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Defending Against Distributed Denial-of-Service
Attacks With Max-Min Fair Server-Centric

Router Throttles
David K. Y. Yau, Member, IEEE, John C. S. Lui, Feng Liang, and Yeung Yam

Abstract—Our work targets a network architecture and accom-
panying algorithms for countering distributed denial-of-service
(DDoS) attacks directed at an Internet server. The basic mech-
anism is for a server under stress to install a router throttle at
selected upstream routers. The throttle can be the leaky-bucket
rate at which a router can forward packets destined for the server.
Hence, before aggressive packets can converge to overwhelm
the server, participating routers proactively regulate the con-
tributing packet rates to more moderate levels, thus forestalling
an impending attack. In allocating the server capacity among
the routers, we propose a notion of level- max-min fairness.
We first present a control-theoretic model to evaluate algorithm
convergence under a varitey of system parameters. In addition,
we present packet network simulation results using a realistic
global network topology, and various models of good user and at-
tacker distributions and behavior. Using a generator model of web
requests parameterized by empirical data, we also evaluate the
impact of throttling in protecting user access to a web server. First,
for aggressive attackers, the throttle mechanism is highly effective
in preferentially dropping attacker traffic over good user traffic.
In particular, level- max-min fairness gives better good-user
protection than recursive pushback of max-min fair rate limits
proposed in the literature. Second, throttling can regulate the
experienced server load to below its design limit – in the presence
of user dynamics – so that the server can remain operational
during a DDoS attack. Lastly, we present implementation results
of our prototype on a Pentium III/866 MHz machine. The results
show that router throttling has low deployment overhead in time
and memory.

Index Terms—Congestion control, distributed denial of service,
network security, router throttling.
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I. INTRODUCTION

I N A DISTRIBUTED denial-of-service (DDoS) attack (e.g.,
[2], [3]), a cohort of malicious or compromised hosts (the

“zombies”) coordinate to send a large volume of aggregate
traffic to a victim server. In such an episode, server resources
are usually under much more stress than resources of the
connecting network. There are two reasons. First, commercial
servers are typically hosted by ISP’s at web centers quite close
to the backbone network with high capacity pipes. Second,
the server will generally see the full force of the attack traffic,
which has gone through aggregation inside the network. Hence,
the server system can become totally incapacitated under
extreme overload conditions.

We view DDoS attacks as a resource management problem.
Our goal in this paper is to protect a server system from having
to deal with excessive service request arrivals over a global
network. (It is possible to generalize the approach to protecting
an intermediate routing point under overload. However, im-
plementation issues of having routers initiate control requests
will then have to be addressed, which are not considered in the
current paper.) To do so, we adopt a proactive approach: Before
aggressive packets can converge to overwhelm a server, we
ask routers along forwarding paths to regulate the contributing
packet rates to more moderate levels, thus forestalling an im-
pending attack. The basic mechanism is for a server under
stress, say , to install a router throttle at an upstream router
several hops away. The throttle limits the rate at which packets
destined for will be forwarded by the router. Traffic that
exceeds the rate limit can either be dropped or rerouted to
an alternate server, although we will focus exclusively on the
dropping solution in this paper.

A key element in the proposed defense system is to install
appropriate throttling rates at the distributed routing points,
such that, globally, exports its full service capacity to
the network, but no more. The “appropriate” throttles should
depend on the current demand distributions, and so must
be negotiated dynamically between server and network. Our
negotiation approach is server-initiated. A server operating
below the designed load limit needs no protection, and need
not install any router throttles. As server load increases and
crosses the designed load limit , however, the server may
start to protect itself by installing and activating a rate throttle
at a subset of its upstream routers. After that, if the current
throttle fails to bring down the load at to below , then the
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throttle rate is reduced.1 On the other hand, if the server load
falls below a low-water mark (where ), then the
throttle rate is increased (i.e., relaxed). If an increase does not
cause the load to significantly increase over some observation
period, then the throttle is removed. The goal of the control
algorithm is to keep the server load within whenever
a throttle is in effect.

Router throttling has been implemented on the CROSS/Linux
software router running on a Pentium III/864 MHz machine.
Our implementation results indicate that (i) since throttling re-
quires only looking up the IP destination address of a packet, it
has essentially the same processing complexity as standard IP
forwarding, and adds little computational overhead at a deploy-
ment router, and (ii) the amount of state information a router has
to keep per throttle is a few bytes, for storing the destination IP
address and the throttle value. Although throttling is space-effi-
cient, the total amount of state information needed at a router is
nevertheless linear in the number of installed throttles. Hence,
it may not be possible for the routers to maintain state about
every Internet server. However, the approach can be feasible as
an on-demand and selective protection mechanism. The premise
is that DDoS attacks are the exception rather than the norm. At
any given time, we expect at most only a minor portion of the
network to be under attack, while the majority remaining por-
tion to be operating in “good health”. Moreover, rogue attackers
usually target “premium sites” with heavy customer utilization,
presumably to cause maximal user disruptions and to generate
the most publicity. These selected sites may then elect to protect
themselves in the proposed architecture, possibly by paying for
the offered services.

A. Our Contributions

Our contributions in this paper are:

• We contribute to the fundamental understanding of router
throttling as a mechanism against DDoS attacks. In par-
ticular, we advance a control-theoretic model useful for
understanding system behavior under a variety of param-
eters and operating conditions.

