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This article proposes a model to study the interaction of price competition and congestion in the cloud com-
puting marketplace. Specifically, we propose a three-tier market model that captures a marketplace with
users purchasing services from Software-as-a-Service (SaaS) providers, which in turn purchase computing
resources from either Provider-as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS) providers. Within
each level, we define and characterize market equilibria. Further, we use these characterizations to under-
stand the relative profitability of SaaSs and PaaSs/IaaSs and to understand the impact of price competition
on the user experienced performance, that is, the “price of anarchy” of the cloud marketplace. Our results
highlight that both of these depend fundamentally on the degree to which congestion results from shared or
dedicated resources in the cloud.
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1 INTRODUCTION
The cloud computing marketplace has evolved into a highly complex economic system made up
of a variety of services, which are typically classified into three categories:
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(1) In Infrastructure-as-a-Service (IaaS), cloud providers rent out the use of (physical or vir-
tual) servers, storage, networks, and so on. To deploy applications, users must install and
maintain operating systems, software, and so on. Examples include Amazon EC2, Google
Cloud, and Rackspace Cloud.

(2) In Platform-as-a-Service (PaaS), cloud providers deliver a computing platform on which
users can develop, deploy, and run their application. Examples include Google App Engine,
Amazon Elastic MapReduce, and Microsoft Azure.

(3) In Software-as-a-Service (SaaS), cloud providers deliver a specific application (service) for
users. There are a huge variety of SaaS solutions these days, such as email services, cal-
endars, music services, and so on. Examples include services such as Dropbox, Gmail, and
Google Docs.

Naturally, each type of cloud service (IaaS, PaaS, SaaS) uses different pricing and contracting
structures, which yields a complicated economic marketplace. For example, Amazon computing
services are billed on an hourly basis, while some other Amazon services (e.g., queue or datastore)
are billed according to the data transfer in and out [AmazonPricing1,AmazonPricing2]. Google
App engine pricing is applied on a per-application or user-per-month basis, and more complex
billing rules are applied if monthly quotas are exceeded (Google 2014).

Further, adding to the complexity of the cloud marketplace is the fact that a particular SaaS is
likely running on top of either a PaaS or IaaS. Thus, there is a multi-tier economic interaction
between the PaaS or IaaS and the SaaS and then between the SaaS and the user. This multi-tier
interaction was illustrated prominently by the recent crashes of IaaS provider Amazon EC2, which
in turn brought down dozens of prominent SaaS providers (Cloudtimes 2012; NetworkWorld 2012).

As a result of the complicated economic marketplace within the cloud, the performance de-
livered by SaaS providers to consumers depends on both the resource allocation design of the
service itself (as traditionally considered) and the strategic incentives resulting from the multi-
tiered economic interactions. Importantly, it is impossible to separate these two components in
this context. For example, users are both price-sensitive and performance-sensitive when choos-
ing a SaaS; however, the bulk of the performance component for a SaaS comes from the back-end
Iaas/PaaS. Further, the IaaS/PaaS does not charge the consumer; it charges the SaaS. Additionally,
there is competition among SaaS providers for consumers and among IaaS/PaaS providers for SaaS
providers, which yields a competitive marketplace that in turn determines the resource allocation
of infrastructure to users and thus the performance experienced by users.

Contributions of This Paper
This article aims to introduce and analyze a stylized model capturing the multi-tiered interaction
between users and cloud providers in a manner that exposes the interplay of congestion, pricing,
and performance issues.

To accomplish this, we introduce a novel three-tier model for the cloud computing marketplace.
This model, illustrated in Figure 1, considers the strategic interaction between users and SaaS
providers (the first and second tiers), in addition to the strategic interaction between SaaS providers
and either IaaS or PaaS providers (the second and third tiers). Of course, within each tier there is
also competition among users, SaaS providers, and IaaS or PaaS providers, respectively. To the best
of our knowledge, this is the first article that jointly considers the interactions and the equilibria
arising from the full cloud computing stack (i.e., users, services, and infrastructures/platforms);
previous work has focused only on pairwise interactions, for example, Acemoglu and Ozdaglar
(2007a), Anselmi et al. (2011), and Ardagna et al. (2012).

The details of the model are provided in Section 2; but, briefly, the key features are as fol-
lows: (i) users strategically determine which SaaS provider to use depending on a combination of
ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 4, Article 18. Publication date: August 2017.
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Fig. 1. Overview of model structure and notation.

performance and price; (ii) SaaS providers compete by strategically determining their price and
the IaaS/PaaS provider they use to maximize profit, which depends on the number of users they
attract; (iii) IaaS/PaaS providers compete by strategically determining their price to maximize their
profit; (iv) the performance experienced by the users is affected by the congestion of the resources
procured at the IaaS/PaaS chosen by the SaaS and that this congestion is a result of the combina-
tion of congestion at dedicated resources, where congestion depends only on traffic from the SaaS,
and shared resources, where congestion depends on the total traffic to the IaaS/PaaS.

The complex nature of the cloud marketplace means that the model introduced in this article
is necessarily complicated, too. To highlight this, note that an analytic study of the model entails
characterizing equilibria within each of the three tiers in a context where decisions within one tier
impact profits (and thus equilibria) at every other tier.

Due to the complexity of the model, we need to consider a limiting regime to be able to provide
analytic results. Motivated by the huge, and growing, number of SaaS providers and the (com-
paratively) smaller number of IaaS/PaaS providers, the limiting regime we consider is one where
the number of users and the number of SaaS providers are both large (see Section 4 for a formal
statement). In this setting, we can attain an analytic characterization of the interacting markets
that yields interesting qualitative insights.

More specifically, with our analysis, we seek to provide insights into the following fundamental
questions:

(1) How profitable are SaaS providers as compared to PaaS/IaaS providers? Does either have
market power?

(2) How good is user performance? Is the economic structure such that increased competition
among cloud providers yields efficient resource allocation?

(3) How does the degree to which cloud resources are shared/dedicated impact the answers
to (i) and (ii)?

Our analysis highlights a number of important, novel qualitative insights with respect to these
questions, and we discuss these in detail in Sections 5 and 6. For example, our results highlight
that SaaSs extract profits only as a result of dedicated latency, while IaaS/PaaS providers extract
profits from both shared and dedicated latencies. However, the profit of IaaS/PaaS providers re-
duces significantly as competition grows and converges to zero in the limit, while services remain
profitable even when there is a continuum of services. This highlights that SaaS providers main-
tain market power over IaaS/PaaS providers even when services are highly competitive and that
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one should not expect the cloud marketplace to support a large number of IaaS/PaaS providers.
This observation is similar to the relationship of content providers to Internet service providers
(ISPs) (Musacchio et al. 2009; Economides and Tåg 2012). However, because IaaS/PaaS providers
can extract profits from both shared and dedicated latencies, they remain reasonably profitable
relative to services as long as competition is not extreme, which is a significant contrast to ISPs.
This highlights that the cloud market structure seems not to be as susceptible as the internet to a
lack of incentives for infrastructure investment.

Our analysis, on the other hand, highlights an issue with the current market structure: The in-
teraction of SaaS providers and IaaS/PaaS providers serves to protect inefficient IaaS/PaaSs. That is,
even if one IaaS/PaaS provider is extremely inefficient compared to another, the inefficient provider
still obtains significant profit. The profitability of the inefficient provider is a consequence of dou-
ble marginalization in vertical markets: The efficient provider prefers to charge an extremely high
price to match the bad provider’s latency cost, because of the existence of profit-maximizing ser-
vices which also charge prices on users. We note that similar phenomena have been observed in
congestion games on parallel-serial networks, where each source-destination path may consist of
multiple links operated by independent service providers (Acemoglu and Ozdaglar 2007b). Given
the suggestion from the results discussed above that the profitability of IaaS/PaaS providers will
limit the market to a small level of competition, this “protection” of inefficient providers is a dan-
gerous phenomenon.

