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Abstract— Mining the characteristics of information spreading
in networks is crucial in communication studies, network security
management, epidemic investigations, etc. Previous works are
restrictive because they mainly focused on the information
source detection using either a single observation, or multiple
but independent observations of the underlying network while
assuming a homogeneous information spreading rate. We conduct
a theoretical and experimental study on information spreading,
and propose a new and novel estimation framework to estimate
1) information spreading rates, 2) start time of the information
source, and 3) the location of information source by utilizing
multiple sequential and dependent snapshots where information
can spread at heterogeneous rates. Our framework generalizes
the current state-of-the-art rumor centrality [1] and the union
rumor centrality [2]. Furthermore, we allow heterogeneous infor-
mation spreading rates at different branches of a network. Our
framework provides conditional maximum likelihood estimators
for the above three metrics and is more accurate than rumor
centrality and Jordan center in both synthetic networks and
real-world networks. Applying our framework to the Twitter’s
retweet networks, we can accurately determine who made the
initial tweet and at what time the tweet was sent. Furthermore,
we also validate that the rates of information spreading are
indeed heterogeneous among different parts of a retweet network.

Index Terms— Information source estimation, information
spreading forensics, sequential snapshots, conditional maximum
likelihood estimators.

I. INTRODUCTION

UNDERSTANDING information spreading in networks is
a fundamental task in various aspects of human activities,

e.g., advertisers would like to know how fast information
spreads (information spreading rates) in different channels
or communities in a network so as to design better network
marketing strategies. Network security managers would like
to find out when a computer virus starts to spread (source
start time) so that they could rollback the system to a pre-
vious safe state to maintain a more reliable and trustworthy
network. Epidemiologists would like to locate the patient zero
(information source) in a social network so as to find out
the reason for an epidemic. This form of study is called the
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information spreading forensic. However, such a foren-
sic study is technically challenging in large-scale networks
because the complete temporal knowledge of information
spreading, i.e., the time index of when each individual (node)
receives the information or gets infected is usually not avail-
able [3], and this makes information spreading forensics
difficult. Moreover, a typical scenario of information spreading
is that the source would spread information to different parts
(or channels) of a network at different rates. For example,
an epidemic usually has different spreading rates among
different age groups [4], and news or rumors have differ-
ent spreading rates among different communities [5]. Such
a heterogeneity of spreading rates makes it more difficult
to uncover the information spreading characteristics. In this
work, we consider how to provide accurate estimates for
the information spreading characteristics when we can have
one or more sequential observations (or snapshots) of the
information spreading process.

We propose a new and novel framework to estimate the
information spreading rates, the source start time and the
location of information source with “sequential and dependent
snapshots”. We consider an unknown source which starts
spreading information at different spreading rates in a network.
Specifically, the source first spreads information to different
neighboring nodes at (potentially) different rates, and then
each of these neighbors spreads to other nodes at the spreading
rate inherited from the source. We assume that one can
make sequential observations (or sequential snapshots) of the
network at different times. The question is: how can one
accurately estimate the spreading rates, source start time, and
identify the location of the information source based on these
sequential snapshots?

Previous work mainly focused on finding the location
of the information source with a restrictive assumption of
“homogeneous” information spreading rate in a network.
Shah and Zaman [1] first proposed the rumor centrality
estimator using a single snapshot of information spreading.
Later on, Wang et al. [2] presented the union rumor centrality
that utilizes multiple but independent snapshots of information
spreading and claimed that the sequential dependent snapshots
will not improve the accuracy of source detection. Both
are based on the assumption that information spreads at a
homogeneous spreading rate, and this is not realistic for net-
works with different communities/groups [4]. Indeed, given the
homogeneous information spreading rate, the rumor centrality
and the union rumor centrality both give a source estimate that
balances the sizes of the branches of a spreading graph [1], [2].
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Fig. 1. Infection graphs (snapshots taken) at time t1 and t2 (with t1 < t2).
(a) Rumor centrality predicts that the “blue” node is the information source.
(b) In reality, the “red” node is the true information source. The inaccuracy
of (a) is due to the assumption that spreading rates on all branches are the
same.

Fig. 2. Framework Diagram. Input are all the snapshots and the times when
the snapshots were taken. Output are the conditional maximum estimates for
the spreading rates, the source start time, and the source.

For example, Fig. 1(a) shows the information spreading graphs
of two sequential snapshots taken at time t1 and t2 (t2 > t1),
and the blue dot represents the source estimate by the rumor
centrality. The ground truth, however, is shown in Fig. 1(b),
which shows the same two snapshots of the information
spreading process at time t1 and t2 (t2 > t1), where the
red dot is the true source and different color-shaded triangles
represent different branches. The rumor centrality or the union
rumor centrality on these two snapshots would give a “wrong
estimate” for the source’s location (the blue dot in the left
and right of Fig. 1(a), respectively) as they fail to capture
the different growth sizes of branches in two sequential
snapshots because they assumed the information spreading
has the same rate on all branches. In contrast, we propose
a general information spreading forensic model and propose a
new and novel framework to estimate the different spreading
rates, the source start time, and the location of the information
source using sequential and dependent snapshots.

Our framework consists of four components as shown in
Fig. 2. We take all the snapshots and the times as the Input.
For each node in the first snapshot, at the Branch Extraction
step, we extract its branches in the sequential snapshots. Then
we examine the growth of each branch and give estimates for
the spreading rates on different branches at the Spreading Rate
Estimation step. Using the estimates for the rates, we estimate
the source start time at the Source Start Time Estimation step.
Finally, we calculate the likelihood of a node being the source
at the Likelihood Estimation step. We obtain a likelihood
estimation for each node in the first snapshot and then output
the node with the conditional maximum likelihood as the
source and give the corresponding estimates for the spreading
rates and source start time.

Our key idea is that subsequent snapshots can reveal the
information spreading rates of the branches detected in earlier
snapshots when one examines the “growth size” of these
branches. The spreading rate estimates on different branches

further help us to infer the source start time and give a
likelihood estimate for the source’s location. We illustrate
this idea via Fig. 1(b). As shown in the two sequential
snapshots in Fig. 1(b), the branch (light blue shaded triangles
in Fig. 1(b)) with the largest growth size should have the
largest spreading rate estimate. Such spreading rates estimates
indicate that the branch in light blue is highly likely the largest
branch in the first snapshot. As such, we can estimate the
relative sizes of branches rooted at the source, trace back to
the start time and find the node (the red dot in Fig. 1(b)) in
the first snapshot with the conditional maximum likelihood
of a node generating such branches using the corresponding
estimates of spreading rates and the estimate of start time.

Contributions: In this work, we prove that our framework
generalizes both the rumor centrality [1] and the union rumor
centrality [2] by allowing heterogeneous spreading rates at
different branches, and we demonstrate that our framework
improves the accuracy of source estimates compared with
the state-of-the-art source estimators, namely, rumor central-
ity and Jordan center [6], [7]. In addition, our framework
gives highly accurate estimates using conditional maximum
likelihood estimators (CMLEs) for the information spreading
rates and source start time. We validated these claims in
our experiments, both for synthetic and real-world retweet
networks in Twitter. Applying our framework to the Twitter’s
retweet networks, we can accurately determine who made the
initial tweet and at what time the tweet was sent without any
knowledge of the timestamps. Furthermore, we also discovered
that the spreading rates are indeed heterogeneous among
different parts of a retweet network and we provide accurate
estimates of these spreading rates.

The organization of this paper is as follows. We present
the information spreading model, observation model and our
analysis framework in Sec. II. Derivation of various condi-
tional maximum likelihood estimators are presented in Sec. III.
In Sec. IV, we present experimental results of applying our
framework to both synthetic networks and real-world net-
works. Related work is given in Sec. V. Sec. VI concludes
the paper.

II. MODELS AND ESTIMATION FRAMEWORK

We first present a model to characterize the information
spreading process over a network, then we present an observa-
tion model to describe the snapshots that we can have on the
information spreading process. Lastly, we present a general
framework to estimate the spreading rates, the source start
time, and the location of the information source.

A. Information Spreading Model
Consider an information spreading process over a network.

The underlying network is modeled as an undirected graph
G(V , E), where V and E denote the vertex set and the
edge set respectively. We use a continuous time Susceptible-
Infected (SI) model [8] to describe the information spreading
process. Compared with other spreading models such as the
Susceptible-Infected-Recovered (SIR) model [8], the SI model
is particularly suitable for modeling the information spreading
process over networks, because a user either gets the informa-
tion (i.e., gets infected) and then spreads the information to
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others in some time, or does not know about the information
and thus won’t spread the information (stays susceptible).
Each node in G can be either susceptible (not getting the
information) or infected (getting the information). Specifically,
at an unknown time t0, an unknown information source node
v∗ ∈ V starts spreading information in G. Once a node is
infected, it can infect (spread information to) a susceptible
neighboring node and turn the neighboring node into an
infected node. Consider an edge (i, j) ∈ E , and suppose
that node i is infected and node j is susceptible. Node i
will infect node j after a random time θij , which follows an
exponential distribution with rate λij (hereafter we say that
node i infects node j at rate λij ). Furthermore, θij , ∀(i, j) ∈ E
are independent distributed random variables. To construct
the source estimator in a computationally tractable way, we
consider the underlying graph G as an infinite d-regular tree
network (each node has the same degree d and d ≥ 2).
The unknown source v∗ infects each of its d neighbors with
unknown rate λ1, λ2, . . . , λd at t0 respectively. For subsequent
infections, a node which was infected at rate λi would go on
to infect its neighbors at rate λi for 1 ≤ i ≤ d. Let λ =
(λ1, λ2, . . . , λd). Note that this continuous model was justified
in [9] as a highly accurate probabilistic model to capture the
interaction behaviors between users in social networks. Our
objective is to give accurate estimates for the spreading rates λ,
the source start time t0, and the information source v∗ with a
finite number of sequential snapshots on G.