• We present an adaptive throttle algorithm that can ef-
fectively protect a server from resource overload, and
increase the ability of good user traffic to arrive at the
intended server.

• We show how max-min fairness can be achieved across a
potentially large number of flows, and the implication of
a notion of level- max-min fairness on DDoS attacks.

• We study how throttling may impact real application per-
formance. Specifically, we demonstrate via simulations
the performance impact on an HTTP web server.

• We present system implementation results to quantify the
deployment overhead of router throttling.

B. Paper Organization

The rest of this paper is organized as follows. In Sec-
tion II, we discuss the practical challenges of deploying router
throttling in the Internet. Our system model is introduced in

1Notice that reducing the throttle rate means increasing the extent of
throttling, because a router will restrict more traffic destined for S.

Section III. In Section IV, we formally specify a baseline and
a fair algorithm for computing throttle rates. In Section V,
we present a control-theoretic mathematical model for under-
standing system performance under a variety of parameters and
operating conditions. To further examine system performance
under detailed packet network models, Section VI presents di-
verse ns2 simulation results using a realistic network topology.
Implementation of router throttling on the CROSS/Linux soft-
ware-programmable router, as well as its experimental evalu-
ation, is presented in Section VII. Section VIII compares our
solution approach with related work in the literature. Section IX
concludes.

II. DEPLOYMENT ISSUES

The objective of our work is to explore some fundamental is-
sues in mitigating DDoS attacks based on controlling aggressive
network attackers. We focus on the dynamic resource control
problem of giving good users productive access to a server’s re-
sources in spite of excessive demands from the attackers. We do
not claim to present a complete DDoS solution in the present
work. In particular, while our results are promising, several de-
ployment issues will have to be resolved to bring the solution
approach to bear in practice. These issues, discussed below, are
challenging and beyond the scope of this work.

First, our trust model is that routers in the defense network
trust each other, but they do not necessarily trust the network
users. In particular, these users may spoof packets, disobey
congestion signals, initiate bogus network requests, etc. As we
push the “defense perimeter” further away from the server to
be protected, requests to install router throttles are more likely
to cross multiple administrative domains. Establishing trust
relationships between the different domains, such that requests
originating from one domain will also be honored in the other
domains, is challenging and not addressed in the present work.
Second, our approach is most useful under the assumption that
attackers are significantly more aggressive than regular users.
If the assumption is not true, good user traffic can be penalized
to a comparable extent as attacker traffic. Our solution is then
mainly useful in ensuring that a server under attack can remain
functional within the engineered load limits. However, it does
require more effort on the part of a malicious entity to assemble
a large number of attack machines each behaving as a regular
machine.

Third, since attackers can be highly unpredictable, it is in-
herently difficult to exhaustively model attacker behavior using
only simulation experiments. In view of the problem, we have
developed an analytical model that allows us to more basically
and systematically study the behavior of our control strategy.
Our model brings forth several control parameters that will af-
fect system performance of stability and convergence speed.
Currently, these parameters must be chosen based on estimates
of the operating conditions and user policies to balance system
stability versus responsiveness. Adaptively and automatically
learning the best control parameters in a general setting is in-
teresting and requires further research.

Fourth, we assume that a protected server will send throttle re-
quests to deployment routers by multicast because it is the most
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natural communication paradigm for our purpose. In practice,
we do not need full IP multicast support between routers. For
example, using topology information known to routers in an ISP,
routers can simply forward a throttle request to upstream routers
after incrementing a request hop count by one. Then routers in-
stall the throttle when the hop count parameter indicates that
they are in the deployment set. In this paper, we do not address
the full implementation details of such multicast support.

Fifth, our study assumes that router throttling is supported in a
specified set of deployment routers. This simplifies the analysis
and experiments. If the assumption is not true, then we must be
able to identify at least one alternative supporting router on each
network path that sees substantial network traffic. This will then
add the overhead of control message exchanges between routers
to identify supporting routers. Lastly, priority transmission tech-
niques should be investigated to ensure the reliable and timely
delivery of throttle messages from source to destination.

III. SYSTEM MODEL

We begin by stating Convention 1 that simplifies our presenta-
tion throughout the rest of the paper. Then, we go on to describe
our system model.

Convention 1: All traffic rate and server load quantities
stated in this paper are in units of kb/s, unless otherwise stated.

We model a network as a connected graph , where
is the set of nodes and is the set of edges. All leaf nodes

are hosts and thus can be a traffic source. Hosts are not trusted.
In particular, they may spoof traffic, disobey congestion signals,
initiate bogus network requests, etc. An internal node is a router;
a router cannot generate traffic, but can forward traffic received
from its connected hosts or peer routers. We denote by the set
of internal routing nodes. All routers are assumed to be trusted.
The set of hosts, , is partitioned into the set of ordi-
nary “good” users, , and the set of attackers . models the
network links, which are assumed to be bi-directional. Since our
goal is to investigate control against server resource overload,
each link is assumed to have infinite bandwidth. The assump-
tion can be relaxed if the control algorithm is also deployed to
protect routers from overload.

In our control architecture, routers do not exchange control
information between each other beyond passing on throttle
requests (unlike, for example, traditional routing). This greatly
simplifies the runtime overhead of our solution. Rather, the
target server makes all control decisions and then instructs the
deployment routers to implement the decisions accordingly.