Another danger that our analysis highlights is that the market structure studied here can yield
significant performance loss for users, as compared with optimal resource allocation. We show by
example that when providers have highly asymmetric latency cost (e.g., when one provider is much
less efficient than the others), an arbitrarily high price of anarchy is possible at an equilibrium due
to the double marginalization effect. On the other hand, we prove an upper bound on the price
of anarchy that depends only on the minimum and maximum marginal latency costs among all
providers. This result provides an efficiency guarantee when all providers are nearly “symmetric”
and have similar marginal latency costs. This result highlights that provider symmetry can help
to mitigate the potentially high efficiency loss in a cloud computing marketplace.

In an alternative setting, we “fix” the asymmetry of providers by considering a “replica econ-
omy” with P types of providers. As the number of providers of each type (and competition) grows,
in the limit we show that the price of anarchy cannot be higher than 2, when congestion costs
are linear, and k + 1 if congestion costs are polynomial with degree k . Since the price of anarchy
of the two-tier model (users and SaaSs) converges to 1 in the limit as the number of services
grows (Anselmi et al. 2011), our result reveals that the addition of providers into the market-
place causes the double marginalization problem and “undoes” the efficiency created by compe-
tition among services. Interestingly, this change can be interpreted as inefficiency due to a lack
of vertical integration, which would result in two-tier competition. However, vertical integration
would lead to other drawbacks, such as making entering the marketplace more challenging, which
would reduce participation. Thus, our results highlight that it is crucial to find ways to provide
appropriate incentives for the participation of IaaS/PaaS providers in the cloud marketplace, espe-
cially given the above observation that profitability of providers decreases quickly with increasing
competition.

Relationship to Prior Work
There is a large literature that focuses on strategic behavior and pricing in cloud systems and,
more generally, in the internet. This area of “network economics” or “network games” is full of
increasingly rich models incorporating game theoretic tools into more traditional network models.
For surveys providing an overview of the modeling and equilibrium concepts in typically used
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networking games, and additionally an overview of their applications in telecommunications and
wireless networks, see van den Nouweland et al. (1996), Haviv (2001), and Altman et al. (2006).

In the context of cloud systems specifically, an increasing variety of network games have been
investigated and three main areas of attention in this literature are resource allocation (Teng and
Magoules 2010; Hong et al. 2011), load balancing (Altman et al. 2008; Chen et al. 2009; Anselmi
et al. 2011; Anselmi and Gaujal 2011), and pricing (Yolken and Bambos 2008; Ardagna et al. 2012;
Acemoglu and Ozdaglar 2007a; Feng et al. 2013). It is this last line of work that is most related to the
current article. Within this pricing literature, the most related articles to our work are Acemoglu
and Ozdaglar (2007a), Yolken and Bambos (2008), Anselmi et al. (2011), Ardagna et al. (2012), Song
et al. (2012), Feng et al. (2013), Anselmi et al. (2014), Zheng et al. (2016), and Zhang et al. (2017);
see also the references therein.

Each of these articles focuses on deriving the existence and efficiency (as measured by the price
of anarchy) of pricing mechanisms in the cloud. For example, Ardagna et al. (2012) and Anselmi
et al. (2014) consider a two-tier model capturing the interaction between SaaSs and a single IaaS
and study the existence and efficiency of equilibria allocations. Similarly, Acemoglu and Ozdaglar
(2007a), Anselmi et al. (2011), and Feng et al. (2013) consider again two-tier models capturing the
interaction between users and SaaSs or between SaaSs and PaaSs/IaaSs and study the existence
and efficiency of equilibrium allocations.

Thus, the questions asked in these (and other) articles are similar to those in our work. How-
ever, in contrast to the existing literature, the model considered in this article is the first to capture
the three-tier competing dynamics among users, SaaSs, and IaaSs/PaaSs simultaneously. We show
that the strategic decisions of any player propagate at all levels, which makes a three-tier model
essential to capture the interplay between performance and pricing in the cloud marketplace. Fur-
ther, we model the distinction between congestion from shared and dedicated resources. Neither of
these factors was studied in the previous work and both lead to novel qualitative insights about the
cloud marketplace (while simultaneously presenting significant technical challenges to overcome).

2 MODELING FRAMEWORK
We construct a model for studying the interactions among three parities in the cloud marketplace:
users, service providers (“services” for short), and infrastructure providers (“providers” for short).
In this section, we define the three types of players in our model, but we discuss their strategic
behavior only informally. A formal description of the strategic aspects of the model is deferred
to Sections 3 and 4. Note that Figure 1 is helpful in understanding the structure of our modeling
framework.

Providers. We consider P ≥ 2 providers who sell resources to services, as done by Amazon
EC2 and Google Cloud. The resources sold can represent virtual machines, in the case of an IaaS,
or platforms provided for development, in the case of a PaaS. Each provider p charges a price βp
per unit of data flow for services that use its infrastructure. This charge-per-flow model is very
common, for example, it is used by Google App Engine. We let yp denote the total flow of provider
p and model the profit of provider p by

Provider-Profit(p) = βpyp , (1)
where, due to the economics of scale in cloud computing, we have ignored the small marginal cost
of supporting data flow.

Services. We consider S ≥ 2 services selling the same cloud application (e.g., cloud storage) that
interact both with users and providers: They pay infrastructure providers for infrastructure and
charge users for usage. We assume that each service s chooses only one (infrastructure) provider,
denoted by fs . So, f : {1, . . . , S } → {1, . . . , P } is the service to provider mapping. Further, each
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service s charges a unit price αs to users. Let xs denote the flow (users per time unit) of service s ,
which implies yp =

∑
s :fs=p xs . Then, the profit of service s is

Service-Profit(s ) = (αs − βfs )xs . (2)
Users. The customer base of cloud services is typically quite large, and therefore we assume a

continuum of users having mass λ, as it is done in nonatomic congestion games. We model the
total user flow to the services as inelastic. Therefore, λ = ∑

s xs is constant, where x is the flow
vector of services.

When joining a service s , users pay αs to service s , as stated above, and incur a congestion
cost. In the cloud, congestion is determined by the combination of both the amount of flow at the
service chosen, xs , and the amount of flow using the provider chosen by the service yfs . Thus, we
further break down the latency experienced into two types of congestion costs: (1) the dedicated
cost (latency) from the service ℓ̃fs (xs ) and (2) the shared cost (latency) from the provider ℓ̂fs (yfs ). The
dedicated cost represents congestion cost incurred at the service provider, for example, due to the
limited number of virtual machines held by the service. The shared cost represents the congestion
at the infrastructure provider, for example, the delay resulting from the network capacity shared by
all services using the same infrastructure provider. We note that both the dedicated and the shared
latency functions of a service s , ℓ̃fs (·) and ℓ̂fs (·) are determined by its infrastructure provider fs ,
although the dedicated latency does depend on the user flow of service s .

