
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023 965

Decentralized Scheduling and Dynamic Pricing for
Edge Computing: A Mean Field

Game Approach
Xiong Wang , Member, IEEE, Jiancheng Ye , Member, IEEE, ACM,

and John C.S. Lui , Fellow, IEEE, ACM

Abstract— Edge computing provides a platform facilitating
edge servers to contribute to computation offloading while
economizing their resources. Traditional offloading solutions are
mostly centralized, which are unscalable for large-scale edge com-
puting networks due to complex interactions among many edge
servers. Meanwhile, dynamic pricing for an operator is equally,
if not more, important to accommodate users’ time-varying
demands for computing services. In this paper, we develop a
decentralized online optimization framework to jointly minimize
the server’s cost of workload scheduling while maximizing the
operator’s utility of service pricing. Specifically, we employ the
mean field game to model the collective scheduling behavior
of all edge servers, thereby enabling optimal decision making
only based on the server’s local information. Considering the
service price in practice is not adjusted as frequently as the
scheduling process, we establish a two-timescale optimization
framework, where workload scheduling at a small timescale is
tightly embedded into service pricing at a large timescale. Using
mean field approximation, we derive the closed-form expression
for the minimum scheduling cost, and the approximation error
is O 1√

M
which declines as the number of edge servers M

increases. By characterizing the influence of workload scheduling
on dynamic pricing, we transform the complex service utility
maximization into a succinct but equivalent problem, and thus we
can make use of Lyapunov optimization to determine the optimal
price over time. Extensive evaluations validate the effectiveness
and optimality of our scheduling and pricing schemes.

Index Terms— Edge computing, decentralized scheduling,
mean field game, dynamic pricing.

Manuscript received 18 April 2021; revised 6 May 2022; accepted
11 August 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor S. Shakkottai. Date of publication 26 September 2022; date of current
version 16 June 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 62202185, in part by the
Research Grants Council (RGC) under Grant GRF 14200321, and in part
by The Chinese University of Hong Kong (CUHK) under Grant 6905407.
(Corresponding author: Jiancheng Ye.)

Xiong Wang is with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Laboratory and the Cluster and Grid Computing Laboratory, School of
Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: xiongwang@hust.edu.cn).

Jiancheng Ye is with the Network Technology Laboratory and the
Hong Kong Research Center, Huawei, Hong Kong (e-mail: yejiancheng@
huawei.com).

John C.S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2022.3204698, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3204698

I. INTRODUCTION

IN RECENT years, people have witnessed the unprece-
dented growth of data generated from the network edge,

and this growth will continue with the development of 5G
and Internet of Things [1]. Traditional cloud computing may
suffer from high latency and service failure when there is a
network connectivity problem. To reduce the impact of these
issues, the edge computing paradigm has been proposed to
push the cloud frontier to the edge, thereby supporting a
variety of compute-intensive yet latency-sensitive applications,
e.g., VR in interactive games [2], automated driving in intel-
ligent transportation [3], and pattern recognition for object
detection [4].

The key idea of edge computing is to allow users to
offload their computation workloads to nearby edge servers,
such as small-cell base stations or Wi-Fi access points.
Compared to the cloud datacenter, edge servers only have
limited computing capacity [5]. Therefore, it is essential for
these servers to further offload the workloads exceeding their
capacity to the remote cloud, thus leading to a hierarchical
offloading structure [6] among end users, edge servers and
cloud datacenter, as shown in Fig. 1. In particular, each server
needs to determine the amount of workloads to be processed
locally, and as well as amount to be offloaded remotely so
as to minimize the scheduling cost. Nevertheless, workloads
in such scheduling scheme may be aggressively processed
by low-cost servers under uneven workload distribution [7],
which would worsen the system performance due to large
latency at the overloaded servers. As a result, server-side
load balancing is also indispensable for ensuring balanced
workload scheduling and meanwhile enhancing the fairness
in cloud resource sharing [8].

Along with users’ computation offloading, a service price
is charged by an operator (like a content delivery network
provider), who often manages a set of geo-distributed edge
servers [6], for serving their offloading requests. Needless to
say, setting an appropriate price is critical to the operator, as an
excessively low price will be insufficient to compensate for
its operation cost, while an unduly high price will inevitably
lead to a decrease in users’ computation demands. Previous
works mostly use game [9] or auction [10] theory to harmonize
the interests of different market participants by setting distinct
prices across edge servers. But such pricing schemes are usu-

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

966 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

Fig. 1. Illustration of the edge computing system.

ally too complicated for real-world implementation, especially
in a highly dynamic environment. A more practical way for the
operator is to adaptively select a uniform price for all servers to
maximize its utility when providing edge computing services.

There have been many efforts devoted to workload schedul-
ing and service pricing aiming at improving the edge comput-
ing performance [11], [12]. However, existing solutions are
mostly centralized, which are unscalable to scenarios involving
a large number of edge servers [13]. To be more specific, extor-
tionate communication and computation overheads will make
it difficult to obtain timely information from many servers
in a centralized manner, not to mention determining optimal
scheduling and pricing decisions on a global scale. Therefore,
one fundamental question is how to distributedly schedule the
workloads and decide the service price to optimize server’s
scheduling cost and operator’s service utility. To answer this
question, researchers are faced with the following challenges.

First, in practice, edge servers dynamically schedule the
workloads upon arrival of real-time requests, whereas the price
adjustment made by the operator is usually specified for a long
period, i.e., daily or weekly basis. Therefore, the former action
occurs at a much smaller timescale than the latter one. This
brings new modeling requirements for incorporating interplay
and interdependence between the optimizations of scheduling
cost and service utility at different timescales. Second, a
decentralized scheduling scheme is needed for large-scale
edge computing systems. As complete system information
is not available, each server has to make its own decisions.
However, existing decentralized solutions often have high
computation complexity and can not guarantee the optimal
performance [14]. One possible remedy is to integrate an
estimated global information into the scheduling, but a precise
estimation is difficult if the number of servers scales. Third,
for easy implementation, the service utility is supposed to be
maximized under a uniform price. Unfortunately, the state,
namely accumulated workload, of geo-distributed edge servers
is highly heterogeneous, and hence it is hard to arrive at
a uniform price that is optimal for all servers. Considering
the price elasticity of computation demand, operator’s pricing
decision is also intertwined with server’s scheduling process,
which further complicates the service pricing design.

In this paper, we develop a decentralized online optimiza-
tion for joint workload scheduling and service pricing in a
large-scale edge computing system. Specifically, we first pro-

pose a two-timescale optimization framework to accommodate
actions occurring at different timescales, where the scheduling
of processing and offloading workloads at a small timescale
is embedded into the service pricing at a large timescale.
To facilitate decentralized decision making, we harness the
theory of mean field game to approximate the collective
scheduling behavior of all edge servers using a deterministic
mean field value [41], [42]. Accordingly, we achieve the
minimum scheduling cost for each server only based on its
local state. Furthermore, we also leverage the mean field model
to characterize the influence of workload scheduling, thus we
can transform the dynamic pricing problem into its equivalent
form. On this basis, we design a Lyapunov-based pricing
scheme to determine the optimal while uniform price over
time, which could attain a favorable long-term service utility.
In summary, this paper has the following main contributions:

• We propose a two-timescale online optimization frame-
work for joint workload scheduling and service pricing,
where a mean field game is employed to facilitate optimal
decision making in a decentralized manner. To the best
of our knowledge, this is the first work that conducts
a thorough analysis on the decentralized online optimal
scheduling for large-scale edge computing systems.

• We devise a mean field model to approximate workload
scheduling of all servers via deterministic ordinary dif-
ferential equations (ODEs). Consequently, each server
can make the optimal scheduling decisions solely using
its local information. We achieve the closed-form mini-
mum scheduling cost with O

(
1√
M

)
approximation error,

where the error declines as the number of edge servers
M increases.

• We transform a complex service utility maximization
into a concise but equivalent optimization problem by
representing heterogeneous server state via its mean field
value. Following the Lyapunov optimization approach,
we further design an optimal pricing scheme to improve
the long-term utility while also ensuring load balancing
among edge servers, where optimal service price will
dynamically converge to a steady value when average
server workload becomes stable.

II. SYSTEM MODEL

We consider a large-scale edge computing system with a
set M = {1, 2, . . . , M} of edge servers which are managed
by an operator. Each edge server is endowed with computing
functionalities and hence can handle the computation offload-
ing requests sent from end users within its radio coverage.
Here each request is typically specified by the task size and
required service time for modeling real-world applications
(like face recognition and interactive games) [15], [16], i.e.,
an offloading request corresponds to a certain amount of work-
loads which could be discrete or continuous values [17]. Upon
arrival of user requests, edge servers can process the workloads
locally, and also cooperate with the cloud datacenter to further
offload computation exceeding their capacity remotely. Along
with such request scheduling, a service price is also charged

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DECENTRALIZED SCHEDULING AND DYNAMIC PRICING FOR EDGE COMPUTING 967

by the operator when providing computing services for users.
Fig. 1 demonstrates a system illustration.