B. Observation Model

We now describe the observations that we can have on the
information spreading process. We take sequential snapshots
of the network G at different times during the spreading
process. Each snapshot generates an infected graph which con-
tains all infected nodes and infected edges (that connects the
infected nodes) up to the time that snapshot was taken. More
specifically, we consider m sequential snapshots (m ≥ 2).
Let Gj ⊆ G for 1 ≤ j ≤ m denote the j-th infected graph
obtained at time tj (where t0 < · · · < tj < · · · < tm). Clearly,
we have Gj ⊆ Gm as these m snapshots are taken sequentially
from the same spreading process on G. Let N1 ≤ · · · ≤ Nm

be the number of infected nodes in G1, . . . , Gm respectively.

C. Designing Estimation Framework
We now give the high level idea of our framework which

provides estimates on the spreading rates (λ) on each branches,
the start time (t0) and information source (v) using the
branches split from the m snapshots for each node v in
the first snapshot. Our framework consists of four compo-
nents (described below) and takes the m sequential snapshots
G1, . . . , Gm and the times t1, . . . , tm as the input.

1) Branch Extraction Component: Upon taking the sequen-
tial snapshots, we further split them into d growing disjoint
branches sharing no common nodes. Assume that the source
node is v. Let u1, u2, . . . , ud be the neighbors of v in G. Let
T i

v(t) denote the branch that is rooted at node v and does
not contain u− i (where u− i = {∪d

1ui} \ui) up to time t and
T i

v(t0) = v. Thus, Gj is split into d different tree branches
T i

v(tj), 1 ≤ i ≤ d, and each branch has a copy of source v.
Let ki

j = |T i
v(tj)| − 1 ≥ 0 denote the number of infected

Fig. 3. Two sequential snapshots of a spreading process on a 3 -regular tree
where different branches have different spreading rates. (a) represents G1,
an infected tree at time t1. (b) represents G2, an infected tree with three
larger branches at time t2, with t2 > t1.

nodes in T i
v(tj) excluding v and ki

0 = 0 for 1 ≤ i ≤ d and
1 ≤ j ≤ m. The increment size of T i

v(t) at two consecutive
times tj− 1 and tj is denoted by δi

j , i.e., δi
j = ki

j−ki
j− 1. As the

spreading process may have different spreading rates on the
d branches, we denote that the spreading rate on the edges
of the i-th branch as λi for 1 ≤ i ≤ d. Moreover, for the
branch T i

v(tj), a node u ∈ T i
v(tj) is a boundary node if u has

no child in T i
v(tj). We denote Bi

v(tj) as the boundary that
consists of the boundary nodes of the branch T i

v(tj) and let
bi
j = |Bi

v(tj)|. Those are the nodes which are infected but
have not infected other nodes. Thus, under this definition of
boundary nodes, we can always sample bi

j− 1 (bi
j− 1 ≥ 0) paths

that are disjoint with each other as the branches are trees from
the boundary Bi

v(tj− 1) to the boundary Bi
v(tj). Specifically,

for each node u in Bi
v(tj− 1), we randomly select a path from

u to Bi
v(tj). This way, we can sample bi

j− 1 disjoint paths.
We denote lr(0 ≤ r ≤ bi

j− 1) as the length of the r-th path in
the bi

j− 1 paths for 2 ≤ j ≤ m and l0 = 0.
To illustrate, Fig. 3 shows two sequential snapshots of a

spreading process on a 3-regular tree (or d = 3) where
different branches have different spreading rates λ1, λ2 and λ3 .
Assume that v is the source, Fig. 3(a) shows a snapshot G1

taken at time t1, and the branch T i
v(t1) has nodes {v, ui} with

ki
1 = 1 and spreading rate λi on each edge for i ∈ {1, 2, 3}.

At time t2 > t1, we observe the network again and obtain the
second snapshot G2 as shown in Fig. 3(b). We see that the
infected tree has grown and it has three larger and independent
branches T i

v(t2) for 1 ≤ i ≤ 3, which are connected to
the source node v with k1

2 = 3, k2
2 = 2, k3

2 = 4 and the
size increments δ1

2 = 2, δ2
2 = 1, δ3

2 = 3. u3 is a boundary
node of T 3

v (t1), i.e., B3
v(t1) = {u3}. Node e and f are the

boundary nodes of T 3
v (t2), i.e., B3

v(t2) = {e, f}. From B3
v(t1)

to B3
v(t2), we can sample a single path, e.g., the path u3 − e,

and the length of this path is one.
2) Spreading Rate Estimation Component: This component

provides point estimates for the spreading rates on different
branches given that v is the source. Consider the branch T i

v.
We have bi

j− 1 disjoint sample paths that connect the boundary
Bi

v(tj− 1) with the boundary Bi
v(tj). Thus, the spreading

process on each of the bi
j− 1 paths is a Poisson process with

rate λi and the spreading processes on different paths are
independent. The estimator for λi(1 ≤ i ≤ d) is:

λ̂i = argmax
λi

m∏

j=2

[λi(tj − tj− 1)]
bi
j−1

r=0 lr

eλi(tj− tj−1)bi
j−1

∏bi
j−1

r=0 lr!
,
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where the argument of argmax is simply the joint density
function of observing all the bi

j− 1 disjoint paths in T i
v(t)

during (tj− 1, tj] for 2 ≤ j ≤ m. By letting the derivative of
λi be 0, we obtain the spreading rate estimator λ̂i as follows,

λ̂i =
∑m

j=2

∑bi
j−1

r=0 lr∑m
j=2 bi

j− 1(tj − tj− 1)
, (1)

if
∑m

j=2 bi
j− 1(tj − tj− 1) ̸= 0. Otherwise, λ̂i = 0. Eq. (1)

shows that the spreading rate estimator λ̂i is in fact the average
spreading rate of information spreading on all disjoint paths
in the m − 1 snapshots. Let λ̂ = (λ̂1, . . . , λ̂d).

3) Source Start Time Estimation Component: Assume that
the source is v, to estimate the source start time t0, we consider
the distribution of time tj := tj − t0 for the information
spreading from v to the branch T i

v(tj) given that the spreading
rate in the branch is λ̂i, 1 ≤ i ≤ d, during (t0, tj ] for
1 ≤ j ≤ m. Note that there are ki

j infections that occur
during (t0, tj ] on the branch T i

v(tj). Moreover, the spreading
time on each edge follows an exponential distribution with
rate λ̂i. Each new infection would introduce new infectious
edges thereby increasing the spreading rate of new infections
(see details in Lemma 1). Hence, the total time Ski

j
(t) of

infecting ki
j nodes on the branch T i

v(tj) is the sum of the
ki

j exponentially distributed random variables with increasing
rates. Let t̂0 denote the estimator for t0 and Pki

j
(tj |t0) denote

the probability that exactly ki
j infections occur in the branch

T i
v(tj) during (t0, tj ] given that spreading rate is λ̂i, 1 ≤ i ≤ d

(see details in Lemma 2). We notice that the dependence
between the second snapshot and the subsequent snapshots
does not contribute to the estimation of t0 because spreading
rates on the edges of branch T i

v(t) follow exponential distri-
bution which has the memoryless property. Therefore, only
the branch T i

v(t1) is useful when using adjacent snapshots
to estimate t0. To give an estimate for t0 while taking the
branches of all the m snapshots into account, we consider the
m spreading process instances in the m overlapping intervals
(t0, tj] (1 ≤ j ≤ m) other than the m intervals (tj− 1, tj ]
(1 ≤ j ≤ m).

Thus, we obtain the source start time estimator t̂0 as follows,

t̂0 = argmax
t0

∏m

j=1

∏d

i=1
Pki

j
(tj |t0). (2)

We give the explicit form of t̂0 in Proposition 1.
Proposition 1: Given that the underlying graph is a

d-regular tree, v ∈ G1 is the source and the estimated
spreading rates are λ̂i for 1 ≤ i ≤ d, the source start time
estimator t̂0 is given by

t̂0 =
1
m

m∑

j=1

(
tj −

1∑
1λ̂i>0

∑d

i=1,λ̂i>0

ln(1 + aki
j)

aλ̂i

)
, (3)

where a = d − 2 (d > 2), 1λ̂i>0 is an indicator function. For
d = 2, we have t̂0 = 1

m

∑m
j=1

(
tj − 1

1λ̂i>0
ki

j/λ̂i
)
.