We assume that ℓ̃fs (·) and ℓ̂fs (·) are continuously differentiable, strictly increasing and convex
with ℓ̃fs (0) = 0 and ℓ̂fs (0) = 0. Combining these latencies with the service price yields the “effective
cost” that users seek to minimize. In particular, the effective cost of a user who chooses service s
is

User-Effective-Cost(s) = αs + ℓ̃fs (xs ) + ℓ̂fs (yfs ). (3)
In this article, we sometimes focus on linear latency functions, that is, latencies of the form

ℓ̃p (x ) = ãpx , ℓ̂p (y) = âpy, ∀p, (4)

where the slopes {ãp }Pp=1 and {âp }Pp=1 are assumed to be positive.

2.1 Strategic Interactions and Time-Scale Separation
Throughout this article we interpret the three characters described above as players of a game.
Informally, in this game, each provider sets the price that maximizes its individual profit, each
service sets the price and chooses the provider that maximizes its individual profit, and each user
chooses to join the service that minimizes its individual effective cost.

In practice, these strategic decisions are taken at different time scales. Because of this, it is
reasonable to assume that players acting at a slow time scale will see only the equilibrium behavior
of players operating at a faster time scale. To this end, we assume that the users act at the fastest
time scale, responding to fixed prices of the services and a fixed mapping of the services to the
providers. The next fastest time scale is service pricing, with services competing with each other
to maximize their own profit. Finally, how providers set prices and services decide to distribute
among the providers are modeled as the slowest time scale.

Formally, the timing of the game-theoretic model used in this article is as follows. First, there
is a simultaneous game among services and providers, where the providers set prices and services
choose the connectivity (to providers). Observing the outcome of this simultaneous game, services
set their prices for users. Finally, with the information on service prices, users choose their services.

This ordering will be used in the next sections to define strategic equilibria and is motivated by
the behavior observed in practice: Users move quickly between cloud services depending on price,
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service prices also change quickly (hourly or faster), while the change of provider prices and the
migration of services across providers happen infrequently.

3 A MODEL WITH ATOMIC SERVICES
In this section, we take a first step toward describing a tractable and reasonable model for the
equilibria that result from strategic interactions among users, services, and providers. We con-
sider non-atomic users but atomic services and providers. In this context, we define the equilibria
concepts of interest and highlight the analytic difficulties of equilibria characterization. These dif-
ficulties motivate the consideration of a model with non-atomic services, which we will introduce
in next section and consider in the remainder of the article.

3.1 User (Wardrop) Equilibria
Given a fixed service to providers mapping f and fixed service and provider prices, we assume
that users distribute to minimize their individual effective cost, defined by Equation (3). Similarly
to non-atomic congestion games, for example, Roughgarden and Tardos (2002, 2004), this yields
a Wardrop equilibrium (Wardrop 1952), which states that all active services have the same and
minimum effective cost. The equilibrium is defined as follows.

Definition 3.1. Let mapping f and service prices (α1, . . . ,αS ) be fixed. A vector xU E =
xU E (α , f ) ∈ [0, λ]S is a user equilibrium if there exists some µU E ≥ 0 such that

ℓ̃fs

(
xU E

s

)
+ ℓ̂fs

(
yU E

fs

)
+ αs = µU E , ∀s : xU E

s > 0,

ℓ̃fs

(
xU E

s

)
+ ℓ̂fs

(
yU E

fs

)
+ αs ≥ µU E , ∀s : xU E

s = 0,
∑

s :fs=p

xU E
s = yU E

p , ∀p,

∑

s
xU E

s = λ.

The existence and uniqueness of a user equilibrium can be easily proven using that conditions
in Definition 3.1 coincide with the optimality conditions of a strictly convex optimization problem,
as done in Dafermos and Sparrow (1969). This is summarized in the following proposition.

Proposition 3.2. Let mapping f , service prices α and provider prices β = (β1, . . . , βP ) be fixed.
There exists a unique user equilibrium, which is given by the unique optimal solution of the following
strictly convex optimization problem:

min
x ≥0

∑

s

[∫ xs

0
ℓ̃fs (z)dz + αsxs

]
+

∑

p

∫ yp

0
ℓ̂p (z)dz,

s.t.
∑

s :fs=p

xs = yp , p = 1, . . . , P ,

∑

s
xs = λ.

(5)

3.2 Service and Provider Equilibria
We now build on top of the user-level competition described above to consider the price compe-
tition of services and providers. In particular, we consider a fixed provider mapping f and define
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equilibrium price vectors for services. This is a natural choice for time-scale separation because
prices of cloud providers such as Amazon and Google fluctuate minute to minute, but services
typically cannot switch between providers at such a fast time scale due to infrastructure setup
differences.

In this context, we consider the equilibria of service and provider prices according to a Stack-
elberg model where providers first set their prices and then services observe these prices and
determine the prices they charge to end users. Of course, the capability to act first confers a strate-
gic advantage for providers over the case where all market participants must choose their moves
simultaneously; however, this ordering is natural given the realities of the cloud marketplace.

Given the above discussion, we can now formally define the service equilibrium.

Definition 3.3. Let mapping f and provider prices β be fixed. A vector αSE = (αSE
1 , . . . ,α

SE
S ) is

a service equilibrium (SE) if

αSE
s ∈ arg max

αs ≥0
(αs − βfs ) xU E

s

(
αs ,α

SE
−s , f

)
, ∀s . (6)

Definition 3.3 is similar to the definition of oligopolistic equilibrium used in Acemoglu and
Ozdaglar (2007a) and Hayrapetyan et al. (2007). The essential difference stands in the structure
of the latency function of each service s , which in our case depends on xs but also on the whole
vector (xs ′ )s ′:fs′=fs through yfs . For this reason, existence and uniqueness of a service equilibrium
remain difficult issues to study. In fact, as also observed in Acemoglu and Ozdaglar (2007a), service
equilibria may not exist if the latency functions are highly convex because this model is a variant of
the Bertrand-Edgeworth competition model, which does not admit equilibrium for highly convex
cost functions; see Acemoglu and Ozdaglar (2007a) and Maskin and Tirole (1988). The possible
non-existence of a service equilibrium makes it difficult to study the interaction among (strategic)
providers who set prices to maximize their individual profit, and so it motivates considering a
variation of the model for analysis.

As a result, in this article, our approach is to analyze an asymptotic scaling of the model as
the number of services becomes large, that is, increases to infinity. See the following section for
modelling details and justifications.

4 A MODEL WITH NON-ATOMIC SERVICES
The previous section develops the equilibria concepts necessary to characterize the strategic be-
havior of the users, services, and providers in our model. However, as commented above, there
are significant analytic challenges in characterizing these equilibria that make the atomic model
intractable to study.

A key observation about cloud markets in practice is that there are generally many more service
providers than infrastructure providers. For example, a recent Gartner analysis of the SaaS market
have shown how this segment is steadily growing (at the rate of 17.9% (Forbes 2013)), and SaaS
cloud market share is already larger than that of IaaS. Moreover, while SaaS started with office
suites solutions (e.g., GoogleDocs or Office365), now many vertical market segments have begun to
move to the cloud including, for example, ERP (Sap 2014), CRM (Salesforce 2014), Business Process
Modeling (Forbes 2013), Project and Portfolio Management, flight scheduling (Ailium 2014), and
many others. Even within these individual segments, there is often competition among dozens of
firms. As a result, the largest SaaS players (Google and Microsoft) own only 6% of the SaaS market.

