
506 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

eBA: Efficient Bandwidth Guarantee Under Traffic
Variability in Datacenters
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Abstract— Datacenter networks suffer unpredictable
performance due to a lack of application level bandwidth
guarantees. A lot of attention has been drawn to solve this
problem such as how to provide bandwidth guarantees for
virtualized machines (VMs), proportional bandwidth share
among tenants, and high network utilization under peak traffic.
However, existing solutions fail to cope with highly dynamic
traffic in datacenter networks. In this paper, we propose eBA, an
efficient solution to bandwidth allocation that provides end-to-
end bandwidth guarantee for VMs under large numbers of short
flows and massive bursty traffic in datacenters. eBA leverages
a novel distributed VM-to-VM rate control algorithm based
on the logistic model under the control-theoretic framework.
eBA’s implementation requires no changes to hardware or
applications and can be deployed in standard protocol stack.
The theoretical analysis and the experimental results show that
eBA not only guarantees the bandwidth for VMs, but also
provides fast convergence to efficiency and fairness, as well as
smooth response to bursty traffic.

Index Terms— IaaS datacenter network, traffic variability,
bandwidth allocation, rate control, efficiency and
fairness.

I. INTRODUCTION

PUBLIC cloud (e.g., [1]) has been increasingly popular
since it provides economical resources for deploying

today’s business in a wide area. Using a simple pay-as-you-
go charging model, cloud providers are able to lease the
resources to different cloud tenants in the form of Virtualized
Machines (VMs), with isolated performance on CPU and
memory. However, to the best of our knowledge, current
datacenters do not offer bandwidth guarantee for tenants.
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The network performance between two VMs can fluctuate
significantly due to the interference of network intensive appli-
cations on other VMs [2]–[4]. This unpredictable performance
leads to uncertainty in execution times of jobs, which increases
the risk of revenue loss to tenants. As a result, providing
performance guarantee for intra-datacenter communication
has received significant interest in the networking research
community. There is a general consensus among researchers
about the need for basic bandwidth allocation require-
ments [5], such as bandwidth guarantee for VMs, proportion-
ally sharing bandwidth resource among tenants and a high
utilization of network resources.

However, previous measurement works (e.g., [6], [7]) reveal
the characteristics of datacenter traffic. First, there are large
numbers of short flows in datacenter networks, among which
about 80% of flows are less than 10KB in size and the
average inter-arrival time can be as low as about 15ms at
Top-of-Rack switches [7]. Second, short congestion periods
are common across many links. Up to 86% of links observe
short-lived congestions during one day [6]. Third, the data-
center traffic has significant variability. The average change in
traffic over 10s is about 82% [6]. These unique characteristics
make datacenter traffic remarkably different from any other
network traffic. Hence, a practical bandwidth allocation should
not only achieve the basic requirements, but also dynamically
adapt to the traffic patterns in datacenters. Specifically, we
consider the following dynamic requirements:

• Handling of large numbers of short flows: Short flows
create bursty traffic in the network, which causes interfer-
ences to the throughput of long-lived TCP flows. As short
flows are frequently generated, such traffic bursts may
make other flows unstable and reduce the link utilization.
The allocation policy should try to avoid sharp changes
in throughput even at the presence of these short flows.

• Smooth adaption in short congestion periods: The alloca-
tion should change smoothly when congestions occur. If
the rate-limit decreases the flows’ bandwidth too sharply
during congestions, the underlying TCP flows will fluc-
tuate and the network performance will drop.

• Fast convergence on bandwidth allocation: The conver-
gence of allocation process should be as fast as possible
to keep pace with the significant variabilities in traffic.
Otherwise, the allocation process cannot converge to the
result that satisfies the basic requirements.

However, designing a bandwidth allocation algorithm to
handle the dynamic nature of datacenter traffic is challenging.
Fig. 1 shows the three key tasks to achieve efficient bandwidth
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Fig. 1. Efficient bandwidth guarantee requires a bandwidth allocation model,
a VM placement algorithm, and a rate control algorithm. eBA uses explicit
bandwidth information of physical links to enforce accurate rate control for
traffic variability in datacenter networks.

guarantee [8]: (i) a bandwidth allocation model to specify
the tenants’ bandwidth requirements (e.g., hose model [9],
Tenant Application Graph [8]), (ii) a VM placement algorithm
to place the VMs on servers which can meet the bandwidth
requirements in the model (e.g., Oktpus [9]), and (iii) a rate
control algorithm to dynamically allocate the bandwidth
to achieve both minimum bandwidth guarantee and work-
conserving (e.g., Seawall [10]). Previous work on rate control
is either static, or based on TCP-like rate control, which
deploys multiplicative decrease and makes the throughputs of
VMs fluctuating. If there are large numbers of short flows
or congestions, the rate control will become unstable and the
network utilization may decrease sharply, thus making the
bandwidth allocation hard to adapt to the highly variable traffic
in datacenters. For example, [9] and [10] use static or time-
varying reservation for bandwidth guarantees. They cannot
achieve high utilization due to traffic variability in datacenters.
References [10], [12], and [13] achieve work-conserving by
using TCP-like rate control for VMs. The drawback is that
the rate-limit fluctuates when congestions occur, leading to
a significant decrease of bandwidth utilization under highly
dynamic traffic.

To meet both basic and dynamic requirements of cloud
applications, we design eBA, an efficient VM Bandwidth
Allocation system capable of handling highly dynamic traffic
in datacenters. eBA provides VM-to-VM bandwidth guarantee
by shaping traffic at the VM-level. Unlike TCP-like algo-
rithms, eBA uses explicit bandwidth information of physical
links to enforce accurate rate control for traffic between VMs,
by taking advantage of the low-latency round trip time in
datacenters. Such design enables a stable bandwidth allocation,
and avoids the performance degradation caused by frequent
fluctuations in network throughputs. eBA’s rate control func-
tion is built upon the Logistic model, which has attractive
properties such as fast convergence speed and smooth change
rate. In our evaluation, it shows good adaptability to traffic
variabilities caused by large number of short flows.

In summary, the contributions of this paper are as follows:
• By considering the characteristics of datacenter network

traffic, we present three dynamic requirements of design-
ing an efficient bandwidth allocation algorithm in data-
centers.

• We design a distributed rate control algorithm for traffic
between VMs based on the Logistic model, and reveal

Fig. 2. System model: use hose model for bandwidth requirements of VMs,
and allocate bandwidth for VM-pairs on each link based on the requirements.
(a) Hose model. (b) Bandwidth allocation model.

various important properties for this algorithm under the
control-theoretic framework, for both the basic require-
ments and the dynamic requirements.

• We propose traffic-aware adaptation mechanisms to fur-
ther improve the efficiency and practicability of the
logistic-based rate control, and present the design and
implementation of eBA at the network layer.

• With experiments and trace-driven simulations, we show
that the algorithm not only achieves bandwidth guaran-
tees and work-conserving bandwidth allocations, but also
adapts to the highly variable traffic in datacenters.

The rest of this paper is organized as follows. Sec. II
presents the datacenter network model and the design of rate
control functions. In Sec. III, we analyze the model in terms of
stability, rate of convergence, and steady state characteristics.
A bandwidth allocation algorithm is proposed in Sec. IV.
Complementary to our preliminary work [14], we present the
design of eBA and develop mechanisms for the algorithm
to adapt to different traffic patterns in Sec. V and Sec. VI,
respectively. Sec. VII evaluates eBA. We discuss related work
in Sec. VIII, and conclude in Sec. IX.

II. MODEL AND DESIGN

A. Datacenter Network Model

In this paper, we focus on how to allocate the bandwidth
to achieve work-conserving bandwidth guarantee under traffic
variability in datacenter. Note that work-conserving in network
means that if a link is the bottleneck, this link should be
fully utilized. We use existing hose model [5] to describe the
bandwidth guarantee requirements of VMs, and assume that
VM placement is accomplished through an existing approach.