In our study, we designate a leaf node in as the target server
. A good user sends packets to at some rate chosen from the

range . An attacker sends packets to at some rate chosen
from the range . In principle, while can usually be set
to a reasonable level according to how users normally access the
service at (and we assume ), it is hard to prescribe
constraints on the choice of . In this work, we target in partic-
ular the kind of attack in which is significantly higher than
(although we will also examine system performance when such
a condition is not true). This is because if every attacker sends
at a rate comparable to a good user, then an attacker must recruit
or compromise a large number of hosts to launch an attack with
sufficient traffic volume.

Fig. 1. Network topology illustrating R(3) deployment points of router
throttle, and offered traffic rates.

When is under attack, it initiates the throttle defense mech-
anism outlined in Section I. The throttle does not have to be de-
ployed at every router in the network. Instead, the deployment
points are parameterized by a positive integer and are given
by . Specifically, contains all the routers that
are either hops away from or less than hops away from
but are directly connected to a host.

Fig. 1 shows an example network topology. In the figure, a
square node represents a host, while a round node represents a
router. The host on the far left is the target server . The routers
in are shaded in the figure. Notice that the bottom-most
router in is only two hops away from , but is included
because it is directly connected to a host.

Given our system model, an important research problem is
how to achieve fair rate allocation of the server capacity among
the routers in . To that end, we define the following notion
of level- max-min fairness:

Definition 1 (Level- Max-Min Fairness): A resource con-
trol algorithm achieves level- max-min fairness among the
routers , if the allowed forwarding rate of traffic for at
each router is the router’s max-min fair share of some rate
satisfying .

IV. THROTTLE ALGORITHMS

A. Baseline Algorithm

We first present a baseline algorithm in which each router
throttles traffic for by forwarding only a fraction (

) of the traffic. The fraction is taken to be one when
no throttle for is in effect. In adjusting according to current
server congestion, the algorithm mimics TCP congestion con-
trol. Specifically, is reduced by a multiplicative factor when

is congested and sends the router a rate reduction signal. It
is increased by an additive constant – subject to the condition
that – when has extra capacity and sends the router a
rate increase signal.

The baseline algorithm that runs is specified in Fig. 2. It is
to be invoked when either (i) the current server load (measured
as traffic arrival rate to ) crosses , or (ii) a throttle is in effect
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Fig. 2. Baseline throttle algorithm specification.

TABLE I
TRACE OF THE THROTTLE FRACTION f AND SERVER

LOAD FOR THE BASELINE ALGORITHM

and the current server load drops below . In case (i), mul-
ticasts a rate reduction signal to ; in case (ii), it multicasts
a rate increase signal. The algorithm can take multiple rounds
until a server load within is achieved. Also, if the server
load is below , and the next rate increase signal raises the
server load by an insignificant amount (i.e., by less than ), we
remove the throttle. The monitoring window should be set to
be somewhat larger than the maximum round trip time between

and a router in .
In the example network shown in Fig. 1, let the number above

each host (except ) denote the current rate at which the host
sends traffic to . The number above each router denotes the
offered rate of traffic at the router, destined for . Also, let

, , , and . Initially, the total
offered load to exceeds , and hence the baseline throttle
algorithm is invoked at . A rate reduction signal causes each
router to drop half of the traffic for , resulting in a server load of
29.95, still higher than . The next rate reduction signal causes
the server load to drop below , at 14.975 and a rate increase
signal to be sent, raising the server load to 17.97. Finally, another
rate increase signal raises the server to 20.965, which is within

.
Table I shows how and the server load change at each round

of the algorithm. When the algorithm terminates, the forwarding
rates at the deployment routers (from top to bottom of the figure)
are 8.708, 0.077, 5.4285, 6.2055, 0.2135 and 0.3325, respec-
tively. The algorithm achieves a server load within the target
range of [18, 22]. However, it does not achieve level- max-min
fairness, since some router is given a higher rate than another
router, even though the latter has unmet demands.

Fig. 3. Fair throttle algorithm specification.

TABLE II
TRACE OF THROTTLE RATE AND ACHIEVED SERVER

LOAD FOR THE FAIR ALGORITHM

B. Fair Throttle Algorithm

The baseline algorithm is not fair because it penalizes all
routers equally, irrespective of whether they are greedy or well
behaving. We now present a fair throttle algorithm that installs at
each router in , a uniform leaky bucket rate (i.e., the throttle
rate) at which the router can forward traffic for . Fig. 3 speci-
fies the algorithm by which determines the throttle rate to be
installed. In the specification, is the current throttle rate to be
used by . It is initialized to , where is
either some small constant, say 2, or an estimate of the number
of throttle points typically needed in . We use a constant
additive step, , to ramp up if a throttle is in effect and the
current server load is below .

The fair throttle algorithm is to be invoked as with the baseline
algorithm. Each time it is called, it multicasts a rate- throttle
to . This will cause a router in to regulate traffic des-
tined for to a leaky bucket with rate . The algorithm may
then continue in the while loop that iteratively adjusts to an
appropriate value. Notice that the additive increase/multiplica-
tive decrease iterative process aims to keep the server load in

whenever a throttle is in effect. The termination con-
ditions and choice of in the fair algorithm are the same as in
the baseline algorithm.

