

jobs. In addition, there exists both CPU and memory intensive jobs, which calls for a
careful consolidation scheme.

6.2. Group Buying Deal Setup
We define five types of group buying deals shown in Table II. Among them, there are
two CPU/memory enhanced deals (i.e., CPU/memory small and CPU/memory large),
which offer a larger amount of resource in CPU/memory. To set the price of each
group buying deal type, we consider the combination of Google “High CPU” and “High
memory” instances, which offer the equivalent amount of resource as the group buying
deal does. Then, we set the deal price as the price of the instance combination in Google
Compute Engine.

In our simulation, we evaluate the performance of Cocoa, which combines the
approximation static grouping strategy and prioritized learn-and-pack dynamic
strategy. Static grouping is performed at the beginning of the service or whenever
the number of jobs in the waiting queue reaches 20. In the prioritized learn-and-pack
strategy, we set the size of deal classes as 5. We compare to the performance of a VM
consolidation strategy (i.e., Skewness Minimization [Xiao et al. 2013]), two pure static
group buying organization strategies (i.e., Branch-and-Price, Approximation), two
pure dynamic grouping strategies (i.e., Learn-and-Pack and Prioritized Learn-and-
Pack), and a combined strategy (i.e., Prioritized Learn-and-Pack + Branch-and-Price).

6.3. Resource Utilization
Comparing to VM Consolidation Strategies and Pure Static Strategies: We
implement both Branch-and-Price and its polynomial-time approximation algorithm
as two pure static group buying strategies and compare their corresponding resource
utilization. For comparison, we also evaluate the performance of a conventional VM
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Fig. 6. A comparison of CPU utilization in Cocoa, VM consolidation strategies, and pure static grouping
strategies.

Fig. 7. A comparison of the CPU demand from all
the jobs and the CPU provisioned in different group
buying strategies over time.

Fig. 8. The time averaged utilization of resource
provided by all the group buying deals under dif-
ferent grouping strategies.

consolidation strategy proposed in Xiao et al. [2013], which tries to minimize the skew-
ness of resource usage. For all these strategies, we perform static grouping for each
batch of 20 jobs.

In Figure 6, we plot the CPU utilization under above-mentioned strategies in a
continuous period of 2 days. We can observe that Cocoa substantially outperforms all
the other strategies by smartly combining a static bin-packing strategy and an online
knapsacking strategy (with prioritized classes) to handle resource holes due to job
departures. In fact, the conventional VM consolidation strategy and static strategies
achieve a utilization consistently lower than 50%.

Comparing to Pure Dynamic Strategies: We further investigate how pure dy-
namic group buying strategies can enhance resource utilization when serving small
users. Figure 7 shows the relationship of demand and supply in CPU resource under
different strategies, in the time period from the 4th day to the 5th day in the trace.
We can observe that Cocoa, which uses the least resource to satisfy the demand of
all the jobs, achieves the highest utilization among all the strategies. In addition,
Learn-and-Pack, with no priority in dynamic group organization, shows inefficiency
during scaling down when the total demand decreases. Compared to Cocoa, the pure
dynamic Prioritized Learn-and-Pack strategy, without a waiting queue to buffer new
jobs, shows more fluctuations in resource provisioning and lower utilization in demand
peaks.

In Figure 8, we show the time averaged resource utilization of all the group buy-
ing deals under different group buying strategies. Again, Cocoa outperforms pure

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 8, Publication date: February 2017.



8:24 X. Yi et al.

Table III. Provider Cost Comparison Under Different Strategies

Individual
Instance
Buying

Learn-and-
Pack

Prioritized
Learn-and-Pack Cocoa

Prioritized Learn-and-
Pack+Branch-and-

Price
Cost ($) 1,804 1,682 1,484 1,248 1,225
Cost Saving − 6.7% 17.7% 30.8% 32.1%

strategies and the VM consolidation strategy. The Prioritized Learn-and-Pack strategy
outperforms the Approximation and Skewness Minimization strategy, since it can bet-
ter handle job dynamics by packing newly arrived jobs into resource “holes” in running
group buying deals. Cocoa outperforms the Prioritized Learn-and-Pack strategy alone
with more balanced resource usage on CPU and memory. All the strategies have a
higher utilization in CPU than in memory; this is because most of the jobs in the trace
consume a larger amount of CPU resource than memory.

6.4. Cost Saving for the Provider
We analyze the cost saving for the provider by using Cocoa, instead of VMs, to serve
cloud users. The performance results of pure static strategies and the Skewness Min-
imization VM consolidation strategy are not presented, since they are not efficient
enough to save cost for the provider. However, we present the results from the Priori-
tized Learn-and-Pack + Branch-and-Price to compare the performance of Cocoa to the
combined strategy with the optimal static grouping algorithm.