A. Two-Timescale Framework

In most practical scenarios, the price set by an operator
often maintains stable for a long time, like weekly data
plan for end users, while the scheduling of processing and
offloading workloads for a server is adapted to real-time user
requests, thereby resulting in a two-timescale framework for
online workload control. Specifically, edge servers make their
processing and offloading decisions in real time, while the
service price is dynamically adjusted at a time interval of T
duration. Hence, workload scheduling at the small timescale is
embedded into service pricing at the large timescale. Formally,
we use time slot n = 1, 2, . . . to denote the large timescale,
with each slot lasting for T duration, and time t to denote the
small timescale where t ∈ [0, T] for any time slot n.

B. Server Workload Scheduling

At time t, edge server i receives workloads from users
with stochastic rate ai(t), and then needs to make scheduling
decisions specified by the local processing speed si(t) and
offloading speed oi(t). Let qi(t) be the workload queue at
server i, so that the rate of change for qi(t) is:

dqi(t) = (ai(t) − si(t) − oi(t)) dt. (1)

The arriving workloads are usually unbalanced across edge
servers, which will deteriorate the system performance if
some servers are overloaded. Therefore, load balancing is
needed when servers make scheduling decisions [18], [19].
To achieve load balancing, workloads at each server should
be balanced around the average level. We define the average
queued workload of M edge servers as qM (t), which is:

qM (t) =
1
M

M∑

i=1

qi(t). (2)

For edge server i, the scheduling cost ci[n] in time slot n
is:

ci[n] = E
[∫ T

0

[
αs2

i (t) + βo2
i (t) + γo2

i (t)

+ηq2
i (t) + λ

(
qi(t) − qM (t)

)2]
dt

]
. (3)

• αs2
i (t): local processing cost. It is the energy consump-

tion for processing the workloads, which is proportional
to the quadratic processing speed [20].

• βo2
i (t): local offloading cost. Transmission cost of send-

ing workloads to the cloud, which has a quadratic
form [21].

• γo2
i (t): remote processing cost. Cost at the cloud to

handle the offloaded computation, and the form is similar
to αs2

i (t).
• ηq2

i (t): queue congestion cost. This term represents the
congestion level of server i which also implies the
processing latency. Convex cost such as the quadratic
form is often used [22]. To alleviate congestion, servers

have to judiciously decide their processing and offloading
speeds.

• λ
(
qi(t) − qM (t)

)2
: load balancing cost. It can cater to

unbalanced workloads to facilitate fair sharing of cloud
resource and avoiding overloaded situations since any
heavily loaded server will offload more computation [8],
[18]. λ is the parameter converting load variance to cost.1

When the queue is less congested, the workload sojourn time
would decrease. Hence, we can alter the parameter η to reduce
the scheduling latency, as discussed in Section IV-E.

The objective for each server i is to minimize the scheduling
cost ci[n] by deciding its processing and offloading speeds
si(t), oi(t) based solely on the local state qi(t). In other words:

min ci[n]
s.t. Eq. (1), ∀i ∈ M. (4)

Due to the dynamics of qi(t), the average queued workload
qM (t) is also dynamic, which in turn influences the action
decisions si(t), oi(t). Hence, each scheduling cost ci[n] is
coupled by qM (t), and this coupling increases the difficulty
of solving Eq. (4). To handle this issue, we will use a mean
field model to decouple the cost minimization problem so as
to determine the optimal decisions in a decentralized manner.

C. Operator Service Pricing

Edge servers are managed by an operator, who aims to
optimize its service utility. Like pricing scheme adopted by
many Internet service providers, a uniform price p[n] is more
practical and attractive to end users [23]. In time slot n,
the scheduling cost ci[n] is obtained by solving Eq. (4),
and p[n] is the service price set by the operator to charge
users for serving their requests. We consider that the average
arriving workload a[n] is mainly affected by the charged price
to concentrate our attention on pricing scheme design [24],
[25]. Concretely, if p[n] increases, users tend to have lower
computation demands and submit less requests to edge servers,
i.e., lower a[n]. W.l.o.g., one could use a function g(·) to relate
p[n] and a[n]:

a[n] = g(p[n]), (5)

where g(·) is a decreasing and differentiable function.2 As for
edge server i, the corresponding arrival rate ai(t), t ∈ [0, T] in
time slot n is a stochastic process characterized by the average
arriving workload a[n] [28], [29], that is E[ai(t)] = a[n].

Since each time slot n lasts for T duration, the expected total
amount of arriving workloads at server i are E[

∫ T
0 ai(t)dt].

Hence, the service utility is obtained:

ui[n] = p[n]E
[∫ T

0
ai(t)dt

]
− ci[n]. (6)

1In this paper, we focus on edge-cloud cooperation (offloading) to achieve
load balancing, while edge-edge cooperation remains as the future work.

2The function g(·) can be obtained by fitting historical data, and is
usually time-invariant [26], [27]. Actually, our later pricing scheme design is
essentially unchanged even under time-varying g(·). Since we mainly explore
the case where offloading demand is influenced by the service price, pricing
schemes which also integrate service quality are left as our future work.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

968 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

Consistent with the queue change in Eq. (1), the queue
dynamics from one time slot to the next follows:

qi[n + 1] = max
[
qi[n] +

∫ T

0
ai(t)dt

−
∫ T

0
(si(t) + oi(t))dt, 0

]
. (7)

The operator’s goal is to maximize its long-term average
utility via dynamically setting a uniform price p[n] over time:

max lim
D→∞

1
D

D∑

n=1

1
M

M∑

i=1

ui[n]

s.t. lim
D→∞

1
D

D∑

n=1

qi[n] < ∞, ∀i ∈ M. (8)

The inequality in Eq. (8) means all queues need to be stable.
Since queue qi[n] is stochastic due to the stochastic arrival
rate ai(t), and the queue states among many edge servers
are heterogeneous, so that maximizing the utility is difficult
through a simple price p[n]. We will use the mean field theory
to represent qi[n] by a deterministic mean field value, and this
representation is exact when M → ∞. Therefore, we can
transform the utility maximization of Eq. (8) into its equivalent
problem, which will help design the optimal pricing scheme.

D. Model Discussion

The actions in our model include the processing and offload-
ing workloads by each edge server, and the pricing scheme
designed by the operator. Considering the price elasticity of
computation demand, each server decides its optimal process-
ing and offloading speeds at the small timescale to minimize
the scheduling cost, since the service price remains unchanged
during any time slot. Through the mean field analysis, we can
attain minimum scheduling cost in a decentralized manner.
By deriving an optimal price at the large timescale, the oper-
ator achieves to maximize its long-term service utility where
the scheduling cost is also included in the utility calculation.
Though this intertwined modeling raises difficulties of opti-
mizing server’s scheduling cost and operator’s service utility,
it more conforms to real-world situations and also enables a
finer-grained workload control compared to previous works,
especially for large-scale edge computing. In general, our
proposed two time-scale framework is also applicable to other
scheduling or pricing applications when involving coupled fast
and slow procedures. Besides, the characterized mean field
model can further provide a new insight for designing optimal
decentralized scheduling schemes in many other related areas
like cellular networks, data centers, etc. The main notations in
this paper are listed in Table I.

III. MEAN FIELD BASED DECENTRALIZED SCHEDULING

In this section, we aim to derive the minimum scheduling
cost. To this end, one has to solve Eq. (4) for M edge servers
due to the coupling by the average queued workload qM (t).
It is difficult to achieve this goal because of two reasons. First,
simultaneously solving M -coupled optimization problems is

TABLE I

NOTATION

computationally prohibitive when M is very large. Second,
the dynamics of queue qi(t) will lead to a rapidly changing
qM (t), which makes it hard to track this coupling term.
Hence, we use the mean field model to consider large value
of M . Specifically, we leverage a deterministic value q(t) to
approximate qM (t) in the mean field model. Therefore, we can
decouple the M cost minimization problems by regarding
q(t) as an exogenous parameter since an individual edge
server has infinitesimal influence on q(t) [42]. Through this
mean field approximation, we are able to deal with each cost
minimization individually.

A. Mean Field Approximation

The scheduling cost of server i is related to the stochastic
arrival rate ai(t) which influences the workload queue in
Eq. (1). As ai(t) has a mean value of average arriving
workload a[n], a widely adopted model is that ai(t) is a ran-
dom value following a Gaussian distribution N (a[n], σ2

i) [28],
where each N (a[n], σ2

i) is assumed to be independent [41],
[42] and σ2

i is the randomness magnitude specified to server
i. Also denote E[σ2

i] = σ2 as the expected randomness
magnitude of the edge computing system. In general, the
Gaussian model ai(t) ∼ N (a[n], σ2

i) can be extended to
ai(t) ∼ N (a(t), σ2

i), with a(t) varying over time t and
1
T

∫ T
0 a(t)dt = a[n] in time slot n. These two models share

the same spirit pertaining to later mean field approximation
and scheduling cost derivation, so that we utilize the concise
one, i.e., ai(t) ∼ N (a[n], σ2

i), for ease of exposition.
Let the cost ci(t), t ∈ [0, T] be:

ci(t) = E
[∫ T

t

[
αs2

i (τ) + βo2
i (τ) + γo2

i (τ)

+ηq2
i (τ) + λ

(
qi(τ) − qM (τ)

)2]
dτ

]
. (9)

In time slot n, ci[n] in Eq. (3) is actually ci(0) in Eq. (9),
i.e., lower limit t = 0. Hereinafter, we remove the subscript i
in parameters (workload queue, action, cost, etc.) for brevity.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DECENTRALIZED SCHEDULING AND DYNAMIC PRICING FOR EDGE COMPUTING 969

Replace qM (t) with q(t), then c(t) = E
[∫ T

t [αs2(τ) +
βo2(τ) + γo2(τ) + ηq2(τ) + λ(q(τ) − q(τ))2]dτ

]
. Now our

objective is to minimize c(t) using q(t). In line with the queue
dynamics of Eq. (1), we have:

dq(t) = (a[n] − s(t) − o(t))dt + σdW, (10)

where W is the Brownian motion since a(t)dt = a[n]dt +
σdW when a(t) ∼ N (a[n], σ2). Basically, dW , or dWi if
adding the subscript i, denotes the randomness from stochastic
arrival rate a(t), or ai(t). Akin to [29], [42], and [44],
we mainly use Brownian motion to model the workload
randomness, and will also ignore the case of negative values,
which indeed rarely occurs as shown in later performance
evaluations.