We apply the fair throttle algorithm to the previous example
scenario in Fig. 1. We initialize to , and
use an additive step of one. Table II shows how and the ag-
gregate server load evolve. When the algorithm is first invoked
with throttle rate 10, the aggregate load at drops to 31.78.
Since the server load still exceeds , the throttle rate is halved
to 5, and the server load drops below , to 16.78. As a result,
the throttle rate is increased to 6, and the server load becomes
19.78. Since 19.78 is within the target range [18, 22], the throttle
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Fig. 4. High-level description of mathematical model for router throttling.

algorithm terminates. When that happens, the forwarding rates
of traffic for at the deployment routers (from top to bottom in
the figure) are 6, 0.22, 6, 6, 0.61, and 0.95, respectively. This is
the max-min fair allocation of a rate of 19.78 among the deploy-
ment routers, showing that level- max-min fairness is achieved
(in the sense of Definition 1).

V. GENERAL MATHEMATICAL MODEL

Router throttling is a feedback control strategy. To better
understand its stability and convergence behavior, we formulate
its control-theoretic model. Using the model, we explore how
different system parameters, including feedback delays, the
hysteresis control limits , and the number and het-
erogeneity of traffic sources, can impact system performance.
We point out that our mathematical model can also provide
a general framework for studying various multi-source flow
control problems.

Fig. 4 gives a high-level description of our mathematical
model for router throttling. We model each deployment router
as a source of traffic for , where is the server to be protected.
Let there be sources and be the instantaneous offered
traffic rate from router has for at time . Given a throttle
algorithm and a throttle signal from , router forward
traffic for at an instantaneous rate . The instantaneous
forwarding rate is a function of the offered traffic rate,

, and a throttle rate computed by a rate adjustment
module deployed at router , according to the throttle algorithm
used.

Given from each deployment router in , receives
an aggregate traffic rate of . Based on the aggregate
rate, computes and sends the throttle signal to all the
routers in . Notice that the throttle signal may arrive at
different routers at different times. We model heterogeneous
delays from to different routers in . Specifically, we let

denote the network delay from to router . We use
a set of coupled differential equations to model the dynamics

of how the throttle signal , the throttle rate , and the
forwarding traffic rates , for , change over
time.

In general, the server generates a throttle signal as
a function of the aggregate traffic workload and the hysteresis
control limits . The throttle signal generation is:

if

if

otherwise.

(1)

In other words, a throttle signal of indicates that the ag-
gregate received traffic rate at is above and a signal of
1 indicates that the aggregate received traffic rate is below .
Note that when the aggregate traffic rate is within , the
throttle signal will be off (i.e., ).

A. Mathematical Model for the Fair Throttle Algorithm

Let us consider the fair throttle algorithm. (Because of space
constraint, we do not present the analysis of the baseline algo-
rithm in this paper. The interested reader is referred to our tech-
nical report [11].) In this case, the server generates a throttle
signal as the throttle rate , which is a function of the
aggregate server workload, the hysteresis control limits and

, and the additive step size . The differential equation
expressing the change in the throttle rate is

Essentially, when the server discovers that the aggregate
traffic is below , it will increase the throttle rate by .
Otherwise, if the aggregate traffic is above , it will reduce
the throttle rate by half. The objective is to achieve an
aggregate server load within .

Upon receiving the throttle rate , router adjusts
its forwarding traffic rate, , to . The differential equation
expressing the change in is

for and . Note that the rate of change of
the forwarding traffic rate is a function of the throttle rate

and the offered traffic rate . If the throttle rate
is larger than the offered traffic rate, then there is no

need to throttle and the change is simply . On the
other hand, if is smaller than , then we throttle
and the change in the forwarding traffic rate is .

Theorem 1: Assume that the server is overloaded (i.e.,
the aggregate received traffic rate is above ) at time , the
throttle rate by server is

(2)
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Fig. 5. System performance for U = 1100, L = 900, and various � step sizes.

where is a constant equal to and is the
initial value of the throttle rate at time . The forwarding traffic
rate at router can be closely approximated by

(3)

Proof: Please refer to [11].
Theorem 2: Assume that the server is underloaded (i.e.,

the aggregate received traffic rate is below ) at time , the
throttle rate by server is

(4)

where is a constant equal to . The forwarding traffic
rate at router can be closely approximated by

(5)

Proof: Please refer to [11].

B. Mathematical Analysis

We now study the stability and convergence properties of
router throttling. Since the basline algorithm cannot attain the
max-min fairness property, we only present results for the fair
throttle algorithm. In our presentation, all time units are in sec-
onds, except otherwise stated. In the experiments, we consider
100 heterogeneous sources. The first eighty are constant sources
wherein for . In each experiment, ten
of these constant sources are switched off at and are
activated again at . The network delay between and
each of the constant sources is 100 ms. The next ten sources
are sinusoidal sources wherein for

. The network delay for each of these sinusoidal
sources is 50 ms. The last ten sources are square-pulse sources
wherein

for
for

for and . The network delay
for each of these square-pulse sources is 50 ms.

Experiment 1: Handling of heterogeneous sources and
system stability. Fig. 5 illustrates the results for the first exper-
iment where and . We consider three
different step sizes, namely . We make two
important observations about the results: 1) The proposed fair
algorithm is effective in keeping the server load within the
target limits, under heterogeneous sources and heterogeneous
network delays, and 2) the additive step size can affect system
stability. As shown, system performance is not stable for the
large step size of . Hence, a small step size relative to

is needed for the system to operate in a stable region.
Experiment 2: Determination of step size for a stable

system. Fig. 6 illustrates the results of our second experiment
where and can be 900 or 1050. We observe
that when is large, the system is stable with ,
and the achieved server workload at convergence is slightly
above 1000. On the other hand, when advertises a smaller
target load region, with and , we need
a smaller step size (e.g, ) to have stable performance,
and the achieved server workload at convergence is closer to

. After experimenting with a large number of different step
sizes and many different system configurations, we recommend
a small step size of (e.g., ) for system stability.

