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Abstract—Macrotasking crowdsourcing systems like Elance and Fiverr serve as efficient platforms for requesters to outsource
challenging and innovative tasks that require special skills to workers. It is widely practiced in such systems that requesters reward
workers based on requesters’ assessment on solution quality. The challenge is that requesters’ assessment may not be accurate to
reflect the intrinsic quality of a solution due to human factors like personal preferences or biases. In this work, we consider answering
the following questions: How to design a mechanism to incentivize workers provide high quality solutions in the presence of such
human factors? How to formally study the impact of human factors on workers’ financial incentive to participate?We design a
mechanism to incentivize workers to provide high-quality contributions, which is robust to human factors. Our incentive mechanism
consists of a “task bundling scheme” and a “rating system”, which reward workers based on requesters’ rating on the solution quality.
We propose a probabilistic model to capture human factors, and quantify their impact on the incentive mechanism. We formulate an
optimization framework to select appropriate rating system parameters, which can be viewed as a tradeoff between “system efficiency”,
i.e., the total number of tasks can be solved given a fixed reward budget, and the “rating system complexity”, which determines the
human cognitive cost and time in expressing ratings. We also formulate an optimization framework to select appropriate bundling size,
which can tradeoff system efficiency against service delay (i.e., the waiting time to form a task bundle). Finally, we conduct experiments
on a dataset from Elance. Experimental results show that our incentive mechanism achieves at least 99.95 percent of the theoretical
maximum system efficiency with a service delay of at most 2.3639 hours. Furthermore, we discover that the rating system in Elance is
too complex, and it should be simplified to a binary rating system (i.e., two rating points).

Index Terms—Crowdsourcing, incentive mechanism, rating system, tradeoffs
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1 INTRODUCTION

OVER the past decade, we have witnessed the rise and
success of online crowdsourcing services [2], [3]. Many

well-known Internet companies provide crowdsourcing
services, e.g., Amazon Mechanical Turk [4], Elance [5] and
Yahoo!Answers [6]. On the business production side, crowd-
sourcing has been used as an efficient and cost-effective par-
adigm to produce products [7], design products [8], etc., by
eliciting collective intelligence of a crowd. Besides, crowd-
sourcing systems like Amazon Mechanical Turk, have
emerged as a novel platform to conduct experimentation for
behavior research [9], social science [10], etc., where a large
amount of human behavioral data can be collected effi-
ciently, which in turn advances social science, behavioral
economics, etc. Furthermore, crowdsourcing has evolved as
an efficient paradigm to shed new light onmany challenging
problems like anomaly detection [11], reputation manage-
ment [12] and networkmonitoring [13].

Based on the types of tasks, crowdsourcing systems can
be broadly classified into two types: microtasking [14] and

macrotasking [15]. Microtasking crowdsourcing systems
focus on small and repetitive tasks that are simple for indi-
viduals to complete, e.g., image labeling, transcription, etc.
Usually tasks do not require special skills and the reward
for each task is usually small. Real-world microtasking
crowdsourcing systems include Amazon Mechanical
Turk [4], and Microtask [16]. Different from microtasking,
macrotasking crowdsourcing systems are mainly used to
solve challenging and innovative tasks, e.g., develop a com-
puter program, which require special skills. Tasks usually
are large in the sense that they require a large amount of
time to complete and the reward is large, e.g., hundreds or
thousands US dollars. Elance [5] and Fiverr [17] are two
real-world macrotasking crowdsourcing systems.

We focus on macrotasking crowdsourcing in this paper.
In particular, we conduct the first unified study on incentive
and rating system design for such crowdsourcing systems.
The underlying connection between incentive mechanism
design and rating system design is the human factors like
personal preferences or biases in assessing product quality.
It is widely deployed in macrotasking crowdsourcing sys-
tems (e.g., Elance [5] and Fiverr [17]) that requesters reward
workers based on the assessed solution quality. For exam-
ple, requester will only give a large reward to a worker if
the solution quality is high while give a small reward (or
even no reward) if the solution is of low quality. However,
requesters’ assessment may not be accurate to judge the
intrinsic quality of a solution due to human factors like
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personal preferences or biases. Such human factors may
result in that a worker providing a high-quality solution
may receive a small or even no reward at all, which impair
workers’ financial incentive to participate. In this work, we
address the following questions: How to design a mechanism
to incentivize workers provide high quality solutions in the pres-
ence of such human factors? How to formally study the impact of
human factors on workers’ financial incentive to participate? To
answer these two questions, we design an incentive mecha-
nism and couple it with a rating system, which captures
human factors. Our contributions are:

• We conduct the first unified study on incentive and
rating system design for crowdsourcing systems. We
design a simple but effective incentive mechanism,
which consists of a task bundling schemeand a rating
system. A task bundle means that several tasks oper-
ate as a group in reward splitting. We propose a
probabilistic model to capture human factors such as
biases in rating and quantifying their impact on the
incentive mechanism.

• We show that increasing the rating system complex-
ity (i.e., the number of rating points) can decrease
the reward that a requester must pay to incentivize
high-quality contributions from workers. However,
it increases the human cognitive cost and time
needed in expressing ratings. We formulate an opti-
mization framework to select appropriate number of
rating points.

• We show that selecting the bundling size for our
incentive mechanism is a tradeoff between “system
efficiency” (i.e., the total number of tasks can be
solved given a fixed reward budget) and “service
delay” (i.e., the waiting time to form a bundle). We
formulate an optimization framework to select the
appropriate bundle size.

• We conduct experiments on a real-life dataset from
Elance. We formulate an optimization framework to
infer model parameters from the data. We show that
our incentive mechanism achieves at least 99.95 per-
cent of the theoretical maximum system efficiency
with service delay of at most 2.3639 hours. We dis-
cover that the rating system of Elance is in fact too
complex, and it can be simplified to a binary rating
system (i.e., two rating points).

This paper organizes as follows. Section 2 presents the
system model. Section 3 presents our incentive mechanism.
Section 4 studies the impact of human factors. Section 5 char-
acterizes the rating systems design space. Section 6 studies
tradeoffs in incentive and rating system design. Section 7
presents experimental results on a dataset from Elance. Sec-
tion 8 presents the proof for lemmas and theorems. Related
work is given in Section 9 and Section 10 concludes.

2 SYSTEM MODEL

Consider a crowdsourcing system which categorizes tasks
into K types. For example, “Yahoo! Answers” contains 25
types of tasks ranging from “Health” to “Travel” [18]. Users
of a crowdsourcing system are classified into requesters and
workers. A user can be a requester, or a worker, or in some
cases, a requester/worker at the same time. Requesters

outsource tasks to a crowdsourcing system and at the same
time, associate each type k task with a reward of rk,
k 2 f1; . . . ; Kg. The reward rk will be granted to the workers
who make contributions to the corresponding task. For a
type k task, a requester also pays Tk to the crowdsourcing
system as service charge. We focus on one task type in our
analysis, and it can be generally applied to all task types.
We thus drop the subscript.

A task requires only one solution. We capture the scenario
that a task requires multiple solutions by constructing repli-
cas for a task such that each replica requires one solution.
We assume that tasks are solved by workers having suffi-
cient skills. In fact this can be achieved by deploying some
task assigning algorithms [19], or deploying some reputa-
tion mechanisms [20].

A worker can exert L " 2 levels of effort L ¼ f1; . . . ; Lg in
solving a task, which results in L levels of contribution
CL ¼ fC1; . . . ; CLg. We assume that CL $ CL%1 $ . . . $ C1,
where Ci $ Cj represents that contribution Ci is greater than
Cj. For the ease of presentation, we use fC1; . . . ; CLg to
denote the action set for workers. When a worker acts with
Ci, it implies the worker exerts the ith level of effort to solve
the task. The cost in making a Cj contribution to a task is
denoted as cj, where cL > cL%1 > . . . > c1 ¼ 0. Here, we
use c1 ¼ 0 to model the the “free-riding” scenario from work-
ers. For a task, if a worker exerts Cj to provide a solution,
then it brings a benefit of Vj to a requester, where
VL > VL%1 > . . . > V1 ¼ 0. Again, V1 ¼ 0 models free-riding
because c1 ¼ 0.We require VL > rþ T , which induces incen-
tives for requesters to participate. If Vk < rþ T;8k < L,
means that level k contribution is not incentive-compatible.
This paper aims to incentivize workers to provide their great-
est contribution (CL) and study how a rating system can
influenceworkers’ financial incentive to participate.

