
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024 1461

Tracking Influencers in Decaying Social Activity
Streams With Theoretical Guarantees

Junzhou Zhao , Pinghui Wang , Senior Member, IEEE, Wei Zhang, Zhaosong Zhang, Maoli Liu,
Jing Tao, and John C. S. Lui , Fellow, IEEE

Abstract— Influence maximization (IM) is the fundamental
problem in many real world applications such as viral marketing,
political campaign, and network monitoring. Although exten-
sively studied, most studies on IM assume that social influence is
static and they cannot handle the dynamic influence challenge in
reality, i.e., a user’s influence is varying over time. To address this
challenge, we formulate a novel influencer tracking problem over
a social activity stream. In order to keep the solutions up-to-date
and forget outdated data in the stream smoothly, we propose a
probabilistic-decaying social activity stream (PDSAS) model that
enforces each social activity in the stream participating in the
analysis with a probability decaying over time. Built on the
PDSAS model, we propose a family of streaming optimization
algorithms to solve the influencer tracking problem. SIEVEPAIT
can identify influencers from a special kind of probabilistic
addition-only social activity streams with high efficiency, and
guarantees an (1/2−ϵ) approximation ratio. BASICIT leverages
SIEVEPAIT as a building block to identify influencers from
general PDSASs, and also guarantees an (1/2 − ϵ) approxima-
tion ratio. HISTIT improves the efficiency of BASICIT, and still
guarantees an (1/4 − ϵ) approximation ratio. Experiments on
real data show that our methods can find high quality solutions
with much less computational costs than baselines.

Index Terms— Influence maximization, streaming optimiza-
tion, online social networks.

I. INTRODUCTION

IN FLUENCER marketing has become an essential strategy
for companies to leverage the social influence of influencers

on online social networks (OSNs) to promote product sales.
For example, the Amazon Influencer Program [1] allows the
influencers from Twitter, Facebook, YouTube, and Instagram
to showcase the products and recommend to their followers.
It is estimated that the influencer marketing industry is worth
up to $15 billion by 2022 [2]. Besides its usage in promoting
sales, influencer marketing is also used by authorities to fight
against vaccine lies during the COVID-19 pandemic [3] and
to spread rumors during the Russia-Ukraine war [4]. The key
tech behind influencer marketing is influence maximization
(IM), which aims to select k seed users, i.e., influencers, such

Manuscript received 4 May 2022; revised 22 February 2023 and 13 July
2023; accepted 17 September 2023; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor Y. Chen. Date of publication 16 October 2023; date
of current version 18 April 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 62272372, Grant
61902305, and Grant U22B2019. (Corresponding author: Pinghui Wang.)

Junzhou Zhao, Pinghui Wang, Wei Zhang, Zhaosong Zhang, and Jing Tao
are with the MOE KLINNS Laboratory, Xi’an Jiaotong University, Xi’an
710049, China (e-mail: phwang@mail.xjtu.edu.cn).

Maoli Liu and John C. S. Lui are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong, SAR.

Digital Object Identifier 10.1109/TNET.2023.3323028

that they can jointly trigger the maximum influence spread
on a network. Since the seminal works of Domingos et al. [5]
and Kempe et al. [6], IM has been extensively studied for
decades.

IM relies on estimating the influence spread of a set of
seed users on a network based on users’ pairwise influence
probabilities, which, however, are usually unknown, and need
to be inferred from social activities observed on OSNs [7],
[8], [9]. For example, in Twitter, if a user u tweets a tweet
containing a hashtag, and later, his follower v also tweets
a tweet containing the same hashtag (or v simply retweets
u’s tweet), then it implies that user u influenced user v.
If such activities are frequently observed, then u reflects
strong influence on v. After pairwise influence probabilities
of users in an OSN are obtained, there have been extensive
studies on efficiently solving the IM problem [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19]. Most of these studies
assume that the pairwise influence probabilities as well as
the social network under study are static, in other words,
social influence is static. However, in practice, social influence
could be dynamic driven by the evolving social activities in
an OSN. For example, a Twitter user v frequently retweeted
another user u’s tweets in the past few weeks, but stopped
retweeting recently because u posted offensive content and v
unfollowed u, therefore u cannot influence v anymore. Indeed,
Myers and Leskovec [20] reported that the Twitter network is
highly dynamic with about 9% of all connections changing in
every month. It is therefore unrealistic to assume that social
influence is static, otherwise the influencers identified today
may just quickly become outdated tomorrow. This raises the
influencer tracking problem that we want to address: in an
OSN with evolving social activities, how to efficiently identify
the influencers at any query time, as illustrated in Fig. 1?

A straightforward way to handle the dynamic social influ-
ence challenge is that we always re-estimate the pairwise
influence probabilities at every time we need to query influ-
encers in the OSN. Obviously, this approach will incur too
much computational overhead which may be unaffordable if
we need to frequently perform the influencer query. In the liter-
ature, there have been some efforts trying to efficiently address
the dynamic social influence challenge such as the heuristic
approaches [21], [22], constructing updatable sketches [23],
[24], and the interchange greedy method [25]. However, these
methods either do not have theoretical guarantees on the
solution quality such as the heuristic approaches, or they
cannot handle the highly dynamic and fast evolving social

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3476-8248
https://orcid.org/0000-0001-5779-6108
https://orcid.org/0000-0001-7466-0384

1462 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 1. Influencer tracking over decaying social activity streams.

activity data, e.g., the interchange greedy method actually
degrades to the re-computation approach when influencers
change significantly over time. In addition, the computational
complexities of these methods are still too high to handle
large-scale OSNs with millions of users that may generate
a large amount of social activities in every second [26].

In this work, we propose a streaming optimization approach
to efficiently address the dynamic social influence challenge in
IM. Our approach allows to track influencers from the evolving
social activity data in near real-time with guaranteed solution
quality. As social activities are actually the direct evidences
of users’ influence in an OSN, it is better to directly take
social activities as inputs in the influencer tracking algorithm.
In practice, social activities are often generated in a streaming
fashion, forming a high-speed and endless social activity
stream, as illustrated in Fig. 1. It is thus desired to find
streaming algorithms that only access each social activity in
the stream just once. Moreover, in order to keep the identified
influencers fresh, we also want the streaming algorithm to
be able to gradually forget the outdated social activities in
the stream. One approach is to leverage the popular sliding-
window stream model [27] where only the most recent social
activities participate in the analysis and all past social activities
outside of the window are completely discarded. However, the
sliding-window stream model has the weakness that it abruptly
forgets all past social activities outside of the window, and
some of which may be still important. Hence, it is not a
smooth manner to forget outdated data in the stream. As a
result, the sliding-window stream model may break continuity
over time, and result in undesirable solutions. Let us consider
a motivating example below.

Suppose we want to identify influencers on Twitter based on
users’ retweeting activities. Alice has been an influencer for
years, but recently she is sick and does not post new tweets,
and hence the number of retweets from her followers drops
significantly. If we apply the sliding-window stream model,
then only a few social activities related to Alice are observed
and Alice will be mistaken for non-influential, even though she
has been influential for years and her absence is just temporal.

The above example motivates us to find better data stream
models that are able to forget old data in the stream in
a smoother manner than the sliding-window stream model.
To this end, we propose the Probabilistic-Decaying Social
Activity Stream (PDSAS) model. The PDSAS model has a
feature that social activities from past to present all have

a chance to participate in the analysis but recent social
activities have a larger chance than past social activities.
As time advances, each social activity participates in the
analysis with a decaying probability. Hence, the PDSAS
model can overcome the weakness of the sliding-window
stream model, and preserve solution freshness and continuity
simultaneously.