In Table III, we present the cost of the provider under different strategies and calcu-
late their cost-saving percentage compared to normal individual instance purchasing.
We can see that the strategies that combine both static and dynamic grouping al-
gorithms outperform pure dynamic strategies by saving more than 30% of the cost.
Considering static algorithms, Cocoa has a cost-saving percentage similar to the Prior-
itized Learn-and-Pack + Branch-and-Price strategy, which indicates that the approx-
imation algorithm reaches a performance very close to the optimal yet impractical
branch-and-price algorithm. In terms of dynamic algorithms, we can observe that by
simply prioritizing some deals over others, Prioritized Learn-and-Pack outperforms
Learn-and-Pack by saving about 11% more cost.

Figure 9 describes the dynamic fluctuation of cost-saving percentages under different
group buying strategies in a time period of 2 days. The combined strategies have a stable
cost-saving percentage of over 30%, while pure dynamic strategies have a more varied
cost-saving percentage. For some points in time, the cost saving even falls under 0.
This is because when demands are low, there would be a large amount of idle resources
in each group buying deal. In some extreme cases, resources are much under-utilized
so that using individual instances to serve users is more cost-effective.

6.5. Cost Saving for Individual Cloud Users
To ensure cost efficiency to short jobs, we charge cloud users by minutes in Cocoa.
Within each minute, a job i in group buying deal j only pays a portion of the price of
the group buying deal it belongs to. Specifically, assume job i runs for a time period
of ti minutes with CPU and memory demand of CPUi and Memoryi, respectively. We
calculate the weight of a job wi as αCPUi + βMemoryi, where α and β are deemed as
the “unit prices” of CPU and memory, respectively. Then we charge each job a fee that
equals to ti · wi/

∑
i ti · wi times the price of the entire group buying deal. The “unit

prices” α and β are calculated by solving a linear equation according to the resource
configuration and prices of two standard Google instances (“High CPU” and “High
Memory”), such that for a job i, its weight wi will equal to the cost of the combination
of “High CPU” and “High Memory” instances that provide exactly the same amount
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Fig. 9. Cost-saving percentage for the cloud
provider under different group buying strategies.

Fig. 10. Cumulative distribution function (CDF) for
cost-saving percentage of individual users (jobs) un-
der different group buying strategies.

of resources that job i has demanded. It is worth noting that in some under-utilized
deals, the group buying fee of a user calculated above might even exceed its individual
instance purchase fee because the jobs might have also shared the cost of idle resources
in a deal that they do not use. To ensure cost saving to users, we bound the user’s group
buying fee by the price of the smallest individual instance that can satisfy her demand.

Figure 10 plots the CDF of cost savings for individual users under different group
buying strategies. With Cocoa, small jobs are consolidated for higher utilization. Due to
resource sharing, each user has to pay less for unused resources, thus enjoying a price
discount. We can observe that Cocoa and Prioritized Learn-and-Pack + Branch-and-
Price, the latter being the optimal solution with a high complexity, have nearly identical
performance, and outperform pure dynamic strategies, with nearly 40% of cloud users
saving more than 60% of their cost. In pure dynamic strategies, Prioritized Learn-and-
Pack consistently outperforms the Learn-and-Pack strategy by a small margin.

6.6. Service Latency
We now investigate the service latency cloud jobs experienced under different strate-
gies. The service delay that a job experiences is the sum of the queuing delay and
computation delay. Recall that a job might be put in a waiting queue to get packed
into a group buying deal. We refer the time that a job stays in the waiting queue as
its queuing delay. In addition, when there are multiple group buying deals to run jobs,
we need to solve either the static packing problem or the dynamic packing problem to
calculate the proper packing decision. We refer the time used to compute and solve the
packing problems as the computation delay.

We first evaluate the queuing delay in Cocoa. Pure dynamic grouping strategies
cause no queuing delay since they pack all jobs into group buying deals on their arrival.
Therefore, we only compare the queuing delay in Cocoa to pure static group buying
strategies and present the results in Figure 11. In the simulation, we run the static
algorithm to pack jobs into group buying deals whenever there are 20 jobs in the
waiting queue. Therefore, all the static strategies result in the same queuing delay.
We can observe that static strategies result in a much larger queuing latency than
Cocoa, with more than 40% of jobs experiencing a queuing delay longer than 100
seconds.

Next, we compare the computation delay under different strategies. Since the compu-
tation delay of the dynamic grouping strategy is much smaller than that of the static
grouping strategies, we only compare Cocoa with the pure static Branch-and-Price
strategy. For fair comparison, we rule out the computation delay of dynamic grouping
in Cocoa and only compare the computation delay of the static strategy in Cocoa (i.e., the
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Fig. 11. CDF for queuing delay in Cocoa and the
pure static grouping.