3 INCENTIVE MECHANISM

We present the design of our incentive mechanism, and we
apply game theoretical technique to derive the minimum
reward to incentivize the greatest contribution.

3.1 Incentive Mechanism Design
Our incentive mechanism consists of a bundling scheme,
and a rating system. Tasks are completed via transactions
under a task bundling scheme. When posting a task, a
requester submits its reward r and service charge T to the
administrator. The administrator bundles n " 1 tasks.
Once a task is solved, a worker submits its solution to the
administrator. After all tasks within a bundle are solved,
the administrator delivers them to corresponding reques-
ters. Requesters provide ratings on solution quality to the
administrator. In particular, a rating i indicates that a
worker provides level i contribution. Note that solutions
are independent, and a requester can only express ratings
to her own task. Finally, when all feedback ratings for a
bundle are collected, the crowdsourcing administrator
divides the total reward, which is nr, to all workers
engaged in that bundle. Specifically, the worker who
receives the highest rating takes all the reward. When
there is a tie, the crowdsourcing administrator divides
the total nr evenly among the tie. We call this reward
scheme as “winner takes all scheme”.
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Remark. We call the above bundling scheme the n-bundling
scheme. One can observe that the administrator will not
withhold the reward. A requester under our bundling
scheme will not benefit by intentionally providing false
ratings (since the reward was given to the administrator
when she submits the task, and the reward will not be
returned to the requester).

One benefit for requesters to provide feedback ratings is
that workers will be incentivized to provide their maximum
contribution. Another benefit is that requesters need to pay
a smaller reward, if they can provide accurate feedback rat-
ings. It is reasonable for requesters to provide feedback rat-
ings. In fact, it is very common in real-world macrotasking
crowdsourcing systems that requester proving feedback rat-
ings on solution quality, e.g., Elance [5] Fiverr [17]. Such
systems usually have the practice that requesters give
rewards to workers based on the assessed solution quality.
After assessing the product quality, it is natural to require a
requester to provide feedback ratings, since it only incurs a
quite small cost.

The physical meaning of a correct value for requesters’
rating is to model the scenario that the requester to identify
the true quality of a solution. However, in real-world
crowdsorucing systems, requesters may not be able to
identify the true quality due to reasons such as personal
biases or preferences. For example, a critical requester may
assign smaller ratings while a lenient requester may assign
higher ratings [21], [22]. We incorporate such human fac-
tors in Section 4.

We like to emphasize that we have two justifications in
using a competition-based approach for this work. The first
one is that the competition-based approach is a natural
choice to incentivize workers to provide their maximum
contribution, which is crucial for macrotasking crowdsourc-
ing systems. The second one is that with the competition-
based approach, we can draw a clear and explicit connec-
tion between the incentive and rating system. The rating
system enables us to explore the impact of human factors
(like personal biases in evaluating solution quality) on
workers’ financial incentive to participate (Section 4). The
challenge is how to incentivize participating workers pro-
vide their greatest contribution (CL).

3.2 Formulating the n-Player Game
Consider an n-bundling scheme, we formulate an n-player
game to capture the strategic behavior of workers who par-
ticipate in the same task bundle. Specifically, players of this
game are n workers engaged in a bundle and we denote
them as w1; . . . ; wn. The action set for a player is fC1; . . . ;
CLg. We use the notation sj to represent the strategic action
of worker wj. Let s%j ¼ ½sk(k6¼j denote a vector of strategic

actions for all players except wj. We use the notation
ujðsj; s%jjrÞ to denote the utility for player wj under strategy
profile ðsj; s%jÞ, which is defined as the reward minus cost.
Formally, the utility of player wj can be expressed as:

ujðsj; s%jjrÞ ¼ Rjðsj; s%jjrÞ % ck; if sj ¼ Ck; (1)

where Rjðsj; s%jjrÞ is the reward under strategy profile
ðsj; s%jÞ. We express Rjðsj; s%jjrÞ as

Rjðsj; s%jjrÞ ¼
nrPn

k¼1
Ifsk¼sjg

; ifsj ¼ maxksk

0; otherwise.

(
(2)

To illustrate, consider an example of three levels of contri-
bution L ¼ 3 and a two-bundling scheme, say bundles two
tasks. We then have R1ðC3; C3jrÞ ¼ R1ðC2; C2jrÞ ¼ r, R1ðC3;
C2jrÞ ¼ 2r, and R1ðC2; C3jrÞ ¼ 0. Furthermore, u1ðC3; C3jrÞ
¼ r% c3, and u1ðC2; C3jrÞ ¼ %c2. Suppose c2 < r < c3. If
worker w1 provides C1 contribution, then worker w2 can
maximize his utility by providing C2 contribution. If worker
w1 provides C3 contribution, then worker w2 can maximize
his utility by providing C1 contribution.

Remark. 1) The above game is a complete information
game. More concretely, each participating worker has
sufficient skills to complete a task. In practice, one can
achieve this by deploying a reputation mechanism to
guarantee that only high skilled workers will commit to
solve a task and low skilled workers will refuse a
task [20]. 2) We assume that workers have identical mar-
ginal cost mainly for the ease of presentation. One can
easily see that our framework applies to the case that
workers have different cost. 3) We focus on the case that
the tasks within a bundle are of similar type and degree
of difficulty. In practice, this condition can be easily
achieved by carefully selecting tasks of similar types and
similar difficulty to form a bundle, since there are usually
a large quantity of tasks in the pool.

Our objective is to guarantee each player in the above
game plays CL. One sufficient condition is that the strategy
profile ðCL; . . . ; CLÞ is a unique “Nash Equilibrium”.

Definition 3.1. The desired Nash equilibrium ðCL; . . . ; CLÞ is a
strategy profile that all workers provide CL contribution.

We present a formal way to show the uniqueness of a Nash
equilibrium. We present strictly dominated strategy, which
a player never plays.

Definition 3.2. A strategy si 2 CL is a strictly dominated strat-
egy for player i if there exists some s0i 2 CL such that

uiðs0i; s%ijrÞ > uiðsi; s%ijrÞ; for alls%i 2 Cn%1
L :

Lemma 3.1 (Uniqueness [23]). Consider a pure Nash equilib-
rium ðs+1; . . . ; s+nÞ for the n-player game. If iterated elimination
of strictly dominated strategies eliminates all but the strategies
ðs+1; . . . ; s+nÞ, then it is a unique Nash equilibrium.

3.3 Deriving the Critical Value
We derive the minimum reward to guarantee workers pro-
vide their greatest contribution. We show that for the one-
bundling scheme, it is impossible to achieve this. However, this
can be achieved if we increase the bundle size to n " 2, with-
out increasing the amount of desired reward (Theorem 3.1).

One-bundling scheme. Consider the one-bundling scheme,
one can observe that the dominant strategy for the worker is
C1. In other words, a worker will simply free-ride without
making any contribution to solve the task. Another way to
look at this result is that the reward r is surely given to this
worker independent of her effort or contribution (because
the bundle size is one). Hence, there is no incentive for the
worker to exert a higher effort.
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Two-bundling scheme. We show that under this bundling
scheme, we can incentivize the greatest contribution via set-
ting a proper reward. To illustrate, consider an example
with three levels of contribution L ¼ 3. We express the util-
ity matrix for this example in Table 1, in which one can
observe that the strategy profile ðC3; C3Þ is a unique Nash
Equilibrium if and only if r > c3 % c1 ¼ c3. We generalize
this positive result for L levels of contribution in the follow-
ing lemma.

Definition 3.3. We define the “critical value” r as the minimum
reward to incentivize the greatest contribution CL.

Lemma 3.2 (Two-bundling). Consider a two-bundling
scheme and L levels of contribution. The strategy profile
ðCL;CLÞ is a unique Nash Equilibrium if and only if
r > r ¼ cL.

Proof. Please refer to Section 8 for derivation. tu

Remark. Since ðCL;CLÞ is a unique Nash equilibrium, work-
ers will provide the greatest contribution CL provided
that they do not collude. If collusion is allowed, the best
strategy for them is ðC1; C1Þ so that everyone freerides.
One way to eliminate this undesirable result is by bun-
dling more tasks so to guarantee that at least one worker
will not collude. However, we prove that increasing the
bundle size does not increase the cost for requesters, in
the following theorem.

Theorem 3.1. Consider a n-bundling scheme with n " 2 and L
levels of contribution. The strategy profile ðCL; . . . ; CLÞ is a
unique Nash Equilibrium if and only if r > r ¼ cL.