Experiment 3: Effect of on the convergence rate. Fig. 7
illustrates the results of our third experiment in which we
consider how can affect the convergence speed. In the
experiment, and . We experiment
with three different step sizes, namely , 0.1, 0.05.
Although the system is stable for all the three step sizes, we
observe that if a step size is too small, it takes longer for the
system to converge. For example, when ten constant sources
are activated at , the system converges around
for . On the other hand, if we use , the system



YAU et al.: DEFENDING AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS WITH MAX-MIN FAIR SERVER-CENTRIC ROUTER THROTTLES 35

Fig. 6. System performance for U = 1100 and L = 900 or 1050, and various � step sizes.

Fig. 7. System performance for U = 1100 and L = 1050, and various � step sizes.

converges around . Another important point is that
if is smaller, the achieved server workload at convergence
is also smaller. Therefore, in order to have a stable system
and, at the same time, achieve a high server workload, we
recommend to be between 0.1 and 0.3.

VI. PACKET NETWORK SIMULATION RESULTS

Our general, high-level control-theoretic results provide basic
understanding about algorithm stability and convergence. To
further examine system performance, under detailed packet net-
work models (including both unreliable UDP and reliable TCP
communication), we conduct experiments using the ns2 simu-
lator. We present results only for the fair throttle algorithm.

A. Performance Metrics

One basic performance measure is how well router throt-
tles installed by can floor attackers in their attempt to deny
good users of the ability to obtain service from . It is clear
that the defense mechanism cannot completely neutralize the
effects of malicious traffic – in part because attackers are them-
selves entitled to a share of in our model. Hence, good users
must see a degraded level of performance, but hopefully are

much less prone to aggressive attack flows than without net-
work protection.

Apart from the basic performance measure, it is necessary to
evaluate the deployment costs of the proposed defense mecha-
nism. Therefore, the following are important evaluation criteria
that we adopt:

• The percentage of good user traffic that makes it to the
server. Since the control algorithm ensures that the server
operates under its maximum designed load, the good user
requests that arrive should be adequately served.

• The number of routers involved in protecting . Because
throttling clips forwarding rate to some preset ceiling, it
is less tolerant to traffic variabilities than best-effort trans-
missions. For example, normal traffic that occasionally
exceeds the ceiling and cannot be absorbed by the token
bucket will get clipped, instead of being served by op-
portunistic resource availabilites. We measure the number
of routers at which traffic is actually dropped due to the
throttle rate limit.

B. Packet Network Results

To evaluate how the proposed throttle mechanism would
perform over a real network, we conducted simulations using
a global network topology reconstructed from real traceroute
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data. The traceroute data set is obtained from the Internet map-
ping project at AT&T2. It contains 709 310 distinct traceroute
paths from a single source to 103 402 different destinations
widely distributed over the entire Internet. We use the single
source as our target server , and randomly select 5000 tracer-
oute paths from the original data set for use in our simulations.
The resulting graph has a total of 135 821 nodes, of which 3879
are hosts. We assume, therefore, that out of all the hosts in the
total global network, these 3879 hosts access , either as an
attacker or a good user.

1) Evenly Distributed Aggressive Attackers: In our first set
of experiments, we model aggressive attackers, whose average
individual sending rate is several times higher than that of
normal users. Specifically, each good user is chosen to send
fixed size UDP packets to , where the packet interarrival
times are Poisson and the average traffic rate is randomly and
uniformly drawn from the range [0, 2]. Each attacker is chosen
to send traffic at a rate randomly and uniformly drawn from
the range , where is either 10 or 20 according to the
particular experiment. Furthermore, we select attackers and
good users to be evenly distributed in the network topolgy: each
host in the network is independently chosen to be an attacker
with probability , and a good user with probability .

Fig. 8(a) compares the performance of our algorithm (labeled
“level- max-min fairness”) with that of the pushback max-min
fairness approach in [13], for and . We show
the percentage of remaining good user and attacker traffic that
passes the router throttles and arrives at the server. Fig. 8(b) and
(c) show the corresponding results when and ,
and and , respectively. We plot the average
results over ten independent experimental runs, and show the
standard deviation as an error bar around the average.

Notice from the figures that generally, level- max-min
fairness gives significantly better protection for good user traffic
than pushback max-min fairness. The performance advantage
of level- max-min fairness increases as increases, until
it levels off at roughly equal to 20. This is because good
traffic can aggregate to a significant level near (the increase
rate can be exponential), making it hard to distinguish from
the attacker traffic at that location. Since pushback always
originates control at in our experimental setup (pushback
is designed to originate at the point under attack, which can
be a congested router in general), it can severely punish good
traffic. By initiating control further away from (specifically,
about hops away), level- max-min fairness achieves better
good user protection.

2) Unevenly Distributed Aggressive Attackers: In this set of
experiments, each good user traffic rate is chosen randomly and
uniformly from the range [0, 2], while each attacker rate is sim-
ilarly chosen from the range [0, 20]. In each experiment, about
20% of the hosts are chosen to be attackers, and the remaining
hosts to be good users.