Proof: The result is derived from a special case in
Lemma 2. See the proof for Lemma 2 in Sec. III-A.

Remark: Eq. (3) implies that the source start time estima-
tor t̂0 is the average of the difference between tj , j = 1, . . . , m

and the average spreading time from source v to the boundaries
of different branches.

4) Likelihood Estimation Component: Our straightforward
objective is to give estimates for the spreading rates, source
start time and the information source given the observed
snapshots as shown in Eq. (4).

{v̂, λ̂, t̂0} = arg max
v∈G1,λ,t0

P[v, λ, t0|G1, . . . , Gm] (4)

= arg max
v∈G1,λ,t0

P[G1, . . . , Gm|v, λ, t0]. (5)

Computing the probability in Eq. (4) is infeasible in general.
Thus we assume each node in the first snapshot G1 is equally
likely to be the source, and we do not have any prior knowl-
edge about the spreading rates λ and the source start time t0,
and treat λ and t0 as independent variables. Thus {v̂, λ̂, t̂0}
are exactly the maximum likelihood estimators of information
source v, spreading rates λ and source start time t0. This
way, we convert the straightforward objective in Eq. (4) to the
objective in Eq. (5) using Bayesian transformation.

However, v, λ, and t0 are not independent. As we have
discussed in Sec. II-C.2 and Sec. II-C.3, λ depends on
v (λ̂ := λ(v)), and t0 depends on both λ and v (t̂0 :=
t0(λ(v), v)). We take advantage of such dependence among
v, λ, and t0, and use the two estimators, λ̂ and t̂0, derived
from the spreading rate estimation component and the source
start time estimation component to give conditional maximum
likelihood estimators (CMLEs) for v, λ, and t0 as follows,

{v̂, λ̂, t̂0} = arg max
v∈G1

P[G1, . . . , Gm|v, λ(v), t0(λ(v), v)].

(5’)
Now we calculate the probability in Eq. (5’). Recall that

each node v in G1 is equally likely to be the source. We exam-
ine the spreading process by considering the information
spreading on each branch T i

v(t) at the spreading rate estimate
λ̂i during the time intervals (t̂0, t1], (t1, t2], . . . and (tm− 1, tm]
separately, 1 ≤ i ≤ d, 1 ≤ j ≤ m. Moreover, the spreading
process on each branch under our assumption is independent
of each other and the branch T i

v(tj) is only dependent on
its earlier state, i.e., T i

v(tj− 1) (1 ≤ j ≤ m). Therefore,
the conditional maximum likelihood estimators, v̂, λ̂, and t̂0
in Eq. (5’) can be expressed as:

{v̂, λ̂, t̂0} = arg max
v∈G1

∏d

i=1
P[T i

v(tm), . . . , T i
v(t1)|v, λ̂, t̂0]

(6)

= arg max
v∈G1

∏d

i=1

∏m

j=1
P[T i

v(tj)|T i
v(tj− 1), λ̂, t̂0].

(7)

where P[T i
v(tm), . . . , T i

v(t1)|v, λ̂, t̂0] is the joint probability
(likelihood) that we observe the branches T i

v(tj) at tj for 1 ≤
j ≤ m given the source v = T i

v(t̂0) and the spreading rates λ̂,
while P[T i

v(tj)|T i
v(tj− 1), λ̂, t̂0] is the conditional probability

of observing the branch T i
v(tj) at tj given that the branch

T i
v(tj− 1) is observed at tj− 1 with the source being v and the

spreading rates being λ̂. Note that P[T i
v(tj)|T i

v(tj− 1), λ̂, t̂0]
is dependent on the size of T i

v(tj− 1), which is dependent on
the location of the source v in G1, the spreading rates λ̂, and
the source start time t̂0. Any other node v′ in G1 would result
in different branches T i

v′(tj− 1) and give different conditional
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probabilities P[T i
v′(tj)|T i

v′(tj− 1), λ̂, t̂0] for 1 ≤ j ≤ m.
As such, the dependence of the branch T i

v(t1) in G1 on
v carries over to the branches T i

v(tj) in snapshots Gj for
2 ≤ j ≤ m. Thus the branches T i

v(tj) in snapshots Gj for
2 ≤ j ≤ m will influence the estimates for the spreading
rates λ̂, the source start time t̂0 and the source v in G1. For
every v in G1, we give such a likelihood estimate. Therefore,
we can give conditional maximum likelihood estimates for the
three information spreading characteristics that contribute to
the formation of the branches in the first snapshot and branches
in the sequential snapshots.

III. DERIVATION OF ESTIMATORS

Here we derive explicit expressions for the conditional
maximum likelihood estimators stated in Eq. (7), namely,
the spreading rate λ̂, the source start time t̂0 and the source
v̂ stated in Eq. (7). We also present a parallel algorithm used
in the estimation components and give a detailed complexity
analysis of the algorithm. To convey the core idea, we use an
example to illustrate the benefit of two sequential snapshots
in information source detection. Since the infected graph has
d independent branches, we analyze the infection process as
d independent infection processes. We first study the infection
process in a single branch, and then combine these infection
processes together to construct our estimators.

A. Information Spreading on a Single Branch
To begin, we study the infection process by dividing the

infection process into m sub-processes based on time step
tj− 1 and tj for 1 ≤ j ≤ m. We first derive an explicit
expression for P[T i

v(tj)|T i
v(tj− 1), λ̂, t̂0] by inspecting the

infection process on the i-th branch T i
v(t) for t ∈ (tj− 1, tj ]

with v being the source. P[T i
v(tj)|T i

v(tj− 1), , λ̂, t̂0] is actually
the product of the number of “permitted spreading orders” and
the probability of a permitted spreading order from T i

v(tj− 1)
to T i

v(tj) since the permitted spreading orders from T i
v(tj− 1)

to T i
v(tj) are equally likely and mutually exclusive because

the underlying graph G is a d-regular tree and the infection
rates on edges are modeled as identical distributed exponential
random variables on each branch.

Definition 1: A Permitted Spreading Order is a valid
spreading order of nodes constrained by the structure of the
infected graph. E.g., let G be an infected graph with the root
node being the source v. For a node u to be infected, its parent
node up has to be infected first. So the permitted spreading
order starts with v, and with up ahead of u.

To illustrate, consider the snapshot G2 in Fig. 3(b). Suppose
that v is the source, then one possible permitted spreading
order in G2 is v−u1−u2−a−u3−b−c−e−d−f . More generally,
a permitted spreading order from the branch T i

v(tj− 1) to the
branch T i

v(tj) should always start from the nodes in T i
v(tj− 1)

which have infectious edges connecting to other susceptible
nodes in T i

v(tj). For example, in Fig. 3, one possible per-
mitted spreading order from the branch T 1

v (t1) to the branch
T 1

v (t2) is u1 − b − a, where u1 has two infectious edges
in T 1

v (t1).
To compute the number of permitted spreading orders

starting from T i
v(tj− 1) to T i

v(tj), we consider the branch

T i
v(tj− 1) as a super source node vi

j− 1, which consists of all
the infected nodes and edges in T i

v(tj− 1). Then the branch
T i

v(tj) becomes a super branch T̄ i
vi

j−1
(tj) taking the branch

T i
v(tj− 1) as a single node vi

j− 1. Thus, the number of nodes
in T̄ i

vi
j−1

(tj) excluding the super node vi
j− 1 is equal to (ki

j −
ki

j− 1). We can compute the number of permitted spreading
orders in the super branch T̄ i

vi
j−1

(tj) via the rumor centrality
in [1].

Definition 2 (Rumor Centrality. [1]): Rumor centrality for
a node v in a given tree G is the number of permitted spreading
orders starting with v in G, which is given by

R(v, G) =
N !∏

w∈G Tw|v
, (8)

where N is the number of nodes in G, Tw|v is the number
of nodes in the subtree rooted at node w and pointing away
from v, with v being the source.

Example: consider the snapshot G2 in Fig. 3(b). The sizes of
the subtrees rooted at v are as follows: Tv|v = 10, Tu1|v = 3,
Tu2|v = 2, Tu3|v = 4, Td|v = 2, Ta|v = Tb|v = Tc|v =
Te|v = 1. Therefore, the rumor centrality for node v is:
R(v, G2) = 10!

10× 3 × 2× 4× 2× 1× 1× 1× 1 = 7560. We can also
calculate the number of permitted spreading orders in the super
branches using rumor centrality. For example, consider the
branches T 1

v (t1) and T 1
v (t2) in Fig. 3. We have k1

2 − k1
1 = 2.

Taking T 1
v (t1) as a super node v1

1 , the sizes of the subtrees
in T̄ 1

v1
1
(t2) \T 1

v1
1
(t1) are Ta|v1

1
= 1, Tb|v1

1
= 1. Thus we can

obtain R(v1
1 , T̄ 1

v1
1
(t2)) = 2!