Proof: This proof is similar to that of Lemma 3.2. tu

Summary. All results thus far assume that requesters can
perfectly express correct ratings to indicate workers’ contri-
bution level. In the next section, we analyze how human fac-
tors like preferences or biases may influence the design of
the incentive system.

4 HUMAN FACTORS IN SOLUTION RATING

We present a model to capture human factors in solution
rating, and quantify their impact on the critical value. The
complexity in computing the critical value is QðnL2Þ.

4.1 Model for Human Factors
We now extend the above model to a realistic scenario by
accommodating various important human factors in rating
such as bias, preference, leniency, etc [21], [22]. Specifically, a
critical requester may assign smaller ratings while a lenient
requester may assign higher ratings. They result in that a low

rating on a high quality contribution, or a high rating on a low
quality contribution.We call such ratings “erroneous ratings”.

We present a probabilistic model to capture the above
human factors in solution ratings. To illustrate, consider a
worker who exertedCL, or a high quality contribution. Due to
human factors, a worker may receive a rating ranging from 1
toL.Weuse the notation aL;j 2 ½0; 1( to represent the probabil-
ity that thisworker receives a rating j, i.e., the requester evalu-
ates his solution as a Cj contribution. Mathematically, we
have aL;j ¼ Pr½evaluated as Cj contributionjCL contribution(;
where

PL
j¼1 aL;j ¼ 1. Similarly, we define ai;j as ai;j ¼

Pr½evaluated as Cj contribution jCi contribution(:When ai;i ¼
1 for i 2 f1; :::; Lg, this implies requesters have perfect evalua-
tion on the contribution byworkers. Otherwise, ai;j can repre-
sent different degrees of variability in evaluation. Note that
all ai;j; 8i; j composes amatrix, which presents the probability
of all possible rating outcome. We use aa to represent this
matrix.We call this the confusion matrix.

We state two natural properties that a confusion matrix aa
should satisfy. First, consider a CL solution. Intuitively,
when contribution Ci is higher than Cj (or Ci $ Cj), the
probability that a requester misjudges this solution as Ci

should be larger than misjudging it as a Cj one, or formally
aL;i > aL;j. Generalizing this statement, we obtain the first
natural property, namely, row diagonally dominated and
row singly peaked.

Definition 4.1 (Row/Column Diagonally Dominated). We
say aa is a row/column diagonally dominated matrix, if each
row/column has a maximum entry at its diagonal entry.

Definition 4.2 (Row/Column Singly Peaked). We say aa is
row/column singly peaked, if the entry of each row/column
strictly increasing/decreasing prior/after the diagonal entry.

Second, the probability that a requester misjudges a Ci solu-
tion as a CL one should be larger than misjudging a Cj solu-
tion as a CL one. Generalizing this statement, we obtain
another property: column diagonally dominated and col-
umn singly peaked.

Proposition 4.1. The confusion matrix aa has the properties: row/
column diagonally dominated, and singly peaked.

4.2 Deriving the Critical Value
Let us now derive the critical value under erroneous ratings
due to human factors. In the presence of erroneous ratings
(or the confusion matrix aa), we have the question: is it possible
to sustain a Nash equilibrium where worker provide their
greatest contribution? Observe that with the confusion matrix
aa the utility becomes a random variable, i.e., the same strat-
egy profile may result in different utilities with certain prob-
abilities. Our approach is to characterize workers’ strategic
behavior via the n-player game under the expected utility, i.e.,
E½ujðCk; s%jjrÞ(. In particular, we express the necessary and
sufficient condition under which ðCL; . . . ; CLÞ remains a
Nash equilibrium as:

E½ujðCL; s%jjrÞ( " E½ujðCk; s%jjrÞ(; 8k; (3)

holds for all j, where s%j ¼ ðCL; . . . ; CLÞ. We prove the exis-
tence and and uniqueness of the desired Nash equilibrium
ðCL; . . . ; CLÞ in the following theorem.

TABLE 1
Utility Matrix Under the Two-Bundling Scheme

w2

C3 C2 C1

C3 r%c3; r%c3 2r% c3;%c2 2r% c3;%c1
w1 C2 %c2; 2r% c3 r% c2; r% c2 2r% c2;%c1

C1 %c1; 2r% c3 %c1; 2r% c2 r%c1; r%c1
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Theorem 4.1. Consider a n-bundling scheme with n " 2, L levels
of contribution and a confusion matrix aa. The strategy profile
ðCL; . . . ; CLÞ is a unique Nash equilibrium iff

r > r ¼

maxk
cL % ck

1%
PL

l¼1

Pn%1
‘¼0

n
‘þ1

! " Pl%1
k¼1 aL;k

! "n%‘%1
ak;la‘

L;l

8
><

>:

9
>=

>;
:

Remark. It implies that one can incentivize workers to pro-
vide the greatest contribution by setting a proper reward
even under the erroneous rating setting. Besides, the
complexity in computing the desired reward is QðnL2Þ.
One potential attack is that a requester intentionally pro-
vides some adversarial ratings regardless of the solution
quality. For example, he can always provide the lowest
rating 1. However, requesters do not benefit by provid-
ing adversarial ratings, since a requester cannot get the
reward back no matter what ratings he gives.

We show some illustrating numerical examples for the
critical value in Table 2, where we consider three levels of
contribution L ¼ 3 and a confusion matrix

aa ¼
0:719 0:216 0:065
0:188 0:625 0:187
0:065 0:216 0:719

2

4

3

5:

One can observe that when there is no erroneous ratings (or
no variability), as we vary the bundle size from two to four,
the critical value remains at c3. While in the presence of
erroneous ratings (or variability), the critical value
decreases from 1:256c3 to 1:106c3. This implies that reques-
ters need to pay more, due to variability. Also, as we
increase bundle size, we decrease the critical value.

Summary. Our model thus far considers a rating system
with a small number of contribution level L. When L is
large, it may be difficult for a requester to express a rating
accurately, i.e., the time or cognitive cost will be high [24].
How to design a proper rating system to address this chal-
lenge? How different designs of rating system may influ-
ence the incentive mechanism?

5 MODELING RATING SYSTEMS

We present a model to characterize the design space rating
systems, and we quantify their impact on the critical value.
We show that when there is no erroneous ratings, a binary
rating system, i.e., two rating points indicating satisfied or
not, is optimal in terms of critical value. While in the pres-
ence of erroneous ratings, an increase in the number of rat-
ing points leads to a drop on the critical value.

5.1 Threshold Based Rating Systems
Many crowdsourcing services adopt threshold based rating sys-
tems, where the quality of a solution below a “threshold”

receives the lowest rating, whichmay incur somewarnings or
punishments, etc, to a worker. We develop a model to charac-
terize the design space of such rating systems. Our objective is
to quantify its impact on the requesters’ overhead, as well as
illustrate how tomodel and analyze a rating system.

A threshold based rating system is a triplet heL; CL;Rð,Þi,
where eL ¼ f1; . . . ; eLg represents an eL-level cardinal rating
metric such that 2 - eL - L. And CL ¼ fC1; . . . ; CLg denotes
a set of potential contribution levels. The notation Rð,Þ rep-
resents a rating function which maps any given contribution

Ci 2 CL to a specific rating j 2 eL, or mathematicallyRð,Þ : CL
! eL. The rating function Rð,Þ maps the greatest contribu-

tion CL to the highest rating eL, and maps the second great-

est contribution CL%1 to the second highest rating eL% 1.
This process continues until the threshold contribution level

L% eLþ 1 is reached, which is mapped to the lowest rating
1, and all the remaining levels of contribution are mapped
to rating 1. We formally express this rating functionRð,Þ as

RðCkÞ ¼
k% Lþ eL; k > L% eLþ 1

1; k - L% eLþ 1;

(

where C
L%eLþ1

is the threshold contribution, or the minimum
requirement on solutions. We show some illustrating exam-
ples in Table 3, where we consider four levels of contribu-

tion L ¼ 4, and we vary the number of rating points eL from
2 to 4. We show the corresponding rating function Rð,Þ.
One can see that when eL ¼ 2, we have RðC1Þ ¼ RðC2Þ
¼ RðC3Þ ¼ 1, andRðC4Þ ¼ 2.

One can observe that the rating system introduced in Sec-
tion 2 is a special case of eL ¼ L. When eL ¼ 2, we obtain a

binary rating system. One can vary the value of eL to obtain
a rating system with different complexity, i.e., the number
of rating points. We next quantify the impact of threshold
based rating systems on the incentive mechanism.