Built on the PDSAS model, we design a family of stream-
ing optimization algorithms, namely SIEVEPAIT, BASICIT,
HISTIT, and HISTIT-RED, that can identify near-optimal
influencers from the social activity stream in near real-
time. First, SIEVEPAIT is designed to identify influencers
from a special kind of probabilistic addition-only social
activity streams, in which each social activity participates
in the analysis with a constant probability. Then, BASICIT
leverages SIEVEPAIT as a basic building block to identify
influencers over general probabilistic-decaying social activity
streams. Finally, HISTIT is designed to significantly improve
the efficiency of BASICIT, and HISTIT-RED is a practical
implementation of HISTIT. Importantly, we theoretically show
that our approach can find near-optimal solutions with both
time and space efficiency.

In summary, our contributions are as follows:
• We formulate a novel problem of influencer tracking over

probabilistic-decaying social activity streams, in which
the old data in the stream is forgotten in a smoother
manner than the sliding-window stream model. This
formulation ensures that the solutions of the problem
are both fresh and continuous as time advances (see
Section II).

• We propose a family of streaming optimization algo-
rithms, namely SIEVEPAIT, BASICIT, HISTIT, and
HISTIT-RED. Our algorithms guarantee a constant
(1/2 − ϵ) approximation ratio (for BASICIT), and an
(1/4− ϵ) approximation ratio (for HISTIT and HISTIT-
RED) for faster speed (see Sections V and VI).

• We conduct extensive experiments on various real-world
data streams to validate the effectiveness of our algo-
rithms. The results demonstrate that our approach outputs
high quality solutions with much less computational costs
than baselines (see Section VII).

II. PROBLEM FORMULATION

We consider a social network G = (V,E) where V is a set
of users (or nodes) and E ⊆ V ×V is a set of user relations (or
edges). Edges in the network may be undirected like the friend
relations in Facebook, or directed like the following relations
in Twitter. In the latter case, let edge (u, v) denote that user v
follows user u, indicating the potential that u can influence v.
The frequently used symbols are listed in Table I.

A. Some Definitions

Users in a social network could generate social activities
such as retweeting tweets on Twitter, commenting or replying
to posts on Reddit, and purchasing products on Amazon.
Formally, let a ≜ ⟨u, c, t⟩ denote a social activity representing
that user u performed a specific activity c (e.g., purchasing an

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1463

TABLE I
FREQUENTLY USED SYMBOLS

iPhone SE) at time t. Social activities from an OSN are direct
evidences reflecting one user’s influence on another [8], [9],
[28]. For example, consider two social activities a1 = ⟨u, c, t⟩
and a2 = ⟨v, c, t+ δ⟩ performed by two users u and v at time
t and t + δ, respectively. If (u, v) ∈ E and δ is no larger
than a threshold, then it is likely that user v performed the
same activity c due to the influence of user u. Hence, if a
user’s social activities trigger many follow-up social activities
in the network, then the user is considered to be influential.
Formally, we define the pairwise user influence as follows.

Definition 1 (Pairwise Influence): Given a set of social
activities A generated by users in network G, we say that user
u influenced user v, denoted by u

A
⇝ v, if v is reachable from u

in G and there exist social activities ⟨u, c, t⟩ and ⟨v, c, t′⟩ ∈ A
such that t′ − t ≤ δ for some threshold δ.

It is worthy noting that, in the above definition, we do not
require ⟨u, c, t⟩ ∈ A but assume ⟨u, c, t⟩ is always observed
when considering the influence of u. This is because our goal
is to evaluate user u’s influence based on the observed social
activities performed by the other users, and in many cases,
the original social activity that triggers the observed social
activity is already known. For example, in Twitter and Weibo,
the original tweet retweeted by the observed tweets is usually
attached as a reference.

We further define a user’s influence spread as follows.
Definition 2 (Influence Spread): Given a set of social activ-

ities A generated by users in network G, a user u’s influence
spread, denoted by σ(u; A), is a set of users who were
influenced by u with respect to A, i.e., σ(u; A) ≜ {v | u A

⇝ v}.
In other words, the influence spread of a user is simply the

set of users directly or indirectly influenced by the user based
on the observed social activities. We will also assume that
u ∈ σ(u; A). For example, in Fig. 2, for social activities A
in network G, we first construct the diffusion graphs of two
activities c1 and c2, respectively. Then, the influence spread
of each user can be derived straightforwardly.

We further define the influence spread of a user set as
the union of each individual user’s influence spread, i.e.,
σ(S; A) ≜

⋃
u∈S σ(u; A). To evaluate the influence of a user

set, we use a function f : 2V 7→ R≥0 to map the influence
spread to a non-negative real number, e.g., the simplest one
could be f(σ(S; A)) ≜ |σ(S; A)|. Here, we only require that f
is a monotone submodular function, which is commonly used
to capture the diminishing returns property [29]. Specifically,

Fig. 2. Influence spread of each user based on observed social activities A.
Note that because t9 − t7 > δ, hence u5 did not influence u6.

we say that f is monotone if for all subsets X ⊆ Y ⊆ V ,
it holds that f(X) ≤ f(Y), and f is submodular if for all
X ⊆ Y ⊆ V and v ∈ V \Y , it holds that f(X∪{v})−f(X) ≥
f(Y ∪{v})−f(Y), i.e., the additional benefit of an element v
is no larger when added to set Y than added to set X (please
refer to [30] for a nice survey of submodular function and its
applications).

B. Probabilistic-Decaying Social Activity Streams

An OSN could continuously generate a stream of social
activities and form an endless social activity stream. If we
treat each social activity in the stream equally, then many
outdated social activities will be used as evidences to infer
each user’s influence spread, and this may result in that many
identified influencers were influential before but not now, i.e.,
the solution is not fresh. An alternative approach is that we
only consider the most recent social activities within a time
window, aka the sliding-window stream model [27]. However,
as we discussed previously, the sliding-window stream model
abruptly discards all past data outside of the window which
is not a smooth manner to forget outdated data in the stream,
and may result in inappropriate results.

To address these limitations, we propose a probabilistic-
decaying social activity stream (PDSAS) model to represent
the social activity stream. The PDSAS model has a feature that
each social activity in the stream has a chance to participate
in the analysis but recent social activities have a larger chance
than historical social activities (see Fig. 1). In this manner,
solution freshness can be guaranteed, and meanwhile, outdated
social activities are forgotten gradually in a smooth manner.

Formally, let St ≜ {a | ta ≤ t} denote the set of all
occurred social activities by time t, where ta is the timestamp
of social activity a. At time t, for each a ∈ St, we let a
participate in the analysis with probability pt(a) ≜ h(t− ta),
and h : Z 7→ [0, 1] is a non-increasing decay function that
assigns a social activity with age x a participation probability
h(x). By choosing proper decay functions, the PDSAS model
can capture many special settings. For example, if we choose
h(x) = 1,∀x, then the stream will never decay; if we choose
h(x) = 1 for x ≤ W (where W denotes the window size)
and h(x) = 0 otherwise, then the PDSAS model becomes the
sliding-window stream model. In practice, we prefer to choose
h to be strictly decreasing so that each social activity in St

participates in the analysis with a decreasing probability as
it ages and hence gradually fades, e.g., h(x) ∝ exp(−λx).
In short, the PDSAS model is a general stream model that
allows to forget outdated data in a smooth manner.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Remark: The decay function could also be designed to be
element-specific, i.e., the decay function for social activity a is
ha(x). Or, the decay function could be a function of an social
action’s category or other attributes. This allows the PDSAS
model to decay inhomogeneously.

C. The Influencer Tracking Problem

Based on the PDSAS model, we now formulate a novel
influencer tracking problem.