Thus, it is natural to consider a situation where there are many more services than providers,
while keeping that the number of services is order of magnitude smaller than the number of users.
This motivates a change to the model, where services become non-atomic rather than atomic, that
is, considering a finite number of providers that can see services as a non-atomic mass. Note that
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this is an assumption on the number competing services within a particular market segment, for
example, cloud storage where there are more than two dozen competitors, and that this choice
parallels the reasoning behind services viewing users as non-atomic. Importantly, the non-atomic
model that we define can be interpreted as the limit of the atomic model. Specifically, we show
in Appendix A that a symmetric service equilibrium (at which all services that choose the same
provider charge the same price) must converge to the non-atomic service equilibrium, as the num-
ber of services grows proportionally with the mass of end users and the capacities of the providers.
Further, we show by simulation that the non-atomic model is a good approximation for the atomic
model even when the number of competing services is small (see Appendix A).

In this section, we introduce the changes to the equilibria concepts that come when non-atomic
services are considered. These changes are driven by properties of the atomic model. Importantly,
the model becomes much more analytically tractable. In particular, as we show in Sections 5 and
6, for the case with polynomial latency functions, it becomes possible to derive some characteriza-
tions for the resulting equilibria that provide interesting insights about market power, profitability,
and price of anarchy.

The remainder of this section is organized as follows. In Section 4.1, we first develop a model
with non-atomic services that approximates the three-tier market model introduced in the pre-
vious section. Then, in Sections 4.2–4.4, we define equilibrium concepts that are based on the
non-atomic service model introduced above; proceeding by backward induction to study exis-
tence and uniqueness in each case. However, these equilibria are clearly entangled. As a result,
the definitions and initial analytic characterizations of the equilibria concepts are intermingled in
this section, so the characterizations can aid in simplifying the presentation of the definitions that
follow. All proofs are deferred to Appendix B for the ease of the reader.

4.1 A Model for Non-atomic Services
We consider a non-atomic model involving a continuum of infinitesimally small services, indexed
by s ∈ [0, 1].

As before, let λ denote the total user flow. If the mapping xs : [0, 1]→ [0,∞) (from the index
of a service to its flow) is Lebesgue measurable, then λ can be calculated through the following
Lebesgue integral:

λ =

∫

[0,1]
xsµ (ds ),

where µ is the Lebesgue measure defined on [0, 1].
Note that, because the latency cost of users depends only on the provider chosen (not the ser-

vice), all services that choose the same provider are essentially identical. Further, since all services
that choose the same provider are faced with the same profit-maximization problem, it is reason-
able to assume that they charge the same price to their users.1 By some abuse of notation, for the
rest of the article we will write the price charged by service s as αfs , which depends only on the
provider it chooses, fs . Since all users are cost-minimizing, it follows that all services that choose
the same provider attract the same amount of data flow, that is, xs = xs ′ if fs = fs ′ . So, for the rest
of the article, we use xp to denote the flow of a service that chooses provider p. We can therefore
rewrite the profit of a service that chooses provider p as (cf. Equation (2))

Service-Profit(s ) = (αp − βp )xp , ∀s : fs = p.

1For an atomic model with linear latency functions, we have shown in Appendix A that all services that choose the same
provider must set the same price at an equilibrium (cf. Proposition A.2).
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Fig. 2. Overview of the model with non-atomic services.

The non-atomic model introduced in this section is illustrated in Figure 2. Let дp denote the
fraction of services that choose provider p and define a service distribution as a nonnegative P-
dimensional vector g = (д1, . . . ,дP ) such that ∑P

p=1 дp = 1. Under the assumption that all services
associated with a single provider charge their users the same price, we note that different service
to provider mappings f that lead to a single service distribution g will result in the same service
prices and user flow. That is, the service to provider mapping f can be fully “represented” by its
corresponding service distribution g, and therefore, we will use the latter in the rest of the article.
We have

yp = дpxp , ∀p; λ =
∑

p
дpxp .

4.2 User (Wardrop) Equilibrium
Under given service prices α and a service distribution g, user equilibrium can be defined in a way
analogous to Definition 3.1.

Definition 4.1. Given the prices charged by services α = (α1, . . . ,αP ) and a service distribution
g = (д1, . . . ,дP ), a flow vector {xU E

p }Pp=1 is a user equilibrium if there exists some µU E such that

ℓ̃p
(
xU E

p

)
+ ℓ̂p

(
yU E

p

)
+ αp = µU E , ∀p : xU E

p > 0,

ℓ̃p
(
xU E

p

)
+ ℓ̂p

(
yU E

p

)
+ αp ≥ µU E , ∀p : xU E

p = 0,

дpx
U E
p = yU E

p , ∀p,
∑

p
yU E

p = λ.

Further, we denote the set of user equilibria asW (α , g).

Similarly to Proposition 3.2, we have the following characterization on a user equilibrium.

Proposition 4.2. Given a service price vector α and a service distribution g, there exists a unique
user equilibrium, which is the unique optimal solution of the following (strictly) convex optimization
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problem:

minimize
∑

p

[∫ xp

0
ℓ̃p (z)dz + αpxp

]
+

∑

p

∫ yp

0
ℓ̂p (z)dz (7)

subject to дpxp = yp , ∀p,
∑

p
yp = λ,

xp ≥ 0, ∀p.

4.3 Service and Provider Equilibria
Before moving to the provider equilibria, let us start with the service (price) equilibrium.

Definition 4.3. Given a service distribution g and a provider price vector β , a service price vector
αSE = (αSE

1 , . . . ,α
SE
P ) is a service (price) equilibrium, if

αSE
p ∈ arg max

α ≥0
(α − βp )x (α ,αSE ), ∀p, (8)

where
x (α ,αSE ) = 0, if µSE − ℓ̂p

(
ySE

p

)
< α ,

ℓ̃p (x (α ,αSE )) + α = µSE − ℓ̂p
(
ySE

p

)
, otherwise.

(9)

Here, ySE
p = дpxSE

p , where (xSE
1 , . . . ,x

SE
P ) is the unique user equilibrium under the price vector

αSE and the service distribution g, and µSE is the user effective cost of an active service at the user
equilibrium (xSE

1 , . . . ,x
SE
P ) (cf. Definition 4.1).

Definition 4.3 is closely related to its atomic counterpart in Definition 3.3. The major difference
between these two definitions is that, for an infinitesimally small service that chooses provider p,
the user equilibrium (xSE

1 , . . . ,x
SE
P ) and the corresponding effective cost level µSE depend only on

the prices set by other services. In Equation (8), x (α ,αSE ) is the user flow attracted by the service,
if it sets the price as α , and all the other services set their prices according to the equilibrium αSE .
The value of x (α ,αSE ) is determined by Equation (9). The price αSE

p maximizes the service’s profit
and yields the service an equilibrium user flow of xSE

p , provided that the other services set their
prices according to the service equilibrium.

We show in the following proposition that, under a given g and β , all service equilibria yield
a unique user equilibrium, that is, result in the same user flow. We can therefore use xSE (g, β ) to
denote the user equilibrium under a service equilibriumαSE induced by β and a service distribution
g.

Proposition 4.4. Given a service distribution g and a provider price vector β , there exists a ser-
vice equilibrium, and all service equilibria result in a unique user equilibrium xSE (g, β ). Further, the
equilibrium price of a service who selects a provider p with xSE

p (g, β ) > 0 is uniquely determined:

αSE
p − βp = xSE

p (g, β )ℓ̃′p
(
xSE

p (g, β )
)
, ∀p : xSE

p (g, β ) > 0. (10)
We note that the uniqueness of a user equilibrium under (g, β ) together with the service price

characterization in Equation (10) implies that all possible service equilibria (induced by a given pair
of g and β) are the same, except the prices charged by those services with zero user flow (under cer-
tain (g, β ) it is possible that all services connected to a provider have no user flow). Proposition 4.4
shows that on top of the provider’s price βp , each service (that attracts positive user flow) earns a
per-unit profit that equals the marginal dedicated latency at the induced user equilibrium. In Ap-
pendix A, we show that a symmetric equilibrium among atomic services (cf. Definition 3.3) must
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converge to the non-atomic service equilibrium characterized in Proposition 4.4, as the number of
services increases to infinity.