5.2 Deriving the Critical Value
We seek to quantify the impact of threshold based rating sys-
tems on the critical value. We explore the setting without/
with erroneous ratings respectively.

We explore the setting without erroneous ratings. We
extend the n-player game specified in Section 2 to accommo-
dates the threshold based rating system. We rewrite the reward
function derived in Equation (2), as

Rjðsj; s%jjrÞ ¼
nr=

Xn

k¼1
IfRðskÞ¼RðsjÞg;

if RðsjÞ ¼ maxkRðskÞ
0; otherwise.

8
>><

>>:

TABLE 2
Numerical Examples for the Critical Value r

n 2 3 4

r (no variability) c3 c3 c3
r (variability) 1:256c3 1:128c3 1:106c3

TABLE 3
Examples of the Threshold Based Rating System

eL C1 C2 C3 C4

Rð,Þ 4 1 2 3 4
Rð,Þ 3 1 1 2 3
Rð,Þ 2 1 1 1 2

94 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 1, JANUARY/FEBRUARY 2018



We next derive the critical value when there are no errone-
ous ratings.

Lemma 5.1. Consider the setting without erroneous ratings, a
n%task bundling scheme and a threshold based rating system

heL; CL;Rð,Þi. The strategy profile ðCL; . . . ; CLÞ is a unique
Nash Equilibrium if and only if r > r ¼ cL.

Proof: This proof is similar to that of Lemma 3.1. tu

Remark. Under the perfect scenario without erroneous rat-
ings, the critical value is invariant of the number of rating
points eL. This implies that the simplest rating system,

e.g., eL ¼ 2, is also an optimal system, where requesters
only need to provide binary feedbacks to indicate
whether they are satisfied or not with a solution.

We now explore the scenario with erroneous ratings. In
the presence of erroneous ratings, the rating process
becomes probabilistic, which is governed by the confusion
matrix aa and the the threshold based rating systemheL; CL;Rð,Þi.
Specifically, let Pr½k0jCk; heL; CL;Rð,Þi( denote the probability
that a Ck solution receives a rating k0. We formally describe
the rating process as

Pr½k0jCk; heL; CL;Rð,Þi( ¼
a
k;L%eLþk0

; k0 ¼ 2; . . . ; eL
PL%eLþ1

j¼1 ak;j; k0 ¼ 1:

8
<

: (4)

To illustrate, consider a rating system heL; CL;Rð,Þi, with

CL ¼ fC1; C2; C3g, and eL ¼ f1; 2g. We have Pr½2jC3; heL; CL;
Rð,Þi( ¼ a3;3, and Pr½1jC3; heL; CL;Rð,Þi( ¼ a3;1 þ a3;2.

We now explore whether workers will provide the great-
est contributions, or whether ðCL; . . . ; CLÞ is still a Nash equi-
librium strategy. Again, we characterize workers’ strategic
behavior via the n-player under expected utility. In the fol-
lowing theorem we state the key result of this work, which
quantifies the impact of the threshold based rating system
on the critical value.

Theorem 5.1. Consider a n-bundling scheme, a confusion matrix

aa, and a heL; CL;Rð,Þi rating system. The strategy profile
ðCL; . . . ; CLÞ is a unique Nash equilibrium iff

r > r ¼ maxk ðcL % ckÞ= 1%
XL%eLþ1

l¼1

ak;l

XL%eLþ1

k¼1

aL;k

0

@

1

A
n%1

2

64

8
><

>:

%
XeL

l¼2

Xn%1

‘¼0

n

‘þ 1

# $ XL%eLþl%1

k¼1

aL;k

0

@

1

A
n%‘%1

a
k;L%eLþl

a‘

L;L%eLþl

3

75

9
>=

>;
:

(5)

Proof. Please refer to Section 8 for derivation. tu

Remark. The importance of the above theorem is on the exis-
tence and uniquenessof the desired Nash Equilibrium
ðCL; . . . ; CLÞ under different design of rating systems. In
addition, it quantifies the impact of the number of rating

points eL on the critical value. As we shall see later, this

result serves as building blocks to explore rating system
design tradeoffs.

We show some illustrating numerical examples on the
critical value in Table 4, where we examine the impact of
number of rating points. In Table 4, we specify the cost for
each level of contribution as

cj ¼ ðj% 1Þ=ðL% 1Þ; j ¼ 1; . . . ; L; (6)

and we specify the confusion matrix aa as

aj;k ¼ ujj%kj=
XL

k¼1
ujj%kj; 8j; k ¼ 1; . . . ; L; (7)

where u 2 ð0; 1Þ. Note that this choice of the cost function and
confusion matrix are only for illustration purpose. Practi-
cally, one can infer them from data. The higher the value of u,
the higher the variability in ratings. The number of contribu-
tion levels is L ¼ 7. And we vary the value of the number of

rating points eL from 2 to 7. One can observe that as we

increase the number rating points eL, we decrease the critical
value. When we increase the value of u, we increase the criti-
cal value. Namely, the higher variability in rating, the higher
the reward requesters need to pay. It is interesting to observe

that five rating points eL ¼ 5 is actually good enough, since
the critical value is very close to c7, and further increasing on
the number of rating points, decreases the critical very less
than 1 percent. This coincides with that five-level rating sys-
tem is commonly used in crowdsourcing systems.

Summary. By using the threshold based rating system, it is
possible incentivize the greatest contribution even in the
presence of erroneous ratings. We also quantify the impact
of number of rating points on the critical value. We will
apply these results to explore rating system design tradeoffs
in Section 6.

6 DESIGN TRADEOFFS

We formulate an optimization framework to select appro-
priate rating system parameters to tradeoff between “system
efficiency”, i.e., the total number of tasks can be solved given
a fixed reward budget, and the “rating system complexity”,
which determines the human cognitive cost and time in
expressing ratings. We also formulate an optimization
framework to select appropriate bundling size, which can
tradeoff system efficiency against service delay (i.e., the
waiting time to form a task bundle).

6.1 Metrics
We first provide a metric to quantify the crowdsourcing sys-
tem efficiency.We say a crowdsourcing system is efficient if a
large number of high quality solutions can be solicited using a
given reward budget. Lowering the critical value implies that

TABLE 4
Impact of Number of Rating Points on the Critical

Value r, Where L ¼ 7; n ¼ 2

eL u 2 3 4 5 6 7

r=c7 0.1 1.11 1.01 1.00 1.00 1.00 1.00
r=c7 0.2 1.25 1.04 1.01 1.00 1.00 1.00
r=c7 0.3 1.43 1.10 1.03 1.01 1.01 1.00
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more tasks can be solved with the same reward budget.
Hence, it leads to an improvement on system efficiency and
an increased level of user participation and engagement. We
formally define system efficiency as follows.

Definition 6.1. Let E denote crowdsourcing system efficiency,
which is defined as the contribution reward ratio, i.e.,

E ¼ cL
r
:

The higher the value of E, the higher the system effi-
ciency. Note that r " cL, so we have E 2 ½0; 1(. As we have
shown that increasing the number of rating points can
reduce the critical value r, i.e., improve system efficiency.
From crowdsourcing owners’ perspective, they seek to max-
imize the system’s efficiency, i.e., maximizing E, under the
constraint that workers provide the greatest contributions,
because low quality contributions may discourage reques-

ters, which may finally result in revenue loss. Let E denote

the theoretical maximum system efficiency. We have E ¼ 1.
Increasing the number of rating points can improve sys-

tem efficiency. However, it comes at the price of increasing
the cost in expressing ratings. For example, increasing the
number of rating points, may lead to more erroneous rating,
e.g., a higher degree of variability, or increase the cognitive
load in expressing ratings [24].

Definition 6.2. Let Cgð,Þ : f1; . . . ; Lg ! ½0; 1( denote a decreas-
ing function which prescribes a cognitive cost CgðiÞ in express-
ing a rating when the rating system has i rating points, where
i ¼ 1; . . . ; L.

Note that Cgð1Þ ¼ 0. This models the scenario that when
the number of rating point is one, requester does not need to
spend any cognitive effort in expressing ratings. Note that
learning or determining the specific form of Cgð,Þ is not the
focus of this paper. Our objective is to design an efficient
frameworkwhich is general enough towork on any instances
of Cgð,Þ. Once a system designer determines Cgð,Þ, our frame-
work can be applied to explore different design tradeoffs.