Problem 1 (Influencer Tracking): Given a network G and a
social activity stream St with decay function h, at any query
time t, we want to find a subset S∗t ⊆ V containing at most
k users and maximizing the expected influence on G, i.e.,

S∗t = arg max
S⊆V ∧|S|≤k

E[f(σ(S;St, h))]. (1)

Here, σ(S;St, h) denotes the influence spread of set S with
respect to the PDSAS model, and the expectation is taken
upon the randomness that each social activity participates in
the analysis with a probability.

It is noteworthy to mention that, the decay function and
utility function in together govern the selection of users in
the network. Solutions that are fresh and jointly have large
influence are likely to be good solutions, and this feature is
indeed desired in many real-world applications.

Remark: For ease of explaining our idea, in what follows,
we will mainly focus on the exponential decay function
h(x) = p0e

−λx where 0 ≤ p0 ≤ 1 and λ ≥ 0. Note that
our framework can also be generalized to other general decay
functions.

III. CONSTRUCTING A SURROGATE OBJECTIVE

Given a user set S ⊆ V , we find that it is prohibitive to
compute the exact value of E[f(σ(S;St, h))] because we have
to consider the participation possibility of each social activity
in the stream, and this will result in an exponential number of
combinations, i.e., O(2|St|). To address this challenge, we pro-
pose a Monte-Carlo method to fast estimate E[f(σ(S;St, h))]
and reduce the complexity to O(n) using n samples.

Inspired by the idea of possible-world method [31],
we define a realization of a probabilistic decaying social
activity stream as a sequence of social activities that actually
participate in the analysis in one experiment. If we use S to
denote a realization of St, then S ⊆ St. Let St ≜ {S | S ⊆
St} denote the set of all realizations, i.e., all possible worlds.
Because each social activity independently participates in the
analysis, then each realization is observed with probability

P (S ∈ St) =
∏

a∈St

pt(a)1(a∈S)
(
1− pt(a)

)1(a/∈S)
(2)

where 1(·) denotes the indicator function with 1(true) = 1
and 1(false) = 0.

For example, in Fig. 3, we show some realizations of the
original stream, and each social activity a ∈ St is indepen-
dently included in a realization with probability pt(a). Because
recent social activities have a higher probability to participate
in the analysis than historical social activities, hence recent
social activities are more likely to be included in a realization.

Fig. 3. Stream realizations and evaluating Ft(S) from samples.

We will also refer to a realization as a sample of the stream.
The Monte-Carlo method [32] states that a collection of sam-
ples independently drown from an identical distribution can
provide an unbiased estimate of the expectation. Specifically,
we have the following result.

Lemma 1: Let {S(i)
t }n

i=1 be a collection of n samples
independently drown from distribution P (S) in Eq. 2. Then,

Ft(S) ≜
1
n

n∑
i=1

f(σ(S;S(i)
t)) a.s.−→ E[f(σ(S;St, h))] (3)

as n →∞, where a.s.−→ denotes the almost-sure convergence.
Given a sample S(i)

t , which is actually a collection of social
activities, we can calculate the influence spread σ(s;S(i)

t) for
each user s ∈ S (recall the example in Fig. 2). Therefore,
we can easily obtain σ(S;S(i)

t) and hence Ft(S). Intuitively,
E[f(σ(S;St, h))] is the average influence of set S on |St|
stream realizations. Ft(S) is the average influence of set S
on n i.i.d. stream samples. By the Law of Large Numbers,
Ft(S) converges to E[f(σ(S;St, h))] almost surely. Therefore,
by choosing a sufficiently large sample size n, Ft(S) will be
a good approximation of E[f(σ(S;St, h))]. The Monte-Carlo
method can reduce the computational complexity to just n
evaluations of f , or we say n oracle calls and one oracle
call refers to one evaluation of f . The sample size n can be
determined by applying the Hoeffding’s inequality.

Lemma 2: Given a set S and n i.i.d. samples {S(i)
t }n

i=1,
if n ≥ ln (2/δ)

2ϵ2ρ2 where ϵ, δ ∈ (0, 1) and ρ ≜ E[f(σ(S;St,h))]
f(σ(S;St))

,
then ∣∣Ft(S)− E[f(σ(S;St, h))]

∣∣ < ϵE[f(σ(S;St, h))]

holds with probability at least 1− δ.
In the following discussion, we will assume that sample

size n is sufficiently large so that Ft(S) ≈ E[f(σ(S;St, h))].
Therefore, our goal becomes to find a set S ⊆ V at each query
time t to maximize the surrogate objective Ft(S). Importantly,
we find that Ft(S) has the following property.

Lemma 3: Ft is a monotone submodular function.
Therefore, the influencer tracking problem boils down to

two sub-problems: (i) how to fast generate stream samples
{S(i)

t }n
i=1, and (ii) how to optimize the surrogate objective

Ft(S) in a streaming fashion. In the following discussions,
we consider efficiently addressing these two sub-problems.

IV. STREAM SAMPLING METHODS

In this section, we design sampling methods to generate
samples {S(i)

t }n
i=1 from the original stream St, given decay

function h(x) = p0e
−λx, thereby solving sub-problem (i).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1465

A. Fast Generating Stream Samples

We can use the approach illustrated in Fig. 3 to obtain a
sample S(i)

t from St straightforwardly. That is, at each time
t, we sequentially scan the social activities in the stream; for
each social activity a ∈ St, we include a in sample S(i)

t with
probability pt(a) and ignore a with probability 1 − pt(a).
To obtain n samples, we simply scan the original stream n
times, or just flip a biased coin n times for each social activity.
The main weakness of this approach is that, as time advances
from t to t+1, as each pt(a) decreases to pt+1(a), we have to
rescan the stream. Obviously, this approach is not a streaming
method and is inefficient.

In fact, given decay function h(x) = p0e
−λx, we can

sample the stream incrementally and obtain S(i)
t from S(i)

t−1 in
a more efficient manner. Specifically, for each social activity
a ∈ S(i)

t−1, we still keep a in S(i)
t with probability e−λ, and

for each newly arrived a at time t, we add a in S(i)
t with

probability p0. The following lemma states that the obtained
sample S(i)

t indeed follows the desired distribution P (S).
Lemma 4: Let S(i)

t be a stream sample via incremental
sampling at time t, then P (a ∈ S(i)

t) = pt(a) for each a ∈ St.
Observe that, in incremental sampling, if a social activity

is “alive” at time t, then it remains alive at time t + 1 with
probability e−λ. Once the social activity is removed from the
sample, it no longer participates in the analysis. Thus each
social activity can be thought to have a lifespan which is the
number of time steps the social activity remains alive and is
included in the sample. As time advances, a social activity’s
lifespan decreases, and when the lifespan becomes zero, the
social activity is discarded from the sample. We find that the
initial lifespan of a social activity a, denoted by la, actually
follows the following distribution

P (la = l) =

{
1− p0, l = 0,

p0e
−λ(l−1)(1− e−λ), l = 1, 2, . . .

(4)

When p0 = 1, the distribution is actually the geometric
distribution with parameter e−λ.

Based on the above observation, we can obtain samples
{S(i)

t }n
i=1 as follows. For each newly arrived social activity

a, we sample n initial lifespans for a by Eq. 4, denoted by
l
(i)
a , i = 1, . . . , n, and a ∈ S(i)

t if and only if l
(i)
a > t − ta,

i.e., the remaining lifespan at time t is positive.
Lifespan sampling is a more convenient way to sample St

than previous methods, and it is suitable in the streaming
setting. In addition, lifespan sampling inspires us to introduce
the I-set representation of a social activity, which turns out to
be very useful in later discussions.

B. Representing Social Activities by I-Sets

Motivated by lifespan sampling, we introduce I-set, a nota-
tion to conveniently represent each social activity in the
PDSAS model.