In these experiments, we select the attackers to have different
concentration properties. Specifically, we pick five disjoint sub-
trees from the network topology, labeled in Fig. 9 as 1–5. The
five subtrees have properties as shown in Table III. We then de-
fine four concentration configurations, 0–3, for the attackers, as

2http://cm.bell-labs.com/who/ches/map/dbs/index.html

Fig. 8. (a) Protection for good users under 20% evenly distributed aggressive
attackers: mean attacker rate 10 times mean good user rate. (b) Protection for
good users under 40% evenly distributed aggressive attackers: mean attacker
rate 10 times mean good user rate. (c) Protection for good users under 40%
evenly distributed moderately aggressive attackers: mean attacker rate 5 times
mean good user rate.

shown in Table IV. The intention is for attacker concentration
to increase as we go from configurations 0 to 3. (Notice that
the roots of subtrees 4 and 5 in configuration 3 share a common
parent, and so attacker traffic converges more quickly than the
subtrees 1 and 3 in configuration 2.)
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Fig. 9. Subtrees 1–5 used in attacker concentration experiments.

TABLE III
PROPERTIES OF SUBTREES 1–5

TABLE IV
CONFIGURED CONCENTRATIONS OF ATTACKERS

Fig. 10(a) shows the percentage of remaining good traffic
for the four concentrations, using level- max-min fairness.
Fig. 10(b) shows the corresponding results for pushback
max-min fairness. Notice that as increases, level- max-min
fairness achieves good protection for the good users in all four
configurations. For configurations 1–3, however, notice a “dip”
in the achieved protection over values between about 6 to
11. For example, the percentage of remaining good traffic for
configuration 3 decreases from to , and rises
again afterwards.

To explain the dip, consider the case when all attackers are
contained in one subgraph, say , whose root is hops away
from . For the traffic seen at , as decreases from to 1,
there will be more and more aggregation of good user traffic but
no further aggregation of attack traffic. This will cause a larger
fraction of good user traffic to be dropped (its volume is more
comparable to attack traffic) as throttling is performed with a
smaller , for . This explains the initial rising curves
in Fig. 10(a) before the dip. For a few hops larger than ,
the aggregation situation for both good user and attack traffic
is similar to the case of evenly distributed attackers. Hence, we
observe increased protection for good user traffic as increases
from onwards, where is a small constant. This explains
the rising curves shortly after the dip. At the point when just
increases past the root of , however, there is progressively less
aggregation of attack traffic. This may cause reduced dropping
rate for the attack traffic (since its volume at the control points is
smaller and more comparable to good user traffic), when com-
pared with control after full attack traffic aggregation has oc-
curred at the root of . This explains the dip itself.

Fig. 10. (a) Protection for good users, under four different attacker
concentrations, using level-k max-min fairness. (b) Protection for good
users, under four different attacker concentrations, using pushback max-min
fairness. (c) Comparions of good-user protection between level-k and pushback
max-min fairness – for configurations 0 and 3 only.

Despite the above “anomaly”, level- max-min fairness con-
sistently and signifcantly outperforms pushback max-min fair-
ness for . The performance advantage decreases from
0–3, because pushback max-min fairness becomes more effec-
tive as attackers get more concentrated. Fig. 10(c) more clearly
compares the two approaches by plotting their results together,
for configurations 0 and 3.
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3) Evenly Distributed “Meek” Attackers: Router throttling
is most effective when attackers are significantly more aggres-
sive than good users. However, should a malicious entity be able
to recruit or compromise many hosts to launch an attack, then
each of these hosts behaving like a normal user can still together
bring about denial of service. It is inherently more difficult to
defend against such “meek” attackers. Our experimental results
(Fig. 11; see also [11]) show that both level- and max-min
fairness may fail to distinguish between the good users and at-
tackers, and punish both classes of hosts equally. When this hap-
pens, throttling is mainly useful in regulating the server load to
within its operational limits.

4) Deployment Extent: The previous two sets of experi-
ments suggest that, for aggressive attackers, the effectiveness
of level- max-min fairness increases with . At the same time,
however, the cost of deployment may also increase, as the
number of routers in becomes larger.

Fig. 12 plots the percentage of routers involved in throttling as
a function of , for both level- and pushback max-min fairness.
(For the level- approach, we count both monitoring and throt-
tling routers.) Notice that the two approaches basically require a
comparable number of deployment points, although for equal
to 4–9, pushback max-min fairness is somewhat more efficient,
and for larger , level- max-min fairness is somewhat more ef-
ficient. Also, the percentage of deployment points levels off as

rises above 20 for both approaches. This is because as in-
creases, a throttling node will likely see a progressively smaller
rate of traffic destined for . If the rate is small enough, both
algorithms avoid the actual use of a throttle.

5) Web Server Performance: To evaluate the impact of throt-
tling on real user applications, we simulate the performance
of a web server under DDoS attack. The simulations are per-
formed using ns2, and clients access the web server via HTTP
1.0 over TCP Reno/IP. (TCP is interesting because the achieved
throughput by a client also depends on the rate at which acks are
returned from the server to the client.) The simulated network
is a subset of the AT&T traceroute topology described above. It
consists of 85 hosts, of which 20% (i.e., 17 out of 85) are chosen
as attackers. The maximum and average numbers of hops be-
tween a client and the server is 30 and 15, respectively.