1) Optimal Actions: The optimal actions, i.e., the process-
ing and offloading speeds s(t), o(t), are attained based on
the Hamilton–Jacobi–Bellman equation [30]. Mathematically,
we solve the following partial differential equation to derive
the optimal s(t), o(t) and obtain the minimum cost c(t):

−∂c

∂t
= min

s(t),o(t)
αs2(t) + βo2(t) + γo2(t) + ηq2(t)

+λ(q(t) − q(t))2 + (a[n] − s(t) − o(t))
∂c

∂q

+
1
2
σ2 ∂2c

∂q2
. (11)

Since the right-hand side is a quadratic polynomial, the
optimal processing and offloading speeds are computed as:

s(t) =
1
2α

∂c

∂q
,

o(t) =
1

2(β + γ)
∂c

∂q
. (12)

In view of the cost function and the queue dynamics, the
cost minimization is a linear-quadratic-Gaussian (LQG) con-
trol problem. As LQG has a quadratic solution [30], a feasible
way to deduce the solution is to first construct a quadratic
formula and then solve the corresponding coefficients of the
constructed formula [42]. Regarding the minimum cost c(t),
we consider it has the following expression:

c(t) = x(t)q2(t) + y(t)q(t) + z(t), (13)

where x(t), y(t), z(t) are time-varying coefficients to be
solved. Also, it results in ∂c

∂t = dx
dt q2(t) + dy

dt q(t) + dz
dt ,

∂c
∂q = 2x(t)q(t) + y(t), and ∂2c

∂q2 = 2x(t).
From Eq. (13), we rewrite the optimal actions in Eq. (12):

s(t) =
2x(t)q(t) + y(t)

2α
,

o(t) =
2x(t)q(t) + y(t)

2(β + γ)
. (14)

Because 2x(t)q(t) + y(t) ≥ 0, then s(t) ≥ 0 and o(t) ≥ 0.
Moreover, the optimal processing and offloading speeds
s(t), o(t) are deterministic in terms of the queue q(t) even
though the arrival rate a(t) is stochastic, as we obtain s(t), o(t)
by minimizing the cost c(t), an expected value, in Eq. (9).

2) Mean Field Model: Now we elucidate the decoupling of
the M cost minimization problems in the mean field model.
Substituting Eq. (14) into Eq. (11), we obtain:

−dx

dt
q2(t) − dy

dt
q(t) − dz

dt

= −
[

1
4α

+
1

4(β + γ)

]
(2x(t)q(t) + y(t))2

+ηq2(t) + λ(q(t) − q(t))2

+a[n](2x(t)q(t) + y(t)) + σ2x(t). (15)

Since Eq. (15) holds for any q(t), the coefficients on both
sides should be consistent. Let b = 1

α + 1
β+γ , and it yields:

dx

dt
= bx2(t) − (η + λ), (16)

dy

dt
= bx(t)y(t) − 2a[n]x(t) + 2λq(t), (17)

dz

dt
= −σ2x(t) +

b

4
y2(t) − a[n]y(t) − λq2(t). (18)

Note that q(t) is an exogenous term in Eqs. (17) and (18)
because the dynamics of a queue q(t) will not influence q(t)
when M → ∞. Hence, each server can decide its optimal
actions based on this exogenous q(t) in the mean field model,
rather than the coupling term qM (t). In other words, each
queue q(t) is asymptotically independent and the original cost
minimization problems are decoupled.

Considering the deterministic value q(t) is an approximation
of the empirical average queued workload qM (t), we regard
q(t) as the expected queued workload E[q(t)]. Since each
stochastic queue q(t) has a bounded variance, we claim that
qM (t) will converge to q(t) when M → ∞ based on the
asymptotic independence analysis, which will be formally pre-
sented in Theorem 1. To characterize q(t), we take expectation
of the queue dynamics dq(t) = (a[n]− s(t)− o(t))dt + σdW
in Eq. (10), and integrate optimal actions in Eq. (14). We have:

dq

dt
= a[n] − s(t) − o(t) = −bx(t)q(t) − 1

2
by(t) + a[n]. (19)

The randomness in stochastic arrival rate a(t)dt = a[n]dt+
σdW is removed due to E[σdW] = 0. Eq. (19) reveals
that one can track the deterministic q(t) in a decentral-
ized manner by solving the ODE. Therefore, the mean
field model corresponds to the deterministic ODE system of
Eqs. (16)-(19).

In order to derive the minimum cost c(t) and optimal actions
s(t), o(t), we can solve the ODE system distributedly as a
result of the decoupling via the mean field approximation.
From Eq. (9), we know that c(T) = 0. Because the minimum
cost has a quadratic expression of Eq. (13), the terminal
conditions for x(t), y(t), z(t) satisfy:

x(T) = y(T) = z(T) = 0. (20)

For q(t), its initial value and derivation at t = T are obtained
when we combine with Eq. (19) and Eq. (20):

q(0) = E[q[n]] = q[n],
dq

dt

∣∣∣
t=T

= a[n]. (21)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

970 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

B. Closed-Form Quadratic Cost

We need to calculate coefficients x(t), y(t), z(t) in Eq. (13)
to derive the minimum cost c(t). To this end, we do the
following. First, we solve the ODE of x(t) as Eq. (16) does not
depend on other variables. Second, we derive the expressions
for y(t) and q(t). This is because Eqs. (17) and (19), y(t) and
q(t), are inter-dependent provided the result of x(t). Third,
we determine the term z(t) since the ODE Eq. (18) involves
coefficients x(t), y(t) and the value q(t). Using the conditions
in Eqs. (20) and (21), we summarize our results as follows
(see Appendix A in supplementary material for the proof):

Lemma 1: The expression for x(t), t ∈ [0, T] satisfies:

x(t) =

√
η + λ

b

1 − e2
√

(η+λ)b(t−T)

1 + e2
√

(η+λ)b(t−T)
. (22)

Lemma 2: The expressions for q(t), y(t), t ∈ [0, T] are:

q(t) = A1e
√

ηbt + A2e
−
√

ηbt, (23)

y(t) =−2x(t)q(t)− 2
√

η

b

(
A1e

√
ηbt− A2e

−
√

ηbt
)
+

2a[n]
b

,

(24)

where x(t) is from Eq. (22) and

A1 =
q[n]

√
ηbe−

√
ηbT + a[n]

√
ηbe

√
ηbT +

√
ηbe−

√
ηbT

,

A2 =
q[n]

√
ηbe

√
ηbT − a[n]√

ηbe
√

ηbT +
√

ηbe−
√

ηbT
. (25)

Lemma 3: The expression for z(t), t ∈ [0, T] is:

z(t) = x(t)q2(t)+
σ2

b
ln

[
1 + e2

√
(η+λ)b(t−T)

]
− σ2

√
η + λ

b
t

+
√

η

b

(
A2

1e
2
√

ηbt − A2
2e

−2
√

ηbt
)
− a2[n]

b
t + A3, (26)

where x(t), q(t) are from Eqs. (22)-(23), A1, A2 are defined
in Eq. (25) and A3 is:

A3 = − 2q[n]a[n]
b
(
e
√

ηbT + e−
√

ηbT
) − e

√
ηbT − e−

√
ηbT

e
√

ηbT + e−
√

ηbT

a2[n]
b
√

ηb

+
a2[n]

b
T + σ2

√
η + λ

b
T − σ2

b
ln 2. (27)

One of our main contributions is deriving the closed-form
minimum cost c(t) for any q(t) according to Lemmas 1-3,
which is not available in previous mean field works [29],
[42], [44]. This enables a more subtle characterization of the
workload scheduling when compared with mere numerical
results, and also provides new insights for other mean field
based scheme design. From Eqs. (9) and (13), the minimum
scheduling cost c[n] in time slot n turns out to be:

c[n] = c(0) = x(0)q2(0) + y(0)q(0) + z(0). (28)

Specifically, the cost c[n] is ci[n] of edge server i when
we let the parameters q(0), σ be qi(0), σi, respectively. More
importantly, this explicit cost expression allows us to compute
and to maximize the service utility as we will show in
Section IV, instead of only relying on numerical methods
which are not intuitive and may introduce undesired errors.