Datacenter Network: We begin by introducing the datacen-
ter network model. We consider a virtualized datacenter, where
applications are running in VMs. Let K = {1, 2, . . . , K}
be the set of K VMs in the datacenter. Since we aim at
guaranteeing bandwidth for applications at a VM-level, all
the traffic between a pair of VMs is viewed as a VM-flow.
The active VM-flows in datacenter networks constitute a
subset of directed VM-pairs, thus N ⊆ {ix→y | x, y ∈ K}
where VM-flow i is from VM x to y. We number them in
order, N = {1, 2, . . . , N}, and denote the rate of VM-pair i at
time t as vi(t), i ∈ N. The nodes (servers and switches) are
connected by physical links and we use M = {1, 2, . . . , M}
to denote the set of M links across the datacenter network.
Let Cl be the bandwidth of link l, l ∈ M.

Bandwidth Requirements of VMs: As shown in Fig. 2(a),
the hose model, in which all VMs are connected by a
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non-blocking switch with dedicated links, specifies the band-
width requirements of VMs. We use throughput B and weight
w for each VM to present the requirements of minimum
bandwidth guarantee and proportional bandwidth sharing,
respectively. Both B and w are given when a VM is created
in the datacenter. Consequently, the cloud operator should
guarantee the minimum bandwidth of VMs when there is
unsatisfied traffic demand, and achieve a proportional sharing
based on their weights when the demands exceed B.

Bandwidth Allocation Model: However, datacenter topol-
ogy, which in most current datacenters is like a multi-root
tree (e.g., [15]), is far more complicated than the hose model.
The bandwidth allocation model, which represents the band-
width allocation on physical links, should consider the fact
that the VM-to-VM traffic goes through a number of physical
links, and the rate of traffic depends on the congested one.
The uncertainty of the congested link forces us to allocate the
bandwidth according to each link along a VM-to-VM path, as
shown in Fig. 2(b).

We first transform the bandwidth requirements of VMs
to VM-flow performance metrics. Let Pl denote the set of
VM-flows across link l, ∀l ∈ M, and Li denote the set of links
passed by VM-flow i, ∀i ∈ N. The guarantees and weights
of VMs can be partitioned into VM-flows’ guarantees and
weights. For VM-flow i (from VM x to VM y), suppose Vout

x

is the set of VMs receiving data from x, and Vin
y is the set of

VMs sending data to y. The weight of flow i is expressed as

wi =
wx

|Vout
x | +

wy

|Vin
y | , (1)

where |Vout
x |(|Vin

x |) is the number of VMs in Vout
x (Vin

x ). This
way, the shared bandwidth of a cloud tenant, which is the total
bandwidth of its rented VMs, will be proportional to the total
weights of its VMs (for details, we refer the readers to our
previous work [16]).

The bandwidth guarantee of VM-flow i can be obtained
by partitioning x’s egress bandwidth or y’s ingress bandwidth
based on their weights [17], thus

Bi = min{Bx
wy∑

z∈Vout
x

wz
, By

wx∑
z∈Vin

y
wz

}, (2)

where
∑

z∈Vout
x

wz is the total weight of VMs receiving data
from x, and

∑
z∈Vin

y
wz is the total weight of VMs sending

data to y. The rate of a VM-flow is limited by the congested
VM (either the source VM or the destination VM), hence we
choose the smaller one between the source and destination
bandwidth in case that the total bandwidth guarantee exceeds
the link capacity and causes guarantee failure.

B. Logistic Model for Objectives

Considering the dynamic nature of datacenter networks and
the shortcomings of previous solutions, our intuition is to use
a smooth but fast-growing function as the rate, with gradual
change rate at the beginning and around the equilibrium.
This is exactly the situation in ecology where the dynamics of
population x(t) is modeled by the Logistic model [18] as:

ẋ(t) = rx(t)(1 − x(t)
C

). (3)

Fig. 3. Key mechanisms and benefits of the proposed datacenter rate control
via the Logistic model.

Fig. 4. eBA uses explicit bandwidth information of links to control the rate
of VM-flows at the source VM: (i) the switch maintains the status of link
bandwidth using a rate factor (rl), (ii) the receiver feeds back the rate factor
along a VM-flow’s path to the sender, and (iii) the sender controls the rate of
VM-flows (vi) based on this rate factor.

r is the intrinsic rate of increase and C is the resource capacity
denoted by the number of organisms. Note that the growth of
population is proportion to the population itself, and has an
inverse correlation to the resources.

As shown in Fig. 3, a Logistic-like rate controller can benefit
the datacenter network from the following aspects: (i) The
rates of VM-flows can be controlled according to the available
bandwidth, and maintain at the equilibrium (maximum value)
with no fluctuation. It can avoid severe decreases when con-
gestions occur. (ii) The rate has an exponential convergence
speed, which can quickly adapt to the highly variable traffic
demands in datacenters. (iii) With a slow start speed, the bursty
traffic caused by massive short flows can be flattened, and
traffic fluctuation on bottleneck links can be reduced.

C. Design of Rate Allocation Functions

However, the Logistical model cannot be directly applied
to VM rate control, since it has a static upper bound (i.e., C)
while we need dynamic rate limits for VM-flows. To address
this challenge, eBA uses the explicit bandwidth information
of physical links to enable bandwidth-aware rate control at
source VM. As shown in Fig. 4, the design should consist
of two aspects: (i) a link bandwidth function on the switch
to calculate the link bandwidth that can be used by each
VM-flow, and (ii) a rate control function on the source VM
to update the rates of VM-flows based on the link bandwidth.
The receiver can feed back the bandwidth information along
a VM-flow’s path to the source VM.

Link Bandwidth Function: We first define a rate factor for
each link, whose differential is:

drl(t)
dt

= βrl(t)
(

1 −
∑

i∈Pl
vi(t)

Cl

)
, (4)

where
∑

i∈Pl
vi(t) represents the total throughput on link

l, rl(t) ∈ [0, Cl].
Note that the rate factor increases if there is any available

bandwidth, decreases when the allocated bandwidth exceeds
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TABLE I

COMMONLY USED NOTATIONS IN THIS PAPER

the link capacity Cl, and becomes stable when the link is fully
utilized. Hence, we can use the rate factor rl(t) to control the
rate of VM-flow i at the source VM. This way, the rate factor
rl(t) of a fully utilized link can be regarded as the maximum
shared bandwidth that can be used by each VM-flow passing
through this link. We choose the minimum rate factor along a
VM-flow’s path, since the rate of the VM-flow is limited by
the most congested link, i.e., r̃i(t) = wi minl∈Li{rl(t)}.

Rate Control Function: We can express the differential of
VM-flow’s rate vi(t) as:

dvi(t)
dt

= αvi(t) (ln r̃i(t) − ln vi(t)) . (5)

We multiply the rate factor with the corresponding weight
wi, which ensures the objective rate of each VM-flow is in
proportional with the weight, so as to achieve proportional
bandwidth share among VMs. The objective rate of a VM-flow
is the bandwidth resource we should allocate to this VM-flow
when the rates of all VM-flows get stable.

Note that Eq. (5) is derived by taking the logarithm
of the original 1 − x

C in the Logistic model. The reason
is that we can quickly adapt the rate of VM-flow to the
received rate factor within O(log log n) time (as we will prove
in Sec. III-C), thereby improving the convergence speed.

Notations are summarized in Table I. The rate control model
in datacenter networks can be summarized as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dvi(t)
dt

= αvi(t) (ln r̃i(t) − ln vi(t)) , ∀i ∈ N
r̃i(t) = wi min{rl(t) | l ∈ Li}
drl(t)

dt
= βrl(t)

(
1 −

∑
i∈Pl

vi(t)
Cl

)
, ∀l ∈ M.

(6)

Remark: Note that vi(t) and rl(t) are coupled and form a
feedback system. The rate factor is limited by the physical
bandwidth and controlled by the throughput of VM-flows.
The rate of each VM-flow is limited and controlled by the rate
factor. Depending on the interaction between vi(t) and rl(t),
the system will converge to an equilibrium where the band-
width is fully utilized. The convergence process corresponds
to the population dynamic of the Logistic model.

III. ANALYSIS VIA CONTROL-THEORETIC FRAMEWORK

In this section, we analyze the rate control model via the
control-theoretic framework. The analysis assumes that the
topology and connections between VMs remain unchanged.
We will provide an algorithm to handle the changes of
connections in Sec. V-B.