1× 1 = 2.
Note that T̄ i

vi
j−1

(tj) is a realization of the spreading process
on a branch rooted at v on the underlying graph G at tj .
To derive the probability of observing such a realization,
we analyze how the δi

j = ki
j − ki

j− 1 infected nodes and the
super node vi

j− 1 form the super branch T̄ i
vi

j−1
(tj). Specifi-

cally, starting from vi
j− 1, each infection on the super branch

T̄ i
vi

j−1
(tj) will introduce new infectious edges to the boundary

nodes, creating new opportunities of infecting other suscep-
tible nodes on the boundary and forming possibly different
infection graphs other than T̄ i

vi
j−1

(tj). Therefore, given that

δi
j nodes are infected on a d-regular tree, the probability that

we can observe these infected nodes form the super branch
T̄ i

vi
j−1

(tj) is dependent on how the infectious edges on the

boundary infect new nodes. Let βi
j denote the probability that

δi
j nodes form the super branch T̄ i

vi
j−1

(tj). In the following

lemma, we provide an explicit expression of βi
j .

Lemma 1: Given that δi
j (δi

j = ki
j − ki

j− 1 ≥ 0) infections
occurred after observing the branch T i

v(tj− 1) in a d-regular
tree according to the information spreading model described
in Sec. II-A, the probability that the δi

j infected nodes form
the branch T̄ i

vi
j−1

(tj) is

βi
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, δi
j = 0,

ki
j− 1∏

r=ki
j−1

1
(1 + ra)

, δi
j ≥ 1,

(9)

for 1 ≤ i ≤ d and 1 ≤ j ≤ m where a = d − 2.
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Proof: As we are proving common properties of the
d branches, here we drop the superscript “i” on λ̂i, vi

j− 1,
T̄ i

vi
j−1

(tj), βi
j , ki

j− 1 and ki
j unless a distinction needs to be

made. Without loss of generality, we study the r-th (kj− 1 ≤
r ≤ kj − 1) infection in the super branch T̄vj−1(tj). Note that
every new infection would introduce d−2 new infectious edges
(through which the information can infect new nodes). Thus
there are 1+r(d−2) infectious edges at the beginning of r-th
infection. That is, there are 1+r(d−2) ways to infect new node
at the beginning of r-th infection. Therefore, the kj − kj− 1

infections could happen in
∏kj− 1

r=kj−1
[1 + r(d − 2)] of possible

ways where the branch T̄vj−1(tj) is a single realization. Thus
the probability that the kj − kj− 1 infections forms the branch
T̄vj−1(tj) can be given by Eq. (9) by adding back the super
script “i”. This finishes the proof.

We now derive the probability of a specific permitted
spreading order for the spreading process on the super branch
T̄ i

vi
j−1

(tj). For each permitted spreading order in T̄ i
vi

j−1
(tj),

there is a sequence of δi
j infections that occur during (tj− 1, tj ].

We denote the probability that a sequence of ki
j − ki

j− 1

infections occur in the super branch T̄ i
vi

j−1
(tj) during interval

(tj− 1, tj ] given that ki
j− 1 infections have occurred before tj− 1

as Pki
j |ki

j−1
(tj |tj− 1).

This is exactly the probability of a single permitted spread-
ing order on T̄ i

vi
j−1

(tj). Thus by Lemma 1, the probability

that δi
j infections occur during (tj− 1, tj ] as well as forming

the super branch T̄ i
vi

j−1
(tj) for a single permitted order should

be Pki
j |ki

j−1
(tj |tj− 1)βi

j . Note that there are R(vi
j− 1, T̄

i
vi

j−1
(tj))

permitted spreading orders on T̄ i
vi

j−1
(tj). As such, by multiply-

ing such a probability by the number of permitted spreading
orders on T̄ i

vi
j−1

(tj), we have:

P[T i
v(tj)|T i

v(tj− 1), λ̂, t̂0]
= R(vi

j− 1, T̄
i
vi

j−1
(tj))Pki

j |ki
j−1

(tj |tj− 1)βi
j . (10)

Finally, Pki
j |ki

j−1
(tj |tj− 1) can be stated as follows.

Lemma 2: For the super branch T̄ i
vi

j−1
(tj) in a d-regular

tree, the probability that a sequence of δi
j (δi

j ≥ 0) infections
occur at the rate λ̂i > 0 during (tj− 1, tj ] is given by

Pki
j |ki

j−1
(tj |tj− 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e− (1+ki
j−1a)λ̂it, δi

j = 0,

(1 − e− aλ̂it)δi
j

akδi
j !e

(1+ki
j−1a)λ̂it

ki
j− 1∏

r=ki
j−1

(1 + ra),

δi
j ≥ 1,

(11)

for 1 ≤ j ≤ m, where a = d − 2 and t = tj − tj− 1.
Proof: We refer the interested readers to our supplemen-

tary material available alongside the paper for the detailed
proof.

B. Information Spreading on d Branches

Now we can combine the d spreading processes on
the d branches together. Putting Eq. (10) into Eq. (7),
we can see the conditional maximum likelihood estimators are

equivalent to:

{v̂, λ̂, t̂0} = arg max
v∈G1

∏d

i=1

∏m

j=1
R(vi

j− 1, T̄
i
vi

j−1
(tj))

·Pki
j |ki

j−1
(tj |tj− 1)βi

j . (12)

Note that there is an interesting relationship between our
source estimator in Eq. (12) and the previous work on rumor
centrality [1]. To reveal the relationship, consider the snapshot
Gj− 1 as a super node vGj−1 (2 ≤ j ≤ m). The difference
graph Gj − Gj− 1 together with those edges that connect to
Gj− 1 (i.e., super node vGj−1 ) form a super graph Ḡj . Ḡj con-
tains d groups of branches. Branches in the i-th group share a
common ancestor node v. We now show the relation between
R(vi

j− 1, T̄
i
vi

j−1
(tj)) and R(vGj−1 , Ḡj) in the following lemma.

Lemma 3: For the d super branches in the super graph Ḡj ,
the number of permitted spreading orders in each branch
satisfies

∏d

i=1

R(vi
j− 1, T̄

i
vi

j−1
(tj))

δi
j !

=
R(vGj−1 , Ḡj)
(Nj − Nj− 1)!

, (13)

for 1 ≤ j ≤ m, where we define R(vG0 , Ḡ1) = R(v, G1) and
R(vGj−1 , Ḡj) is the rumor centrality of the super node vGj−1

in the super graph Ḡj . Moreover, R(vGj−1 , Ḡj) is simply a
constant regardless of which node is the source in G1 given
sequential snapshots Gj− 1 and Gj for 2 ≤ j ≤ m.

Proof: We refer the interested readers to our sup-
plementary material available alongside the paper for the
detailed proof.

Likelihood Estimation: Applying the results in the Lemma 1
to Lemma 3, we give our conditional maximum likelihood
estimators v̂, λ̂ and t̂0 in Eq. (12) for m sequential snapshots
in the following theorem.

Theorem 1: Given that the underlying d-regular tree graph,
for sequential snapshots G1, G2,…,Gm, which are taken at
t1, t2, …, tm respectively (t̂0 < t1 < t2 < . . . < tm), the
conditional maximum likelihood estimation for the source v̂,
the source spreading rates λ̂ and the source start time t̂0 are

{v̂, λ̂, t̂0} = arg max
v∈G1

R(v, G1) · C(λ̂, t̂0), (14)

where C(λ̂, t̂0) is given by

e
−

d

i=1
[(aki

m+1)tm− t̂0]λ̂
i d∏

i=1,λ̂i>0

m∏

j=1

(
eaλ̂itj − eaλ̂itj−1

)δi
j

,

and a = d − 2, where λ̂i and t̂0 are calculated by Eq. (1)
and Eq. (3) respectively and only the branches with nonzero
spreading rates (λ̂i > 0) are considered in the product terms.

Proof: Using the results in Lemma 1 to Lemma 3,
the source estimator in Eq. (12) can be simplified as follows,

{v̂, λ̂, t̂0}

= arg max
v∈G1

d∏

i=1

m∏

j=1

R(vi
j− 1, T̄

i
vi

j−1
(tj)) ·Pki

j |ki
j−1

(tj |tj− 1)βi
j

(a)
= arg max

v∈G1

d∏

i=1

m∏

j=1

R(vGj−1 , Ḡj)Pki
j |ki

j−1
(tj |tj− 1)βi

j · δi
j !