Fig. 12. CDF for queuing delay in Cocoa with a dif-
ferent waiting queue size.

approximation algorithm) with the Branch-and-Price strategy. We run both algorithms
to pack jobs in our simulation, with each algorithm executed for 800 times. Both of the
algorithms are implemented in the C programming language and are executed on a
server with an Intel Xeon E5620 16-core CPU, 16GB DDR3 memory, and Red Hat 4.8.3-
9 OS. The Branch-and-Price algorithm takes 13 minutes for each run, on average. The
approximation strategy finishes in 13 seconds in each run, on average. In conclusion,
compared to pure static strategies, Cocoa causes a smaller latency in both queuing and
computation, thus reducing the total service delay.

6.7. Convergence Speed of the Static Grouping Strategy
Recall that the static grouping strategy adopts a branch-and-bound framework. On
each node of the branch tree, the algorithm proceeds in an iterative way. Within each
iteration, the allocation choosing problem and the allocation generation problem are
solved to find feasible allocations that can potentially improve the result. We now
evaluate the convergence speed of the static grouping algorithm, that is, the number of
iterations it takes to get the result. In the simulation, we execute the static grouping
strategy for 800 times and plot the average number of iterations run on a branch
node for each execution in Figure 13. Nearly 50% of executions run less than 100
iterations in average for a branch node, and for 90% of the executions, there are no
more than 300 iterations on each node in average. The number of nodes on the branch
tree is 36.7 in average of all the executions. We further illustrate the total number of
iterations on all the nodes in one execution in Figure 14. Although more than 60% of
the executions converge within 1,000 iterations, around 5% of the executions need to
run more than 10,000 iterations to achieve convergency. Although the static grouping
strategy can converge within hundreds of iterations for more than half of the cases, for
a small portion of cases, it is not efficient in terms of converge speed, which calls for
the approximation algorithm that is more efficient in computation.

6.8. Impact of Parameters
Waiting Queue Size: We now evaluate the impact of the size of the waiting queue
on the performance of Cocoa. We calculate the time-averaged resource utilization of
Cocoa under different waiting queue sizes ranging from 5 to 50, and present the results
in Figure 15. We can observe that the resource utilization in Cocoa is generally not
affected by the waiting queue size. For both CPU and memory, a high level of utilization
was maintained with fluctuations within 10%. In Figure 12, we further investigate the
impact of waiting queue size on queuing delay in the service. We can observe that larger
queue size leads to higher latency since jobs need to wait a long time for the queue to
be full to perform static grouping.
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Fig. 13. CDF for the number of
master problem-subproblem iter-
ations to achieve convergency on
one node of the branch tree.

Fig. 14. CDF for the total number
of master problem-subproblem
iterations to achieve convergency
for the branch-and-price algo-
rithm.

Fig. 15. A comparison of time av-
eraged CPU and memory utiliza-
tion in Cocoa with different wait-
ing queue sizes.

Fig. 16. Cost-saving percentage compared to the
individual instance buying strategy with different
group buying deal sizes.

Fig. 17. Cost-saving percentage compared to the in-
dividual instance buying strategy with a different
number of group buying deal types.

Deal Size: To understand how deal size impacts the cost saving of group buying,
we conduct the group buying strategies in the settings where the amount of resources
provided in a group buying deal is 1.5 and 2 times that specified in Table II, and present
the results in Figure 16. We observe a counter-intuitive phenomenon that while com-
bined strategies constantly outperform pure dynamic strategies, the performance of
all the strategies decreases with the increase of the deal size. Generally, bigger deals
can pack more jobs, thus generating more candidate consolidation choices and better
consolidation efficiency. However, bigger deals also result in more resource wastage
during the process of system-wide scaling down due to demand decrease, as resources
are freed up. Compared to combined strategies, pure dynamic strategies, without care-
fully performing static group buying to better exploit bigger deals, suffer more from
resource wastage with bigger deals.

Diversity of Deal Types: We now evaluate the impact of the diversity in group
buying deals. Specifically, we compare the performance of a single deal type (Balanced)
with that of three deal types (CPU small, Balanced, memory small), and show the result
in Figure 17. When there are more group buying deal types, the margin by which the
combined strategies outperform pure dynamic strategies increases. This is because
more types of group buying deals offer more choices for job consolidation in a static
group buying organization, which results in a higher utilization and lower cost. For
pure dynamic group organization strategies, their decisions are made only according
to the currently idle resources in each deal, which already has some variety. Thus, the
diversity of group buying deal types would have little impact on dynamic strategies.
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Pure dynamic strategies get the best performance with three deal types, since the used
deal types in this case are smaller compared to the other two cases, which leads to less
resource wastage.