A. Stability of Equilibrium

Since the differential equations in Eq.(6) form a nonlinear
system, we use the Lyapunov stability theory to prove its
stability. For the nonzero equilibrium of the system, let M′ ⊆
M be the set of bottleneck links. We have:

Theorem 1: For vi(t), rl(t) ∈ (0,∞], where i ∈ N, l ∈ M′,
the system formulated by Eq. (6) is locally asymptotically
stable irrespective of capacities of bottleneck links and com-
munication pattern of VMs.

Proof: We begin the proof with substitutions. Let ϕi(t) =
ln vi(t) and φl(t) = ln rl(t), then Eq. (6) can be derived as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dϕi(t)
dt

= α(φ̃i(t) − ϕi(t)),

φ̃i(t) = ln wi + min{φl(t) | l ∈ Li},
dφl(t)

dt
= β

(
1 −

∑
i∈Pl

exp{ϕi(t)}
Cl

)
.

(7)

Let fl(ϕi(t)) denote the function of ϕi(t), i ∈ Pl, i.e.,
dφl(t)

dt = βfl(ϕi(t)). Note that fl(ϕi(t)) is continuous and
integrable. We define a positive function Fl =

∫ −fl(ϕi(t))
0 xdx

in the neighborhood of the equilibrium. Then we have ∂Fl
∂ϕi

=
−fl(ϕi(t)). To apply the Lyapunov stability theory, we first
construct a positive function for all VM-flows (i ∈ N) and all
bottleneck links (l ∈ M′):

V (ϕi(t), φl(t)) = α
∑

i∈N

1
2

(
φ̃i(t)−ϕi(t)

)2
+β

∑

l∈M′

Fl(ϕi(t)).

For those links that are not bottlenecked, since their band-
width are not fully utilized and the derivative of rl is above 0,
the rate factor will continuously increase even when the
rates of all VM-flows get stable. However, as the rate of
VM-flows are limited by the bottleneck links, these under-
utilized links or non-convergent rate factors will not impact
the rate of VM-flows. Hence, the bandwidth allocation can
converge irrespective of non-bottleneck links.

We have the partial differential of V on ϕi(t) and φl(t).

∂V

∂ϕi
= −α(φ̃i(t) − ϕi(t)) − β

∑

l∈L∗
i

fl(ϕi(t)),

∂V

∂φl
= α

∑

i∈P∗
l

(φ̃i(t) − ϕi(t)),

where P ∗
l ⊆ Pl is the set of VM-flows bottlenecked on link l

( φ̃i(t) = ln wi + φ̃l(t)), and L∗
i ⊆ Li is the set of bottleneck

links passed by VM-flow i (l ∈ Li ∩M′). Then we can derive
the differential of V with respect to time variable t as (refer
to Appendix A of supplementary materials for derivation):

dV

dt
= −

∑

i∈N
α2(φ̃i(t) − ϕi(t))2 ≤ 0.

Note that ϕ̇i(t) = φ̇i(t) = 0 is the equilibrium of the system
in Eq. (7). The function V is positive and the differential of V
is negative except for the equilibrium. Based on Lyapunov’s
second method for stability [19], function V is a Lyapunov-
candidate-function of the system and the equilibrium is proven
to be locally asymptotically stable.
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Insight: For VM-flows with given initial rates (> 0), they
will converge to an equilibrium under the control of our model.
The convergence depends on neither the link bandwidth in
datacenters, nor the placement and communication patterns
of VMs. The rate control for each VM-flow is completely
independent, and can easily be scaled up via a distributed
implementation. The following discussion is based on the fact
that the system is asymptotically stable.

B. Achieving Efficiency and Fairness

We first present the definition of max-min fairness in the
context of VM bandwidth sharing. The bandwidth allocation
is called max-min fairness if the allocation is feasible, and for
each VM-flow we cannot increase its rate without decreasing
the rates of other VM-flows whose rates are equal to or less
than this flow across its bottleneck link [20]. Note that max-
min fairness indicates that the bandwidth allocation is also
work-conserving.

Theorem 2: In a multiple-bottleneck topology where N
VM-flows share M links, if there exists a unique equilib-
rium, then the rates of VM-flows allocated by the algorithm
in Eq. (6) achieve the weighted max-min fairness. (Refer to
Appendix B of supplementary materials for the proof.)

Insight: Our model can fully allocate the bandwidth of
a bottleneck link to the VM-flows across it. This allocation
result is a proportional sharing among VM-flows according
to their weights. It indicates that the model meets the static
requirements of work-conserving and network proportional-
ity [5] in datacenter networks. For bandwidth guarantee, we
will introduce a threshold based method in Sec. IV.

C. Rate of Convergence

Convergence to Efficiency: We first propose a function to
quantify the network utilization.

Definition 1: Given a constant λ ∈ (0, 1], when n
VM-flows are sharing a single bottleneck link l, the resource
allocation is called λ efficiency if there exists time Tλ such
that for t > Tλ

h(t) =
∑n

i=1 vi(t)
Cl

≥ λ. (8)

Let t = 0 be the start time where vi(0) = v0 ≪ Cl (v0 is
much less than Cl). The minimum Tλ is called the time of
convergence to efficiency, thus h(Tλ) = λ.

The efficiency definition describes the utilization of the
congested link when the system converges to the equilibrium.
To qualify the time of convergence to efficiency, we consider
a scenario where n homogeneous VM-flows are sharing the
same bottleneck link with Cl capacity.

Proposition 1: Given n VM-flows across the same bottle-
neck link, the time of convergence to λ efficiency satisfies:

Tλ <
1
α

ln
ln (nv0/Cl)

ln λ
+

1
β

ln
(

(
Cl

nv0
− 1)

λ

1 − λ

)
.

Refer to Appendix C of supplementary materials for the proof.

Convergence to Fairness: We start with defining a fairness
function.

Definition 2: Given a constant ρ ∈ (0, 1], when n
VM-flows are sharing a single bottleneck l, the resource
allocation is called ρ fairness if there exists time Tρ such that
for t > Tρ

g(t) =
xj(t)
xk(t)

≥ ρ, (9)

where xj(t) = vj(t)/wj , j ∈ argmini∈Pl vi(t) and xk(t) =
vk(t)/wk(t), k ∈ arg maxi∈Pl vi(t). g(t) is the ratio of the
minimum normalized rate to the maximum normalized rate.
Let t = 0 be the start time where vi(0) = Cl/n, and
the minimum value Tρ is called the time of convergence to
fairness, thus g(Tρ) = ρ.

The fairness definition describes the gap between the max-
imum and minimum normalized rates. To obtain the time
of convergence to fairness, we assume that the rates of n
homogeneous VM-flows have reached the equilibrium at the
shared bottleneck with Cl capacity before another VM-flow
vj joins in.

Proposition 2: Given n VM-flows across the same bottle-
neck link at a stable state, the time of convergence to ρ fairness
with a new VM-flow satisfies the following equation

Tρ =
1
α

ln
ln (nv0/Cl)

ln ρ
.

Refer to Appendix D of supplementary materials for the proof.
Insight: Definition 1 and 2 correspond to two common

scenarios in datacenters: the utilization of a link suddenly
peaks with the arrival of many flows, and a highly utilized
link becomes congested as a new flow joins in. The burstiness
of traffic and the short inter-arrival time of flows (average at
15ms [6]) require swift response of the rate control. Our model
has O(log log n) convergence time on the accuracy factors λ
and ρ, for both convergences to efficiency and fairness. Hence,
it is suitable for datacenter traffic.

D. Steady State Characteristics

The performance of the system in the neighborhood of
steady state is characterized in this section. In the control
theory, a nonlinear system can be considered linear about the
equilibrium for small changes ∆v and ∆r [21]. By using the
state space approach ([21, Sec. 2.3]), we can obtain a linear
approximation of the system in Eq. (6), which can be further
analyzed by Laplace transform.