We are now ready to define the provider (price) equilibrium.

Definition 4.5. Given a service distribution g, a provider price vector βP E = (βP E
1 , . . . , β

P E
P ) is a

provider (price) equilibrium, if

βP E
p ∈ arg max

βp ≥0
βpx

SE
p

(
βp , β

P E
−p , g

)
, ∀p, (11)

where (xSE
1 (βp , βP E

−p , g), . . . ,xSE
P (βp , βP E

−p , g)) is the unique user equilibrium induced by provider
price vector (βp , βP E

−p ) and the service distribution g.2

To interpret the above definition, note that, given the prices set by other providers βP E
−p , the

equilibrium price βP E
p maximizes every provider p’s profit at the user equilibrium induced by the

price vector (βp , βP E
−p ) among all possible prices βp ≥ 0. In other words, provider (price) equilibrium

is a Nash equilibrium among providers under a fixed service distribution g.
Given the definition of provider equilibria, the first questions to address are those of existence

and uniqueness. In the case of linear latency functions, we address both these issues by explicitly
characterizing the provider price vector β at an equilibrium.

Proposition 4.6. Suppose that latency functions are linear as in Equation (4). Given a service
distribution g with at least two positive components,3 there exists a unique provider equilibrium βP E

such that

(1) For every p, we have xP E
p > 0, where xP E ! xSE (g, βP E ) is the unique user equilibrium re-

sulting from g and βP E (cf. Proposition 4.4 for its definition).
(2) The provider price vector βP E is characterized by

βP E
p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2ãp + âpдp +

дp
∑

p′:p′!p
дp′

2ãp′ + âp′дp′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xP E

p , ∀ p. (12)

The above proposition provides a complete characterization on the unique provider equilibrium
induced by a service distribution g. In particular, we show that equilibrium provider prices have the
same linear structure as the equilibrium service prices characterized in Proposition 4.4, that is, both
prices increase linearly with the user flow on the provider/service. Further, it is straightforward
to see that an equilibrium provider price increases with the fraction of services it attracts, дp , and
decreases with дp′ of any other provider p ′.

Before moving to the next section and introducing our main equilibrium concept, we would like
to provide an alternative view of the three equilibrium concepts defined so far, which provides
more intuition. In particular, Figure 3 shows an oligopolistic congestion game that mimics both
user flow and (service and provider) profit resulting from a provider equilibrium defined above. In
this congestion game, each user has to go through two serial links to reach the “destination.” An
intermediate node represents a provider, and the pth node attracts дp fraction of links (services).

2Since дp is fixed, maximizing the objective function in the definition is equivalent to maximizing its profit
βp x S E

p (βp, β P E
−p , g)дp . For a provider p with дp = 0, we have implicitly assumed that it aims to maximize the product

of its user flow and its unit price, even if the set of services that choose this provider has a zero measure.
3If дp = 1 for some provider p , then a provider equilibrium does not exist. Since provider p is guaranteed to have a user
flow of λ (regardless of the price it sets), it would like to charge an arbitrarily high price.
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Fig. 3. A congestion game that yields the same user flow (at a Wardrop equilibrium) as that resulting from
a provider equilibrium of our model.

The latency of each link is marked in Figure 3, which depends only on the total flow of the link.4
Once a user chooses its service, its provider p is determined, and the user’s cost is given by

ℓ̃(xp ) + ℓ̂(yp ) + γp + βp ,

where ℓ̃(xp ) andγp = αp − βp are the latency and price of the first link chosen by the user and ℓ̂(yp )
and βp are the latency and price of the second link (that connects thepth intermediate node and the
destination). We note that the total cost incurred by each user from the source to the destination
equals its counterpart in our three-tier model introduced in previous sections. Further, in both the
congestion game presented in Figure 3 and our model, the profit of a service that chooses provider
p is γpxp , and provider p obtains a profit of βpyp .

Fixing a service distribution g, we note that the congestion game depicted in Figure 3 has the
same payoff structure as our model. As a result, the equilibrium concepts introduced in Defini-
tions 4.3 and 4.5 essentially form a Stackelberg equilibrium of the congestion game where the
P links (connected to the destination) simultaneously choose their prices first, and then all the
other (non-atomic) links set their prices simultaneously. Proposition 4.4 shows that at all Stack-
elberg equilibria of this congestion game, each active link in the first segment (corresponding to
a service with positive user flow) charges a price γp that equals its marginal (dedicated) latency
at the induced user equilibrium, while the prices charged by the P leaders are characterized in
Proposition 4.6.

4.4 Distribution Equilibrium
The last component to incorporate into the definition is the mapping of services to providers,
that is, the distribution equilibrium, which fully characterizes the strategic interaction among the
three market participants. A distribution equilibrium is a triple consisting of service distribution
g, provider price vector β , and service vector α such that

(1) given the service distribution g, the price vectors (α , β ) form an equilibrium in a Stackel-
berg game where providers set their prices first;

(2) given the provider price vector β , the service distribution g constitutes an equilibrium
at which no service can strictly increase its profit by switching to another provider. This
is in a spirit similar to that of the well-known Wardrop equilibrium (Wardrop 1952)
in that an equilibrium service distribution g is a steady state evolving after a transient

4In contrast to a classical congestion game model, here the total flow of the pth link connected to the destination (provider
p) is yp = xpдp .
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phase in which profit-maximizing services successively adjust their choices of providers
until an equilibrium with stable service profit and user flows have been reached (Larsson
and Patriksson 1999). An equilibrium service distribution has an additional level of
complication with non-atomic services setting their own prices (while non-atomic users
in a Wardrop equilibrium do not).

Definition 4.7. A triple, (g,α , β ), is a distribution equilibrium, if: (i) β is a provider equilibrium
under the service distribution g, and α is a service equilibrium under g and β and (ii) no service
has an incentive to change its provider because all providers yield services the same profit, that is,

xSE
p (g, β ) (αp − βp ) = ξ ≥ 0, ∀p : дp > 0,

xSE
p (g, β ) (αp − βp ) ≤ ξ , ∀p : дp = 0,

where xSE (g, β ) is the unique user equilibrium induced by g and β .5

Though compact, the above definition tends to be difficult to work with directly. However, in
the case of linear latencies, the following conditions are easier to work with and are necessary
and sufficient conditions for (g, β ) to be a distribution equilibrium, with x = (x1, . . . ,xP ) being the
user equilibrium resulting from g and β (that is, x = xSE (g, β )),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãp′x
2
p′ = ãpx

2
p , if дpдp′ > 0, (13)

ãpx
2
p ≤ ãp′x

2
p′, if дp = 0, дp′ > 0, (14)

2ãp′xp′ + âp′дp′xp′ + βp′ = 2ãpxp + âpдpxp + βp , ∀ p,p ′, (15)

βp =

⎡⎢⎢⎢⎢⎢⎣
2ãp + âpдp +

дp
∑

p′!p
дp′

2ãp′+âp′дp′

⎤⎥⎥⎥⎥⎥⎦
xp , (16)

∑

p
дpxp = λ, (17)

∑

p
дp = 1, (18)

where (13) and (14) follow from the definition of a distribution equilibrium and the service equi-
librium prices characterized in Proposition 4.4. Equation (15) states that at the user equilibrium x,
all users have the same effective cost; this is true because all providers have positive user flows
(cf. Proposition 4.6). The equality in Equation (16) is the provider equilibrium price6 character-
ized in Proposition 4.6. In Section 5, we will discuss the distribution equilibrium in more detail by
providing a few illustrative numerical examples.