Definition 3 (I-set): Given samples {S(i)
t }n

i=1, the I-set of
a social activity a at time t = ta + l (i.e., l time steps after its
arrival) is

Il(a) ≜ {i | a ∈ S(i)
t } = {i | l(i)a > l}. (5)

Fig. 4. Generating I-sets from lifespan samples. Assume we have sampled
n = 3 lifespans, i.e., 2, 7, and 5, for a social activity a (Left). Then by Eq. 5,
we can generate the I-sets for social activity a (Right).

In other words, the I-set of a social activity is the set of
indexes of stream samples that still include this social activity.
Note that at time t = ta + l, a social activity a is still included
in sample S(i)

t if l
(i)
a > l. As time advances, i.e., l increases,

fewer samples still include a, hence the size of set Il(a) will
decrease, or we say that the I-set shrinks over time. In fact,
I-set is an equivalent way to characterize the decaying nature
of a social activity in the PDSAS model. Specifically, as time
advances, the probability that each social activity participates
in the analysis decreases; equivalently, its I-set shrinks over
time. If a social activity no longer participates in the analysis,
then equivalently, its I-set becomes empty. Therefore, I-set is
another way to represent the decaying social activity in the
PDSAS model.

Using lifespan sampling, we can easily construct the I-sets
of a social activity, i.e., we first sample n lifespan samples by
Eq. 4, and then obtain I-sets by Eq. 5. An example is illustrated
in Fig. 4.

Remark: As a special case, consider pt(a) = pa ∈ [0, 1],
i.e., each social activity participates in the analysis with a
constant probability. Then each social activity’s I-set will also
be a constant and not shrink. We thus simplify the notation
to I(a). I(a) can be directly obtained by flipping a biased
coin (with probability pa of heads) n times, and I(a) ≜
{i : the i-th outcome is a head}.

V. A STRAWMAN ALGORITHM

Based on the proposed stream sampling methods and the
I-set notation, we next present a basic strawman algorithm,
called BASICIT, to address the influencer tracking problem.
We show that our original problem can be reduced to a special
influencer tracking problem where social activities do not
decay. Using the algorithm developed for this special problem
as a building block, we design BASICIT to solve the original
problem.

A. Probabilistic Addition-Only Influencer Tracking

In the simplest case, the decay function is a constant, i.e.,
h(x) = p0. So pt(a) = h(t−ta) = p0 is time invariant. In this
case, each social activity participates in the analysis with a
constant probability, i.e., no decay. We refer to this special
influencer tracking problem as the Probabilistic Addition-only
Influencer Tracking (PAIT) problem. As its name suggests,
in PAIT, social activities are only probabilistically added in
and no social activity is removed from a pool of active
social activities that are used to evaluate each user’s influence
spread on G. This unique feature will help us to find efficient
streaming algorithms to solve the PAIT problem.

For each social activity a ∈ St, because pt(a) = p0 is a
constant, then a’s I-set is also a constant — a special case
that we have discussed in Section IV-B. Let I(a) denote this

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 5. Probabilistic addition-only influencer tracking. Each social activity
is associated with a constant I-set. Due to the addition of social activity a in
stream samples, the influence spreads of users in Va ⊆ V change.

constant I-set, which can be easily obtained by flipping a
biased coin n times. Then, the original social activity stream
can be represented as an I-set stream, as illustrated in Fig. 5.

By the definition of I-set, a social activity a is included in
S(i)

t for all i ∈ I(a). In the Monte-Carlo framework, each user
u ∈ V is associated with n influence spreads evaluated on n

samples respectively, i.e., σ(u;S(i)
t) for i = 1, . . . , n. We say

that a user’s influence spread changes if at least one of these n
influence spreads change. Let Va ⊆ V denote the set of users
whose influence spreads change due to the addition of social
activity a. In PAIT, because social activities are only added
into samples {S(i)

t }n
i=1, each user’s influence spread will only

increase as time advances. Therefore, when a arrives, we get
affected users Va and obtain a user stream, as shown in Fig. 5.

Hence, the PAIT problem becomes finding k users from
the user stream to maximize the submodular objective Ft,
which is actually a streaming submodular optimization (SSO)
problem. Fortunately, SSO is well studied for several stream
models [33], [34], [35], [36], [37]. In our case, the user
stream can be viewed as an insertion-only stream because
users are only added in and no user is removed from the
stream. For the insertion-only SSO problem, the state-of-the-
art streaming algorithms are SIEVESTREAMING [33] and its
improvement SIEVESTREAMING++ [37]. Below, we briefly
introduce SIEVESTREAMING and then show how to leverage
SIEVESTREAMING++ to solve the PAIT problem.

The insertion-only SSO problem aims to select k elements
from an insertion-only stream to maximize a monotone sub-
modular function such that each element in the stream can only
be accessed once. The high-level idea of SIEVESTREAMING
is as follows. For each element in the stream, we calculate its
gain of utility when adding it to the current solution. If the
gain is no less than an optimal threshold, the element is added
in the solution; otherwise ignored. This process continues until
the budget is exhausted. In practice, the optimal threshold
is unknown in advance. SIEVESTREAMING cleverly uses a
set of thresholds and maintains a candidate solution for each
threshold. Finally, the best candidate is returned as the solution
which is guaranteed to be (1/2− ϵ)-approximate. By dynam-
ically updating the thresholds, SIEVESTREAMING++ further
reduces the space complexity to O(k/ϵ).

To leverage SIEVESTREAMING++ to solve the PAIT prob-
lem, for each user u in the user stream, we need to calculate
the gain of utility with respect to a user set S, denoted by

∆(u|S). It follows that

∆(u|S) ≜ Ft(S ∪ {u})− Ft(S)

=
1
n

n∑
i=1

(
f(σ(S ∪ {u};S(i)

t))− f(σ(S;S(i)
t))

)
=

1
n

n∑
i=1

δ(i)(u|S)

where δ(i)(u|S) denotes the gain of utility evaluated on the
i-th sample. We can then leverage SIEVESTREAMING++ to
solve the PAIT problem (see Fig. 5). We refer to this algorithm
as SIEVEPAIT, and its pseudo-code is given in Algorithm 1.

Algorithm 1 SIEVEPAIT
Input: social activity stream, budget k, and ϵ ∈ (0, 1)
Output: influencers St at each query time t

1 ∆← 0, θmin ← ∅, and LB← 0;
2 foreach social activity a arrived at time t do
3 Va ← users whose influence spreads change;

// Lines 4-7 maintain a set of thresholds
4 ∆← max{∆, maxu∈Va Ft({u})};
5 θmin ← max{LB, ∆}/2k;
6 Discard all sets Sθ with θ < θmin;
7 Θ← {(1 + ϵ)i | (1 + ϵ)i ∈ [θmin/(1 + ϵ), ∆]};

// Lines 8-12 filter users by thresholds
8 foreach u ∈ Va do
9 foreach threshold θ ∈ Θ do

10 if |Sθ| < k and ∆(u|Sθ) ≥ θ then
11 Sθ ← Sθ ∪ {u};
12 LB← max{LB, Ft(Sθ)};

// Return St when a query is performed
13 St ← arg max Ft(Sθ);

However, we notice that PAIT has two major differences
with the insertion-only SSO. In the insertion-only SSO prob-
lem, each element appears only once in the stream, and the
objective function is time invariant. While in our case, a user
may appear multiple times in the user stream, and objective Ft

is time-varying. Therefore, we still need to show that SIEVE-
PAIT in Algorithm 1 guarantees a constant approximation
ratio. Leveraging the observation that each user’s influence
spread does not decrease in PAIT, we find that SIEVEPAIT
indeed guarantees a constant approximation ratio.

Theorem 1: SIEVEPAIT guarantees an (1/2 − ϵ) approxi-
mation ratio.

Let γ denote the average size of set Va for all a. Then
SIEVEPAIT has the following complexity.