Remark: Previous results are attained provided that the
arriving workload ai(t) ∼ N (a[n], σ2

i) has a uniform mean
value a[n], which is commonly adopted in [31] and [41].
Though simple, this model is typical and can guide the design
of optimal workload scheduling in more sophisticated scenar-
ios. For instance, consider that ai(t) ∼ N (ai[n], σ2

i) with
different ai[n] across different servers. Denote a[n] = E[a[n]],
x(t) = E[x(t)] and y(t) = E[y(t)] if removing the subscript i.
Then Eq. (19) will change to dq

dt = −bx(t)q(t)− 1
2by(t)+a[n]

and Eqs. (16)-(18) are specified for each server accordingly,
i.e, the mean field model is still effective. Following a similar
approach, x(t) = x(t) and q(t) will be the same as Eq. (22)
and Eq. (23), respectively. However, each y(t) and z(t)
can only be obtained numerically. As a result, one can not
characterize the explicit cost c(t) regarding to a[n], not to
mention devising the optimal pricing scheme for the operator.
Nonetheless, our evaluations in Section V show that costs of
uniform and heterogeneous arriving workloads have a similar
shape, that is the uniform case with closed-form expressions
can give us insights for more complicated scheduling design.

C. Approximation Error Analysis

Before analyzing the approximation error of the mean field
model, we introduce the concept of ε-equilibrium [42].

Definition 1: Let πi = {si, oi} be the strategy of edge
server i where si, oi are the processing and offloading speeds.
Denote π−i = {s−i, o−i} as the strategies of edge servers
except i. π∗ = {π∗

i , π∗
−i} is called an equilibrium strategy,

if the scheduling cost satisfies:

ci(π∗) ≤ ci

(
{πi, π

∗
−i}

)
, ∀i ∈ M.

A strategy πε is an ε-equilibrium if there is ε ≥ 0 such that:

ci(πε) ≤ ci

(
{πi, π

ε
−i}

)
+ ε, ∀i ∈ M.

In Definition 1, an ε-equilibrium is actually an equilibrium
when ε = 0. Later on, we will demonstrate that the optimal
actions derived in the mean field model is an ε-equilibrium,
and ε → 0 if M → ∞. Based on the mean field approximation,
the deterministic value q(t) is used to represent the average
queued workload qM (t), so that the closed-from cost could be
obtained. Therefore, we need to characterize the accuracy of
this representation. To avoid confusion, we will use superscript
M to denote values acquired through qM (t).

1) Approximation Error of Queue Size: In the original
M -edge server system, the optimal processing and offloading
speeds are sM

i (t) and oM
i (t), which have the expressions when

following the same approach of deriving Eq. (14) as:

sM
i (t) =

2xM (t)qi(t) + yM (t)
2α

,

oM
i (t) =

2xM (t)qi(t) + yM (t)
2(β + γ)

, (29)

where xM (t), yM (t) are the corresponding cost coefficients
similar to Eq. (13). We reiterate that all parameters, like
workload queue, action, coefficient, cost, etc., with super-
script M are obtained from using the average queued
workload qM (t) in the M -edge server system. Besides,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DECENTRALIZED SCHEDULING AND DYNAMIC PRICING FOR EDGE COMPUTING 971

one can not derive explicit expressions for those parame-
ters due to the coupled M cost minimization problems.
According to Eq. (29), the queue dynamics in Eq. (1)
becomes dqi(t) =

(
a[n] − sM

i (t) − oM
i (t)

)
dt + σidWi =(

a[n] − bxM (t)qi(t) − 1
2byM (t)

)
dt + σidWi with b = 1

α +
1

β+γ since ai(t) ∼ N (a[n], σ2
i). Considering the opti-

mal actions in Eq. (14), we can also define dvi(t) =(
a[n] − bx(t)vi(t) − 1

2by(t)
)
dt+σidWi as the queue dynam-

ics derived from q(t) in the mean field model. The following
theorem states the approximation error of the queue size.

Theorem 1: The error between qM (t), qi(t) and q(t), vi(t)
satisfies: supt∈[0,T] E[|qM (t)−q(t)|+|qi(t)−vi(t)|] < ε′, ∀i ∈
M, where ε′ = O

(
1√
M

)
.

Please refer to Appendix B-A in supplementary material for
the proof. This theorem indicates that the error between the
queue size in the mean field model and that in the M -edge
server system is O

(
1√
M

)
, i.e., the system will converge to

the mean field limit characterized by Eqs. (16)-(19).
2) ε-Equilibrium: Based on Theorem 1, we now prove the

ε-equilibrium of the mean field model. The scheduling cost in
Eq. (3) obtained from qM (t) is cM

i [n] = E
[∫ T

0 [α(sM
i (t))2 +

β(oM
i (t))2 +γ(oM

i (t))2 +ηq2
i (t)+λ(qi(t)−qM (t))2]dt

]
with

sM
i (t), oM

i (t) in Eq. (29). For the cost in the mean field model,
we have ci[n] = E

[∫ T
0 [αs2

i (t) + βo2
i (t) + γo2

i (t) + ηv2
i (t) +

λ(vi(t)− q(t))2]dt
]

where si(t), oi(t) are from Eq. (14). One
can expand each term of the two costs, and this shows optimal
actions si(t), oi(t) computed from q(t) satisfy ε-equilibrium.

Theorem 2: The mean field model satisfies ε-equilibrium:∣∣cM
i [n] − ci[n]

∣∣ ≤ ε, with ε = O
(

1√
M

)
.

See Appendix B-B in supplementary material for the proof.
Theorem 2 implies that the minimum cost, incurred by the
optimal processing and offloading speeds deduced from the
mean field approximation, has a small deviation to the mini-
mum cost for the M -edge server system. Therefore, we can
compute the actions and cost in a decentralized manner in the
mean field model, where both queue and cost approximation
errors are only O

(
1√
M

)
. Note that ε → 0 when M → ∞,

and the ε-equilibrium will eventually converge to an exact
equilibrium.

IV. DYNAMIC SERVICE PRICING SCHEME

In the previous section, the minimum cost of workload
scheduling is obtained. Given this cost, we proceed to design a
pricing scheme for the operator to maximize its service utility.
As a uniform price is more preferred in practice [23], the
pricing scheme should determine a price which stays fixed
during each time slot for all servers. Since the queue dynamics
in Eq. (7) is stochastic, the queue state of each edge server is
heterogeneous, so that we need to simplify the complex utility
maximization problem of Eq. (8) into a concise form, which
will only entail a deterministic queue value.

A. Transformation of Utility Maximization

We first calculate the utility using the closed-form cost. Let
q(0) = qi[n], σ = σi in Eq. (28), and the cost of edge server i

is ci[n] = x(0)q2
i [n]+y(0)qi[n]+zi(0) with only zi(0) related

to σ2
i according to Lemma 3. From Eq. (6), the utility is:

ui[n] = p[n]E
[∫ T

0
ai(t)dt

]
− x(0)q2

i [n] − y(0)qi[n] − zi(0)

= Tp[n]a[n]− x(0)q2
i [n] − y(0)qi[n] − zi(0), (30)

where the second equality is because ai(t) ∼ N (a[n], σ2
i)

and E[
∫ T
0 ai(t)dt] = Ta[n]. The queue qi[n] is stochastic and

heterogeneous for different server i due to its random dynam-
ics, and this makes it difficult to directly optimize the long-
term average utility in Eq. (8). Therefore, we transform the
utility maximization into a succinct problem which harnesses
the deterministic queue q[n] to represent the stochastic qi[n].
To simplify notations, we denote m1, m2 as:

m1 =
e
√

ηbT − e−
√

ηbT

√
ηbe

√
ηbT +

√
ηbe−

√
ηbT

,

m2 =
1

e
√

ηbT + e−
√

ηbT
. (31)

1) Deterministic Service Utility: From Eq. (23), the queue
q(t) in the mean field model is deterministic, and satisfies:
q[n] = q(0), q[n + 1] = max[q(T), 0] = q(T) in time slot n.
According to Eq. (25) and using m1, m2 in Eq. (31), we have
a simple form:

q[n + 1] = m1a[n] + 2m2q[n]. (32)

Define a service utility u[n] ! Tp[n]a[n] − x(0)q2[n] −
y(0)q[n] − z(0), where σ2 = σ2 for z(0). Now we transform
the average utility into this deterministic service utility u[n].

Theorem 3: The utility maximization of Eq. (8) is equivalent
to the following problem in the mean field limit, or M → ∞:

max lim
D→∞

1
D

D∑

n=1

u[n]

s.t. lim
D→∞

1
D

D∑

n=1

q[n] < ∞. (33)

See Appendix C-A in supplementary material for the
detailed proof. Theorem 3 enables designing the pricing
scheme based on a concise yet equivalent problem. For the
service utility u[n], we express it in terms of the average
arriving workload a[n] below.