Increasing the bundle size can improve system efficiency,
i.e., decrease critical value. However, the side effect is in
increasing the delay of having a task completed. This is
because that as we increase bundle size, it will take a longer
time to collect all n tasks to form a bundle. Formally, we
consider that tasks arrive with an average rate !. We
emphasize that our framework is quite general in the sense
that it does not assume any task arrival pattern (i.e., specific
arrival processes like Poisson).

Definition 6.3. Let D denote service delay, which is the expected
waiting time to form a bundle. We have D ¼ n=!:

The smaller the bundle size, the shorter the service delay.
For example, consider ! ¼ 24 tasks/day. If n ¼ 2, then the
expected delay is D ¼ 1=12 day. If n ¼ 24, then the expected
delay is D ¼ 1 day. Crowdsourcing system operators are
interested to minimize the delay under the constraint that
workers provide the greatest contribution.

6.2 Optimal Threshold Based Rating System Design
We formulate our design objective as jointly minimizing the
rating cost Cgð eLÞ and the efficiency loss 1% E, i.e.,

ð1% mÞCgð eLÞ þ mð1% EÞ ¼ ð1% mÞCgð eLÞ þ m 1% cL
r

# $
; (8)

where m 2 ½0; 1(, subject to the constraint that workers pro-
vide the greatest contribution. One can vary the weight m to
attain different design tradeoffs. For example, m ¼ 1 means
that a designer only wants to minimize the efficiency loss.
While m ¼ 0 means that the designer only wants to mini-
mize the rating cost.

Consider the threshold based rating system, we seek to find
the optimal number of rating points eL+ that minimize Equa-
tion (8). We can formulate the following optimization prob-
lem:

min
eL

ð1% mÞCgð eLÞ þ m 1% cL
r

# $

s:t: 2 - eL - L;

r satisfies Equation (5):

The second constraint derived in Theorem 5.1 is a necessary
condition such that workers provide the greatest contribu-
tion. We can locate the optimal solution via exhaustive
search, i.e., enumerating the number of rating points from 2
to L. The complexity is simply QðL3Þ. In practice, the value
of L is at most hundreds. Hence, it will not be computation-
ally expensive.

6.3 Optimal Bundling Size
We formulate our design objective as jointly minimizing
system efficiency loss 1% E and service delay D, i.e.,

emð1% EÞ þ ð1% emÞD ¼ em 1% cL
r

# $
þ ð1% emÞn

!
;

where em 2 ½0; 1(, subject to that workers provide the greatest
contribution. The optimization formulation is:

min
n

em 1% cL
r

# $
þ ð1% emÞn

!

s:t: n " 2; n 2 N;

r satisfies Equation (5):

The second constraint derived in Theorem 5.1 is a necessary
condition such that workers provide the greatest contribu-
tion. One can vary the weight em to attain different design
tradeoffs. For example, em ¼ 1 means that a crowdsourcing
system operator only wants to minimize system efficiency
loss. While em ¼ 0 means that a crowdsourcing system oper-
ator only wants to minimize service delay.

The remaining question is how to locate the optimal bun-
dling size for the above optimization problem. Let n+ denote
the optimal bundling size. We state an upper bound for n+

in the following lemma.

Lemma 6.1. The optimal bundling size n+ satisfies

n+ - !em
1% em

þ 2: (9)

Remark. This lemma implies that to locate the optimal bun-
dling size, we only need to search all the values from 2 to
b!em=ð1% emÞ þ 2c = b!=ð1% emÞ % !þ 2c. This means that
the computational complexity is linear in ! and 1=ð1% emÞ.
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7 EXPERIMENTS ON REAL-WORLD DATA

We present experimental results on a real-life dataset from
Elance. We show that our incentive mechanism can achieve
at least 99.95 percent of the theoretical maximum efficiency
with a service delay of at most 2.3639 hours. The rating sys-
tem in Elance is too complex, and it should be simplified to
a binary rating system.

7.1 Elance Dataset
In early May 2015, we launched a crawler to crawl historical
transaction data from Elance [5]. Founded in 1999, Elance
provides online crowdsourcing services. In Elance, workers
provide solutions to various types of tasks, e.g., program-
ming, translation, etc. Each worker posts the skills that they
have and set a price to solve a task, e.g., a worker is skilled
in Android programming and sets a price of fifty dollars
per hour. Requesters can select workers to solve a task.
When a task is completed, requesters can rate the quality of
the service using one to five stars. More stars imply higher
quality. Our dataset contains 156,982 task transactions con-
ducted from April 2nd 2001 to May 16th 2015. It involves
9,918 workers. The number of ratings across each rating
level are: 363 (one star), 620 (two stars), 1,504 (three stars),
13,780 (four stars),140,715 (five stars). We released the data-
set in the link [25], which has three columns corresponding
to the normalized task ID, the time stamp that a task was
completed and the rating respectively.

7.2 Inferring Model Parameters
We first infer the transaction’s arrival rate !. In our dataset,
each transaction has a time stamp. We infer the transaction’s
arrival rate ! as the total number of transactions divided by
the total time to accumulate these transactions. From our
data, we obtain ! ¼ 30:458 transactions=day:

Elance adopts a five star rating scale. We interpret it as
that workers can provide one of five levels of contributions,
i.e., L ¼ 5. A worker sets a price for providing a service. We
interpret this price as the cost of that worker to provide the
greatest contribution (cL). We consider a linear cost function
model. Namely, the cost increases linearly with contribution

level, or cj ¼ j%1
L%1 cL, where j ¼ 1; . . . ; L. We choose a linear

cost function because in Elance’s rating levels, it exhibits a
linear property, i.e., {1 (“Terrible”), 2 (“Poor”), 3
(“Average”), 4 (“Good”), 5 (“Excellent”) }.

Now we infer the confusion matrix aa from historical rat-
ings. We point that it is impossible to infer the exact contri-
bution level that results in a rating. We assume that workers
in the past provided their maximum contribution cL. This
assumption is reasonable because in the Elance system,
requesters can deny to pay workers if they do not accept
any solutions. This means that new workers still need to
work. The problem is that personal biases or preferences in
assessing solution quality may result in that a requester
does not reward a worker even if he provides the maximum
contribution. Our work addresses this issue. We can then
infer a5;j; j ¼ 1; . . . ; 5 as the fraction of ratings that equals to
j. Apply this rule on our data, we obtain the 5th row of the
confusion matrix aa. Let aao denote the observed confusion
matrix aa. We have ao

5;1 ¼ 0:0023, ao
5;2 ¼ 0:0039, ao

5;3 ¼ 0:0096,

ao
5;4 ¼ 0:0878, ao

5;5 ¼ 0:8964 and the other entries of aao are

missing. One can observe that more than 89 percent of rat-
ing instances assigning a five star rating. This implies that
most requesters are unbiased that they can identify the true
quality of a solution. The remaining thing is how to infer
the full confusion matrix aa from this partial observation aao.
We consider the case that aa is generated as follows:

ai;j ¼ uji%jj=
XL

j¼1
uji%jj; 8i; j ¼ 1; . . . ; L; (10)

where u 2 ½0; 1(. We have two reasons to consider this form:
(1) this form of aa satisfies proposition 4.1; (2) we have only
one parameter u to infer, which enables us to infer aa from

aao. Our objective is to find u such that jjaa% aaojj2F is mini-
mized, where jj , jjF denotes Frobenius norm. Let aa5 and aao

5

denote the fifth row of aa and aao respectively. Incorporating
the missing entries of aao we refine our objective as

minujjaa5 % aao
5jj

2; where jj , jj denotes Euclidean norm.
Applying Eq. (10) we have

minujjaa5 % aao
5jj

2 ¼ 1% u

1% u5
% 0:8964

# $2

þ

1% u

1% u5
u % 0:0878

# $2

þ 1% u

1% u5
u2 % 0:0096

# $2

þ

1% u

1% u5
u3 % 0:0039

# $2

þ 1% u

1% u5
u4 % 0:0023

# $2

s:t:u 2 ½0; 1(:

The form of optimization problem has been well studied.
One way to locate its solution is via gradient decent
method [26]. The optimal solution u+ is u+ ¼ 0:1012: Substi-
tuting this value into Equation (10), we obtain aa:

aa ¼

0:8988 0:0910 0:0092 0:0009 0:00009
0:0834 0:8239 0:0834 0:0084 0:0009
0:0084 0:0828 0:8177 0:0828 0:0084
0:0009 0:0084 0:0834 0:8239 0:0834
0:00009 0:0009 0:0092 0:0910 0:8988

2

66664

3

77775
:

It implies that requesters can identify the true quality of sol-
utions with probability with at least 0:8 since the diagonal
entries of aa is larger than 0.8. With probability around 0.1,
requesters may over estimate (or under estimate) the prod-
uct quality by one level.