Let v(t) denote the rate vector of VM-flows, thus v(t) =
[v1(t), v2(t), . . . , vn(t)], and r(t) be the rate factor of the
bottleneck link. Based on Eq. (6), we define Fi(v, r)
(i = 1, 2, . . . , n) and H(v, r) as the functions of v(t) and r(t):

Fi(v, r) = αvi(t)(ln wir(t) − ln vi(t)),

H(v, r) = βr(t)(1 −
∑

i∈Pl
vi(t)

Cl
). (10)

Suppose O = (v∗, r∗) is the operating point, where v∗i =
wir∗ and r∗ = C/

∑n
i=1 wi. Let ∆vi = vi − v∗i and

∆r = r − r∗ be the small changes of state. The linear
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differential equations for ∆vi and ∆r can be derived as
(refer to Appendix E of supplementary materials for detailed
transformations)

⎧
⎨

⎩

∆v̇i = −α∆vi + αwi∆r, i ∈ N,

∆ṙ = β
∑n

i=1

∆vi∑n
j=1 wj

.
(11)

Note that in the neighbourhood of O, each rate ∆vi can
be denoted as ∆vi = wi∆v, where ∆v belongs to the same
domain with ∆vi. By replacing vi with wi∆v in Eq. (11), we
find that all the equations for ∆v̇i can be derived as a group
of linearly dependent equations. Hence, the linear system can
be simplified as

{
∆v̇ = −α∆v + α∆r,

∆ṙ = β∆v,
(12)

which is a second-order system. The damping ratio of the
system can be derived as ζ = 1

2

√
α/β.

To solve the relationship between α and β, we first consider
the stability of the system. Note that when s = jω, the phase
satisfies

∠G(jω) = −π + arctan
α

ω
⊆ (−π,−π

2
), (13)

thus the system is natively stable. We then consider the
response of the system ([21, Sec. 5.3]): (i) the swiftness
of response, and (ii) the closeness of the response to the
desired response. Generally, ζ is set as a value from 0.5 to 1.
As ζ decreases, the system becomes more swift while the
overshoot of rate becomes larger. Since they are contradictory
requirements, a compromise must be obtained.

Insight: The characteristics of steady state imply the sit-
uation where steady long flows suffer interferences from
large numbers of short flows, congestions, inaccurate rate
enforcement, etc. When small changes occur in the system, we
want the rate to swiftly respond to the changes and converge to
another equilibrium. However, this will increase the overshoot
of rate, and cause strenuous variation to the rate of VM-flow.
To smooth the overshoot as well as to maintain the ability of
quick recovery, we maintains ζ at around 0.5.

IV. ALGORITHMS DESIGN IN DATACENTERS

A. Discretization on Time Series

As shown by the design goal in Sec. II, the rate control
for each VM-pair is distributed and suitable for execution
in VMs. The main issue is how to discretize the continuous
functions into equivalent approximate recursions that can be
implemented in datacenter networks.

We use τv and τr as the time interval to update vi(t) and
rl(t), respectively. This way, the time variables can be denoted
as kτv and kτr, where k ∈ {0, 1, 2, . . .} is the update rounds.
For brevity, we use vi(k) and rl(k) to represent vi(kτv) and
rl(kτr). The continuous functions are then transformed into
time-discrete functions. The approximation can be derived as:

d ln vi(t)
dt

≈ ln vi(k + 1) − ln vi(k)
τv

, (14)

and the same is true for rl(t).

Substituting Eq. (14) into Eq. (6) and replacing the time
continuous functions with vi(k) and rl(k) yield recursion
{vi(k)} and {rl(k)} as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vi(k + 1) = vi(k)1−ατv
(
ri(k̃r)

)ατv ,

rl(k + 1) = rl(k) exp
(

βτr(1 −
∑

vi(k̃v)
Cl

)
)

,

ri(k̃r) = wi min{rl(k̃r) | l ∈ Li}.

(15)

Since the updates of vi(k) and rl(k) are asynchronous,
each with their respective cycles, we use k̃r to represent the
corresponding rate factor when controlling the rates of VM-
flows. Similarly, k̃v is the exact rate that can be measured by
a switch. Considering the delay τd of receiving rate factors for
a VM-flow, we have k̃r = ⌊kτv−τd

τr
⌋ and k̃v = ⌊kτr

τv
⌋.

In fact, in the implementation, vi(k̃v) and rl(k̃r) can be
obtained without the knowledge of k̃v and k̃r. The VM’s rate
controller can use the latest received rate factor, and the switch
only needs to obtain the throughput on each link.

B. Minimum Guarantee

The above discrete rate control functions provide efficient
bandwidth allocation in weighted max-min fairness. To ensure
minimum bandwidth guarantee for each VM-flow, we set the
bandwidth guarantee as a lower bound for the rate limit of
each VM-flow. When the rates of VM-flows in the recursions
(Eq. (15)) are lower than the bandwidth guarantees, their rate
limits will still be the guaranteed bandwidth. Hence, we use
another variable vmax

i (k) as the rate limit for VM-flow, which
is represented as

vmax
i (k) = max{Bi, vi(k)}. (16)

This way, if the VM-flow’s bandwidth demand is larger
than the bandwidth guarantee, it will be ensured with the
guaranteed bandwidth. When the VM-flow’s traffic demand
is lower than the bandwidth guarantee, the underutilized
guarantee leads to remaining bandwidth on the congested
link. According to the function in Eq. (15), the rate factor
will increase consequently. When other VM-flows on this link
receive the increased rate factor, their rate limits will continue
to increase until fully utilizing the remaining bandwidth if
they have any unsatisfied traffic demands. In Appendix F of
the supplementary file, we use an example to show how to
achieve minimum guarantee.

One question is how to control the infinite increase of the
rate factor, which happens on any other uncongested links.
The solution is to set an upper bound for each rate factor
on the switches. As the received rate factor (rl) is the upper
bound of the rate limit (vi) of corresponding VM-flow, the
rate limit becomes unavailable when exceeding the physical
link capacity. Hence, we maintain rl below the physical link
capacity by using an upper bound:

rl(k) = min{Cl, rl(k)}. (17)

With the above constraints in Eq. (16) and (17), we can
provide bandwidth guarantees for VMs as well as maintain
work-conserving.
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Fig. 5. The design of eBA consists of two functions: guarantee update and rate
control. The implementation of rate control relies on three modules: sender,
switch and receiver modules, which form a closed loop for each VM-flow.

Algorithm 1 Bandwidth Guarantees Update on VM x

Input: Set of VMs with destination x: Vin
x = ∅

Set of VMs with source x: Vout
x = ∅

Sum of weights for VMs in Vin
x : Sin

x = 0
Sum of weights for VMs in Vout

x : Sout
x = 0

VM’s bandwidth guarantee and weight: (Bx, wx)
Output: Bandwidth guarantees for VM-flows on x: Bx→y

1: function UpdateGuarantee(weight wy , wx)
2: for i ∈ Vout

x , x ∈ Vin
y do

3: Bx→y = min{Bout
x

wy

Sout
x

, Binin wx
Sint

x
}

4: wx→y = wx/|Vout
x | + wy/Vin

y

5: end for
6: end function
7: function OnEstablishConnection(VM y)
8: Vout

x = Vout
x ∪ y

9: Vin
y = Vin

y ∪ x
10: Sout

x = Sout
x + wy

11: Sin
y = Sin

y + wx

12: UpdateGuarantee(wy, wx)
13: end function
14: function OnCloseConnection(VM y)
15: Vout

x = Vout
x − y

16: Vin
y = Vin

y − x
17: Sout

x = Sout
x − wy

18: Sin
y = Sin

y − wx

19: UpdateGuarantee(wy, wx)
20: end function

V. eBA DESIGN

A. Design Overview

We now describe the design of eBA according to the
abstraction in Fig. 5. Recall that eBA enforces VM-pair
rate control with given VM performance metrics. Hence,
eBA design consists of two main functions: First, the guarantee
update which transforms VM performance metrics to VM-flow
performance metrics based on Algorithm 1. Second, the rate
enforcer which limits the sending rate of each VM-flow based
on Algorithm 2.