Proposition 1: The expression for the service utility u[n] is:

u[n] = Tp[n]a[n]− xa2[n] − ya[n] − z, (34)

where

x =
T − m1

b
, y =

2q[n]
b

(1 − 2m2),

z = ηm1q
2[n] +

σ2

b
ln

(
1 + e−2

√
(η+λ)bT

)

+σ2

√
η + λ

b
T − σ2

b
ln 2. (35)

Please refer to Appendix C-B in supplementary material
for the proof. On the basis of Eq. (5), the average arriving
workload (workload for brevity) is related to the service price
set by the operator, i.e., a[n] = g(p[n]) where g(·) is a

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

972 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

decreasing and differentiable function. Because the utility u[n]
is formulated pertaining to a[n], we utilize the inverse function
p[n] = g−1(a[n]) ! h(a[n]) to calculate u[n], and h(a[n])
has the same monotonicity property as g(p[n]). Hence, the
service utility in Eq. (34) becomes u[n] = Th(a[n])a[n] −
xa2[n] − ya[n] − z. Originally, the operator will design a
dynamic pricing scheme to maximize its long-term utility.
Since it is more convenient to express u[n] via the workload
a[n] which is altered by the price p[n], deriving the optimal
price can be considered as computing the optimal workload.
In the following, we regard a[n] as the controlled action, and
it has the same effect as setting a uniform price p[n] due to
the mapping p[n] = h(a[n]).

2) Characteristics of Transformed Problem: To optimize
the long-term utility, we actually face a dynamic programming
problem in that the utility u[n] depends on both the action
a[n] and the queue (state) q[n]. However, u[n] is non-positive
definite, and a[n] *= 0 given q[n] = 0. It is impossible
to attain the theoretically optimal utility even by adaptive
dynamic programming like value iteration [32] and policy
iteration [33], because they are computationally expensive and
may not converge due to the characteristics of u[n]. To obtain
a larger long-term utility, we employ Lyapunov optimization.

B. Lyapunov Optimization

According to Proposition 1, we observe that if the queue
q[n] increases, then the utility u[n] will decrease. Therefore,
to optimize the long-term utility, one should both minimize the
queue size and maximize the immediate utility simultaneously,
which can be achieved by Lyapunov optimization.

1) Lyapunov Drift: We utilize q[n] as the Lyapunov func-
tion, and define the Lyapunov drift as the change of the
Lyapunov function from one time slot to the next:

∆(q[n]) = q[n + 1] − q[n]. (36)

Note that we do not apply the quadratic Lyapunov function
1
2q2[n], as used in many previous works [34], [35]. This is
because we can directly calculate the Lyapunov drift, while
previous works aim to derive a bound of the drift aided by
the quadratic form. Based on the Lyapunov drift theorem
(Theorem 4.1 in [35]), one can drive the queue q[n] to a small
value by greedily minimizing the Lyapunov drift ∆(q[n]).
From Eq. (32), we obtain ∆(q[n]) as:

∆(q[n]) = m1a[n] + 2m2q[n] − q[n]. (37)

2) Drift-Minus-Utility: To coordinate queue minimization
and utility maximization, we calculate the drift-minus-utility:

f(a[n]) = ∆(q[n]) − V u[n] = V xa2[n] + (V y + m1)a[n]
−V Th(a[n])a[n] + V z + 2m2q[n] − q[n], (38)

where V is the importance weight on the utility term,
m1, m2 are from Eq. (31) and x, y, z are given in
Eq. (35). In line with the Lyapunov optimization theorem
(Theorem 4.2 in [35]), greedily minimizing the drift-minus-
utility f(a[n]) can strike a tradeoff between the queue
minimization and the utility maximization. Therefore, one
needs to derive the optimal price p∗[n] to minimize f(a[n]),

which is converted to calculating the optimal workload
a∗[n]. Next, we first assume the optimal workload, a∗[n] =
argmina[n] f(a[n]), is already derived to present the results,
and then demonstrate how to compute this a∗[n] in different
circumstances.

3) Queue Stability: The utility maximization of Eq. (8) is
subject to the constraint that each queue qi[n] is stable, which
is transformed into the stability constraint of the deterministic
queue q[n] in Theorem 3. To show that q[n] is stable, we intro-
duce an auxiliary lemma to bound the optimal workload. See
Appendix D-A in supplementary material for the proof.

Lemma 4: From Eq. (35), x > 0 and y ≥ 0. There exists a
finite upper bound C∗ for the optimal workload a∗[n].
The following theorem states the queue stability.

Theorem 4: The queue q[n] is stable and satisfies:

lim
D→∞

1
D

∑D

n=1
q[n] ≤ m1

1 − 2m2
C∗, (39)

where C∗ is the upper bound in Lemma 4.
See Appendix D-B in supplementary material for the proof.

Theorem 4 implies that no edge servers will be overloaded,
and hence load balancing is achieved. In [34], [35], one could
simultaneously maintain the queue stability, and obtain a long-
term utility which has O(1/V) gap to the theoretically optimal
value by minimizing the drift-minus-utility with V being the
importance weight. The O(1/V) asymptotical utility can not
be derived in this paper as u[n] depends on both the action a[n]
and the state q[n], while the utility in [34], [35] is determined
only by the actions. However, minimizing the drift-minus-
utility still ensures a larger long-term utility. By doing so,
one can avoid myopically maximizing the one-slot utility,
which is potentially detrimental to improving the long-term
utility. We will explicitly show this point in the performance
evaluation.

C. Optimal Workload

Remember that finding the optimal price is converted to
finding the optimal workload since the workload is altered by
the service price. According to Eq. (38), we take the first and
second order derivatives of the drift-minus-utility f(a[n]) over
the workload a[n]:

df

da
= 2V xa[n] + V y + m1 − V Th(a[n]) − V Ta[n]

dh

da
,

d2f

da2
= 2V x − 2V T

dh

da
− V Ta[n]

d2h

da2
. (40)

There will exist only one minimizer if f(a[n]) is convex,
or d2f

da2 > 0. From Lemma 4, we know that x > 0, so the
convexity condition is relaxed to:

2
dh

da
+ a[n]

d2h

da2
≤ 0. (41)

Considering that both the workload a[n] and the price p[n] are
non-negative, we combine with exact forms of the decreasing
reverse function h(a[n]) to obtain the optimal workload a∗[n]
as discussed below, where all coefficients are positive.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DECENTRALIZED SCHEDULING AND DYNAMIC PRICING FOR EDGE COMPUTING 973

1) Linear Function: The first example is h(a[n]) =
−Cpa[n] + Cmax. It can be easily verified that f(a[n]) is
convex because the condition in Eq. (41) holds. Let df

da = 0,
we have a∗[n] = V TCmax−(V y+m1)

2V x+2V TCp
.

2) Quadratic Function: Assume h(a[n]) = −Cp1a2[n] −
Cp2a[n] + Cmax, and Eq. (41) is still satisfied. The optimal
workload is derived by setting df

da = 0, and we obtain a∗[n] =

−V x+V TCp2
3V TCp1

+
√

(V x+V TCp2)2+3V TCp1(V TCmax−V y−m1)

3V TCp1
.

3) Logarithm Function: Suppose h(a[n]) = ln Cmax
1+Cpa[n] ,

and hence the condition in Eq. (41) is satisfied. Let df
da =

0, and then we need to numerically solve the equation

2V xa∗[n]+V y +m1 −V T ln Cmax
1+Cpa∗[n] +V T Cpa∗[n]

1+Cpa∗[n] = 0
to derive the optimal workload a∗[n].

4) Exponential Function: Lastly, we consider h(a[n]) =
Cmaxe−Cpa[n]. It can be proved that if x ≥ 1

2TCmaxCpe−3,
then f(a[n]) is convex. Otherwise, one may need to compare
f(a[n]) at different extreme points. Using df

da = 0, we obtain
a∗[n] by numerically solving the equation 2V xa∗[n] + V y +
m1 − V TCmax(e−Cpa∗[n] − Cpe−Cpa∗[n]a∗[n]) = 0.

D. Optimal Workload Analysis

In the previous subsection, we analyze several forms of the
reverse function and derive the optimal workload by minimiz-
ing the drift-minus-utility. Now we discuss the properties of
the derived workload, or the dynamic pricing scheme.

1) Contraction of Queue Dynamics: Based on the utility
u[n] in Eq. (34) and the drift-minus-utility f(a[n]) in Eq. (38),
the optimal workload a∗[n] is determined by the value of
queue q[n]. If q[n] converges to a steady value, then a∗[n]
will converge as well. In this case, the optimal price p∗[n] set
by the operator will not change over time. From Eq. (32), the
queue dynamics follows q[n + 1] = m1a[n] + 2m2q[n] where
m1, m2 are in Eq. (31). We next show that this dynamics
satisfies the contraction mapping condition under the derived
optimal workload, namely q[n] will converge to a steady value.
Please refer to Appendix E-A in supplementary material for
the detailed proof of the following proposition.

Proposition 2: The dynamics of q[n] satisfies the contrac-
tion mapping condition if Eq. (41) holds and m1

T−m1
< 1.

Note that the convexity condition Eq. (41) holds for different
forms of h(a[n]), like linear, quadratic and logarithm func-
tions. Besides, m1

T−m1
< 1 is also a mild condition, because

m1 = e
√

ηbT −e−
√

ηbT
√

ηbe
√

ηbT +
√

ηbe−
√

ηbT , and usually T + m1. Since

the optimal price p∗[n] would approach a fixed value, our
dynamic pricing scheme essentially implies that the service
price changes gradually and will become stable eventually.