(b)
= arg max

v∈G1
R(v, G1)

d∏

i=1

m∏

j=1

Pki
j |ki

j−1
(tj |tj− 1)βi

j · δi
j !. (15)
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In above, (a) is from the results in Eq. (13) and (b) comes
from the fact that R(vGj−1 , Ḡj) is a constant for 2 ≤ j ≤ m
derived in Lemma 3. From Eq. (9) in Lemma 1 and Eq. (11)
in Lemma 2, we have

d∏

i=1,λ̂i>0

m∏

j=1

Pki
j |ki

j−1
(tj |tj− 1)δi

j ! · βi
j

=
d∏

i=1,λ̂i>0

m∏

j=1

(1 − e− aλ̂i(tj− tj−1))δi
j

e(1+ki
j−1a)λ̂i(tj− tj−1) · aδi

j

=
e
− (tm− t̂0)

d

i=1
λ̂i

aNm− 1

d∏

i=1,λ̂i>0

m∏

j=1

(1 − e− aλ̂i(tj− tj−1))δi
j

eaλ̂iki
j−1(tj− tj−1)

=
d∏

i=1,λ̂i>0

m∏

j=1

(1 − e− aλ̂i(tj− tj−1))δi
j

e(1+ki
j−1a)λ̂i(tj− tj−1) · aδi

j

=
e
− (tm− t̂0)

d

i=1
λ̂i

aNm− 1

d∏

i=1,λ̂i>0

m∏

j=1

(eaλ̂itj − eaλ̂itj−1)δi
j

eaλ̂i(tjkj− tj−1kj−1)

=
e
− (tm− t̂0)

d

i=1
λ̂i

aNm− 1

d∏

i=1,λ̂i>0

e− aλ̂itmki
m

m∏

j=1

×(eaλ̂itj − eaλ̂itj−1)δi
j

=
e−

d
i=1[(aki

m+1)tm− t̂0]λ̂i

aNm− 1

d∏

i=1,λ̂i>0

m∏

j=1

(eaλ̂itj − eaλ̂itj−1)δi
j

= C(λ̂, t̂0)/aNm− 1, (16)

where

C(λ̂, t̂0) = e
−

d

i=1
[(aki

m+1)tm− t̂0]λ̂
i d∏

i=1,λ̂i>0

m∏

j=1

×(eaλ̂itj − eaλ̂itj−1 )δi
j ,

and a = d − 2. Note that C(λ̂, t̂0) is a scaling factor that
depends on the source estimation v̂, the nonzero spreading
rates estimations λ̂ (λ̂i > 0), as well as the start time
estimation t̂0 given the m snapshots. Thus by putting Eq. (16)
back into Eq. (15) and taking Nj(1 ≤ j ≤ m) as constants,
we obtain the source estimator given in Theorem 1.

Remark: Our conditional maximum likelihood estimators
provide a source estimation that has an additional scaling fac-
tor as compared with the previous work of rumor centrality [1].
In particular, we have the following result.

Corollary 1: Suppose that the spreading rates
λ1, λ2, . . . , λd are equal on all branches, i.e.,
λ1 = λ2 = . . . = λd, then the conditional maximum
likelihood estimator in Theorem 1 becomes,

v̂ = arg max
v∈G1

R(v, G1),

which is equivalent to the rumor centrality in [10]. Moreover,
the homogeneous spreading rate and source start time can be
given by Eq. (1) and Eq. (3) respectively.

Proof: We refer the interested readers to our sup-
plementary material available alongside the paper for the

detailed proof. The above corollary states that our framework
produces at least as good a source node estimator as the rumor
centrality when we have a homogeneous spreading rate, but
when spreading rates are different, our framework produces
more accurate estimates than previous state-of-the-art schemes
as shown in Sec. IV.

C. Extending to General Networks
Our framework provides estimates not only in d-regular

trees but also for general networks. We like to point out
that there is an underlying information spreading tree which
corresponds to the first time each node gets infected for an
information spreading process. Such a tree is also termed as
the word-of-mouth propagation tree in the literature, e.g, [11].
Therefore, for general networks, one can use the Breadth-
First-Search (BFS) trees of the snapshots to approximate the
information spreading trees. Specifically, for our framework
(as well as the rumor centrality) that can only perform esti-
mation on trees, we pick each node in G1 as a candidate
source estimate, use the maximum degree of the nodes in
G1 as d in our framework in Eq. (14) (Note that we do not
assume that the node of the maximum degree is the source
node.) and use the corresponding BFS trees (rooted at the
picked node) of the sequential snapshots to approximate the
underlying information spreading tree.

D. Algorithm & Complexity Analysis
Algorithm 1 shows the implementation of our framework.

Specifically, in line 1, for each v node in G1, we build BFS
trees of the m sequential snapshots G1 . . . , Gm and extract
branches from the built BFS trees (see line 2 to line 8). Then
we sample disjoint paths and estimate the spreading rate on
each branch (see line 9 to line 16). We average the spreading
time on different branches and give an estimate for the source
start time (see line 17 to line 21). After that, we calculate the
likelihood of node v being the source (see line 22 to line 27).
Each iteration in the for-loop in line 1 is independent of other
iteration. Thus Algorithm 1 can be parallelized by dividing the
nodes in G1 into several groups and calculating the likelihoods
for each node in each group in parallel. Finally, we take
the node v and corresponding spreading rates and source
start time with the conditional maximum likelihood as the
output {v̂, λ̂, t̂0} of our framework (line 29).

Complexity Analysis: The total computational complexity
of Algorithm 1 is O(N1Nm). Specifically, for each round
in Algorithm 1, the branch extraction step requires O(Nm)
operations as it involves breadth-first-search operations on the
m sequential snapshots, and the spreading rates estimation step
requires O(Nm) computations. The computational complexity
of source start time can be neglected as only d computations
are needed. Moreover, the rumor centrality of each node in
G1 can be pre-computed with complexity O(N1), and the
computational complexity of the scaling factors is also O(N1).
We run above procedures in Algorithm 1 for N1 times to
evaluate the likelihoods for all the nodes in G1. Thus the total
computational complexity of our framework is O(N1Nm), and
it provides conditional maximum likelihood estimates for the
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Algorithm 1 Est. Framework With Sequential Snapshots
Input: G1, G2, . . . , Gm and t1, t2, . . . , tm

1: for v ∈ G1 do
2: Branch Extraction. Construct m BFS trees

T1,...,m from v to other nodes in G1, . . . , Gm

sequentially.
3: Initialize u1, . . . , ud as the d neighbors of v ∈ Tm,

d is the maximum degree in Tm.
4: for i = 1, . . . , d do
5: for j = 1, . . . , m do
6: T i

v(tj) = subtree in Tj rooted at ui

7: kj
i = |T i

v(tj)|
8: Bi

v(tj) = nodes that have no child in T i
v(tj)

9: Spreading Rate Estimation. Sample bi
j− 1 =

|Bi
v(tj)| paths from Bi

v(tj− 1) to Bi
v(tj) for 1 ≤

i ≤ d and 2 ≤ j ≤ m. The length of the r-th path
is set as lr (1 ≤ r ≤ bi

j− 1).
10: Set λ̂i = 0, ts = 0 and ls = 0.
11: for i = 1, . . . , d do
12: for j = 2, . . . , m do
13: ts = ts + bi

j− 1(tj − tj− 1)
14: for r = 1, . . . , bi

j− 1 do
15: ls = ls + lr
16: λ̂i = ls/ts
17: Source Start Time Estimation. Set t = 0, c = 0
18: for i = 1, . . . , d do
19: if λ̂i > 0 then
20: t = t + ln(1 + (d − 2)ki

1/(λ̂i(d − 2)), c = c + 1
21: t̂0 = t1 − t/c.
22: Likelihood Estimation. Calculate the rumor cen-

trality v.rc of node v in G1 (See details in [10]).
Set a = d − 2 and t0 = t̂0

.

23: Cλ = e−
d
i=1[(aki

m+1)tm− t̂0]λ̂
i

24: for i = 1, . . . , d do
25: if λ̂i > 0 and d > 2 then
26: for j = 1, . . . , m do
27: Cλ = Cλ · (eaλ̂itj − eaλ̂itj−1 )δi

j

28: v.e = v.rc · Cλ

29: Output: v, t̂0 and λ̂1, . . . , λ̂d with the conditional maxi-
mum likelihood

location of information source, the spreading rates and source
start time using m sequential snapshots.

E. Illustration via an Example

Fig. 4 illustrates an example of information spreading on
a 4-regular tree where the true source is v′, the true source
start time t0 = 0.7, and the true spreading rates λ1 = 0.1,
λ2 = 1.5, λ3 = 0.1 and λ4 = 1. The infected nodes observed
in the first snapshot taken at t1 = 1 are in black color, and
additional infected nodes observed in the second snapshot
taken at t2 = 2 are in gray color. In Fig. 4(a), we suppose
v is the source and in Fig. 4(b), we suppose v′ is the source.
Notice that in Fig. 4(b), with v′ being the source, the branches
T 1

v′ and T 3
v′ do not have any infected nodes (excluding v′) at

time t2. Thus we mark these branches with dotted lines (for
edges) and dotted circles (for nodes). We now demonstrate
how to apply our estimator to discover the most likely source

Fig. 4. Sequential snapshots at t1 = 1 and t2 = 2 on a 4-regular tree.
(a) Suppose v is the source. (b) Suppose v′ is the source.

node. Consider Fig. 4(a) and suppose v is the source. The
rumor centrality of v and the sizes of the branches rooted at v
are: R(v, G1) = 4!

4× 1× 1× 1 = 6, k1
1 = 1, k2

1 = 0, k3
1 = 1,

k4
1 = 1, k1

2 = 3, k2
2 = 3, k3

2 = 3, k4
2 = 2. Applying

Eq. (1), the spreading rate estimates for the branches are:
λ̂ = (1, 2, 1, 1). (Note that there is only one sample path with
length 2 from the boundary B2

v(t1) to the boundary B2
v(t2).)