7.3 Optimal Bundling Size and Reward
We use the above inferred model parameters and apply the
optimization framework developed in Section 6 to demon-
strate how to determine the bundling size and reward for
Elance. Through this we show the efficiency and effectiveness
of our incentive mechanism. Table 5 depicts the optimal bun-
dling size n+, the optimal critical value r+ and the correspond-
ing system efficiency and service delay. We vary the tradeoff
factor em from 0.1 to 0.999. Consider em ¼ 0:1, say a crowd-
sourcing system operator extremely cares about service delay.
The optimal bundling size is n+ ¼ 2, the corresponding opti-
mal reward is r+ ¼ 1:00050cL (cL is inferred in Section 7.2). It
is interesting to observe that the system efficiency attains

E+=E ¼ 0:99950 of the theoretical maximum system efficiency.

XIE AND LUI: INCENTIVE MECHANISM AND RATING SYSTEM DESIGN FOR CROWDSOURCING SYSTEMS: ANALYSIS,... 97



The service delay is D+ ¼ 1:5759 hours. Now consider
em ¼ 0:999, say a crowdsourcing system operator extremely
cares about system efficiency. We have n+ ¼ 3 and
r+ ¼ 1:00012cL. It is interesting to observe that the system effi-

ciency attains E+=E ¼ 0:99988 of the theoreticalmaximum sys-
tem efficiency. The service delay is D+ ¼ 2:3639 hours. As em
varies from 0.1 to 0.999, n+ increases from 2 to 3, system effi-

ciency E+ improves from 0:99950E to 0:99988E, and service
delay increases from 1.5759 hours to 2.3639 hours. These
results show that our incentive mechanism achieves a quite
high system efficiency and a low service delay.

7.4 Optimal Rating System
We now explore whether Elance need to increase (or
reduce) the complexity of its rating system?

We first show that there is no need for Elance to increase
the complexity of its rating system. As presented in Table 5,
the optimal bundling size for Elance can be 2 or 3. Here we
set the bundling size to be n ¼ 3. The critical value and sys-
tem efficiency for Elance are

r ¼ 1:00012cL; E=E ¼ 0:99988:

One can observe that Elance can improve its system effi-
ciency by at most 1% E=E ¼ 0:00012% via increasing the
number of rating points. This improvement is so tiny that
there is no need for Elance to increase the number of rating
points.

We show that the rating system of Elance is too complex,
it should simplify its rating system to a binary rating system
(i.e., two rating points). We vary the number of rating points
eL from 5 to 2 for Elance. For each of eL, we measure the drop
ratio on system efficiency. Recall that when the number of
rating points is 5, system efficiency is E ¼ 0:99988. We there-
fore quantify system efficiency drop ratio as

DE ¼ ð0:99988% EÞ=0:99988

Table 6 presents numerical results on DE. We can observe

that as the number of rating points drops from eL ¼ 5 to
eL ¼ 2, system efficiency drops from 0:99988E to 0:98966E.
Even a binary rating system, i.e., eL ¼ 2 can achieve

E=E ¼ 0:98966 of the theoretical maximum system effi-
ciency, i.e., a quite high system efficiency. Furthermore,

reducing the number of rating points from eL ¼ 5 to eL ¼ 2
only increases system efficiency drop ratio from
DE ¼ 0 percent to DE ¼ 1:02 percent. In other word an
around one percent drop on system efficiency. They implies
that the rating system in Elance is quite too complex, and it
should be simplified to a binary rating system (i.e., two rat-
ing points).

8 PROOFS

In this section we present the proofs for the lemmas the the-
orems. We state a lemma which will be frequently used in
our proof.

Lemma 8.1. Let x1; . . . ; x‘ denote ‘ real numbers such that
x‘ > . . . > x1 > 0. Let b1; . . . ;b‘, and b01; . . . ;b

0
‘ denote

two series of real numbers such that bi " 0;b0
i " 0; 8i andP

i bi ¼
P

i b
0
i. Suppose there exists an integer 1 - j < ‘

such that for any i > j, it holds that bi > b0
i, and for any

i < j, it holds that bi < b0
i. Then we haveP

i xibi >
P

i xib
0
i.

Proof. Let "i ¼ bi % b0
i. Observe that for any i > j, we have

"i > 0, and for any i < j, we have "i < 0. SinceP
i bi ¼

P
i b

0
i, thus

P
i "i ¼ 0. Suppose bj - b0

j Then it

follows that
P

i xibi %
P

i xib
0
i ¼

P
i "ixi ¼

Pj
i¼1 "ixiþP‘

i¼jþ1 "ixi >
Pj

i¼1 "ixj þ
P‘

i¼jþ1 "ixjþ1 ¼
P‘

i¼jþ1 "iðxjþ

1% xjÞ > 0: We therefore conclude this lemma for
bj - b0

j. When bj > b0
j, with a similar derivation we con-

clude this lemma. tu

Proof of Lemma 3.2. Let us prove the necessary condition
first. The strategy profile ðCL;CLÞ being a unique Nash
equilibrium implies that for each worker wj, the condi-
tion ujðCL;CLjr; 2Þ > ujðCk; CLjr; 2Þ holds for all
k ¼ 1; . . . ; L% 1. Observe that ujðCL;CLjr; 2Þ ¼ r% cL
and ujðCk; CLjr; 2Þ ¼ %ck. Then it follows that r > maxk
fcL % ckg ¼ cL:

Now we show the sufficient condition. First, for each
player, the strategy C1 is strictly dominated by CL. Actu-
ally, consider a specific player wj, we can check that
ujðCL;CLjr; 2Þ % ujðC1; CLjr; 2Þ ¼ r% cL þ c1 ¼ r% cL >
0: Observe that for all k ¼ 2; . . . ; L% 1, we have
ujðCL;Ckjr; 2Þ % ujðC1; Ckjr; 2Þ ¼ 2r% cL > 0: We can
therefore eliminate C1 from the strategy set resulting a
reduced game, where each player’s strategy set is fC2;
. . . ; CLg. With a similar derivation as that for C1, we can
show that for this reduced game, the strategy C2 is
strictly dominated by CL. We can therefore eliminate C2

from the strategy set resulting in another reduced game,
where each player’s strategy set is fC3; . . . ; CLg . Repeat-
ing this elimination, we remove C3; . . . ; CL%1 sequen-
tially. And finally we obtain a reduced game where each
player only has one strategy CL. By applying Lemma 3.1,
we conclude the sufficient condition. tu

Proof of Theorem 4.1. We first derive the expected utility
E½ujðCk; s%jjrÞ(. For the sake of simplicity, in this proof
s%j represents ðCL; . . . ; CLÞ. Let E½ujðCk; s%jjrÞjl( denote
the conditional expected utility conditioned on that
worker wj receives a rating l. Then, with some basic

TABLE 5
Optimal Bundling Size and Reward

em 0.1 0.5 0.9 0.999

n+ 2 2 2 3
r+=cL 1:00050 1:00050 1:00050 1:00012
E+=E 0.99950 0.99950 0.99950 0.99988
D+ (hours) 1.5759 1.5759 1.5759 2.3639

TABLE 6
Optimal Bundling Size and Reward (n ¼ 3)

eL 5 4 3 2

r 1:00012cL 1:00012cL 1:00021cL 1:01045cL
E=E 0.99988 0.99988 0.99979 0.98966
DE 0% 0% 0.009% 1.02%
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probability arguments, we can express the expected
utility in terms of conditional expected utility as

E½ujðCk; s%jjrÞ( ¼
PL

l¼1 ak;lE½ujðCk; s%jjrÞjl(: Observe that
given worker wj receiving a rating l, this worker obtains
a reward lager than zero, if and only if all the other n% 1
players receive ratings lower or equal l. Otherwise
receives a reward of zero. Let Pr½‘; n% 1% ‘jl; s%j( denote
the probability that ‘ of these n% 1 players receive rat-
ings equal to l and the other n% 1% ‘ of them receive rat-
ings lower than l. Observe that for a give ‘, the utility for
worker wj is actually nr