The rate control, as indicated by our model in Eq. (15), is
a control loop involving all the elements along the path of a
VM-flow. Hence, the implementation of rate control needs the
cooperation of modules on sending servers, receiving servers
and switches. Specifically, the sending servers are responsible

Algorithm 2 Rate Control for VM-Flow x → y

Input: Parameter settings: α, β, τv , τr

Bandwidth guarantee for VM-flow x → y: Bx→y

Output: Rate limit on VM-flow: vx→y

1: function SendPkt(Packet pkt, τv)
2: Sleep for τv

3: pkt.identifer = 0
4: pkt.r = Cl

5: end function //sender
6: function OnReceivePkt(Packet pkt, receiver y)
7: vx→y = v1−ατv

x→y ∗ (wx→y ∗ pkt.r)ατv

8: vmax = max {Bx→y, vi(k)}
9: Set rate limit vmax to VM-flow x → y

10: end function //sender
11: function Feedback(Packet pkt, sender x)
12: pkt.identifer = 1
13: Feedback Packet pkt to sender x
14: end function //receiver
15: function UpdateLinkFactor(time τr, link l)
16: Sleep for τr

17: Get aggregate rate Vl for link l

18: rl = rl ∗ exp
{
βτr(1 − Vl

Cl
)
}

19: rl = min{rl, Cl}
20: end function //switch
21: function UpdatePacket(Packet pkt, link l)
22: if rl < pkt.r and pkt.identifer = 0 then
23: pkt.r = rl

24: end if
25: Send packet out
26: end function //switch

for enforcing the rate limit vi(k + 1) in Eq. (15), and the
switches maintain the rate factor rl(k + 1) in Eq. (15).

B. Bandwidth Guarantee Update

To avoid the limited scalability in centralized computation
for mass of VM-pairs, eBA leverages a distributed manner
to update guarantee under the cooperation of servers. Each
server is equipped with a guarantee update module, which
requires weight/guarantee of VMs on other servers and echoes
the request for weight/guarantee of VMs on this server. The
local deployment also has the advantage on monitoring the
changes in VM connections with low latencies.

Apparently, bandwidth guarantees in datacenters for
VM-flows can be variable. When a VM establishes a con-
nection to another VM, or closes the connection to a VM,
the bandwidth guarantees of VM-flows should be updated.
eBA captures such changes and updates bandwidth guarantees
as the process shown in Algorithm 1. The update is triggered
by two events: (i) connecting to a new VM, (ii) disconnecting
from a VM. Specifically, when VM x establishes connections
to VM y which has no connection with x previously, the
OnEstablishConnection function will add y to the set of VMs
receiving from x, and add x to the set of VMs sending to y.
In the end, the algorithm updates the bandwidth guarantees
and weights for all VM-flows on VM x and y according to
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Eq. (1) and (2). Similarly, when VM x closes the connection
to a VM, the OnCloseConnection function will update the
bandwidth guarantees and weights for all VM-flows on VM
x and y.

eBA calculates the guarantees for the minimum set of
VM-flows associated with the changed connection to reduce
the overhead in guarantee update. Given that average number
of servers communicating with each server are small scale
(about 6 in data centers with 1500 servers [6]), the computation
can finish within very short period, which is considered
efficient enough to input for the rate control algorithm.

C. Rate Control Framework

Based on Sec. IV, the key in the Logistic based Rate
Controller (LRC) is to collect the minimum rate factor along a
VM-flow’s path. To reduce the traffic overhead of control mes-
sage, eBA sends a control packet to traverse the links passed by
a VM-flow. The control packet is assigned with the same desti-
nation as the corresponding VM-flow. Since the control packet
and data packet in the VM-flow share the same matching rules
on every passed switch, the control packet will go through the
same set of links as the VM-flow. The control packet is then
updated by the switch deamon and fed back by the receiver
deamon. As shown in Fig. 5, eBA consists of three modules:
(i) sender deamon which constructs the control packet, (ii) the
switch deamon which updates the rate factor on the packet,
and (iii) the receiver deamon which feeds back the packet.

Rate Control Loop: According to Eq. (16), the rate control
for each VM-flow relies on the output (bandwidth guarantee)
of Algorithm 1 and the distributed recursions in Eq. (15). The
update for rate of VM-flow x → y can be accomplished in a
cooperative manner as shown in Algorithm 2. For one VM-
flow, the sender (for VM x) periodically sends a control packet
to the receiver (for VM y), every time interval τv . The switch
updates the link factors with the measured aggregate rate based
on Eq. (15) every τr. After receiving a control packet, the
switch will update the rate factor if the packet passes through
a link with a lower rate factor. The receiver then feeds back
the packet to the sender without changing the rate factor. This
way, when the packet arrives at the sender, the rate factor will
be the smallest one along its path. For the sender, the OnRe-
ceivePkt function will be called each time it receives a control
packet. The function updates the rate of VM-flow according to
Eq. (15), and enforces the rate limit to VM-flow x → y.

Control Packet: Since the rate control works at the VM
level, eBA uses network layer packet to provide VM-pair
(which can be specified by a pair of IP addresses) oriented
control, Thus, the packet has the same source and destination
IP addresses as a corresponding VM-flow. As the direction of
traffic, the rate factor also has two directions on each link. To
ensure the rate factor have the same direction as the corre-
sponding VM-flow, we need a binary variable as an identifier
for the direction of the control packet, and the identifier
cannot be modified on the backward path. For the rate factor,
we use a 32bit integer to represent it (in Bytes per second).
We implement the control packet by filling the data segment
of an ICMP packet after the IP header and ICMP header.

TABLE II

TUNABLE ALGORITHM PARAMETERS FOR ADAPTATION
OF TRAFFIC VARIABILITY

In ICMP, this data segment will be fed back to sender without
any changes, which is suitable for eBA’s rate control loop.

Rate Control at Edge: The sender deamon is located on
each host server which is capable of enforcing the rate of
VM-flows. The construction of control packets is periodically
executed every τv by SendPkt. When the OnReceivePkt
function is triggered by receiving a control packet, the sender
deamon re-calculates the rate limit by using the received
rate factor and the measured time interval between two
updates, and then enforces the rate limit to the corresponding
VM-flow. The delivery and reception of control packet are
asynchronously executed by two separated processes, to avoid
that the reception of control packet is suspended due to any
packet loss.

Rate Factor at Switch: To reduce the overhead of maintain-
ing the rate factor at the switch, we apply a configurable time
interval to each port to periodically obtain the bytes received
by this port (UpdateLinkFactor in Algorithm 2). The time
interval can be used to control the overhead of continuous
update of rate factor. We only monitor the receiving rate of
the port since each link connects with two ports, thus the
utilization of bandwidth on both directions can be obtained
at the receiving end. Correspondingly, the modification of
the rate factor in a packet is processed (UpdatePacket in
Algorithm 2) when the packet is received and classified as
an ICMP packet with the identifier. As the control packet
needs to feedback the rate factor of link which has the same
direction with the VM-flow, the switch only modifies the
forwarding packets and leaves the feedback ones unchanged.
Considering hardware in datacenter are highly customized and
the operation in switches is simple (a switch only needs to
attach the same information to few control messages), the
switch deamon can be easily realized.

VI. TRAFFIC-AWARE ADAPTATION

The parameters in the rate control model have significant
impacts on the performance of the algorithm. To enable a
practical implementation of eBA for datacenter applications,
there is a need to examine how these parameters may impact
the algorithm efficiency, and further develop self-adaption
mechanisms for eBA to efficiently work with different traffic
patterns. The parameters are summarized in Table II.

A. Parameters and Tradeoffs

VM Parameters: B and w. VM parameters are provided
by tenants as the network performance requirements of VMs.
Since the equilibrium of the nonlinear system solely depends
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Fig. 6. An example to show the tradeoff between convergence speed and
smoothness of the rates of VM-flows: VM-flow X joins in to compete for the
bandwidth taken by VM-flow Y under different α, β. We record the rate-limits
of X and Y. (a) α = 1, β = 2. (b) α = 2, β = 4. (c) α = 4, β = 4.

on the input bandwidth guarantees and weights of VMs,
these two parameters determine the bandwidth allocation result
for each VM-pair. By tuning the guaranteed bandwidths and
weights, cloud providers are able to flexibly balance the trade-
off between bandwidth guarantee and proportional sharing.