We can further massage the conditions above to highlight that the distribution equilibrium can
be interpreted as a generalized Wardrop equilibrium. In particular, for a triple (g, β, x′) that satisfies
the conditions in Equations (13) to (18), we define an alternative user flow vector x as follows. For
any p ′ with дp′ > 0, we let xp′ = x ′p′ , and for every p with дp = 0, we make xp > x ′p such that

ãpx
2
p = ãp′x

2
p′,

5Note that xS E (g, β ) is defined as the unique user equilibrium resulting from a service equilibrium under g and β . Since
α is such a service equilibrium, xS E (g, β ) is the unique user equilibrium in W (g, α ).
6In the proof of Proposition 4.6, we show that a provider price vector of the form of Equation (16) must be a provider
equilibrium (cf. the discussion following Equation (46)).
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where p ′ is a provider with дp′ > 0. The modified triple (g, β, x) must satisfy the following
conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãp′x
2
p′ = ãpx

2
p , ∀p, p ′, (19)

2ãp′xp′ + âp′дp′xp′ + βp′ = 2ãpxp + âpдpxp + βp , if дpдp′ > 0, (20)

2ãpxp + âpдpxp + βp ≥ 2ãp′xp′ + âp′дp′xp′ + βp′, if дp = 0, дp′ > 0, (21)

βp =

⎡⎢⎢⎢⎢⎢⎣
2ãp + âpдp +

дp
∑

p′!p
дp′

2ãp′+âp′дp′

⎤⎥⎥⎥⎥⎥⎦
xp , (22)

∑

p
дpxp = λ, (23)

∑

p
дp = 1. (24)

Note that, for any triple (g, β, x) that satisfies the preceding conditions (19)–(24), we can con-
struct a triple (g, β, x′) that satisfies the conditions in Equations (13) to (18). It follows that a vector
(g, β ) that satisfies the conditions in Equations (19)–(24) must be a distribution equilibrium. Next,
we define

fp (дp ,д−p ) =
1

√
ãp

-....
/
2(2ãp + âpдp ) +

дp
∑

p′!p
дp′

2ãp′ + âp′дp′S

01111
2
. (25)

Using the above, for a triple (g, β, x) that satisfies the conditions in Equations (19)–(24), substituting
xp and βp to Equations (20) and (21), we obtain

fp (дp ,д−p ) = fp′ (дp′,д−p′ ), if дp′дp > 0,
fp (0,д−p ) ≥ fp′ (дp′,д−p′ ), if дp = 0, дp′ > 0,
∑

p
дp = 1.

(26)

That is, a distribution equilibrium g must satisfy conditions (26). On the other hand, given a vector
g that satisfies conditions (26), one can solve the triple (g, β, x) by using conditions (19)–(24) and
then obtain the corresponding distribution equilibrium (g, β, x′). We conclude that condition (26)
is necessary and sufficient for a vector g to be a distribution equilibrium.

It is this form that provides intuition for the distribution equilibrium concept. In particular, we
can regard condition (26) as a generalized Wardrop equilibrium, where the latency function depends
on all the components of the model. Further, it can be verified that fp (дp ,д−p ) is a convex function of
g and increases with дp and decreases with every component of д−p . This highlights that, though
distribution equilibria are complicated concepts, there is intuition that serves as a guide for our
analysis in the coming sections.

5 PROFITABILITY
Given the model introduced in the previous two sections, we are now ready to study the interaction
of congestion and pricing in the cloud marketplace. The first question we seek to address is the
following: Do the providers or services have market power, that is, which extracts the most profit?
Then, in the next section, we study the impact of the cloud marketplace on the user experience.
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Studying the relative profitability of services and providers requires contrasting the profits at-
tained by services and providers at a distribution equilibrium. However, it is difficult to calculate
closed form expressions that allow such a comparison for the general setting. Hence, we consider
two special cases of the model here: the case of P symmetric servers and the case of two asymmet-
ric servers. For both cases, we assume that all providers have linear latency functions, so we can
obtain simple, interpretable expressions for the service and provider profits.

5.1 Symmetric Providers, P Providers
The first case we consider is a symmetric model where ãp = ã and âp = â for every p. In this case,
it is easy to characterize the service and provider profits. Specifically, it follows from conditions
(26) that there exists a symmetric distribution equilibrium such that

дp =
1
P
, p = 1, . . . , P .

Then, from Equation (22), we have

βP E
p =

P

P − 1λ
(
2ã + â 1

P

)
.

Through a simple calculation (based on conditions in Equations (13) to (18)), we obtain

Provider-Profit(p) =

(
2ã + â/P
P − 1

)
λ2, Service-Profit(s) = ãλ2.

These expressions for the provider and service profits are quite informative. In particular, they
highlight that services extract profits only as a result of dedicated latency in this setting, while
providers extract profits from both shared and dedicated latencies. However, competition among
symmetric providers significantly reduces the profits providers can extract. Interestingly, com-
petition more quickly reduces the profits that can be extracted from shared latencies than from
dedicated latencies. However, as P → ∞, provider profit goes to zero. In contrast, despite the fact
that a continuum of services is considered, services still extract positive profit from the market-
place. This highlights that services maintain market power over providers even when services
are highly competitive and that one should not expect the cloud marketplace to support a large
number of providers.

5.2 Asymmetric Providers, 2 Providers
The asymmetric case is more difficult to characterize explicitly, and so we are limited to the case
of two providers, P = 2. In this setting, we can prove the following proposition, which is the key
to our study.

Proposition 5.1. Consider a case where there are two providers (P = 2) with linear latency func-
tions as in Equation (4). There exists a unique distribution equilibrium, which is a solution to the
following optimization problem:

minimize 1√
ã1

(
2
(
2ã1д1 +

1
2 â1д

2
1

)
+ 2ã2 (−д1 − ln(1 − д1)) +

1
2 â2д

2
1

)

+
1√
ã2

(
2
(
2ã2д2 +

1
2 â2д

2
2

)
+ 2ã1 (−д2 − ln(1 − д2)) +

1
2 â1д

2
2

)

subject to д1 + д2 = 1, д1 ≥ 0, д2 ≥ 0.

The proof of the preceding proposition is given in Appendix C.1. Using the preceding propo-
sition, we can explicit calculations comparing the profitability of services and providers in two
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(extreme) examples. In particular, we consider examples where one provider is extremely inef-
ficient with respect to either dedicated or shared latencies. These two examples highlight that
the competition in the cloud marketplace “protects” inefficient providers. That is, the inefficient
provider in both examples still achieves profits within a factor of four of the efficient provider.

Example: One Provider Has Extremely Inefficient Shared Latency
Consider a setting where ã1, â2, and ã2 are fixed, but the marginal shared cost of provider 1 in-
creases to infinity, that is, â1 → ∞. At a distribution equilibrium, it follows from the characteriza-
tion of a distribution equilibrium (provided in the proof of Proposition 5.1) that

1√
ã1

(
2(2ã1 + â1д1) +

2ã2д1
1 − д1

+ â2д1

)
=

1√
ã2

(
2(2ã2 + â2д2) +

2ã1д2
1 − д2

+ â1д2

)
.