‘þ1 % ck, assuming this worker

adopt the strategy Ck. Then, by enumerating all the cases
of ‘ ¼ 0; 1; . . . ; n% 1, we can express the conditioned

expected utility as E½ujðCk; s%jjrÞjl( ¼
Pn%1

‘¼0
nr
‘þ1 Pr½‘; n %

1% ‘jl; s%j( % ck: Observe that when a worker contributes
a CL solution, the probability that this worker receives a
rating equal to l is aL;l, and the probability of receiving a

rating lower than l is
Pl%1

k¼1 aL;k. Note that s%j ¼
ðCL; . . . ; CLÞ, then we obtain that Pr½‘; n% 1% ‘jl; s%j( ¼
n%1
‘

% &
a‘
L;l½

Pl%1
k¼1 aL;k(n%‘%1: Then it follows that E½ujðCk;

s%jjrÞ( ¼
PL

l¼1

Pn%1
‘¼0

n
‘þ1

! "
ð
Pl%1

k¼1 aL;kÞn%‘%1ak;la
‘
L;lr% ck

For a special case of k ¼ L, we can further reduce
the above expression into a simpler form, namely
E½ujðCL; s%jjrÞ( ¼ r% cL. tu

We now show that for any integer 1 - k < L. There exists
an integer 1 - j < L, such that for any i > j, it holds that
aL;i > ak;i, and for any i < j, we have aL;i < ak;i. Let ‘
denote the maximum integer satisfying the condition
aL;‘ - ak;‘. In other words, for any i > ‘, we have aL;i > ak;i.
Actually, at least one ‘ < L exists, because aL;L > ak;L. Now
we show that for all i < ‘, we have aL;i < ak;i. Before that
we first show a basic claim, i.e., for all i - k, the condition
aL;i < ak;i holds. Recall that each column of the confusion
matrix aa is singly peaked, and ai;i is the peak of the ith col-
umn. Since i - k, and k < L, we can therefore conclude
aL;i < ak;i holds for all i - k. Consider the case ‘ - k. With
the above claim, we can conclude this lemma. Consider the
case ‘ " k. With the above claim, we can first obtain that
aL;i < ak;i holds for all i ¼ 1; . . . ; k. The remaining thing is to
consider k - i < ‘. Recall that each row of the confusion
matrix aa is singly peak, and ai;i is the peak of the ith row.
Thus for all k - i < ‘, we have ak;i > ak;‘, and aL;i < aL;‘.
Then it follows that ak;i % aL;i > ak;‘ % aL;‘ " 0; holds for all
k - i < ‘, which concludes this lemma.

Now we prove the main results. Let us prove the neces-
sary condition first. The condition to sustain the strategy
profile ðCL; . . . ; CLÞ as an equilibrium, is expressed in
Inequality (3). Examining this condition, we obtain one nec-
essary condition: for all wj, E½ujðCL; s%jjrÞ( %E½ujðCk; s%j j
rÞ( > 0; holds for all Ck 2 CL n CL, where
s%j ¼ ðCL; . . . ; CLÞ. We can expand this condition as

E½ujðCL; s%jjrÞ( % E½ujðCk; s%jjrÞ( ¼ ck % cLþ

1%
XL

l¼1

Xn%1

‘¼0

n

‘þ 1

# $ Xl%1

k¼1
aL;k

! "n%‘%1
ak;la

‘
L;l

" #

r;
(11)

where k ¼ 1; . . . ; L% 1. Observe that ck < cL. Thus Equa-
tion (11) can be larger than zero, only if the multiplying
factor for r is larger than zero. We seek to show

this by applying Lemma 8.1. Let bðlÞ ¼
Pn%1

‘¼0
n

‘þ1

! "

ð
Pl%1

k¼1 aL;kÞn%‘%1a‘
L;l; for the sake of simplicity. We can then

express the multiplying factor of r derived in Equation (11)

as 1%
PL

l¼1 ak;lbðlÞ. We now show that bðlÞ is monotonely
increasing in terms of l, i.e., bð1Þ < bð2Þ < , , , < bðLÞ.
Recall that 0 - aL;1 - aL;2 - . . . - aL;L. Thus we have that
Pl%1

k¼1 aL;k is increasing in terms of l. We therefore conclude
the increasing property of bðlÞ. We obtain that ak;1; . . . ;ak;L

and aL;1; . . . ;aL;L satisfy the remaining required condition
of Lemma 8.1. We can then apply Lemma 8.1 to obtain

1%
PL

l¼1 ak;lbðlÞ > 1%
PL

l¼1 aL;lbðlÞ ¼ 0; where the last step

follow that
PL

l¼1 aL;lbðlÞ ¼ 1. This implies that the necessary
condition can hold by setting a large enough amount of
reward. We can then obtain the analytical expression for the
critical value.

Now we show the sufficiency. Applying Lemma 3.1, one
can observe that it is sufficient to show that iterated elimina-
tion of strictly dominated strategies eliminates all strategies
but ðCL; . . . ; CLÞ. First, let us show that for each worker wj

the strategy C1 is strictly dominated by CL. For simplicity,
in the following of this proof s%j denotes that all other work-
ers except wj play CL, while s0%j denotes that worker wk

plays sk 2 CL, where k 6¼ j. For simplicity, let DðCL;C1;s%jÞ ¼
E½ujðCL; s%jjrÞ( % E½ujðC1; s%jjrÞ(: It measures worker wj’s
incentive to play CL given two choices CL;C1. The higher
the value of DðCL;C1;s%jÞ, the higher the incentive to choose

CL. Similarly we define DðCL;C1;s
0
%jÞ

¼ E½ujðCL; s0%jjrÞ( %
E½ujðC1; s0%jjrÞ(: Then it follows that DðCL;C1;s

0
%jÞ

% DðCL;C1;s%jÞ

measures the change on worker w0
j incentive to subject to

the perturbation of other workers’ strategies vary from s%j

to s0%j. Now we examine the impact of confusion matrixaa on

this perturbation. Specifically, let DðaaÞ ¼ DðCL;C1;s
0
%jÞ

%
DðCL;C1;s%jÞ: Observe that the lower the variability in rating,

the higher the differentiation between s%j and s0%j, and the

higher the differentiation between CL and C1. This implies
that the impact of this perturbation becomes more signifi-
cant. In other words the gap between DðCL;C1;s

0
%jÞ

and

DðCL;C1;s%jÞ enlarges. As one can imagine, this perturbation

should change worker wj’s incentive monotonely, i.e.,
increasing the impact of this perturbation, should only
increase (or decrease) worker wj’s incentive. Thus two intui-
tive bounds on DðaaÞ should be that when the variability in
rating is the “minimum”, i.e., aa is an identity matrix, we
have DðaaÞ > nr

nLþ1 % r, where nL denotes the number of

strategies from s0%j that equals to CL. Or when when the var-

iability in rating is the “maximum”, i.e., aa is a matrix with
all entries 1

L, we have DðaaÞ ¼ 0. Thus we conclude that
DðaaÞ " 0. This implies that DðCL;C1;s

0
%jÞ

" DðCL;C1;s%jÞ > 0.

Thus we conclude that C1 is strictly dominated by CL. We
can therefore eliminate C1, and obtain a reduced game. For
this reduced game, we can similarly eliminate C2. Repeating
it, we finally eliminate all strategies but CL.
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Proof of Theorem 5.1. We first derive the expected utility
E½ujðCk; s%jjrÞ(, where s%j represents ðCL; . . . ; CLÞ.
With some basic probability arguments, we have

E½ujðCk; s%jjrÞ( ¼
PeL

l¼2 ak;L%eLþl

Pn%1
‘¼0

nr
‘þ1 Pr½‘; n% 1% ‘jl;

s%j( þ
PL%eLþ1

l¼1 ak;l
Pn%1

‘¼0
nr
‘þ1 Pr½‘; n% 1% ‘j1; s%j(; where

adopt the notations E½ujðCk; s%jjrÞjl( and Pr½‘; n% 1%
‘jl; s%j( as defined in the proof of Theorem 4.1. Consider
a special case of l ¼ 1. It is impossible to receive a rating
below 1, thus Pr½‘; n% 1% ‘jl; s%j( ¼ 0, if ‘ < n% 1. And

when ‘ ¼ n% 1, we have Pr½n% 1; 0j1; s%j( ¼ ð
PL%eLþ1

k¼1

aL;kÞn%1. Consider the case of l " 2. Observe that with
strategy CL, a worker receives a rating l with probability
a
L;L%eLþl

, and receives a rating lower than lwith probabil-

ity
PL%eLþl%1

k¼1 aL;k. The we have Pr½‘; n% 1 %‘jl; s%j( ¼

n%1
‘

% &
a‘

L;L%eLþl
½
PL%eLþl%1

k¼1 aL;k(n%‘%1: Then we have E½ujðCk;

s%jjrÞ( ¼
PL%eLþ1

l¼1 ak;lrð
PL%eLþ1

k¼1 aL;kÞn%1 % ck þ
PeL

l¼2

Pn%1
‘¼0

n
‘þ1

! "