Theorem 2: SIEVEPAIT requires O(γnϵ−1 log k) oracle
calls to process each arrival social activity, and O(kϵ−1) space
to store the candidate solutions.

Remark: In the what follows, we treat SIEVEPAIT as a
blackbox, whose input is a stream of constant I-sets {I(a) |
a ∈ St}, and output is an (1/2 − ϵ)-approximate solution
of the PAIT problem. We use A to denote an instance of
SIEVEPAIT, and we use SIEVEPAIT as a building block to
design a strawman algorithm to address our original influencer
tracking problem.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1467

Fig. 6. Illustration of evolving I-sets and the BASICIT algorithm.

B. The BASICIT Algorithm

We now consider the influencer tracking problem under the
general PDSAS model. In this case, each social activity partic-
ipates in the analysis with a probability decreasing over time,
and its I-set will shrink from I0(a) at time ta, to I1(a) at time
ta + 1, and finally to an empty set, indicating that the social
activity no longer participates in the analysis, as illustrated
in Fig. 4. To simplify our discussion and motivate a basic
streaming algorithm, we assume that each social activity can
remain alive for at most L time steps, i.e., the lifespan is
upper bounded by L. Therefore, each social activity will have
at most L non-empty I-sets, and Il(a) = ∅ for l ≥ L. This
could simplify our algorithm design. Note that we will remove
this assumption later.

First, let us understand the evolving of I-sets in a stream
using an example in Fig. 6(a). In Fig. 6(a), when social activity
a1 arrives at time t−2, its I-set is I0(a1). At the next time step,
a1’s I-set shrinks to I1(a1), and meanwhile, a2 arrives with I-
set I0(a2). At time t, a3 arrives with I-set I0(a3), and the I-sets
of a1 and a2 shrink to I2(a1) and I1(a2), respectively. This
process then continuous, and when an I-set becomes empty,
the corresponding social activity no longer exists.

Let It ≜ {Il(a) ̸= ∅ | a ∈ St ∧ ta + l = t} be a
family of non-empty I-sets at time t, formed by currently
alive social activities. For example, in Fig. 6(a), It =
{I2(a1), I1(a2), I0(a3)}. In fact, at time t, we can treat It

as a family of constant I-sets of social activities with constant
participation probabilities. For example, in Fig. 6(a), at time
t, we can think that a1 participates in the analysis with
an instantaneous constant probability pt(a1) and its I-set is
I2(a1); a2 participates in the analysis with an instantaneous
constant probability pt(a2) and its I-set is I1(a2); and so on.
Thus a simple idea of solving the influencer tracking problem
is to feed I-sets in It to a SIEVEPAIT instance. Then the
instance’s output will be an (1/2− ϵ)-approximate solution at
time t. The challenge is that I-sets in It are evolving over time,
and we can access each social activity only once. We cannot
afford to process It again at each time It changes. Therefore,
we need to find a clever way to process It in a streaming
fashion.

We propose a simple algorithm, called BASICIT, to address
this challenge under the assumption that lifespans are upper
bounded by L. First, recall that when a social activity arrives,
we can sample n lifespans and easily obtain its L I-sets (see
Section IV-B). Next, we can maintain L SIEVEPAIT instances,
denoted by {Al}L−1

l=0 , and use a “processing-and-shifting”
scheme to process these L I-sets in parallel. Specifically,
as illustrated in Fig. 6(b), BASICIT works as follows.

Fig. 7. Applying BASICIT to the stream in Fig. 6(a). Note that after
processing a3, A′′ has processed I-sets I2(a1), I1(a2), and I0(a3), i.e., It.

• Processing. Feed Il(a) to Al for l = 0, . . . , L− 1.
• Shifting. Reset A0 and circularly shift these L SIEVE-

PAIT instances one unit to the left. We also need to relabel
each instance so that the first one always starts from sub-
script 0.

We repeatedly execute the above two steps whenever a
social activity arrives. We find that A0 always processed all
the I-sets in It, thus A0’s output will be the solution at time t.
The pseudo-code of BASICIT is given in Algorithm 2.

Algorithm 2 BASICIT

1 Initialize L SIEVEPAIT instances {Al}L−1
l=0 ;

2 foreach social action a do
3 Obtain I-sets Il(a), l = 0, . . . , L− 1;
4 for l = 0, . . . , L− 1 do Feed Al with Il(a);
5 St ← output of A0;
6 for l = 1, . . . , L− 1 do Al−1 ← Al;
7 Reset A0 and AL−1 ← A0;

In Fig. 7, we use an example to explain the execution of
BASICIT. Assume L = 3, and we maintain three SIEVEPAIT
instances, namely A, A′, and A′′. When a1 arrives, we obtain
its I-sets and feed them to the three instances, respectively.
Then A is reset, and they are all shifted to the left, and
continuously process a2. Note that the first instance always
processed all the I-sets of current social activities in the stream.
For example, after a3 is processed, A′′ has processed I-sets
I2(a1), I1(a2), and I0(a3) which are exactly the I-sets in It

(see Fig. 6(a)). Hence, A′′’s output is the correct solution.
It is straightforward to see that BASICIT has the same

approximation ratio as SIEVEPAIT. While the update com-
plexity and space complexity of BASICIT are both L times
larger than SIEVEPAIT because L SIEVEPAIT instances are
maintained.

Theorem 3: BASICIT guarantees an (1/2 − ϵ) approxima-
tion ratio.

Theorem 4: BASICIT requires O(Lγnϵ−1 log k) oracle
calls to process each social activity and needs O(Lkϵ−1) space
to maintain candidate sets.

Remark: BASICIT is only suitable for the case that lifespan
upper bound exists and is small. This happens when the decay
function has a fast decay rate. Otherwise L is large, and
BASICIT needs to maintain a large number of SIEVEPAIT
instances, and this will incur high CPU and RAM overloads.
Therefore, BASICIT has a bottleneck for handling slowly
decaying social activity streams. To address this bottleneck,
we propose a fast method for influencer tracking.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 8. Example of using few SIEVEPAIT instances.

VI. A FAST ALGORITHM FOR INFLUENCER TRACKING

In this section, we propose HISTIT, to address the draw-
back of BASICIT. HISTIT also removes the assumption that
lifespan is upper bounded. In addition, HISTIT is significantly
faster than BASICIT with a little loss on solution quality but
still ensures a constant approximation ratio.

The idea of HISTIT is to reduce the number of SIEVEPAIT
instances in BASICIT. Intuitively, if just a few SIEVE-
PAIT instances are maintained, then the efficiency should be
improved a lot. Specifically, we want to select a subset of
SIEVEPAIT instances indexed by lt ≜ {l(t)1 , l

(t)
2 , . . .}, where

l
(t)
i ∈ {0, 1, . . .} is an instance index, to approximate the rest

at any time t. Roughly speaking, this can be thought of as
using a histogram to approximate a curve, thus called HISTIT.
In what follows, we elaborate two ways to reduce the number
of SIEVEPAIT instances in BASICIT.

A. Grouping I-Sets Into Segments

We observe that, when generating the I-sets of a social
activity using n lifespan samples, no matter how large each
lifespan is, there are always at most n distinct non-empty
I-sets. Consider the example in Fig. 4, we can see that I0(a) =
I1(a), I2(a) = I3(a) = I4(a), and I5(a) = I6(a). That is,
social activity a has only 3 distinct non-empty I-sets even
though the lifespan could be as large as 7. Since consecutive
I-sets are often the same, we group consecutively same I-sets
into one segment. There will be at most n segments for each
social activity, and each segment corresponds to a unique
I-set. Denote the i-th segment of a by interval [li(a), ri(a)] for
1 ≤ i ≤ n. For the example in Fig. 4, there are 3 segments,
i.e., [0, 1], [2, 4], and [5, 6], corresponding to 3 distinct I-sets,
respectively.