2) Utility Vs. Importance Weight: Under the contraction
mapping, we have q[n+1] = 2m2q[n]+m1a∗[n] = q[n], thus
q[n] = m1

1−2m2
a∗[n] for large value of n. As q[n] converges,

the utility u[n] would also reach a steady value. In [34], its
utility will increase if the importance weight V increases, since
more emphasis is on the utility term and the utility is decided
only by the actions in the Lyapunov framework. However,
our utility u[n] depends on both the action a[n] and the state

q[n], which will lead to a different utility behavior in terms
of V . We rewrite the queue q[n] using the optimal workload
a∗[n] and regard a∗[n] as a function of V based on Eq. (40),
to illustrate the utility trend over the importance weight below.

Proposition 3: Suppose the dynamics of q[n] satisfies the
contraction mapping condition and Eq. (41) holds. Let V ∗ =

1
a∗[n]

b +
2ηm2

1a∗[n]

(1−2m2)2

. The steady value of u[n] will increase in V ∈

(0, V ∗) and will decrease in V ∈ (V ∗,∞).
See Appendix E-B in supplementary material for the proof.

From Proposition 3, if we have V = V ∗, then the maximum
service utility is obtained accordingly.

Remark: The distinct behaviors of queue dynamics and util-
ity trend from classical Lyapunov framework is raised by the
fact that the utility maximization is a dynamic programming
problem. Hence, our analysis can also provide a new angle for
handling such problems in alternative future scenarios.

E. Workload Sojourn Time

As stated in Proposition 2, the queue q[n] will reach a steady
value under a broad and mild condition. Subsequently, we are
dedicated to provide the average sojourn time of the queued
workload in the edge computing system, i.e., the delay of
users’ offloading request. Based on Little’s law, the average
sojourn time d satisfies:

a∗[n]d =
1
T

∫ T

0
q(t)dt. (42)

Using the closed-form expression in Eq. (23) and relation
q[n] = m1

1−2m2
a∗[n] when queue is steady, we have:

d =
1
T

(1√
ηb

+
m2

1

1 − 2m2
− 2m2

ηb

)
, (43)

where m1, m2 are defined in Eq. (31). Actually, the average
sojourn time d declines over the congestion parameter η, which
is also verified in Fig. 10 in later performance evaluations.

Knowledge of the sojourn time d helps end users in making
their offloading decisions to edge servers. Specifically, when
running delay-sensitive applications, users will not offload
workloads if the transmission time and sojourn time are larger
than the local processing time, and vice versa. Hence, the oper-
ator can commit the service level agreement for providing edge
computing services with guaranteed delay. Since this paper
mainly studies the workload scheduling from the perspective
of edge servers, how to determine user-centered offloading
decisions will be our future work.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the workload
scheduling and service pricing, especially the mean field
approximation and Lyapunov optimization.

A. Parameter Setting

As described in Section II, each real-world offloading
request can be identified by the task size and required service
time (CPU cycles), which are also denoted as workloads.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

974 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

Fig. 2. Cost coefficients over time t.

Fig. 3. Approximation error of queue size.

When users offload computation to edge servers, a unit compu-
tation workload requires about 2000 CPU cycles with the com-
puting capacity of a server measured by GHz [16]. Besides,
the energy consumption coefficient is 10−26 according to
real measurements [20]. Therefore, for the scheduling cost in
Eq. (3), parameter α should be 10−26×(109×2000)2 = 0.04.
Moreover, β and γ are set to 0.02 and 0.03, respectively, since
unit transmission cost and unit processing cost at the cloud
datacenter are usually smaller. Note that α < β + γ, which
is consistent with the fact that edge servers prefer processing
workloads locally over offloading remotely. The values of η, λ
are set to 0.01, 0.01 accordingly.

The initial queue size qi[1] is randomly sampled in [10, 30],
thus the expected value is q[1] = E[qi[1]] = 20. In line with
the queue size, we consider that the randomness magnitude
σ2

i is uniformly valued in [0, 4] with σ2 = 2 to model an
unbalanced arrival rate ai(t) among edge servers. Finally, let
the slot duration T be 3.

B. Mean Field Approximation

1) Validation of Cost Coefficients: We first validate
the accuracy of our derived quadratic cost coefficients
x(t), y(t), z(t) in Lemmas 1-3. We leverage the tool,
scipy.integrate.odeint in Python, to numerically solve ODEs of
Eqs. (16)-(19). Specifically, we discretize one time slot, i.e.,
duration T = 3, into 60 small timesteps with one stepsize
of 0.05, and plot both theoretical and numerical results in
Fig. 2. One can see that our theoretical derivations are perfectly
matched with the numerical results. Therefore, the correctness
of obtained expressions for x(t), y(t), z(t) is verified.

2) Approximation Error of Queue Size: We compare the
average queued workload qM (t) in Eq. (2) and its approxi-
mation q(t) in Eq. (23) when the number of edge servers M
changes. Considering the stochastic arrival rate ai(t), we first
numerically compute each queue qi(t) subject to the queue

dynamics in Eq. (1), and then obtain the corresponding qM (t).
Varying the value of M , we show the obtained q(t) in the mean
field model and the average queued workload qM (t) in Fig. 3.
When M = 50, the error between q(t) and qM (t) is relatively
large. As M increases to 100, the error becomes smaller. For
M = 200, the error vanishes, and qM (t) converges to q(t).
Therefore, the approximation error decreases as M increases.

3) Minimum Scheduling Cost: Let us discuss the minimum
scheduling cost c[n] expressed in Eq. (28). We show how
c[n] changes with respect to the average arriving workload
a[n] and the randomness magnitude σ2 in Fig. 4. The results
demonstrate that the minimum cost c[n] is expected to increase
over a[n] and σ2. Combining with Lemmas 2 and 3, we know
that c[n] is a quadratic and linear function pertaining to a[n]
and σ2, respectively, which are consistent with results in Fig. 4.

4) Heterogeneous Arriving Workload: Now we exhibit the
workload scheduling under heterogeneous workloads. From
Section III-B, the quadratic coefficient xi(t) and queue q(t)
are the same as those under the uniform arriving workload,
while the terms yi(t) and zi(t) are different. Fig. 5(a) shows
yi(t) and zi(t) corresponding to a server whose arriving rate
ai[n] is different from the average value a[n]. Though the exact
values are distinct, the cost coefficients have similar shapes to
the uniform case in Figs. 2(b)-2(c). This observation also holds
pertaining to the scheduling cost ci[n] over ai[n] in Fig. 5(b),
which is akin to the trend in Fig. 4(a). Thereofre, the uniform
workload model can give us insights for designing decentral-
ized workload scheduling in a more complex scenario, where
we can enjoy the merits of more subtle analysis using closed-
form cost expressions. Considering this, later evaluations are
largely based on the uniform workload model.

C. Lyapunov Optimization

W.l.o.g., we leverage two forms of the reverse function
h(a[n]): 1) linear function h(a[n]) = −2a[n] + 50 which is

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DECENTRALIZED SCHEDULING AND DYNAMIC PRICING FOR EDGE COMPUTING 975

Fig. 4. Trend of minimum scheduling cost.

Fig. 5. Heterogeneous cost coefficients.

concise but representative; 2) logarithm function h(a[n]) =
ln 300

1+a[n] since many demand-price curves are fitted in expo-
nential function, like for smart grid [26] and ride sharing [27]
which can be a potential application of edge computing. Actu-
ally, other reverse functions are also applicable here, as men-
tioned in Section II-C. We will obtain the optimal workload
(price) using these two functions in line with Section IV-C,
and compute the service utility accordingly.

1) Approximation Error of Deterministic Service Utility:
The equivalent problem in Theorem 3 is based on the condition
that M → ∞. As for finite value of M , we first use the
Lyapunov optimization framework to calculate the optimal
workload a∗[n] for the linear and logarithm h(a), respectively,
and then substitute the obtained a∗[n] into the average utility
calculation for the M -edge server system. We run the simula-
tion for six times, and plot the average approximation error of
the deterministic service utility in Fig. 6. One can observe that
the error is very small, and very close to 0 as M increases.
For instance, the errors when M = 200 for both two forms
of h(a[n]) are nearly 0. Therefore, the deterministic service
utility in Eq. (34) is equivalent to the original average utility
in Eq. (8) for large value of M . In addition, one can also
observe that the error variances, which are envelopes padded
with light colors, shrink as M increases. Hence, the variance
fluctuation of the average utility weakens when M is large.

2) Utility Comparison: Next, we compare the results for
our proposed Lyapunov optimization with other approaches
using the equivalent deterministic service utility. We denote the
Lyapunov optimization as OPT, and choose the following three
baseline methods for comparisons to show that minimizing the
drift-minus-utility can achieve a larger long-term utility.

• CON: constant workload. The operator adopts a fixed
price over time slots, so that the average arriving work-
load is also constant. Based on the implemented h(a[n])
functions, the constant workloads are set to 12.5 and
ln 300 for linear and logarithm h(a[n]), respectively.

Fig. 6. Approximation error of deterministic service utility.

Fig. 7. Utility comparison results.