ð
PL%eLþl%1

k¼1 aL;kÞn%‘%1ra
k;L%eLþl

a‘

L;L%eLþl
: With a similar der-

ivation as Theorem 4.1, one can obtain that when k ¼ L,
the above expression can be reduced into a simple form,
i.e, E½ujðCL; s%jjrÞ( ¼ r% cL. tu

Now we show that for all 1 - k < L, there exists an inte-

ger 1 - j < eL, such that Pr½ijCL; heL; CL;Rð,Þi( > Pr½ijCk;

heL; CL;Rð,Þi(, holds 8i > j. And for all i < jPr½ijCL;

heL; CL;Rð,Þi( < Pr½ijCk; heL; CL;Rð,Þi( holds. Recall that in
the proof of Theorem 4.1, we showed that there exists an
integer j0 2 f1; . . . ; L% 1g, such that for any i > j0, it holds
that aL;i > ak;i, and aL;i < ak;i holds for all i < j. Then

examining the definition of Pr½ijCL; heL; CL;Rð,Þi( in Equa-
tion (4), one can observe that we only need to show Pr½1jCL;

heL; CL;Rð,Þi( < Pr½1jCk; heL; CL;Rð,Þi(: This is shown by the
following arguments. Actually this inequality holds,

because if j0 > L% eLþ 1, then we obtain that for all

i - L% eLþ 1, we have aL;i < ak;i. Suppose j0 - L% eLþ 1.
Then it follows that for all i " 2, we have Pr½ijCL;

heL; CL;Rð,Þi( " Pr½ijCk; heL; CL;Rð,Þi(:
Let us prove the necessary condition first. Observe that

one necessary condition is that E½ujðCL; s%jjrÞ( % E½uj
ðCk; s%jjrÞ( > 0; holds for all Ck 2 CL n CL, where
s%j ¼ ðCL; . . . ; CLÞ. We expand this condition as

E½ujðCL; s%jjrÞ( % E½ujðCk; s%jjrÞ( ¼ ck % cLþ

1%
XL%eLþ1

l¼1

ak;l

XL%eLþ1

k¼1
aL;k

# $n%1

%
XeL

l¼2

Xn%1

‘¼0

n

‘þ 1

# $2

4

XL%eLþl%1

k¼1
aL;k

# $n%‘%1

a
k;L%eLþl

a‘

L;L%eLþl

#

r;

(12)

where k ¼ 1; . . . ; L% 1. Since ck % cL < 0, the necessary con-
dition can hold only if the multiplying factor of r derived in
Eq. (12) is larger than zero. For the sake of simplicity, we let

bl ¼
Pn%1

‘¼0
n

‘þ1

! "
ð
PL%eLþl%1

k¼1 aL;kÞn%‘%1a‘

L;L%eLþl
; for all l " 2,

and let b1 ¼ ð
PL%eLþ1

k¼1 aL;kÞn%1. The multiplying factor of r

can be expressed as 1%
P

j bl Pr½ljCk; heL; CL;Rð,Þi(. Observe

that bL > , , , > b1. Then by applying Lemma 8.1, and with
a similar derivation as Theorem 4.1 we conclude the neces-
sary condition. The proof for the sufficient condition is simi-
lar to that of Theorem 4.1.

Proof of Lemma 6.1. Let n+ denote the optimal bundling
size. Let zðnÞ ¼ emð1% cL

r Þ þ ð1% emÞ n!. Then we obtains

that zðn+Þ - zð2Þ: Note that zðn+Þ " ð1% emÞ n+! and zð2Þ -
emþ ð1% emÞ 2

! : Hence we have ð1% emÞ n+! - emþ ð1% emÞ 2
! ;

which yields that n+ - !
1%em emþ ð1% emÞ 2

!

% &
This proof is

then complete. tu

9 RELATED WORK

Crowdsourcing has recently drawn a lot of attentions. Many
aspects of crowdsourcing are being studied, e.g., applying
the concept of crowdsourcing to design new applications
and algorithms [9], [11], [27], user behavior study [28], and
investigating the performance issues, like quality manage-
ment [29], [30], incentive design [31], fairness [32], etc. A
survey can be found in [33].

A variety of real-world crowdsourcing platforms have
been developed. Based on the types of tasks, they can be
broadly classified into microtasking [14] and macrotask-
ing [15]. Microtasking crowdsourcing systems focus on
small and repetitive tasks. Typical microtasking crowd-
sourcing systems include Amazon Mechanical Turk [4], and
Microtask [16]. Gamification [27], [34] is a microtasking
crowdsourcing system as well. Macrotasking crowdsourc-
ing are mainly designed to solve challenging and innovative
tasks, which require special skills. Elance [5] and Fiverr [17]
are two real-world macrotasking crowdsourcing systems. A
variety works [35], [36] investigated financial incentives for
microtasking crowdsourcing systems. This paper focuses
on macrotasking crowdsourcing systems, in which the
incentive design is quite different from microtasking.

A variety of works applied the “winner-takes-it-all”
scheme to model crowdsourcing contest [37], [38], [39]. In
particular, they deployed all pay auctions in their mecha-
nisms. These approaches only apply for the scenario that
each task requires multiple workers to solve, which results
in that the requester needs to set a large reward to incentiv-
ize workers. In macrotasking crowdsourcing systems, it is
quite common that a requester only employs one worker to
solve a task. Our approach applies even when a task require
one worker to solve. Furthermore, previous approaches did
not consider the human factors in assessing solution quality,
while we formally explore this aspect.

A variety of approaches have been proposed to price
tasks. One typical approach is mining the price from
data [40], [41]. More concretely, building models to infer
workers’ benefit and cost in solving tasks. Another approach
determines the price automatically or dynamically via
designing some efficient mechanisms. Typical examples
include amulti-armed bandits based pricingmechanism [42],
and auction based pricing mechanisms [43], [44]. However,
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these approaches did not consider the human factors in
assessing solution quality, while approach formally explores
it. Furthermore, they did not solve the challenge of free-riding
of workers, or denial of payment of requesters. Our incentive
mechanism addresses this challenge.

Recently, a few workers investigated incentive mecha-
nism design for crowdsourcing applications. An experiment
in an online labor market was conducted to understand the
effectiveness of a collection of social and finical incentive
schemes [31]. A game-theoretic model of an online question
and answer forum was developed in [45], where the authors
investigated the impact of various score sharing rules on the
incentives for providing solution. A few reputation based
incentive protocols were developed in [20], [46], [47], [48],
[49], where they model the interactions between workers
and requesters as a repeated or stochastic game. They
induce incentive via maintaining a reputation for each
worker to track the contribution history and penalize work-
ers with low reputation. Our paper is different from theirs
in the following aspects. First, we are the first to conduct a
unified study on incentive mechanism and rating system
design. We studied how a rating system may influence
worker participating incentive. Second, our incentive mech-
anism is simple and we demonstrate its high effectiveness
via experiments on a dataset from Elance. Third, we present
metrics to characterize the effectiveness of a rating system,
and we identify the redundancy of the rating system in
Elance. Fourth, we develop an optimization framework to
infer model parameters from data, and we demonstrate
how to apply our framework to analyze real-world data.

10 CONCLUSION

The is the first paper which conducts a unified study on
incentive and rating system design for crowdsourcing sys-
tems. We designed a class of simple but effective incentive
mechanisms, which consist of a “task bundling scheme” and a
“rating system”. We propose a probabilistic model to capture
various human factors, e.g., personal preference or bias in
rating, and quantified their impact on the incentive mecha-
nism. We developed a model to characterize the design
space rating systems and quantify the impact of a rating sys-
tem on worker participating incentive. We formulated an
optimization framework to select appropriate rating system
parameters to tradeoff between “crowdsourcing system
efficiency”, and the “rating system complexity”. We also for-
mulated an optimization framework to select appropriate
bundling size, which can tradeoff between system efficiency
and service delay. We conducted experiments on a dataset
from Elance. Using our optimization framework, we infer
model parameters from the collected data. We showed that
using our incentive mechanism can achieve at least
99.95 percent of the theoretical maximum system efficiency
with a service delay of at most 2.3639 hours. We found out
that the rating system in Elance is too complex, and it can
be simplified to a binary rating system.
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