The observation of I-set segmentation can be used to reduce
the number of SIEVEPAIT instances in BASICIT. The idea is
that if several SIEVEPAIT instances are fed with the same
I-sets, then their outputs must be the same, and hence we
only need to maintain just one of them. Specifically, suppose
a is the first social activity in the stream arrived at time t
and we have obtained its I-sets {Il(a)}l≥0. Because Il(a)
will be fed to Al and I-sets belong to the same segment are
same to each other, hence Al will have same output for l in
the same segment. Therefore, we only need to maintain one
SIEVEPAIT instance for each segment, say, those indexed by
lt = {ri(a)}1≤i≤n. For example, in Fig. 8(a), because a1 has
two segments, we only need to maintain two instances, i.e.,
Al for l ∈ {r1(a1), r2(a1)}.

When social activities keep arriving, we can update the
current maintained SIEVEPAIT instances and create more
instances based on current maintained instances. Specifically,

consider a social activity a arrived at time t, and let lt−1 denote
the set of indexes of maintained instances before processing
a. For each segment [l, r] of a, if r /∈ lt−1, we can create Ar

by copying the successor instance Al∗ where l∗ = min{l |
l > r∧ l ∈ lt−1}; if no such successor exists, we create a new
instance as Ar. We add r in lt−1 and obtain lt. Finally, for
each l ∈ lt−1, we also need to feed Al with the I-set of the
segment that l belongs to.

For example, in Fig. 8(b), a2 arrives at time t, and lt−1 =
{r1(a1), r2(a1)}. Because r1(a2) /∈ lt−1 and r2(a2) /∈ lt−1,
we hence create two instances Ar1(a2) and Ar2(a2) by copying
the same successor Ar2(a1). Then we feed segment one’s I-
set to Ar1(a1) and Ar1(a2), and feed segment two’s I-set to
Ar2(a2). We can verify that each SIEVEPAIT instance indeed
correctly processed the I-sets.

Note that the first maintained instance still outputs the
solution with the approximation ratio same to BASICIT. The
pseudo-code of the algorithm using I-sets segmentation, i.e.,
HISTIT-SEG, is given in Algorithm 3.

Algorithm 3 HISTIT-SEG

1 l← ∅;
2 foreach social action a do
3 Obtain segments [li(a), ri(a)], 1 ≤ i ≤ n;
4 foreach segment [l, r] do Process(l, r);
5 St ← output of Al1 ;
6 if l1 = 0 then Kill Al1 , and l← l\{l1};
7 for l ∈ l do Al−1 ← Al, l← l − 1;
8 Procedure Process(l, r)
9 if r /∈ l then

10 if r has no successor then create a new Ar;
11 else create Ar by copying its successor;
12 l← l ∪ {r};
13 Feed the segment’s I-set to Ai, i ∈ [l, r];

Remark: Leveraging I-set segments, we can reduce the
number of SIEVEPAIT instances; however, as social activities
keep arriving, we may need to keep creating SIEVEPAIT
instances, resulting in a large number of instances to maintain.
Hence, HISTIT-SEG may still suffer from high CPU and RAM
overloads. To address this issue, we propose another way to
further reduce the number of SIEVEPAIT instances.

B. Reducing Redundancy

Intuitively, if consecutive SIEVEPAIT instances have very
close outputs, implying that they found similar solutions, then
we think that they are redundant to each other, and maintaining
only one of them is enough. Therefore, our second idea
to reduce the number of running SIEVEPAIT instances in
BASICIT is to remove those redundant ones. Our method is
inspired by the idea of smooth histogram for analyzing sliding-
window streams [38], [39]. To materialize this idea, we need to
strictly define redundancy. To simplify our notations, we will
use Al to refer to the instance’s output utility.

Definition 4: Given a small real number ϵ ∈ (0, 1), if Aj ≥
(1 − ϵ)Ai for j > i, then we say that instances with indexes
between i and j are ϵ-redundant.

That is, since Aj and Ai are already close to each other,
then instances between them are considered to be redundant.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1469

Thus, we can regularly check the output utilities of SIEVE-
PAIT instances during the running of HISTIT-SEG (e.g.,
after processing each social activity), and kill those redundant
ones. We will use HISTIT-RED to refer to the algorithm that
further leverages the idea of reducing redundancy to improve
efficiency.

However, there is one issue when practically implementing
HISTIT-RED. That is, when creating an instance from its
successor in Line 11 of HISTIT-SEG, if the successor of
Ar were killed at some previous step (because Ar were
redundant), then at current time, the maintained successor is
actually not the true successor of Ar. Creating Ar by copying
the fake successor may cause issues. We postpone the solution
to this issue, but simply assume that their is an “oracle” that
can correctly create the SIEVEPAIT instance.

C. Theoretical Analysis of HISTIT-RED

The reducing redundancy operation in HISTIT-RED will
slightly harm the solution quality, but we can theoretically
show that the loss in solution quality can be bounded and
HISTIT-RED still guarantees a constant approximation ratio.

To analyze the approximation ratio, we need to introduce
some notations. Due to shifting and relabeling, l ∈ lt and
l+1 ∈ lt−1 actually index the same SIEVEPAIT instance, i.e.,
Al at time t and Al+1 at time t− 1 are the same SIEVEPAIT
instance. In general, l′ ∈ lt′ and l ∈ lt index the same instance
if t′ ≤ t and l′ = l + t − t′. If so, we say that Al′ at time
t′ is an ancestor of Al at time t. To simplify the notations,
we will always use A′ to refer to an ancestor instance of A.
We find that HISTIT-RED maintains a histogram satisfying the
following property.

Lemma 5: Let Ali and Ali+1 be two consecutive SIEVE-
PAIT instances at time t. There are only two possible cases
that could cause these two instances to be consecutive at time t.
Case 1 There is no social activity having a segment [l, r] with

r falling between the indexes of these two instances since
these two instances were created.

Case 2 At some time t′ < t, it holds that A′li+1
≥ (1− ϵ)A′li ,

and from time t′ to time t, no instance is created between
these two instances.

Lemma 5 actually states the two possible scenarios that two
maintained instances are consecutive: either the two instances
are consecutive since they were created (Case 1), or they
become consecutive after redundant instances between them
were removed (Case 2). Based on Lemma 5, we can obtain
the approximation guarantee of HISTIT-RED.

Theorem 5: HISTIT-RED guarantees an (1/4− ϵ) approx-
imation ratio.

The proof of Theorem 5 is rather complicated and the
outline is as follows. If l1 = 0, then it means that A0 exists.
Because A0 processed all the I-sets in It as is in BASICIT,
then the output is (1/2− ϵ)-approximate. Otherwise, we con-
sider l1 and its most recently expired predecessor l0. Since
they were consecutive at the time l0 did not expire, then by
Lemma 5, there are two cases. If Case 1 holds, we can argue
that Al1 still completely processed the I-sets in It, thereby
returning a (1/2 − ϵ)-approximate solution. If Case 2 holds,

then there exists some time t′ < t s.t. A′l1 ≥ (1− ϵ)A′l0 . This
finally leads to an (1/4−ϵ)-approximate solution. We provide
the complete proof in the Appendix.

Finally, we find that the number of maintained SIEVEPAIT
instance in HISTIT-RED is O(ϵ−1 log k). We thus obtain the
update time and space complexity of HISTIT-RED.

Theorem 6: HISTIT-RED requires O(γnϵ−2 log2 k) ora-
cle calls to process each arrival social activity and needs
O(kϵ−2 log k) space to maintain candidate solutions.