Time Parameters: τv and τr. The time parameters are used
to control the frequency of updating the rate of VM-flows
and rate factor of links. One can improve the precision of
bandwidth allocation by using very small τv and τr, however
such improvement will certainly bring about large overhead
to the servers and networks. The choice of a suitable period
should consider the following facts. First, the interval of
updating rate limit should not interfere with the underlying
TCP congestion control, hence, τv is expected to be an order
of magnitude larger than the RTT in datacenters, which is
about 1ms [13]. Second, the inter-arrivals of 70% TCP flows
from/to servers are periodic at about 15ms [6]. 50% number
of flow duration is larger than 10ms, accounting for 99% of
the bytes [6]. To keep pace with the variation caused by the
short flows, we set τv to tens of ms (50ms in our testbed).
For flows that last less than 50ms, we can reserve some
bandwidth on each link to avoid being congested by other long
flows (Sec. VI-B).

For the switches, the frequency of updating rate factors
needs to be similar as the rate control at the edge, since the
error in the rate-limit of VM-flow will be magnified if we use
an inaccurate rate factor. To guarantee the accuracy of rate
factor as well as avoid much computational overhead, we set
the time period of updating rate factors to τr ∈ [τv, 2τv].

Convergence Parameters: α and β. These two parameters
have impacts on the rate of convergence and the stability of
convergence process. According to Proposition 1 and 2, the
time of convergence to fairness/efficiency is inversely propor-
tional to α/β. With a constant rate factor, the rate of VM-
flow can monotonously increase until it reaches the objective
rate. However, in a realistic environment both the rate factors
and rates of VM-flows are dynamic due to the changes in
bandwidth resources and connections of VMs. The interaction
between the dynamics of v and r causes fluctuations to the
rate control of VM-flows.

As shown in Fig. 6, we find that there exists a trade-
off between the convergence speed and the smoothness of

VM-flow’s rate. Though increasing α and β can significantly
improve the convergence speed, it will also cause a large
overshoot when the rate approaches the equilibrium. The
objective of choosing the right values for α and β is to try to
maximize the convergence speed while keeping the overshoot
under an acceptable ratio, in case of fluctuations. Note that
the increment of the rate factor r and the rate of VM-flow v
in each iteration are related to β, τr and α, τv respectively, the
setup of these parameters should be jointly considered.

B. Adaptation for Traffic Variability

Capacity Constriction: We apply a ratio µ ∈ (0, 1) to the
capacity Cl of each link l to keep a positive gap between
the link bandwidth and the maximum aggregated rate on the
link. As discussed in Fig. 6, the convergence process of
rl is non-monotonic. This indicates that the aggregated rate
of all VM-flows on a link may exceed the capacity of this
link in Eq. (15), since the decrease of rl(k + 1) is due to∑

vi(k̃v)/Cl > 1. However, in the algorithm design, this
aggregated rate

∑
vi(k̃v) is the throughput measured on the

link, which should be less than the bandwidth capacity if there
is no error. As a consequence, once the rate factor r reaches at
the maximal capacity, it will never converge to the objective
value. To enable the convergence of rate factors under real-
world context, we need to introduce a threshold capacity (µCl)
within the physical link bandwidth, which is called Capacity
Constriction. When the threshold capacity is exceeded, the rate
factor will decrease so as to notify all the VM-flows passed
through to reduce the sending rate. This way, the rate factor
is able to converge to a stable point and the maximal link
utilization is maintained at µ.

In our testbed, the maximum throughput of TCP flows on
1Gbps links can achieve about 940Mbps. We set µ to 90%, 1

leaving 40Mbps gap between the stable throughput and the
link bandwidth. The constricted throughput can benefit the
performance of eBA from the following aspects:

• µ = 0.9 can guarantee a high bandwidth utilization as
well as provide fast convergence for the rate factors.

• The 40Mbps reserved bandwidth reduces the probability
of short congestions on links, which can further avoid the
losses of control packets.

• eBA leverages periodical rate limit to control the through-
put of VM-flows, hence, for flows that last less than
the update interval (50ms), eBA can hardly observe the
change in throughput caused by these flows. Such short
flows are always latency-sensitive but creating very little
traffic in the networks. Hence, reserving 40Mbps band-
width will avoid the delay and packet loss caused by these
bursty flows, and reduce their flow completion times.

Idle Relaxation: The time period τr of updating the rate
factor is extended to τr/ν when link utilization ν is low (e.g.,
< 50%). As discussed in Eq. (17), when the physical link
remains at a low utilization for a number of periods, the rate

1µ is an experimental value for our testbed, which guarantees the conver-
gency of LRC as well as a high utilization of physical bandwidth. For 10Gbps
Ethernet, the suitable µ also needs to be examined on a real testbed. We leave
the examining of the optimal µ on 10Gbps testbed as our future work.
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factor will statically stay at Cl. In such situation, since the
physical bandwidth is enough to support the traffic demands
of VM-flows, there is no need to enforce rate control for
VM-to-VM traffic. In datacenters, 97% of the links remain
below 70% utilization for more than 99% time period [6].
Starting from this observation, we can reduce the overhead
of frequently computing the rate factors on switches by
relaxing the time period of updating r, which we call the
Idle Relaxation strategy. The throughput measurement needs
to keep on monitoring any changes in the link utilization. The
range of low utilization is set to [0, 0.5) in eBA, which aims to
give enough iteration steps for r to converge to the objective
value under increasing link utilization (> 0.5). Also, when ν
is larger than 50%, the reduction in computational overhead
becomes minor. Hence, there is no need to extend time period
τr under this situation.

Uniform Increase: The products ατv and βτr remains con-
stant with different time parameters, where ατv ∈ (0, 1), α =
4ζ2β. Recall the rate of convergence in Sec. III-C, the conver-
gence times are inversely proportional to α and β. With static
convergence parameters, one can hardly improve the efficiency
of bandwidth allocation even if using more fine-grained rate
control, i.e., reducing τr and τv , which is against the objective
of time parameters on improving algorithm efficiency and
brings no benefit at the cost of increasing overhead. To address
this, we can use dynamic convergence parameters to maintain
ατv and βτr constantly, since the change of rate limit relies on
the product ατv and βτr as indicated by Eq. (15). Therefore,
when providers prefer accurate bandwidth guarantee, we can
increase the frequency of updating the rates of VM-flows at
the cost of more computational overhead. On the contrary, if
overhead is the key consideration, we can enlarge the time
parameters.

C. Implementation Issues and Limitations

Control Packet Overhead: eBA maintains control packets
for each VM-flow, hence leading to traffic overhead in dat-
acenter networks. Given the 50ms update time interval and
the 74Bytes ICMP control packet, each VM-flow can create
1480Bytes/s extra control traffic. Though this is negligible
as compared with 1Gbps or 10Gbps bandwidth, eBA may
still suffer from its linear scalability as the number of VMs
increases. Fortunately, the traffic between VM-pairs does not
scale with the increase of total VMs. As indicated by [6],
89% server pairs within the same rack never exchange traffic,
and the ratio for server pairs across racks is 99.5%. Reference
[6] also shows that a server talks to two servers within its
rack and four servers outside the rack on average. Hence, the
traffic overhead can be maintained within an acceptable ratio
(< 1Mbps on average). In addition, the VMs that belong to the
same tenant are always placed under the same rack switch or
same aggregate switch. Hence, to avoid heavy traffic overhead
on the root switches, we can deploy eBA under each aggregate
switch, without guaranteeing the traffic across the root switch
in multi-tenant datacenters.

Losses of Control Packets: eBA’s rate control relies on the
update of rate limit according to the rate factors from the

Fig. 7. eBA’s rate control with losses of control packets. VM-flow Y joins
in to compete for the bandwidth taken by VM-flow X on a physical link. The
weights of VMs are wX : wY = 1 : 2. (a) 50% loss of control packets.
(b) 2% loss of control packets.

received ICMP packets. When the losses of control packets
occur, the update of rate limit will be held until the arrival
of next control packet. However, as indicated by Theorem 1,
the system is asymptotically stable and can converge after
enough iteration steps. For example, losing one ICMP packet
means that the time period between two iterations is doubled,
which will not have any impact on the convergence of the
system, but prolong the convergence time of the rate allocation
to the VM-flows. Fig. 7(a) shows the convergence of eBA’s
rate control with a severe loss rate of control packets (50%).
The throughput of VMs can still converge. In fact, the ping
messages between certain server pairs only experience around
2% loss rate in datacenters [6]. With such loss rate, as shown
in Fig. 7(b), the rate control of eBA is stable enough to offer
bandwidth guarantee for VMs.