Using Proposition 1, the estimate for source start time is:
t̂0 ≈ 0.59. Now consider Fig. 4(b) and suppose v′ is the
source. We have R(v′, G1) = 4!

4× 3 × 1× 1 = 2, k′1
1 = 0, k′2

1 = 3,

k′3
1 = 0, k′4

1 = 0, k′1
2 = 0, k′2

2 = 10, k′3
2 = 0, k′4

2 = 1.
Similarly, the spreading rate estimates for the branches are:
λ̂′ = (0, 4/3, 0, 1). (Note that the lengths of sample paths
are 1, 2 and 1 respectively from the boundary B2

v′(t1) to
the boundary B2

v′(t2).) The estimate for the source start
time is: t̂′0 ≈ 0.64. Applying Theorem 1, we calculate the
ratio between the (unnormalized) likelihood of v′ and the
(unnormalized) likelihood of v of being the source

R(v′, G1) · C(λ̂′, t̂′0)
R(v, G1) · C(λ̂, t̂0)

≈ 2
6
· 1.75
0.172

≈ 3.4 (17)

Thus the likelihood of v′ being the source is over two times
larger than the likelihood of v being the source. In fact,
as shown in Fig. 4(b), v′ is more likely to be the source since
v′ has a large branch T 2

v′(t1) at time t1 and the branch T 2
v′(t1)

is more likely to infect more nodes and form T 2
v′(t2).

Remark: In the above example, if we use the rumor central-
ity [1] or the Jordan center [6] as the source estimator, it would
indicate that node v is the source if only one snapshot (either
the first snapshot or the second one) is observed. However,
as we have demonstrated that v′ is more likely to be the
source if we have two “sequential snapshots”. This shows that
our approach is more accurate and general than the previous
work in [1] and [6] while considering the heterogeneity of the
spreading rates. Furthermore, this also shows that the second
snapshot provides us with more information about the infor-
mation spreading, i.e., the spreading rates of the branches that
connect to the source and the source start time. Thus this shows
that taking sequential snapshots is important for detecting the
information source.

IV. EXPERIMENTS

In this section, we present experimental results of applying
our framework to both synthetic networks and real-world
retweet networks of different scales to estimate spreading
rates, source start time and the location of information source.
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Fig. 5. Accuracy on d-regular tree networks (heterogeneous rates). Top: estimation error of λ̂. Middle: estimation error of t̂0. Bottom: estimation error of
SS-Source, Rumor source and Jordan center. (a) Accuracy vs. t1. (b) Accuracy vs. t2. (c) Accuracy vs. m. (d) Accuracy vs. d.

For synthetic networks, we generate the underlying graphs
by various network generation models and select a node v∗

as the true source. Starting from v∗, we apply the SI model
described in Section II to infect v∗’s branches at different
rates λ. We keep track of the spreading process by taking
a number of snapshots G1, . . . , Gm (i.e., record the states of
infected nodes) at different times t1, . . . , tm. For different real-
world networks, we extracted the retweet networks (networks
of users who tweet and retweet the same piece of information)
from a publicly available Twitter dataset [12]–[14] (small
scale) and the Higgs Twitter dataset [15], [16] (large scale).
As each tweet is timestamped in the datasets, we can identify
the true source v∗ with the minimum timestamp, calculate
the true spreading rates and generate snapshots G1, . . . , Gm

at different times for each retweet network. Note that the
synthetic networks we generated as well as the extracted
retweet networks are not constrained as regular trees. For
non-regular tree networks, we use the BFS-tree approximation
method (see Sec. III-C) while applying our framework.

In the following, we investigate the impact of various
parameter variations on our framework’s estimation errors for
the spreading rates, the source start time and the information
source, which we refer to as SS-Source (Sequential-Snapshots
Source). Specifically, the estimation error of the information
source is measured by the shortest hop distance between the
estimated source v̂ and the true source v∗, i.e., dist(v∗, v̂)
(hops). We also compare the estimation errors of SS-Source
with those of Rumor source (the source estimated using the
rumor centrality [1]) and Jordan center [6], respectively. The
estimation error of the spreading rates is measured by the max-
imum absolute difference between the true spreading rates λ
and the estimated spreading rates λ̂, i.e., max1≤ i≤ d |λi − λ̂i|
(hop per unit time). The estimation error of the source start
time is measured by the absolute difference between the true
source start time t0 and the estimated source start time t̂0,
i.e., |t0 − t̂0| (second or day).

A. Experiments on d-Regular Trees (Heterogeneous Rates)

We generate large d-regular trees as the underlying networks
and simulate information spreading at different rates on differ-
ent branches on these networks. As the information spreading
is a random process, the sizes of the snapshots are random

variables. Thus we will specify the information spreading rates
in the simulations and study the impact of the controllable
parameters, namely the snapshot times t1, . . . , tm and degree d

on the accuracy of the source estimate v̂, rates estimates λ̂ and
start time estimate t̂0.
• Impact of snapshot time t1: t1 is an important para-

meter that determines the first snapshot G1 which influences
R(v, G1) in our estimation framework in Eq. (14). To find
the impact of t1 on the accuracy of our framework, we use
two sequential snapshots (m = 2), vary t1 (from 25 seconds to
95 seconds in step size of 5), keep t2 fixed at t2 = 100 seconds
(the vertical dash line in Fig. 5(a)) and start the informa-
tion spreading process on an 4-regular tree at the specified
spreading rates λ = (0.01, 0.02, 0.03, 0.04) (hop/second) at
time t0 = 0. Since the rumor centrality and Jordan center
only consider a single snapshot in source estimation, we feed
these two estimators with the snapshot taken at t1 as the input.
For each specific t1, the estimation errors are averaged over
1000 times of information spreading. As shown in Fig. 5(a)
(bottom), for SS-Source, Rumor source and Jordan center,
the average estimation errors are increasing as t1 increases.
It is because that the increasing size of the first snapshot
makes the probability of locating the source increasingly small.
However, our SS-Source achieves the lowest source estimation
error. This indicates that the growth sizes of the branches in the
underlying graph become significantly different as t1 increases
and SS-Source can recognize such different growth sizes of
the branches and give a better estimate of the source. On the
contrary, neither Rumor source nor Jordan center captures the
different growth sizes as both of the estimators do estimation
based on a single static snapshot and neglect the dynamics in
the spreading.

For the spreading rate estimation error and the source
start time estimation error, as shown in Fig. 5(a) (top and
middle), they both increase as t1 continues to increase. This
is because that the number of sample paths decreases when
the time difference t2 − t1 becomes small and causes the
different growth sizes of branches diminish. Nevertheless, our
framework still makes good spreading rates estimate with the
error within 0.04 hop/second and the source start time estimate
with the error less than 35 seconds, while Rumor source and
Jordan center cannot even provide such estimates.
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• Impact of snapshot time t2: In real life, the information
spreading is usually unnoticed until the information spreads
widely and catches enough attention. Thus the time t1 when
the first snapshot is taken is difficult to control. Hence we
study the impact of t2, i.e., the time of taking the second
snapshot, on the accuracy of our framework. We simulate
information spreading starting at t0 = 0 on a 4-regular tree at
rate λ = (0.01, 0.02, 0.03, 0.04) on the 4 branches. We keep
t1 fixed at t1 = 40 and vary t2 from 45 to 115 with step
size 5. We feed the Rumor source and Jordan center with the
snapshot taken at t1 as the input (i.e., the first snapshot is
fixed), and compare the estimation accuracy using the results
averaged over 1000 times of information spreading starting
from the fixed first snapshot. As shown in Fig. 5(b) (bottom),
the estimation errors of both Rumor source and Jordan center
are constant as the first snapshot is fixed. However, the
estimation error of SS-Source decreases as t2 increases. The
reason is that the different growth sizes of the branches in
the snapshot at t2 can tell us the relative sizes the branches
in the snapshot at t1. Moreover, the larger t2, the smaller
estimation error of SS-Source as the larger difference t2 − t1
allows more sample paths from the first snapshot to the second
snapshot and thus our framework provides a more accurate
spreading rates estimate (Fig. 5(b) (top)) as well as a more
accurate source start time estimate (Fig. 5(b) (middle)).
• Impact of the number of snapshots m: In general,

we can have more than 2 snapshots. To study the impact of
the number of snapshots, m, we keep t1 fixed at t1 = 40
(i.e., the first snapshot is fixed), take a sequential snapshot
every 30 seconds and record the time tm (m ≥ 1 and m
increases by 1 if a snapshot is taken). We feed SS-Source with
the m snapshots that were taken before tm (including tm).
For Rumor source and Jordan center, we use the snapshot at
t1 as the input and compare the estimation error averaged
over 1000 times of spreading on a 4-regular tree at rates
λ = (0.01, 0.02, 0.03, 0.04) on the 4 branches. From Fig. 5(c),
we see the extra snapshots reduce the estimation errors of
SS-Source, the source start time and the spreading rates.
In conclusion, we see that using two snapshots that are
separated by a large time interval (30 ∼ 40) can provide
estimates of low errors in our framework, and it is the time
interval between two snapshots, rather than the number of
snapshots, that captures the growth of branches since we get
a minor improvement on the estimations by using more than
2 snapshots.