• GR: greedy algorithm. GR greedily maximizes the one-
slot utility without considering the need to push the queue
size to a low level.

• VI: value iteration [32]. The utility maximization of
Eq. (33) is a dynamic programming problem. VI itera-
tively updates the utility u[n] and the action a[n] in each
time slot n.

We consider the whole process runs for 100 time slots in total,
and obtain the utility u[n] of the above four methods in each
time slot. The results for linear and logarithm h(a[n]) are
illustrated in Fig. 7. For both two forms of h(a[n]), OPT can
achieve the highest utility, which is particularly conspicuous
for logarithm h(a[n]) in Fig. 7(b). The reason is that OPT
will simultaneously minimize the queue size and maximize the
immediate utility. As for CON, the utility is small since it is not
adaptive. GR mainly focuses on one-slot maximization of the
utility, so it behaves myopically. In fact, GR often has a higher
utility in the initial few time slots, and then its utility will
decrease and perform worse than OPT. Regarding VI, since
the utility u[n] is non-positive definite, it may not converge to
the optimal result. Therefore, the performance of VI is worse
than OPT, which is obvious for logarithm h(a[n]) in Fig. 7(b).
To sum up, OPT can guarantee a larger long-term utility by
minimizing the drift-minus-utility.

3) Convergence of Queue and Price Dynamics: Under the
contraction mapping, the dynamics of the queue q[n] will
converge to a steady value. As discussed in Section IV-C,
linear and logarithm h(a) satisfy the convexity condition in
Eq. (41). Moreover, since the slot duration T = 3, and then
m1 in Eq. (31) is 1.438, so that m1

T−m1
= 0.921 < 1.

According to Proposition 2, the dynamics of q[n] satisfies
the contraction mapping condition. To show this, we plot the
queue dynamics over 100 time slots for two forms of h(a[n])
in Fig. 8(a). One can see that q[n] quickly converges to a
steady value after a few time slots, and this implies that the
optimal price will also remain steady, which is displayed in
Fig. 8(b).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

976 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

Fig. 8. Queue and price.

Fig. 9. Steady u[n] vs. V .

4) Utility vs. V : Now we show the change of the service
utility u[n] for different values of importance weight V .
If the queue dynamics satisfies the contraction mapping con-
dition, the utility u[n] will approach a steady value as well.
Proposition 3 states that the steady value of u[n] first goes
up and then goes down as V increases. We display this trend
in Fig. 9 for two forms of h(a[n]), and we observe that u[n]
will first increase and then decrease. Therefore, one can set
V to the value of V ∗ in Proposition 3 to get the maximum
utility. From the figure, V ∗ is around 0.7 for linear h(a[n])
and around 0.55 for logarithm h(a[n]).

5) Sojourn Time: The sojourn time d reflects the average
latency of workload scheduling, which is tightly dependent
on the queue length or the congestion parameter η in Eq. (3).
Eq. (43) indicates that the delay will decrease if we put more
weight on the congestion term, as justified in Fig. 10 since d
tends to decline over η.

6) Robust Convergence: Previously, we demonstrate that
the queue q[n] converges to a steady value for linear and
logarithm functions when T = 3, namely the convexity
condition and contraction mapping are satisfied. In fact, they
are only sufficient conditions, and even violated, the queue
may still converge as well. Let T = 2, and then m1 in
Eq. (31) is 1.3, so that m1

T−m1 = 1.857 > 1. The queue
dynamics for both two forms of h(a[n]) is drawn in Fig. 11(a),
which illustrates that the queue still reaches a steady value
even the contraction mapping does not hold. To further verify
that Lyapunov optimization is robust in terms of queue con-
vergence, we exhibit the queue dynamics for the exponential
function h(a[n]) = 20e−0.2a[n], which might not be convex
as x = 0.0311 < 1

2TCmaxCpe−3 = 0.1991 when T = 2.
Fig. 11(b) shows the change of q[n] for the exponential
function, and it indicates that the queue still converges even
both the conditions of contraction mapping and convexity
are not satisfied. In general, convergence of queue q[n] to a
steady value is observed in different scenarios, i.e., Lyapunov
optimization has robust convergence.

7) Robust Utility: At last, we show that our proposed
Lyapunov optimization based pricing scheme, OPT, still has
satisfactory performances even the reverse function h(a[n]) is

Fig. 10. Sojourn time.

Fig. 11. Demonstration of robust convergence.

not a contraction or convex mapping. Specifically, Fig. 12 dis-
plays the utility of OPT and baseline methods (CON, GR, VI)
when T = 2 for linear, logarithm and exponential h(a[n]),
respectively. The results justify that OPT can attain a higher
service utility compared to these benchmarks.

VI. RELATED WORK

In this paper, we study the optimal workload scheduling
and dynamic service pricing in a large-scale edge computing
system through the mean field game. In the following,
we briefly survey the related works.

A. Edge Computing Offloading

In edge computing, great efforts have been devoted to
workload offloading [5], [6]. Chen et al. propose a response
updating method to calculate the equilibrium offloading deci-
sion, where actions are taken by end users instead of edge
servers [15]. On this basis, Zheng et al. exploit the dynamic
computation offloading from the perspective of end users, and
each stage is modeled as a potential game [36]. Li et al. design
a cooperative task placement model in edge computing with
and without task deadlines, where the long-term social cost is
minimized via Lyapunov framework [37]. Besides, a two time-
scale Lyapunov optimization based workload scheduling and
server management scheme is studied [38], yet both timescales
are pertaining to discrete time slots. If considering the coop-
eration between edge servers, distributed edge sampling can
also be incorporated [40]. Load balancing is essential to avoid
overloaded queues [39]. Beraldi et al. study load balancing
in edge computing to reduce the service blocking probability
and the service delay [19]. Especially for the case where
edge servers are geo-distributed, load balancing can maintain
comparable workloads across these servers, and ensure the
fair usage of cloud resource [8]. However, previous works can
not handle the workload offloading efficiently when there are
many servers in a large-scale edge computing system [13].

B. Mean Field Game

Mean field game is a statistical method to deal with
interactions among a large population of agents, which is

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DECENTRALIZED SCHEDULING AND DYNAMIC PRICING FOR EDGE COMPUTING 977

Fig. 12. Demonstration of robust utility.

proposed by Lasry et al. [41] and Huang et al. [42]. As for
edge computing, Banez et al. apply the mean field game to
analyze the computation offloading among multi-access points,
where the running cost is dependent on the expected network
state and offloading control [29]. Furthermore, Kim et al.
use the mean field game to determine the caching strategy
in ultra-dense networks for reducing the long-term cost [44].
Nevertheless, most existing works need to rely on numerical
methods, rather than deriving explicit results, to evaluate the
performance of their formulated mean field models.

C. Service Pricing

Pricing scheme is of paramount importance in terms of
providing service to end users, such as the data plan in
wireless networks [45]. For edge computing, Zhao et al.
model the computation offloading between users and access
points as a stochastic game, where access points will set
prices to maximize their profits and users would devise the
offloading strategies to reduce latency and charged fee [12].
Besides, Liu et al. formulate a Stackelberg game to charac-
terize users’ computation offloading to an edge server, and
further determine the optimal prices for the server to maximize
its revenue [46]. Li et al. propose an online truthful double
auction-based open edge market that facilitates individual
servers to cooperatively provide services while economizing
their valuable resources [47]. Conventional pricing schemes
for edge computing are usually too complicated to be imple-
mented, as a uniform service price is more practical in real-
world applications.

We investigate the workload scheduling and service pricing
for geo-distributed edge computing systems, where load bal-
ancing among many edge servers is considered. Specifically,
we derive a closed-form cost in a decentralized manner based
on the mean field game, and obtain a large long-term utility
through designing a dynamic pricing scheme.

VII. CONCLUSION

In this paper, we study the optimal scheduling and dynamic
pricing for a large-scale edge computing system. We propose a
two-timescale optimization framework to handle actions occur-
ring at different timescales. By applying the mean field game,
we derive the local optimal processing and offloading speeds at
the small timescale for each edge server, and obtain a closed-
form scheduling cost which has O

(
1√
M

)
error with M , the

number of edge servers. Using the explicitly derived cost,
we design a dynamic pricing scheme at the large timescale

based on the Lyapunov optimization framework. Therefore,
we can improve the long-term service utility by minimizing
the drift-minus-utility in each time slot. Finally, we carry out
extensive evaluations to demonstrate the accuracy of our mean
field model, and the superiority of the designed pricing scheme
when compared with the state-of-the-art methods.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[2] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
Proc. IEEE INFOCOM, Apr. 2018, pp. 468–476.

[3] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. Shen, “Toward efficient
content delivery for automated driving services: An edge computing
solution,” IEEE Netw., vol. 32, no. 1, pp. 80–86, Jan./Feb. 2018.

[4] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[5] Y. Jararweh, A. Doulat, O. Al-Qudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, “The future of mobile cloud computing: Integrating
cloudlets and mobile edge computing,” in Proc. IEEE ICT, May 2016,
pp. 1–5.

[6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[7] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and
B. Ottenwälder, “Incremental deployment and migration of geo-
distributed situation awareness applications in the fog,” in Proc. ACM
DEBS, 2016, pp. 258–269.