Equal-Cost Multi-Path Routing (ECMP): State-of-the-art
forwarding in datacenter networks leverages ECMP [22] to
balance the inter-server traffic load by hashing flows across
multiple available paths. One VM-flow will be split into
several links with different available bandwidth. The control
packets can hardly be ensured to pass through the same path of
the corresponding VM-flow. At present, in order to accurately
obtain the available bandwidth for VM-flows, we use per-
VM-flow hashing in ECMP by checking the tuple (source
IP, destination IP) but ignoring the protocol and port number
in packet forwarding. The VM-flow level hashing forces the
packets (including the control packets) of one VM-flow to
traverse the same path, thus the bandwidth allocation of eBA
can be accurately enforced. The solution requires a minor
modification on switching software, which, however, is able to
be implemented in datacenter environment. The coarse-grained
ECMP is the price paid to implement the current version of
LRC. We will solve this limitation by designing a multi-path
LRC is our future work.

VII. PERFORMANCE EVALUATION

We aim at answering two questions in the evaluations:
(i) Whether eBA can achieve the basic requirements as spec-
ified in Sec. I? (ii) How does eBA perform under dynamic
traffic comparing with other rate control algorithms?

In our testbed, we implement eBA by updating the rate
factors in Open vSwitch [23], and using Traffic Control (TC)
tool to limit the rate of each VM-flow in a Linux based OS.
The link capacity is 1Gbps. For α and β, we set β = 2α. The
product ατr is set to 0.5
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Fig. 8. Throughput of X (450Mbps guarantee) with different number of
TCP flows of Y .

Fig. 9. Throughput of X with increasing throughput of Y (both 450Mbps
guarantees).

A. Achieving the Basic Requirements

The experiments focus on the bandwidth allocation on a
bottleneck link, where VM X and Y compete for the limited
bandwidth (similar to Fig. 4). The results can be divided into
three groups, each targeting at one aspect of the requirements.

Bandwidth Guarantee: In this experiment, X and Y , both
with 450Mbps bandwidth guarantee, are sending data to dif-
ferent remote VMs which have the same guarantee. Fig. 8
plots the throughput of X while increasing the number of
TCP flows of Y . With no guarantee, the throughput of X
decreases sharply since Y has more flows than X . With LRC,
the rate of X stays around 450Mbps irrespective of the flow-
level competition. This indicates that the traffic of Y is rate
limited, and LRC can provide application layer bandwidth
guarantees for VMs by limiting other aggressive VM-flows.

Work-Conserving: As LRC guarantees bandwidth for VMs,
another question is whether LRC will share the spare
bandwidth from underutilized guarantees among unsatisfied
VM-flows. The results are shown in Fig. 9. In this example,
X with one TCP flow competes with TCP/UDP background
traffic of Y . Both X and Y have 450Mbps guarantees, and we
plot the throughput of X with an increasing traffic of Y from
0 to 900Mbps. As Fig. 9 shows, when the rate of Y is below
450Mpbs, the rate limit of X is above 450Mbps. The total
throughput on the link, which is around 900Mbps, indicates
that X utilizes the spared bandwidth and the allocation is
work-conserving. Note that X’s throughput maintains at about
450Mbps. It validates that LRC guarantees the bandwidth of
X in spite of the interference of TCP/UDP background traffic.

Proportional Share: We assign weights to VMs such that
the weight ratio of X’s VM-flow to Y ’s VM-flow varies from
1 : 2 to 1 : 8. Table III presents the throughputs of VM X
and Y . When the weights of VM-flows are close to each other
(weight ratio < 2), the rates are proportional to their respective
weights. However, the ratio of rates deviates from the weight
ratio, when the latter (wX : wY ) grows larger. We trace the
logs of received rate factors, and find that the cause is in the

TABLE III

RATE OF X AND Y WITH DIFFERENT WEIGHT RATIOS

Fig. 10. The average convergence times of long-lived flows under different
time parameters. UI shortens the convergence process under smaller time
parameters.

measurement error of link throughput in our testbed. The error
brought by the received rate factor is non-uniformly magnified
by the weights.

B. Algorithm Efficiency

Stable or Fast: Generally, by increasing the frequency of
rate control, eBA’s rate limit can adapt to the change of
traffic faster. Within an acceptable overhead caused by the
computation of rate limit and rate factor, it is preferable to
use smaller time parameters. However, a key observation from
the experiments is that the average rates of links measured
by switches become unstable when the time period is too
small, e.g., 10ms, due to the congestion control of TCP
flows. We now investigate the stability and swiftness of eBA
in bandwidth allocation, and show how traffic adaptation
mechanisms impact the efficiency of algorithms.

Fig. 10 shows the average convergence times of eBA under
different time parameters. We set up two scenarios similar
to that in Fig. 9, where With UI means uniform increase is
applied in the algorithm, and No UI refers to no uniform
increase. We observe that reducing the time parameters has
little impact on the convergence of the algorithms without
uniform increase. This validates our derivation in Sec. III-C
that the convergence of the rates is independent of time
parameters. In fact, when the time parameters become smaller,
the increase/decrease of r and v in each iteration also becomes
smaller, as shown in Eq. (15). Consequently, the convergence
speed of eBA remains unchanged. However, with uniform
increase, the change of rate limit and rate factor in each
iteration is not reduced by time parameters. When the update
of rates becomes more frequent, the convergence becomes
faster and the efficiency of the algorithm is also improved.

To show the stability of eBA’s rate control, Fig. 11 plots
the throughput of VM-to-VM traffic when getting conver-
gent under different time parameters. The mild fluctuation
of throughput by static bandwidth reservation indicates that
a software rate-limiter can hardly guarantee an absolute stable
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Fig. 11. The variation of throughputs of long-lived flows under different time
parameters. As the time parameters decrease, the fluctuations of VM traffic
become more prominent. However, the error of through is less than 5% in
98% of duration.

Fig. 12. Rate limit of VMs with BX = 600Mbps, BY = 0 and the same
weight. (vmax

X = max{vX , BX} and vX is the rate limit of the algorithms).
(a) TCP-like. (b) LRC.

throughput for VM traffic. This is also a challenge for eBA to
achieve stable bandwidth guarantee using small time parame-
ters. As we can see, with the decrease of time parameters, the
fluctuations of VM traffic are more prominent. However, the
throughput of VMs is still within an acceptable range of less
than 5% error in bandwidth guarantee, which is stable enough
for TCP traffic. Besides the variation in rate measurement, we
also find that the increase of α, β can magnify the fluctuations,
since uniform increase has larger α, β under smaller time
parameters. Hence, the choice of time parameters is a tradeoff
between fast and stable/overhead. In these tradeoffs, uniform
increase enables providers to highly accelerate the convergence
for dynamic traffic without sacrificing too much on stability.
Also, idle relaxation further reduces the overhead cost by fast
convergence.

C. Performance on Dynamic Requirements

To precisely qualify the dynamic of rate limit in bandwidth
allocation process, we simulate the algorithms and record
the rates of VM-flows within each iteration. We compare
LRC with a typical TCP-like rate control algorithm presented
in [13], which is based on TPC-CUBIC [24]. Since [13] uses
bandwidth guarantees as the weights of VMs, we decouple
the guarantee from the weight so as to compare it with LRC.
In the simulations, the link capacity is set as 900Mbps, and
the rate allocation period is the same for TCP-like algorithm
and LRC, both at 15ms. Particularly, we set α = β = 2s−1,
τr = 100ms, τv = 50ms, similar to the experimental settings.

Convergence and Congestions: Firstly, we characterize the
convergence process under congestions on a single bottleneck.