As â1 approaches infinity, through a simple calculation, we obtain

д1 →
√
ã1√

ã1 + 2
√
ã2
, д2 →

2
√
ã2√

ã1 + 2
√
ã2
.

We then have

x1 →
λ

3д1
, x2 →

2λ
3д2
, service-profit→ λ2

9 (
√
ã1 + 2

√
ã2)2,

provider-profit(1) ∼ λ2

9 â1, provider-profit(2) ∼ 4λ2

9 â1,

where xp is the equilibrium user flow at provider p.
Note that both providers’ profits depend only on provider 1’s marginal shared cost â1 and that

the “bad” provider 1 still obtains one half of the user flow of provider 2 and one fourth of the profit
of provider 2 despite providing much worse performance.

Example: One Provider Has Extremely Inefficient Dedicated Latency
Consider a setting where â1, â2, and ã2 are fixed, but the marginal dedicated cost of provider 1
increases to infinity, that is, ã1 → ∞. At a distribution equilibrium, it follows from the proof of
Proposition 5.1 that

1√
ã1

(
2(2ã1 + â1д1) +

2ã2д1
1 − д1

+ â2д1

)
=

1√
ã2

(
2(2ã2 + â2д2) +

2ã1д2
1 − д2

+ â1д2

)
.

As ã1 increases to infinity, through a simple calculation, we have

x1д1 →
λ

3 , x2д2 →
2λ
3 , service-profit ∼ λ2

9 ã1,

provider-profit(1) ∼ 2λ2

9 ã1, provider-profit(2) ∼ 8λ2

9 ã1,

where xp is the equilibrium user flow at provider p.
Note that both providers’ profit depends only on provider 1’s marginal dedicated cost ã1 and

that, again, the “bad” provider (provider 1) still obtains half of the traffic of provider 2 and one
fourth of total profit of provider 2.
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6 PRICE OF ANARCHY
The second question we study about the cloud marketplace is the following: What is the effect of
price competition in the cloud on the performance experienced by users?

To study this question, we measure the “performance experienced by users” by the aggregate
user latency resulting from a distribution equilibrium (g,α , β ); that is,

ℓ(x, g) !
∑

p
дpxp (ℓ̃p (xp ) + ℓ̂p (дpxp )), (27)

where x = (x1, . . . ,xP ) is the user equilibrium under g and α .
To provide a baseline for comparison, we contrast the aggregate user latency at a distribution

equilibrium with the optimal aggregate user latency. That is, we study the “price of anarchy,”
which is typically used to measure the loss of social welfare caused by the strategic behavior of
market participants. In a similar spirit, we define the price of anarchy (PoA) of a distribution
equilibrium as the ratio of its resulting aggregate user latency to the minimum possible7:

PoA ! ℓ(x, g)

ℓ(x∗, g∗)
, (28)

where (x∗, g∗) is an optimal solution to the following optimization problem:
minimize ℓ(x, g), (29)
subject to

∑

p
дpxp = λ,

∑

p
дp = 1,

дp ≥ 0, xp ≥ 0, ∀p.
Note that a triple (g, β, x) that satisfies conditions (19)–(24) yields the same aggregate latency cost
as the corresponding distribution equilibrium (g, β, x′) that satisfies conditions (13) to (18), because
the pth component of x is the same as that of x′ for every p with дp > 0. We therefore can (and
will) use conditions (19)–(24) to analyze the efficiency of a distribution equilibrium.

The goal of this section is to bound the price of anarchy of the cloud marketplace; how-
ever, bounding the price of anarchy in our model under general assumptions is difficult. Thus,
throughout this section, we assume that latency functions are polynomial, that is, ℓ̃p (x ) = ãpxk

and ℓ̂p (y) = âpyk , for every p.
Under these assumptions, we provide two main results. First, in Section 6.1, we consider a gen-

eral market model with P providers and we show by example that when one of the providers has
very bad latency cost, a distribution equilibrium may yield an arbitrarily high price of anarchy. On
the other hand, we prove an upper bound on the price of anarchy that depends only on the mini-
mum and maximum marginal latency costs among all providers. This result provides an efficiency
guarantee for a distribution equilibrium, when all providers are nearly “symmetric.”

Second, in Section 6.2 we consider an alternative formulation of the model that allows us to
separate the impacts of the number of providers and the asymmetry among them. In particular,
we consider a “replica economy” scaling of providers where there are P types of providers and the
number of providers of each type scales with a sequence of integers n as n increases to infinity.8

7We note that the aggregate welfare of the system depends only on the aggregate user latency, since the aggregate profit
of IaaS and PaaS equals the users’ total payment.
8Such replica economies are studied commonly in the economics literature, for example, in the context of core convergence
(Hart 1979).
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In this context, as n increases to infinity, we show that there exists an ϵ-equilibrium with ϵ > 0
decreasing to zero. Further, in the limiting game the price of anarchy is bounded by k + 1, which
highlights that if the asymmetry of providers is “fixed,” then competition among providers leads
to efficient performance for users.

6.1 General Bounds on the Price of Anarchy
As mentioned above, without any assumptions on the latency cost or the symmetry of the
providers, the price of anarchy of the cloud marketplace can be quite large, as highlighted by
the following examples.

Example: Unbounded Price of Anarchy
Consider a model with P providers. Provider 2, . . . , P are identical, and each has very large mar-
ginal shared cost (i.e., â2 = â3 = · · · = âP → ∞). It is socially optimal for all users to use provider 1,
and the minimum aggregate latency cost is given by

ℓ(x∗, g∗) =
∑

p
дpxp (ãpxp + âpдpxp ) = ã1λ

2 + â1λ
2. (30)

At a distribution equilibrium, through a simple calculation we obtain

д1 =
2
√
ã1

(2
√
ã1 +
√
ã2)
, дp =

√
ãp

(P − 1) (2
√
ã1 +

√
ãp )
, p = 2, . . . , P ,

which yields a user flow of

x1 =
2λ
3д1
, xp =

λ

(P − 1)3дp
, p = 2, . . . , P . (31)

It is easy to see that as the marginal shared cost of the P − 1 providers increases to infinity, this
distribution equilibrium yields an arbitrarily high price of anarchy.

Price of Anarchy Bounds for Nearly Symmetric Providers with Polynomial Costs
The previous example highlights that the efficiency of the cloud marketplace depends heavily
on the difference between the best and worst providers. This observation leads to the following
proposition, which shows that a distribution equilibrium cannot be too inefficient if the worst
provider is not “very” different from the best one when the latency cost is polynomial.

Proposition 6.1. Suppose that latency functions are polynomial, that is, ℓ̃p (x ) = ãpxk and
ℓ̂p (y) = âpyk for every p. The price of anarchy of a distribution equilibrium cannot be higher than

ãmax + âmax
ãmin + âmin/Pk , (32)

where ãmin = minp ãp , âmin = minp âp , ãmax = maxp ãp , and âmax = maxp âp .