In summary, the results in Fig. 5(a), Fig. 5(b) and Fig. 5(c)
indicate that our framework that uses an additional snapshot
helps to decrease the estimation errors of the source, the source
start time and the spreading rates significantly. In contrast, both
Rumor source and Jordan center fail to identify the growing
branches in information spreading, cannot provide an estimate
for the spreading rate and source start time and give worse
source estimate than that of SS-Source in our framework.
• Impact of the degree d: To study the impact of d

on the accuracy of our framework, we run the information
spreading process on the underlying d-regular tree networks
with different d ranging from 2 to 9 at spreading rates λ on
the d branches being (0.01, . . . , 0.01∗d). On each underlying

d-regular tree, we take the first snapshot at t1 = 40 and
the second snapshot at t2 = 95 respectively and average the
estimation error over 1000 times of information spreading.
For Rumor source and Jordan center, we feed them with the
snapshot at t1. Then we use Rumor source and Jordan center
to estimate the source on the two snapshots separately.

As shown in Fig. 5(d) (bottom), the average errors for
Rumor source and Jordan center both increase as the degree d
increases. It is because that the branches are more likely to
get imbalanced when the number of branches is larger when
the spreading rates on the branches are different. However,
the estimation error of SS-Source decreases as d increases
and achieves the lowest error among the three. This can be
explained that the different growth sizes of branches appear
with a higher probability when there are more branches with
heterogeneous spreading rates. Therefore, there are higher
chances that SS-Source finds the source using sequential
snapshots. This is also the reason that the estimation errors
of the spreading rates in Fig. 5(d) (top) and the source start
time in Fig. 5(d) (middle) are getting smaller when d increases.

B. Experiments on Power-Law Graphs (Heterogeneous Rates)
We use the Barabási-Albert (BA) preferential attachment

model [17] to generate the graphs with the power-law degree
distribution, which is a typical feature of networks in the real
world. There are two parameters npl and mpl in the BA model,
where npl is the number of nodes and mpl is the number of
edges to attach a new node to existing nodes. Here npl is set to
be a large enough thus we can run the information spreading
process and take sequential snapshots of the information
spreading. We study the impact of the parameters t1, . . . , tm
and mpl on the accuracy of our framework, Rumor source and
Jordan center. Note that the snapshots on power-law networks
are not necessarily trees since we take all the edges among
the nodes into the snapshots. As such, we use the BFS-tree
approximation for our framework and the Rumor source.
• Impact of the snapshot times t1, . . . , tm and mpl: When

studying the impact of t1, . . . , tm, we keep the underlying
network unchanged with a typical parameter setting for BA
model: npl = 80, 000, mpl = 2. We evaluate the accuracy
of our framework, Rumor source and Jordan center using
the same methods described in Section IV-A. We randomly
select a node of degree d (d ≥ 2) as the source and simulate
information spreading in the generated power-law networks
with the spreading rates λ = (0.01, . . . , 0.01∗d) on different
branches. In the power-law networks, the degree of nodes can
be very large. Thus the information can spread very fast in
such networks. So we take snapshots in a short time period
by fixing t2 at 14 seconds when we study the impact of t1 and
fixing t1 at 4.5 when we study the impact of t2. Moreover,
to study the impact of the number of snapshots m, we fix t1 at
t1 = 3 and take sequential snapshots every 3 seconds. To study
the impact of mpl on the accuracy of the estimators, we keep
t1 and t2 fixed (t1 = 3 and t2 = 8) and simulate information
spreading on the power law graphs with mpl varying from 2
to 9.

As shown in Fig. 6(a), Fig. 6(b), Fig. 6(c) and Fig. 6(d),
we observe similar results for the power-law networks.
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Fig. 6. Accuracy on power-law networks (heterogeneous rates). Top: estimation error of λ̂. Middle: estimation error of t̂0. Bottom: estimation error of
SS-Source, Rumor source and Jordan center. (a) Accuracy vs. t1. (b) Accuracy vs. t2. (c) Accuracy vs. m. (d) Accuracy vs. mpl .

Fig. 7. Accuracy on d-regular networks (homogeneous rate). Top: estimation
error of λ̂. Middle: estimation error of t̂0. Bottom: estimation error of
SS-Source, Rumor source and Jordan center. (a) Accuracy vs. t1 .
(b) Accuracy vs. t2.

SS-Source achieves the lowest estimation error on the power-
law graphs either we fixed t1 or t2. Also, for the accuracy of
SS-Source, the extra number of snapshots can help (though
very little) decrease the estimation error and the time interval
t2−t1 is more critical than the number of snapshots (two snap-
shots with interval (3 ∼ 5 seconds) are enough). Therefore, we
conclude that the different growth sizes of the branches also
exist in power-law networks and our framework is able to give
the best estimate of the source and provide good estimates for
the spreading rates and using sequential snapshots in power-
law networks.

C. Experiments on d-Regular Trees and Power-Law
Graphs (Homogenenous Rate)

To verify the theoretical result that our framework provides
the same source estimate with the rumor centrality estimator
when the spreading rates on different branches are the same,
we apply our framework to both d-regular trees and power-
law graphs by setting a constant spreading rate on differ-
ent branches. For d-regular trees, we simulate information
spreading starting at t0 = 0 on a 4-regular tree at the same
rate λ = (0.02, 0.02, 0.02, 0.02) on the 4 branches. For
power-law networks, we randomly select a node of degree
d (d ≥ 2) as the source and simulate information spreading
in the generated power-law networks at the spreading rates
λ = (0.01, . . . , 0.01) on different branches. In Fig. 7(a)
(Fig. 8(a)), we keep t2 fixed at t2 = 100 (t2 = 14) and study
the impact of snapshot time t1. In Fig. 7(b) (Fig. 8(b)), we keep
t1 fixed at t1 = 40 (t1 = 4.5) and study the impact of snapshot

Fig. 8. Accuracy on power-law networks (homogeneous rate). Top: esti-
mation error of λ̂. Middle: estimation error of t̂0. Bottom: estimation
error of SS-Source, Rumor source and Jordan center. (a) Accuracy vs. t1.
(b) Accuracy vs. t2.

time t2. As shown in the bottom of Fig. 7(a) and Fig. 8(a),
our source estimator provides the same source estimate with
the rumor source at different t1. Fig. 7(b) (bottom) and and
Fig. 8(b) (bottom) show that only the snapshot at t1 is useful
in estimating the source for both our framework and Rumor
source. In addition, our framework utilizes the sequential
snapshots and provides the spreading rate estimates (middle
of Fig. 7(a), Fig. 7(b), Fig. 8(a), and Fig. 8(b)) and the source
start time estimates (top of Fig. 7(a), Fig. 7(b), Fig. 8(a), and
Fig. 8(b)).

D. Experiments on Real-World Networks
We apply our analytical framework to real-world retweet

networks which are extracted from a publicly available
dataset [12]–[14]. The dataset includes sequences of the
tweeters, retweeters, and timestamps for observed hashtags
in the public tweets from Twitter collected from March 24,
2012 to April 25, 2012. For tweets that contain a hashtag
(e.g., #wheniwaslittle, #niallfact, #thoughtsduringschool)
which was created by a tweeter (the source), the data maintain
a retweet timeline, which keeps track of the information
spreading from the tweeter to retweeters and then from
retweeters to retweeters by recording who (anonymized IDs)
at what time (timestamps in Unix time) retweets to whom
(anonymized IDs) with the that hashtag. The data contain the
entire information of the spreading process of all hashtags on
Twitter, and it facilitates a simpler retweet network extraction
method than epidemic history reconstruction in [18] and
diffusion progression construction in [19].
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Fig. 9. Statistics of the extracted retweet networks. (a) Histogram of extracted
retweet networks. (b) Histogram of total spreading time.

Retweet Networks Extraction: We treat each hashtag as a
piece of information/rumor and extract the retweet network of
each hashtag from the retweet timeline. Specifically, for each
retweet timeline, we examine the timestamps in ascending
order and connect the tweeter and retweeters to form a
connected network. Such a network is formed by the tweeter
who initially created the hashtag, and the retweeters who are
connected (directly or indirectly) to the tweeter and retweeted
with that hashtag later. Furthermore, we only consider the user
and the timestamp that he/she tweets with the hashtag for the
first time. Therefore, each extracted retweet network is actually
the information spreading tree of a hashtag in Twitter, where
the tweeter who tweets the earliest is the true source. Besides,
in the extraction procedure, we omit the extracted information
spreading trees that are of small size with the number of nodes
less than 20 or with the diameter less than 4 as these networks
are so small that information forensics on them are not worth
looking into.