In the first case, VM X has a guarantee of 600Mbps. When
t = 15s, a VM-flow (no guarantee) from Y joins in. Fig. 12
shows the dynamic of rate limit from 0 to 30s. Both LRC
and the TCP-like algorithms have fast convergence speed to

Fig. 13. Rate limit of X (450Mbps guarantee) with arrival of short flows at
15ths: 5 flows/s at average 17.4Mbps and 20 flows/s at average 66.2Mbps.
(a) 5 short flows per sec. (b) 20 short flows per sec.

high utilization (4s) and fairness (3s). LRC is smooth during
the whole period. However, in the TCP-like algorithm, when
the VM-flow from Y joins in, the rate limit for X becomes
fluctuating until it gets below the guarantee, and the rate
limit for Y keeps fluctuating. The fluctuation leads to frequent
changes of the rate limit on underlying TCP flows, and may
deteriorate the performance of the transport layer.

One may question why the rate limit in the TCP-like
algorithm becomes more fluctuating when Y joins in. The
reason is that TCP-like algorithms use multiplicative decrease
when congestion occurs. In addition, in [13], the increment
of rate has an inverse correlation with the rate (the authors
call it as rate-caution). As a result, the VM-flow with small
rate using rate-caution will be more aggressive than that using
the original TPC-CUBIC protocol, thus fluctuations are more
frequent when Y joins in. On the contrary, our algorithm
applies a smooth rate limit to VMs, and will not decline the
rate of TCP flows.

Frequent Short Flows: In this simulation, we evaluate
the algorithms under frequent short flows. We consider the
situation where VM X is sending long flows with a guar-
antee of 450Mbps, and has fully utilized the bottleneck link.
We generate two groups of short flows passing through the
bottleneck link of X , where one group with 5 flows/s and
the other with 20 flows/s. The short flows are generated
uniformly at random in each second from 15ths to 60ths, and
the flow sizes are exponentially distributed around a mean of
200KB. Fig. 13 shows the rate limit of X with LRC and the
TCP-like algorithm. The TCP-like algorithm suffers severe
drops in rate limit. The short flows create bursty traffic
(17.4Mbps for 5 flows/s and 66.2Mbps for 20 flows/s, mea-
sured by 15ms) along with existing flows, leading to a waste
of network bandwidth since the TCP-like algorithm enforces
fluctuant rate limit for the VM-flows. However, our algorithm
is less sensitive to short flows. Even with 20 flows per seconds,
the rate limit can stay flat and the decrement is about the rate
of all short flows. Such observations validate that LRC has
advantages over the TCP-like algorithm under frequent short
flows. Hence, we believe LRC is more suitable for datacenter
environment.

Performance With Mapreduce Workloads: To verify the
performance of LRC under datacenter traffic, we develop
a simulator to model VM bandwidth sharing in datacen-
ters. The simulator simulates a two-level network topol-
ogy with 600 servers. Each server hosts 4 VMs and has
1Gbps bandwidth. 40 servers form a rack connected by a
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Fig. 14. The CDF of shuffle time for LRC, reservation and best effort manner. LRC achieves 96% network utilization of the best effort manner. LRC’s
performance on jobs with short shuffle size approximates the reservation policy and outperforms the reservation policy in jobs with large shuffle size. (a) Full
bisection bandwidth. (b) 4× oversubscription. (c) 600 small jobs.

Top-of-Rack (ToR) switch. 15 ToR switches are linked to
the root switch. We set up two scenarios: (i) full bisection
bandwidth, where the uplink bandwidth of ToR switch is
40Gbps, and (ii) 4× oversubscription bandwidth [9], where
the uplink bandwidth of ToR switch is 10Gbps. We simulate
Mapreduce jobs running in the cluster. Each job needs to
transmit data from map nodes (VMs) to reduce nodes (VMs)
in the shuffle phase. The simulated Mapreduce workloads
are collected from the same number of servers in Facebook
datacenter [7], consisting of up to 900 jobs. The maximum
transmitted data size is 32.3GB and the minimum is 0. The
bandwidth guarantees for each VM in LRC and reservation
policy are set to 250Mbps and 62.5Mbps, for full bisection
bandwidth and 4× oversubscription, respectively.

Fig. 14 shows the CDF of completion time of shuffle phase
(shuffle time). About 600 jobs have small shuffle size less than
128MB, among which 140 jobs are very short with < 1MB
shuffle size. Their shuffle times are short (about < 1s) and the
workloads are less network-sensitive. As shown in Fig. 14(c),
LRC performs approximately to the reservation policy and
does not incur high delays for these jobs. The shorter com-
pletion time of eBA shows eBA’s bandwidth guarantee can
protect the network performance of these jobs as compared
with the best-effort manner. For jobs with large size of data
to shuffle, the shuffle phase in LRC is faster than that of
the reservation policy and the speedup is more obvious in
4× oversubscription networks. This fits in with our expecta-
tion, since LRC ensures a lower bound bandwidth equivalent
to the reserved bandwidth, and utilizes the spared bandwidth at
the same time. In comparison with the best effort manner, LRC
is a bit slower for large jobs under full bisection bandwidth.
The drawback of LRC for large jobs comes from that LRC
makes the underlying TCP flows less aggressive when the rate
approaches the maximum. However, LRC still achieves 96%
performance of the best effort manner, which validates the
high network utilization of LRC.

VIII. RELATED WORK

Towards achieving predictable network performance for
cloud applications, researchers have proposed numbers of
approaches to share bandwidth in datacenter networks. The
main ideas in these works are two fold: The first idea focuses
on VM allocation in datacenters, such as [9] and [11]. Oktopus
[9] uses VM placement to provide bandwidth guarantees.
Silo [25] takes a step forward to achieve latency guarantee by
using traffic pacing on rate control. They both enforce static

rate limits to reserve bandwidth for VMs. While these policies
focus on predicable performance for VMs, they ignore the
dynamic feature of datacenter traffic. Proteus [11] proposes
a time varying reservation policy based on the bandwidth
requirements of specific Mapreduce applications. However, the
solution is limited to a few application types.

The other idea for sharing datacenter network is to allo-
cate bandwidth for VMs after their placement by enforcing
dynamic rate limit. Faircloud [5] presents the basic bandwidth
requirements of bandwidth allocation problem and proposes
three kinds of sharing policies. NetShare [26] achieves pro-
portional bandwidth sharing among different VMs by using
weighted fair queues. The policies in the above proposals need
the support of per-VM queue in switches for rate control.
This means they are hard to be scaled, due to the limited
queues supported by each port at switches. The configuration
is also complicated, as the communication patterns among
VMs are changing. References [10], [12], and [13] leverage
end-based rate limit to achieve work-conserving bandwidth
allocation for VMs. Seawall [10] and ElasticSwitch [13] use
TCP-CUBIC based rate control, and have fluctuations under
bursty traffic when the rate limit is beyond the guarantee.
ElasticSwitch also needs to number the packets for each
destination in the switch, which is more complicated than our
solution. EyeQ [12] uses a variant of RCP. EyeQ assumes a
congestion free core and the rate control algorithm only has a
linear convergence speed. References [17] and [27] develops
a game theoretical allocation strategy that can flexibly balance
the guarantee-proportionality tradeoff. The main drawback is
its relying on precise traffic demand prediction. Finally, [28]
applies the Logistic model in congestion control algorithms at
the transport layer in the Internet, while our work use it for
rate limits of VMs.

IX. CONCLUSION

Traffic in data centers are highly dynamic and bursty due to
massive number of short flows. Previous work on bandwidth
allocation for datacenters are not appropriate since rate limit-
ing traffic is ineffective and causes system performance degra-
dation. In this paper, we presented eBA, a distributed solution
for bandwidth guarantee, using the Logistic model under
the control-theoretic framework. Unlike previous proposals,
our solution provides a stable and fast-convergent allocation
process, which meets the basic and dynamic requirements
of resource sharing in datacenter networks. eBA’s can be
deployed in datacenters with no changes to network protocol
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stack or switching hardware, and shows effectiveness in coping
with traffic variability in datacenters, hence giving public
cloud providers an additional performance guarantee feature to
users.
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