D. A Practical Implementation of HISTIT-RED

HISTIT-RED relies on an oracle that can correctly create
Ar, i.e., Line 11 in Algorithm 3. A naive way to implement
this oracle is that: when an instance needs to be killed, we
swap it out of the RAM, and store the unprocessed I-sets
corresponding to it; when Ar needs to be restored, we swap it
in the RAM and feed it with the unprocessed I-sets. Obviously,
it is inefficient. Instead, we propose a faster and practical
implementation of HISTIT-RED.

The idea is that, we do not wish to accurately restore Ar but
allow some affordable inaccuracy of utility. As compensation,
we kill SIEVEPAIT instances more conservatively and slightly
more instances will be kept to preserve the solution quality.

We still restore Ar from its observed successor in lt;
however, this will incur some inaccuracy. To avoid killing
SIEVEPAIT instances that are actually not redundant,
we assign each instance Ar an amount of uncertainty, denoted
by βr, as compensation for inaccurately restore. In other
words, the true utility may be as large as Ar + βr. We thus
relax the redundancy condition to Aj ≥ (1 − ϵ)(Ai + βi).
Comparing with the original redundancy condition, slightly
more instances will be kept.

Uncertainty score βr is related to the inaccuracy of the
instance Ar. Notice that if an instance indexed by r is removed
in interval (i, j), we can approximate the interval’s uncertainty
by Ai − Aj ≤ ϵAi. Hence, we set βr = ϵ(Ai + βi).
Therefore, we only need to record each interval’s uncertainty
when reducing redundancy, and the final implementation of
HISTIT-RED is given in Algorithm 4.

VII. EXPERIMENTS

In this section, we perform experiments on several public
available real-world datasets to demonstrate the effectiveness
of our algorithms.

A. Datasets

• Brightkite and Gowalla [40]. Brightkite and Gowalla
are two location based online social networks (LBSNs) where
users can check in places. To fit into our framework, we can
consider a network containing two types of nodes, i.e., user
nodes and place nodes. A place node can influence a user node
if the place attracts the user to check in. Thus each check-in
record reflects the place’s influence on the user, and if many
users check in a specific place, then the place is influential.
We use these two LBSN datasets to study the problem of
tracking influential places over check-in record streams.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Algorithm 4 HISTIT-RED

1 l← ∅;
2 foreach social action a do
3 Obtain segments [li(a), ri(a)], 1 ≤ i ≤ n;
4 foreach segment [l, r] do Process(l, r);
5 St ← output of Al1 ;
6 if l1 = 0 then Kill Al1 , and l← l\{l1};
7 for l ∈ l do Al−1 ← Al, l← l − 1;
8 ReduceRedundancy();
9 Procedure Process(l, r)

10 if r /∈ l then
11 if r has no successor then create a new Ar;
12 else
13 Let i and j denote r’s predecessor (or i = 0 if

not exists) and successor, respectively;
14 Ar ← a copy of Aj ;
15 Find a, b ∈ l s.t. (a, b) ⊇ (i, j), βr ← βab;

16 Feed the segment’s I-set to Ai, i ∈ [l, r];
17 Procedure ReduceRedundancy()
18 foreach i ∈ l do
19 Find the largest j > i s.t. Aj ≥ (1− ϵ)(Ai + βi);
20 For each l ∈ (i, j), kill Al and remove l from l;
21 βij ← ϵ(Ai + βi);

TABLE II
SUMMARY OF DATASETS

• Reddit [41]. Reddit is a popular online forum where users
can post subjects and comment to other users’ posts. If a user v
replies to another user u’s posts (either subjects or comments),
it then reflects user u’s influence on user v. Thus if a user
attracted many comments, then the user is influential. We use
the Reddit data to study the problem of tracking influential
users over the commenting streams in Reddit.

• Twitter [42]. The Higgs Twitter dataset is built after
monitoring the spreading of rumors about Higgs boson on
Twitter in July 2012. In Twitter, a user can retweet, reply,
and mention another user’s tweets, thus reflecting one user’s
influence to another. Therefore, the Twitter dataset is suitable
to study the problem of tracking influential users over the
tweets streams in Twitter.

• Weibo [43]. Weibo is a popular microblogging website in
China. Similar to Twitter, a Weibo user can retweet, reply, and
mention another user’s tweets, reflecting one user’s influence
to another. We collected a small fraction of Weibo data using
the breath-first-search method starting from some randomly
selected seed users in 2012. Similar to Twitter, we use the
Weibo dataset to study the problem of tracking influential users
over the tweets streams in Weibo.

A brief summary of these datasets is shown in Table II. For
Brightkite and Gowalla, we show the number of place nodes
and the number of user nodes in each dataset.

B. Baselines

We will consider the following methods as our baselines.

• Greedy [29]. A straightforward method to solve the
influencer tracking problem is to re-run the Greedy algorithm
on It at each time t. The Greedy algorithm starts with an
empty set S = ∅ and iteratively, in each time step, adds a user
s who maximizes the utility gain. Greedy stops once it has
selected k users, or the utility gain becomes zero. To further
improve its efficiency, we apply the lazy evaluation trick [44],
which is commonly used to accelerate Greedy. Greedy can find
solutions with the best quality, i.e., 1−1/e to the optimal, thus
Greedy will serve as an upper bound of solution quality.

• DIM [23] is a fully-dynamic index data structure for
influence analysis on evolving networks with edge additions
and deletions. DIM has a parameter β related to the threshold
of subgraph weight and also the complexity of the index.
We set β = 32 as suggested in [23].

• IMM [14] is an index-based IM method using martingales,
and it is designed for handling static graphs. IMM has two
parameters l and ϵ, and we set l = 1 and ϵ = 0.3.

• TIM+ [12] is an index-based IM method using the two-
phase strategy for static graphs. IMM also has two parameters
l and ϵ, and we set l = 1 and ϵ = 0.3.

• Random. We can randomly pick a set of k users at each
time t. The Random method will serve as a lower bound of
solution quality.

C. Settings and Evaluation Metrics

The decay function has the form h(x) = p0e
−λx where we

fix p0 = 1 and vary λ. Parameter ϵ and budget k also vary.
Sample size n will be determined empirically.

We use the following metrics in the experiments.
· The Normalized Rooted Mean Squared Error (NRMSE)
is used to evaluate the estimation accuracy of estimator θ̂
for approximating the true value θ. NRMSE is defined by

NRMSE(θ̂) ≜
√

E[(θ̂ − θ)2]/θ.
· The Number of Oracle Calls is used to evaluate the compu-
tational efficiency. Because oracle calls are the most expensive
operations in an algorithm, and this metric is independent of
the algorithm implementation and experimental hardware.

• Throughput is also used as an efficiency metric for
handling data streams by a streaming algorithm.

• Utility is used to evaluate the quality of solutions found by
an algorithm, defined by Eq. 3. A larger utility Ft(S) means
that a better solution S is found by the algorithm.

D. Results

• Sample Size. We first determine the required sample size
n in the Monte-Carlo framework in order to guarantee that
Ft(S) is a good estimate of E[f(σ(S;St, h))]. To this end,
we randomly pick k = 10 nodes as node set S, and then
compute Ft(S) using different sample size, as well as the true
value E[f(σ(S;St, h))], on different datasets. Here, we use
small k for the convenience of computing the exact value of
E[f(σ(S;St, h))]. We then use the NRMSE to evaluate the
accuracy of estimate Ft(S). We vary n from 10 to 500, and
for each n, we vary λ in range {0.01, 0.02, 0.03} and repeat to
perform the data stream sampling for 1, 000 times to calculate
NRMSE. The results are shown in Fig. 9.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1471

Fig. 9. Estimation accuracy using different sample size. The result on
Gowalla is similar to the result on Brightkite.

Fig. 10. BASICIT vs. HISTIT-RED. The result on Gowalla is similar to the
result on Brightkite.