7. RELATED WORK
Group buying is a marketing strategy that offers consumers a lower price if they form
groups and purchase in a collective way. To the best of our knowledge, the only works
which apply the idea of group buying to computing systems were done by Stanojevic
et al. [2011] and Lin et al. [2013]. In Stanojevic et al. [2011], a cooperative framework is
proposed in which multiple ISPs jointly purchase IP transit in bulk to save individual
cost. In Lin et al. [2013], a three-stage auction framework is proposed to let secondary
users with limited budgets collectively bid for high price spectrums. In this article,
we make the first attempt to exploit the group buying strategy in the cloud market.
We propose Cocoa, a novel group buying mechanism particularly adapted to the cloud
computing context for small and short jobs, which brings benefits to both cloud users
and the service provider.

The approach we use in Cocoa to organize users into group buying deals is mostly
related to the literature of VM consolidation and job scheduling in the cloud context. In
VM consolidation, VMs are packed into physical servers with the target of utilization
improvement or energy saving. For example, Xu et al. [2014a] study the overhead of
live migration for VM consolidation. Verma et al. [2009] analyze an enterprise server
workload trace and find significant potential of using consolidation for power saving in
datacenters. Beloglazov and Buyya [2012] investigate the energy-performance tradeoff
of VM consolidation in the cloud and propose online deterministic algorithms as well
as historical data-based heuristics for single VM migration and dynamic VM consol-
idation problems. Xiao et al. [2013] introduce the concept of “skewness” as a metric
of resource usage unevenness in a VM consolidation scheme, and propose a heuristic
to minimize it while trying to save energy at the same time. Meng et al. [2010] use
a stochastic bin packing algorithm to consolidate VMs with dynamic bandwidth de-
mands into the minimal number of physical servers while not violating the bandwidth
capacity constraint. Beloglazov and Buyya [2013] study the side effect of VM consol-
idation as it may cause resource shortage and server overload, thus influencing the
QoS of the hosted applications. Mishra et al. [2012] present heuristic algorithms which
utilize live virtual machine migration techniques for not only server consolidation but
also load balancing and hotspot mitigation. Jung et al. [2010] propose a framework to
adapt the VM consolidation scheme to the demand of multi-tier web applications while
optimizing a global utility function of power consumption, performance, and transient
cost. Le et al. [2011] study the impact of VM placement policy on electricity cost in geo-
graphically distributed high performance computing clouds and design policies to place
and migrate VMs across datacenters to take advantage of the differences in electricity
prices and temperatures. In the case of job scheduling and resource allocation, Ghodsi
et al. [2011] consider the problem of fair resource allocation in a system with multiple
types of resources, and design a resource allocation strategy named DRF, that not only
incentivizes users to share resources but also achieves strategy-proof, envy-free, and
Pareto efficient. Based on DRF, Bhattacharya et al. [2013] design and implement H-
DRF, an algorithm for multi-resource fair hierarchical scheduling, which can avoid the
shortages of starvation and resource inefficiency in existing open source schedulers.
Lee et al. [2011] focus on the scheduling of data analytics applications and present a re-
source allocation and job scheduling framework that considers workload and hardware
heterogeneity, in addition to fairness. Yi et al. [2016] study a strategy to exploit the
scheduling flexibility of delay tolerant workloads and propose a pricing and resource
allocation framework to meet the deadlines of the jobs.
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Unlike dynamic VM consolidation, which deals with dynamics of long-term workload
in running VMs by live migration, grouping small and short jobs poses new challenges.
To avoid the overhead of live migration when dealing with the strong dynamics of
job arrivals and departures, we combine the static grouping strategy with a dynamic
strategy in Cocoa. In terms of job scheduling and resource allocation, Cocoa is designed
to benefit both the provider and users in the cloud context. Therefore, rather than
fairness, Cocoa aims to achieve cost efficiency to cloud users and resource efficiency to
the provider, by packing user jobs into the proper group buying deals.

8. CONCLUSION
In this article, we present Cocoa, a container-based framework to implement group
buying for cloud resources. In Cocoa, user jobs of complementary resource demands
are grouped together and allocated to newly created group buying deals or existing
deals with ideal resources with a price incentive, while the cloud provider can improve
its resource utilization and save cost. Unlike prior VM-based workload consolidation,
we adopt not only a static grouping strategy for batches of new jobs, but also a dynamic
strategy to fill resource “holes” online as jobs finish and leave at different times. The
static and dynamic grouping problems are modeled as a vector bin packing problem
and an online knapsack problem, respectively. Through extensive simulations based
on a large amount of real-world cloud usage traces, we show that by smartly combining
the static and online grouping strategies, Cocoa significantly outperforms existing
workload consolidation strategies in terms of cost reduction, resource utilization, and
service delay, and provides viable business opportunities for group buying in cloud
computing.
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