[8] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4377–4387, Jun. 2019.

[9] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, and H. Zhang, “Incentive mech-
anism for computation offloading using edge computing: A Stackelberg
game approach,” Comput. Netw., vol. 129, pp. 399–409, Dec. 2017.

[10] D. Zhang et al., “Near-optimal and truthful online auction for computa-
tion offloading in green edge-computing systems,” IEEE Trans. Mobile
Comput., vol. 19, no. 4, pp. 880–893, Apr. 2020.

[11] Q. Wang, S. Guo, J. Liu, C. Pan, and L. Yang, “Profit maximization
incentive mechanism for resource providers in mobile edge computing,”
IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 138–149, Feb. 2022.

[12] Z. Zhao, W. Zhou, D. Deng, J. Xia, and L. Fan, “Intelligent mobile
edge computing with pricing in Internet of Things,” IEEE Access, vol. 8,
pp. 37727–37735, 2020.

[13] L. Tawalbeh, Y. Jararweh, and F. Dosari, “Large scale cloudlets deploy-
ment for efficient mobile cloud computing,” J. Netw., vol. 10, no. 1,
pp. 70–76, 2015.

[14] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 85–97, Feb. 2019.

[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[16] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted
D2D collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 3887–3901, Dec. 2016.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

978 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

[17] Z. Zheng and N. B. Shroff, “Online multi-resource allocation for
deadline sensitive jobs with partial values in the cloud,” in Proc. IEEE
INFOCOM, Apr. 2016, pp. 1–9.

[18] H. Gao, W. Li, R. A. Banez, Z. Han, and H. V. Poor, “Mean field
evolutionary dynamics in dense-user multi-access edge computing sys-
tems,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7825–7835,
Dec. 2020.

[19] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing
scheme for edge computing resources,” in Proc. IEEE FMEC, May 2017,
pp. 94–100.

[20] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[21] V. Gupta, A. F. Dana, J. P. Hespanha, R. M. Murray, and B. Hassibi,
“Data transmission over networks for estimation and control,” IEEE
Trans. Autom. Control, vol. 54, no. 8, pp. 1807–1819, Aug. 2009.

[22] M. Larrañaga, U. Ayesta, and I. M. Verloop, “Index policies for a multi-
class queue with convex holding cost and abandonments,” in Proc. ACM
SIGMETRICS, 2014, pp. 125–137.

[23] L. Zhang, W. Wu, and D. Wang, “Time dependent pricing in wireless
data networks: Flat-rate vs. usage-based schemes,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 700–708.

[24] Z. Xiong, J. Kang, D. Niyato, P. Wang, and H. V. Poor, “Cloud/edge
computing service management in blockchain networks: Multi-leader
multi-follower game-based ADMM for pricing,” IEEE Trans. Serv.
Comput., vol. 13, no. 2, pp. 356–367, Apr. 2020.

[25] D. T. Nguyen, L. B. Le, and V. Bhargava, “Price-based resource
allocation for edge computing: A market equilibrium approach,” IEEE
Trans. Cloud Comput., vol. 9, no. 1, pp. 302–317, Jan./Mar. 2021.

[26] R. Yu, W. Yang, and S. Rahardja, “A statistical demand-price model
with its application in optimal real-time price,” IEEE Trans. Smart Grid,
vol. 3, no. 4, pp. 1734–1742, Dec. 2012.

[27] Z. Fang, L. Huang, and A. Wierman, “Prices and subsidies in the sharing
economy,” in Proc. ACM WWW, 2017, pp. 53–62.

[28] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, and V. C. M. Leung,
“Energy-efficient workload allocation and computation resource con-
figuration in distributed cloud/edge computing systems with stochastic
workloads,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1118–1132,
Jun. 2020.

[29] R. A. Banez et al., “Mean-field-type game-based computation offload-
ing in multi-access edge computing networks,” IEEE Trans. Wireless
Commun., vol. 19, no. 12, pp. 8366–8381, Dec. 2020.

[30] E. Todorov, “Optimal control theory,” in Bayesian Brain: Probabilistic
Approaches to Neural Coding. Cambridge, MA, USA: MIT Press, 2006,
pp. 269–298.

[31] Z. Wang, J. Ye, and J. C. S. Lui, “An online mean field approach
for hybrid edge server provision,” in Proc. ACM MobiHoc, 2021,
pp. 131–140.

[32] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time non-
linear HJB solution using approximate dynamic programming: Conver-
gence proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4,
pp. 943–949, Jun. 2008.

[33] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[34] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment in
crowdsensing with location awareness and location diversity,” in Proc.
IEEE INFOCOM, Apr. 2018, pp. 2420–2428.

[35] M. J. Neely, Stochastic Network Optimization With Application
to Communication and Queueing Systems. San Rafael, CA, USA:
Morgan & Claypool, 2010.

[36] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,”
IEEE Trans. Mobile Comput., vol. 18, no. 4, pp. 771–786, Apr. 2018.

[37] Y. Li et al., “Cooperative service placement and scheduling in edge
clouds: A deadline-driven approach,” IEEE Trans. Mobile Comput.,
vol. 21, no. 10, pp. 3519–3535, Oct. 2022.

[38] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
centers power reduction: A two time scale approach for delay tolerant
workloads,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 1421–1429.

[39] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 503–514.

[40] L. Jia, Q.-S. Hua, H. Fan, Q. Wang, and H. Jin, “Efficient distributed
algorithms for holistic aggregation functions on random regular graphs,”
Sci. China Inf. Sci., vol. 65, no. 5, pp. 1–19, May 2022.

[41] J.-M. Lasry and P.-L. Lions, “Mean field games,” Jpn. J. Math., vol. 2,
no. 1, pp. 229–260, 2007.

[42] M. Huang, R. P. Malhamé, and P. E. Caines, “Large population stochastic
dynamic games: Closed-loop McKean–Vlasov systems and the Nash
certainty equivalence principle,” Commun. Inf. Syst., vol. 6, no. 3,
pp. 221–252, 2006.

[43] S. Benachour, B. Roynette, D. Talay, and P. Vallois, “Nonlinear self-
stabilizing processes—I existence, invariant probability, propagation
of chaos,” Stochastic Processes Appl., vol. 75, no. 2, pp. 173–201,
Jul. 1998.

[44] H. Kim, J. Park, M. Bennis, S.-L. Kim, and M. Debbah, “Mean-field
game theoretic edge caching in ultra-dense networks,” IEEE Trans. Veh.
Technol., vol. 69, no. 1, pp. 935–947, Jan. 2020.

[45] L. Zhang, W. Wu, and D. Wang, “Sponsored data plan: A two-class
service model in wireless data networks,” in Proc. ACM SIGMETRICS,
Jun. 2015, pp. 85–96.

[46] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Commun. Lett., vol. 7, no. 3, pp. 420–423, Jun. 2018.

[47] Y. Li, H. C. Ng, L. Zhang, and B. Li, “Online cooperative resource
allocation at the edge: A privacy-preserving approach,” in Proc. IEEE
ICNP, Oct. 2020, pp. 1–11.

Xiong Wang (Member, IEEE) received the B.E.
degree in electronic information engineering from
the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2014, and the Ph.D.
degree in electronic engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2019.
He was a Post-Doctoral Fellow at the Department
of Computer Science and Engineering, The Chi-
nese University of Hong Kong, Hong Kong, China,
from 2019 to 2021. He is currently an Associate
Professor with the School of Computer Science and

Technology, Huazhong University of Science and Technology, Wuhan, China.
His research interests include distributed machine learning systems, federated
learning, network flow control, mean field analysis, and cloud/edge computing.

Jiancheng Ye (Member, IEEE) received the B.E.
degree in network engineering from Sun Yat-sen
University, Guangzhou, China, in 2008, the M.Phil.
degree in computer science and engineering from
The Hong Kong University of Science and Technol-
ogy, Hong Kong, in 2011, and the Ph.D. degree in
computer networking from The University of Hong
Kong, Hong Kong, in 2018. He was a Software
Engineer with Harmonic Inc., from 2011 to 2014,
and a Post-Doctoral Fellow at The University of
Hong Kong, from 2018 to 2019. He is currently a

Researcher with the Network Technology Laboratory, Huawei, Hong Kong.
His research interests include congestion control, queue management, opti-
mization of computer networks, edge computing, and online learning. He is
a member of ACM.

John C.S. Lui (Fellow, IEEE) received the Ph.D.
degree in computer science from the University of
California at Los Angeles. He is currently the Choh-
Ming Li Chair Professor with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong. His current research
interests include machine learning, online learning
(e.g., multi-armed bandit, reinforcement learning),
network Science, future internet architectures and
protocols, network economics, network/system secu-
rity, large scale storage systems. He is an Elected

Member of the IFIP WG 7.3, a Fellow of ACM, a Senior Research Fellow
of the Croucher Foundation, and was the Chair of the ACM SIGMETRICS
from 2011 to 2015. He received various departmental teaching awards and the
CUHK Vice-Chancellor’s Exemplary Teaching Award. He was a co-recipient
of the Best Paper Award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP
NOMS 2006, SIMPLEX 2013, and ACM RecSys 2017.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:02:28 UTC from IEEE Xplore. Restrictions apply.