Proposition 6.1 is proved in Appendix D.1. It highlights that symmetry of providers is crucial for
ensuring the efficiency of the cloud marketplace. The proposition implies that when all providers
are symmetric, the price of anarchy converges to one (asymptotic efficiency is achieved) as the
number of providers P grows large. Further, it highlights that when the number of providers is
large, the ratio of dedicated latency costs to shared latency costs, that is, âmax/ãmin, also plays a
significant role in the efficiency of the marketplace.
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6.2 Bounds on the Price of Anarchy When the Number of Providers Is Large
In this subsection, we consider an alternative formulation of the model that allows us to attain
more general bounds on the price of anarchy of the cloud marketplace. In particular, we consider
a setting with a large number of small (non-atomic) providers. More specifically, when there are
a large number of small providers, it is reasonable to expect that providers cannot anticipate the
impacts of their prices on user flow, due to, for example, the lack of information or the limit of
computational capability. This assumption leads us to a “non-atomic” provider equilibrium concept
for this scenario, which we define below. Then, in this new model, we are able to obtain general
bounds on the price of anarchy under polynomial latency cost functions.

6.2.1 Non-atomic Formulation and Approximation. In this section, for the case of polynomial
latency functions, we define a price equilibrium among a continuum of providers (in the set [0, 1])
and show that the non-atomic provider equilibrium serves as a good approximation for its atomic
counterpart (cf. Definition 4.5) in a replica economy.

The providers are divided into P types, and for each p ∈ [1, . . . , P], there is qp > 0 fraction of
providers of type p. We will focus on symmetric equilibria where all providers of the same type
set the same price. As a result, all providers of the same type p must attract the same amount
of services, which is denoted by дp in this section. In this setting, the total amount of services
connected to type-p providers is qpдp , and we have ∑

p qpдp = 1. Before stating our equilibrium
concept, it is useful to specialize some results from previous sections about service equilibrium
prices. In particular, it follows from Proposition 4.4 that the service equilibrium prices are

αSE
p − βp = xp ℓ̃

′
p (xp ) = kãp (xp )k ,

which yields users of provider p an effective cost of

(xp )k
(
(k + 1)α̃p + α̂pд

k
p

)
+ βp .

Using the above, we can define the non-atomic provider price equilibrium as follows.

Definition 6.2. Given a service distribution g, a provider price vector βP E = (βP E
1 , . . . , β

P E
P ) is a

non-atomic provider (price) equilibrium, if
βP E

p ∈ arg max
β ≥0

βx (β, βP E ), ∀p, (33)

where
x (β, βP E ) = 0, if µ < β,

x (β, βP E )k ((k + 1)α̃p + α̂pд
k
p ) = µ − β, otherwise.

(34)

Here, µ is the user effective cost of an active service at the unique user equilibrium induced by g
and βP E (cf. Definition 4.1).

The above definition mimics the definition of a non-atomic service equilibrium in Definition 4.3.
Similarly, we have assumed that every provider p is infinitesimally small and therefore has no
influence on the user effective cost µ. In Equation (33), x (β, βP E ) is the user flow attracted by
the provider, if it sets the price as β , and all the other providers set their prices according to the
equilibrium βP E . The value of x (β, βP E ) is determined by Equation (34). The price βP E

p maximizes
the provider’s profit provided that the other providers set their prices according to the equilibrium.
It is worth noting that the distribution of provider types (q1, . . . ,qP ) does not show up in the above
definition, because each provider’s profit depends only on its own price and its user flow, with the
latter determined by the service distribution g and the provider price vector βP E .
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Given the non-atomic provider equilibrium defined above, we can define a corresponding dis-
tribution equilibrium that parallels Definition 4.7. The following proposition shows that on top of
the provider equilibrium defined in Definition 6.2, both existence and uniqueness of a distribution
equilibrium are guaranteed.

Proposition 6.3. Suppose that latency functions are polynomial, that is, ℓ̃p (x ) = ãpxk and
ℓ̂p (y) = âpyk , for every p. There exists a unique distribution equilibrium when a nonatomic provider
equilibrium is considered.

The proof of this proposition is given in Appendix D.2. Note that the non-atomic provider equi-
librium can be rigorously interpreted as the limit of the original atomic provider game considered
to this point of the article. In particular, we justify the non-atomic provider equilibrium concept
by considering a replica economy, where there are in total P types of providers, and the number
of providers of each type scales with n as n → ∞. More formally, the sequence of finite models
defined as follows converges to the model with non-atomic providers we study in this section.

Definition 6.4. Consider a sequence of models Gn , n = 1, 2, . . . . For each Gn :
(1) The aggregate user flow is nλ, and there is a continuum of services in [0,n].
(2) There are a total of P types of providers. The latency functions of a type p provider are

assumed to be linear, that is, ℓ̃p (x ) = ãpx and ℓ̂p (y) = âpy.
(3) For every p, the number of type-p providers is qn

pn, where limn→∞ qn
p = qp . We assume

that qp > 0, for every p.
As n increases to infinity, the following proposition shows that every provider’s profit is ap-

proximately maximized at a distribution equilibrium, as the scaler n (in Definition 6.4) increases
to infinity.

Proposition 6.5. In a sequence of games {Gn }∞n=1, a distribution equilibrium among non-atomic
providers (on top of the provider equilibrium defined in Definition 6.2) is an ϵn-equilibrium in the
atomic model Gn , with ϵn decreasing to zero as n → ∞.

The proof of this proposition is given in Appendix D.3.
6.2.2 Price of Anarchy Results. Given existence and uniqueness of a distribution equilibrium,

we obtain the following bound on the price of anarchy, which is proven in Appendix D.4.

Theorem 6.6. Suppose that latency functions are polynomial, that is, ℓ̃p (x ) = ãpxk and ℓ̂p (y) =
âpyk , for every p. The price of anarchy of a distribution equilibrium using a non-atomic provider
equilibrium is at most k + 1.

In contrast to Proposition 6.1, the above theorem highlights that the price of anarchy will be
small in settings when there are a large number of providers. For example, the price of anarchy
is simply 2 in the case of linear latencies, and, more generally, the price of anarchy is k + 1 if
congestion costs are polynomial with degree k . Interestingly, this is essentially the same price
of anarchy as when no market structure exists, that is, users directly choose providers based
on congestion costs (Roughgarden and Tardos 2002). Since the price of anarchy of the two-tier
model (users and SaaSs) converges to one in the limit as the number of services grows (Anselmi
et al. 2011), Theorem 6.2.1 reveals that the addition of providers into the marketplace “undoes”
the efficiency created by competition among services. Further, these results highlight that it is
crucial to find ways to incentivize participation of IaaS/PaaS providers in the cloud marketplace,
especially given the results in Section 5 which highlight that the profitability of providers
decreases quickly with increasing competition.
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7 CONCLUDING REMARKS
In this article, we develop a novel model for the cloud computing marketplace which, for the
first time includes (i) the three-tier structure of the marketplace (including users, services, and
providers) and (ii) the distinction between shared and dedicated latency in the cloud. The inclusion
of these factors leads to novel qualitative insights about market power, user performance (the price
of anarchy), and the differing impacts of shared and dedicated latencies.

We view this article as a first step towards a deeper understanding of the cloud marketplace.
As such, there are many extensions that are interesting to consider in future work. For example,
we have considered one popular price structure, “charge per flow,” but there are many other price
structures that are available today, including “charge per instance,” a fixed “membership” charge,
and so on. Additionally, there are many simplifications in the model considered here, for example,
that users and services are homogeneous and non-atomic and that there is no market friction pre-
venting services from switching providers. These assumptions are made to allow an analytic first
step toward understanding the impact of market structure and would of course be very interesting
to remove with future research. A particularly interesting (and challenging) extension to consider
would be to study the role of capacity investment decisions of the infrastructure providers. The in-
corporation of capacity investment decisions into the three-tier model requires considerable new
analytic tools but could yield an interesting tradeoff between capacity investment and pricing
power.
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