Attackers generate UDP traffic destined for the server, at
a constant rate of 6000 bits/s. Web clients make requests
for documents to the server, where the document sizes and
times between requests are probabilistically generated according
to collected empirical distributions.3 If a request arrives at
the server successfully, the server will return the requested
document after a random processing time, also chosen according
to collected empirical distributions.

We model the web server to have and
. We report two experiments with and

, respectively. To compare web server performance with and
without throttling, we plot the rates of client requests that are
successfully processed by the server in both cases, over time.
The aggregate rate at which the clients originally make requests
is also shown for baseline comparison. Each experiment runs

3Please see http://http.cs.berkeley.edu/ tomh/wwwtraffic.html for further
details.

Fig. 11. Protection for good user traffic under evenly-distributed “meek”
attackers, for both level-k and pushback max-min fairness.

Fig. 12. Number of participating routers for level-k and pushback max-min
fairness, as a function of the deployment depth.

for 100 seconds of simulated time, and an attack starts at time
10 seconds.

Fig. 13(a) shows the results for . Notice that with throt-
tling, the rate of client requests that are successfully processed
is much closer to the original client request rate, than without
throttling (the averages are 3.8, 2.5 and 0.9 kbytes/s, respec-
tively). Fig. 13(b) shows the corresponding results for ,
and supports the same conclusions. Fig. 13(c) shows the web
client, attacker, and total traffic arrival rate at the server, for

. Notice that our throttle negotiation algorithm is effec-
tive in keeping the actual server load between and .

VII. SYSTEM IMPLEMENTATION

We have an implementation of router throttling on
the CROSS/Linux software-programmable router [9].
CROSS/Linux allows a pipeline of processing elements to
be flexibly configured for flows of network packets. Each
element is implemented in C++ as a Linux loadable kernel
module, and can be loaded and dynamically linked into a run-
ning kernel. An element initially not present at a router can also
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Fig. 13. (a) Plot of (i) original client request rate, (ii) rate of successfully
processed client requests with level-10 router throttling, and (iii) rate of
successfully processed client requests without throttling, over time. (b) Plot of
(i) original client request rate, (ii) rate of successfully processed client requests
with level-9 router throttling, and (iii) rate of successfully processed client
requests without throttling, over time. (c) Plot of total, attacker, and web client
traffic arrival rates at server, over time, for level-10 throttling.

be fetched on demand from a remote code repository, through
a modified version of the anetd daemon from DARPA’s active
network project.

In our implementation, a server, say , requests throttling at
a CROSS/Linux router by sending it an IP control packet with
the router alert option being set. The control packet specifies

the IP address of , and the throttle leaky bucket size and token
rate. On receiving such a packet, CROSS/Linux checks if the
throttle element is already available at the local node. If not,
it uses anetd to fetch the throttle code from a designated code
server, and links the code dynamically into the kernel, without
disrupting existing services. When the throttle element has been
linked to the kernel, it is configured into the processing pipeline
of packets destined for – just before the IP forwarding path’s
send onto the outgoing network interface. The element limits
the long-term forwarding rate of packets for to the token rate,
and the maximum burst size to the leaky bucket size. Any excess
packets are dropped in the implementation.

A. Experimental Results

To measure the memory overhead of router throttle, we first
load the CROSS/Linux router and the throttle modules into the
kernel. Then, using the /proc file system, we note the amount
of memory allocated as 540 kbytes. We then install up to 1000
throttles one by one, observing the increase in memory allocated
after each throttle installed. Fig. 14 plots the average memory
allocated, as a function of the number of throttles installed, over
several experiments. The results show that the memory allocated
increases largely linearly with the number of throttles, with an
average per-throttle memory of about 7.5 bytes.

We break down the delay of throttling into two components:
throttle lookup in the packet classifier, and the delay due to
the throttle element itself. We found that the delay through the
throttle element is about 200 ns, independent of the number
of throttles installed. This small and relatively constant delay
shows that throttling is not inherently expensive. Throttle
lookup depends heavily on the performance of the packet
classifier. We currently use a “naive” implementation that does
a linear search through all the installed filters. From Fig. 15,
notice that the “base” classifier delay (i.e., without any created
flows) is about 150 ns. Following that, the delay increases about
linearly with the number of throttles installed, reaching about
475 ns for 18 throttles. Notice, however, that throttle lookup
on IP destination addresses is not more complicated than IP
forwarding table lookup. Hence, leveraging related results in
scalable IP lookup (e.g., [19]) will much improve upon the
linear increase in delay.

To ascertain how the throttle overhead affects throughput, we
measure the maximum achievable forwarding rates of packets
through CROSS/Linux, with no throttled flow, to up to 18 flows
created for throttling. Fig. 16 shows the average number of
64-byte packets we can forward per second, as a function of
the number of throttled flows.

VIII. RELATED WORK

Probabilistic IP marking is advanced by Savage et al. [16]
to identify attackers originating a denial-of-service attack, in
spite of source address spoofing. The analysis in [15] confirms
the remark in [16] that their form of IP traceback may not be
highly effective for distributed DoS attacks. Subsequently, Song
and Perrig [17] improve upon the information convergence rate
that allows to reconstruct the attack graph (by eliminating false
positives when markers can be fragmented across packets), and
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Fig. 14. Router throttle memory overhead, as a function of the number of
throttles installed.