We extracted 274 retweet networks. For each extracted
retweet network, we calculate the total spreading time by
subtracting the minimum timestamp from the maximum
timestamp in that extracted network. We give the histograms
of the sizes of the extracted networks and the total spreading
times in Fig. 9. From Fig. 9(a), we see that most of the
extracted retweet networks have very small size (less than
500 users). Moreover, as shown in Fig. 9(b), the total spreading
time on most of the extracted networks tends to be long (more
than 25 days). This indicates that the source is usually among
a small set of nodes and we have enough time to observe and
take sequential snapshots of the information spreading process.

Note that on each extracted retweet network, every node
(user) has a timestamp to indicate when he/she tweeted the
information. We first shift all timestamps by subtracting the
minimum timestamp (the timestamp of the source) from them
thus making the source start time t0 zero. Then we divide all
the timestamps by 86, 400 thus transforming the timestamps
from Unix time format to float numbers that represent the time
(in days) when the users tweet. Then we count the largest
hop-distance in each of the branches rooted at the source and
divide the distance by the maximum timestamp. In this way,
we obtain the ground truth of the spreading rates (hop/day)
on the branches rooted at the source. Moreover, for each
extracted retweet network, we select several timestamps as
t1, . . . , tj , . . . , tm between the minimum and the maximum
timestamp. These timestamps are equally spread and spanning
over the entire total spreading time of a retweet network.
We obtain the snapshot at a specific tj by generating the

Fig. 10. (a): source estimation errors on the extracted retweet networks
(sorted by size). (b): source start time and information spreading rates on the
extracted retweet networks (sorted by size).

subgraph containing nodes with smaller timestamps than tj
from the retweet network. We feed the snapshots to our
framework (with BFS-tree approximation), Rumor centrality,
and Jordan center.

For each extracted retweet network, results are similar to
the results shown in Fig. 5 and Fig. 6. Namely, despite the
impact of t1 or t2, the SS-Source in our framework has
the lowest estimation error for the source. Also, additional
snapshot helps to reduce the source estimation error. Moreover,
the time interval between snapshots is more critical than the
number of snapshots. Thus using only two snapshots that are
separated by a large time interval (3 ∼ 4 days in retweet
networks) can provide good estimates. In addition, we found
that the spreading rates on the branches rooted at the source
in real-world networks are indeed heterogeneous. The typical
spreading rates on different branches of the source vary from
0.01 hop/day to 2.53 hop/day in a single retweet network.
For the estimation of the source start time, the estimation
errors never exceed 3.0 days, which are considered very small
compared with the 25-day average total spreading time.

As these results are very similar to the results shown
in Fig. 5 and Fig. 6, we do not include the results for brevity.
Instead, we select out 241 retweet networks each of which
with spreading time larger than 3 days from the 274 retweet
networks. Then we randomly select t1 and t2 with time interval
2.5 days for 1000 times on these 241 retweet networks, using
the snapshots at t1 and t2 (Rumor source and Jordan center
do estimation on the snapshots at t1 and t2 separately) and
then calculate the average estimation errors of the source,
the spreading rates and the source start time. The results are
shown in Fig. 10.

From Fig. 10(a), we see that SS-Source has the lowest
estimation error despite that the estimation error increases as
the size of the network increases. Although the difference
between SS-Source and Rumor source is small (about 0.1),
this result indicates that on each extracted retweet network,
we can take two snapshots at two randomly selected times
with fixed interval, and provide a source estimate with the
lowest estimation error. Moreover, using merely two sequential
snapshots, we can give accurate estimates for the spreading
rates and the source start time.
• Justification for high accuracy: We now use two snap-

shots (Fig. 11(a) and Fig. 11(b)) on an extracted real retweet
network (with the same hashtag #mustfollow) to provide
insight into the high estimation accuracy of our framework.
We see in Fig. 11, the true source (black dot) has a very large
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Fig. 11. Two snapshots of a retweet network. The black dot represents the
true source. The white dots represent nodes that are not infected yet at the time
the snapshot is taken. (a): the red dots represent the users tweeted before t1 .
(b): The pink dots represent the users that tweeted during (t1, t2].

branch in both snapshots. The message he/she tweeted spreads
out at a very large spreading rate to other users via his/her
friend (the red dot in the middle). However, the message does
not spread to other branches during (t1, t2]. Our framework
adds more weight to the real source by considering the growth
of branches and estimating the spreading rates using sequential
snapshots, while rumor source and Jordan center consider
the snapshots statically. Hence, in real-world networks, our
framework (SS-Source) is able to identify the information
source with a higher accuracy and provides accurate spreading
rates estimates on the branches.

E. Experiments on a Large-Scale Retweet Network

We further apply our framework to a large-scale retweet
network extracted from the Higgs Twitter dataset [15], [16].
The Higgs Twitter dataset contains a single retweet network
that describes the spreading process of the discovery of a new
particle with the features of the elusive Higgs boson from 1st
July, 2012 to 7th July, 2012. The dataset provides the retweet
activities of who retweets whom at when in Twitter. Using
the same techniques described in Sec. IV-B, we reconstruct
the retweet network that has 15, 915 connected users with the
total spreading time as long as 7 days.

Similar to Sec. IV-D, we take snapshots of the extracted
retweet network, and our estimation of the spreading rates
validate that the rates on the branches rooted at the source
are very different and vary from 0.01 hop/day to 3.7 hop/day.
Compared with the estimation errors of Rumor source and
Jordan center, our SS-Source achieves the lowest estimation
error (within 0.4 hops on average). For the source start time
estimation, our framework also provides a source start time
estimate with the error less than 1.1 days.

V. RELATED WORK

Due to its theoretical importance and practical val-
ues, information spreading forensics has gained a lot of
interest and attention in recent years. Most of the work
focused on detecting the location of the information source.
Lappas et al. [20] proposed k-EFFECTORS to find the most
influential individuals rather than the information source. They
assume prior knowledge of the interacting probabilities among
users in networks under the independent cascade model. In the
seminal work, T. Zaman et al. introduced an estimator known
as the rumor centrality to detect the information source

under the SI model using a single snapshot of the infected
nodes [1], [10], [21]. The source detected by the rumor
centrality aims to balance the size of branches [1] when the
information spreads in a homogeneous rate over a network.
However, it is very likely that the branches are not balanced
in a snapshot (as we illustrated in Fig. 1(b)) if the spreading
rates are heterogeneous in different branches.

Following [1], Dong et al. [22] studied the problem of
rooting out the rumor source given prior knowledge on a
set of suspected source nodes. Based on different centrality
measures, Comin and da Fontoura Costa [23] showed that the
source node tends to have the highest centrality measurement
values. In [24], with observers in the network placed before-
hand, Pinto et al. estimated the source location by assuming
that the direction and the times of infections are known.
Zhu and Ying [6] proposed an elegant sample-path-based
method to detect the source in SIR model with homogeneous
infection probability. They proved that the source node mini-
mizes the maximum distance to other infected nodes and then
used the Jordan center [25] as the source estimator. Then
Chen et al. [7] incorporated the sample-path-based method
with novel clustering and localization techniques to detect
multiple sources in networks. Lokhov et al. [26] developed a
computationally expensive algorithm, dynamic message pass-
ing (DMP), to estimate the probability that a given node
produces the observed snapshot and output the node with the
highest probability. Prakash et al. [27] and [28], provided an
algorithm for multiple sources detection based on a coding-
theoretic method but the computation complexity increases
exponentially with the number of nodes. Wang et al. [2]
proposed the union rumor centrality measure and considered
source detection with multiple but independent snapshot obser-
vations. Farajtabar et al. [29] proposed an estimation method
using the information cascade which requires fine-grained
observations of the infection times for nodes and edges.
In contrast, Fanti et al. [30] and [31] proposed messaging
protocols by controlling the information spreading rates among
different users so to have perfect obfuscation of the rumor
source.

In our work, we perform information spreading forensics
using sequential dependent observations while considering
heterogeneous spreading rates in a network. We provide condi-
tional maximum likelihood estimates of the information source
as well as the spreading rates and the source start time. Thus
our approach of source detection differs fundamentally from
those using only a single observation [1], [6], [10], [21], [22]
or multiple yet independent observations [2].

VI. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this paper is the first
theoretical and experimental study on the information spread-
ing forensics using sequential and dependent observations.
We derived conditional maximum likelihood estimators for
information spreading rates, source start time and information
source in d-regular tree networks from the perspective of
“growing branches” in sequential observations. For general
networks, we designed a parallel algorithm for the estimators
in our framework. By applying our framework to d-regular
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tree networks, power-law networks, and real-world retweet
networks in Twitter, we demonstrated that our framework
can take advantage of the growing branches in information
spreading, and provides highly accurate estimates for the these
three metrics.

Our framework also generalizes rumor centrality [10] and
the union rumor centrality [2] by allowing information spreads
at heterogeneous rates, and it opens the door for future
research on information spreading forensics, e.g., consider
limitations on the number of the sequential snapshots as taking
snapshots comes at a certain cost, and consider the cases
where full snapshots of the network are not available in a
noisy environment. We are also interested in incorporating our
framework with clustering or community detection techniques
to extend our framework to give estimates in information
spreading forensics with multiple sources.
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