Fig. 15. Delay performance of router throttling, as a function of the number
of throttles installed.

Fig. 16. Throughput performance of router throttling, as a function of the
number of throttles installed.

reduces the time overhead in the reconstruction process itself,
for DDoS attacks. These algorithms expose the true attackers,
which supposedly facilitates defense actions that can then be
taken to curtail an attack. However, the required defense mech-
anisms are external to IP trackeback, which in and of itself offers
no active protection for a victim server.

To actively defend against attacks, analysis of routing infor-
mation can enable a router to drop certain packets with spoofed
source address, when such a packet arrives from an upstream
router inconsistent with the routing information. The approach
requires sophisticated and potentially expensive routing table

analysis on a per-packet basis. Also, it is not necessary for
attackers to spoof addresses in order to launch an attack.
The latter observation also limits the effectiveness of ingress
filtering approaches [6].

Another approach, adopted by carriers such as AT&T, em-
ploys a monitoring infrastructure to detect attacker traffic. Once
a network region is determined to be an originator of active
attacks, traffic from the region is blackholed [1] and thus elim-
inated from the network. Their approach makes it a binary
decision whether a region is an originator of attack traffic or
not. In our problem, setting the aggressiveness threshold for
the decision is not easy. Our approach assumes that aggres-
siveness is a matter of degrees, and hence looks at the more
fine-grained control problem that regions may have a fraction
of the traffic dropped according to how likely it is an attack
region.

A defense approach most similar to ours is proposed by
Mahajan et al. [13]. They describe a general framework for
identifying and controlling high bandwidth aggregates in a
network. As an example solution against DDoS attacks, an
aggregate can be defined based on destination IP address, as
in our proposal. To protect good user traffic from attacker
traffic destined for the same victim server, they study recursive
pushback of max-min fair rate limits starting from the victim
server to upstream routers. Similar to level- max-min fairness,
pushback defines a global notion of max-min fairness. Unlike
level- max-min fairness, the pushback mechanism always
starts the resource sharing decision at the congestion point
under attack (e.g., the server), where good user traffic may have
aggregated to a large volume and thus can be severely punished
(see Section VI-B.I). Such aggregation of normal user traffic
has been observed to occur in practice [5].

Architecturally, our control algorithm is more of an
end-to-end approach initiated by the server, whereas the
proposal in Mahajan et al. [13] is more of a hop-by-hop ap-
proach in which routers participate more heavily in the control
decisions. Hence, our routers have simplified responsibilities,
when compared with [13] – they do not need to compute
server-centric max-min fair allocations, and are not required to
generate and send back status messages about current resource
state to the server.

The use of authentication mechanisms inside the network will
also help defend against DDoS attacks, e.g., IPsec [10]. Re-
cently, Gouda et al. [8] propose a framework for providing hop
integrity in computer networks. Efficient alogrithms for authen-
tication and key exchanges are important research questions in
this class of solutions. It is possible to refine the criteria used in
throttling for identifying attacker traffic, such as [7], [18].

Lastly, our solution operates at a higher level than packet
scheduling techniques like fair queueing (e.g., WFQ [14]). Un-
like standard congestion control, our solution is not applied at
the point of congestion, but is proactive to avoid subsequent
aggregation of attack traffc. We also do not require routers to
exchange intricate control information (e.g., about resource or
congestion states) between each other, greatly simplifying the
deployment complexity. Our solution aims to achieve max-min
fairness across a potentially large number of flows. Scalable
max-min fair allocation in such a situation is studied in [4],
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where the optimal sharing objective is relaxed to achieve sub-
stantial reductions in overhead.

IX. CONCLUSION

We presented a server-centric approach to protecting a server
system under DDoS attacks. The approach limits the rate at
which an upstream router can forward packets to the server, so
that the server exposes no more than its designed capacity to the
global network. In allocating the server capacity among the up-
stream routers, we studied a notion of level- max-min fairness,
which is policy-free and hence easy to deploy and manage.

Using a control-theoretic mathematical model, we studied
stability and convergence issues of router throttling under dif-
ferent system parameters. In addition, we evaluated algorithm
effectiveness using a realistic global network topology, and var-
ious models for attacker and good user distributions and behav-
iors. Our results indicate that the proposed approach can offer
significant relief to a server that is being flooded with malicious
attacker traffic. First, for aggressive attackers, the throttle mech-
anism can preferentially drop attacker traffic over good user
traffic, so that a larger fraction of good user traffic can make it to
the server as compared with no network protection. In particular,
for the case of aggressive attackers and large , level- max-min
fairness performs better than recursive pushback of max-min
fair rate limits previously proposed in the literature [13]. This is
especically the case when attackers are evenly distributed over
the network. Second, for both aggressive and “meek” attackers,
throttling can regulate the experienced server load to below its
design limit, so that the server can remain operational during a
DDoS attack. Moreover, our implementation results show that
throttling has low computation and memory overheads at a de-
ployment router.

Our results indicate that server-centric router throttling is a
promising approach to countering DDoS attacks, but several
nontrivial challenges remain that prevent its immediate deploy-
ment in the Internet. Our focus has been on DDoS attacks in
which attackers try to overwhelm a victim server by directing
an excessive volume of traffic to the server. Other forms of at-
tacks are possible that do not depend on the sheer volume of
attack traffic [12]. However, more sophisticated attack analysis
(e.g., intrusion detection) is usually feasible to deal with these
other forms of attacks.
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