We observe that as sample size n increases, the NRMSE
decreases for each λ, as expected. As n increases from 10 to
100, NRMSE drops significantly; when n further increases,
NRMSE drops slowly. When n = 50, NRMSE is less than
0.05 on all of these five datasets. We therefore fix n = 50 in
the following experiments.

• BASICIT vs. HISTIT-RED. To better understand the
improvement of HISTIT-RED upon BASICIT, in the second
experiment, we compare the solution quality and computa-
tional efficiency between HISTIT-RED and BASICIT.

We run the two algorithms for 1, 000 time steps, and vary
λ in range {0.01, 0.02, 0.03, 0.04, 0.05}, in order to expose
the weakness of BASICIT when processing slowly decaying
streams. We set ϵ = 0.2, k = 10, and L = 100, i.e.,
the maximum lifespan in BASICIT is 100. We calculate
two ratios: (1) the solution quality ratio, i.e., the quality
of solution obtained by HISTIT-RED against the quality of
solution obtained by BASICIT, and (2) the number of oracle
calls ratio, i.e., the number of oracles of HISTIT-RED against
the number of oracles calls of BASICIT. Both results are
averaged after running 1, 000 time steps, as shown in Fig. 10.

We observe the following results on these datasets. First,
the solution quality of HISTIT-RED is slightly lower than that
of BASICIT, due to the approximation nature of HISTIT-RED.
However, they indeed achieve similar solution quality as the

Fig. 11. Solution quality over time. The result on Gowalla is similar to the
result on Brightkite.

solution quality ratio is larger than 0.9. This indicates that
HISTIT-RED can find similar quality solutions as BASICIT.
Second, the number of oracle calls of HISTIT-RED is much
smaller than that of BASICIT, and the superiority is more
significant for smaller λ. This is due to the reason that
HISTIT-RED runs smaller number of SIEVEPAIT instances
than BASICIT, thus HISTIT-RED requires fewer oracle calls
than BASICIT, and for slowly decaying streams (i.e., small λ),
BASICIT needs to maintain even more SIEVEPAIT instances,
resulting more oracle calls than HISTIT-RED. The experiment
implies that HISTIT-RED and BASICIT can find similar qual-
ity solutions but HISTIT-RED is more efficient than BASICIT.

• Solution Quality. To understand the solution quality
of HISTIT-RED, next we compare the solution quality of
HISTIT-RED with Greedy and Random, which serve as the
upper and lower bound of solution quality, respectively.

We run HISTIT-RED with fixed λ = 0.001 and varying ϵ for
20, 000 time steps on each dataset to maintain k = 20 nodes
at each time step. We show the solution quality of these k
nodes over time in Fig. 11.

As expected, the Greedy algorithm always achieves the
highest solution quality while the Random algorithm always
achieves the lowest. In general, the solution quality achieved
by HISTIT-RED is very close to Greedy, and is much better
than Random. From the results, ϵ’s effect seems to be unclear,
and the curves overlap with each other. To further investigate
how ϵ affects the solution quality, we show the averaged
solution quality ratio with respect to Greedy using different
ϵ on each dataset in Fig. 13(a). It is clear to see that when
ϵ is larger, the solution quality drops. As larger ϵ means that
fewer SIEVEPAIT instances are maintained, thereby resulting
in poorer solution quality.

• Computational Efficiency. Next we compare the compu-
tational efficiency of HISTIT-RED with Greedy in terms of
the required number of oracle calls. Similar to the previous
experiment, we run HISTIT-RED with fixed λ = 0.001 and
varying ϵ for 20, 000 time steps on each dataset to maintain
k = 20 nodes at each time step. The accumulated number of
oracle calls over time on each dataset is shown in Fig. 12.

It is clear to see that HISTIT-RED requires much less oracle
calls than Greedy, and Greedy is only efficient at the very

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 12. Computational efficiency. The result on Gowalla is similar to the
result on Brightkite.

Fig. 13. Trade-off effect of parameter ϵ.

Fig. 14. Solution quality comparision with baselines.

beginning of each stream (when the number of nodes is small)
but the number of oracle calls increases quickly over time. For
HISTIT-RED, when ϵ increases, the number of oracle calls
further drops. Hence, HISTIT-RED is more efficient when ϵ
is small due to the fact that a few SIEVEPAIT instances are
maintained, as shown in Fig. 13(b).

In combination with the results in Figs. 11 and 13(a),
we thus conclude that ϵ has a trade-off effect in HISTIT-RED,
i.e., smaller ϵ could improve the solution quality, but harm the
computational efficiency.

• Comparing with Other Baselines. Next, we compare
the solution quality and computational efficiency of HISTIT-
RED with other baselines. Here we fix λ = 0.001 and ϵ =
0.2 for HISTIT-RED. The parameters for each baseline have
been described in Section VII-B. We run each method for
1, 000 time steps with varying budget k, and show the averaged
results in Figs. 14 and 15.

In Fig. 14, we depict the averaged utility ratio with respect
to Greedy for different methods on Twitter and Weibo, respec-
tively. In general, these methods are all able to find similar
quality solutions, and they are close to the solution quality
of Greedy. In Fig. 15, we depict the throughput of different
methods when process the Twitter and Weibo streams. Because
Greedy, DIM, IMM, and TIM+ are all not designed for

Fig. 15. Throughput comparision with baselines.

processing streaming data, their throughput is significantly
lower than HISTIT-RED. This demonstrates the superiority of
HISTIT-RED for processing streams.

VIII. RELATED WORK

Influence Maximization (IM) is the key behind many
real-world applications such as viral marketing [45], net-
work monitoring [43], and incentive mechanisms design [46].
Most existing works on IM mainly focus on static net-
works, e.g., [10], [11], [12], [13], [14], [15], [16], [17], [19],
[47], [48], and [49]. While our focus in this work is more
related to IM on dynamic networks. Heuristic methods such
as [21] and [22] have been proposed to solve IM on dynamic
networks. However, these methods do not have theoretical
guarantees on the solution quality. Online influence maximiza-
tion (OIM) methods [50], [51] can provide solution quality
guarantees. However, OIM still assumes that the influence
is static but allows influence probabilities to be unknown in
advance and learned in an online manner.

Song et al. [25] extend the interchange greedy
algorithm [29] and propose an (1/2 − ϵ)-approximate
algorithm to solve IM over continuously evolving dynamic
networks under the assumption that the network changes
smoothly so that a few interchange of nodes in the previous
solution will obtain a solution at present. However, if the
network changes significantly, the interchange greedy
degrades to re-computation which is inefficient.

The reverse-reachable sets method [10] is the state-of-the-
art for solving IM on static networks. Ohsaka et al. [23]
and Yang et al. [24] extend this algorithm to an updatable
index structure for faster computing the influence of nodes
in dynamic networks. Yang et al. [24] study the problem of
tracking influential individuals in dynamic networks, which is
a different problem. Ohsaka et al. [23] propose DIM which is a
fully-dynamic IM algorithm on networks with edge additions
and deletions. Note that these methods still need the pairwise
influence probabilities as given inputs and nodes influence is
estimated under the IC or LT model. While our approach is
a data-driven approach without any assumption on influence
spreading model.

Some variants of IM such as topic-specific influencers
query [28], [52], finding temporal influencers [53], online
learning based approaches [50], [51], and adaptive influence
maximization [54] are also related to dynamic networks or
dynamic diffusion processes. However, our streaming problem
setting is quite different from theirs.

Our work is most related to the researches on streaming
submodular optimization (SSO) [55] because the utility func-
tion in our influencer tracking problem satisfies submodularity.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1473

In the literature, SSO is mainly studied for two types of data
stream models, i.e., the insertion-only stream model [33] and
the sliding-window stream model [34], [35], both ensure con-
stant approximation ratios. However, these two stream models
actually represent two extremes and have limitations [56].
Recently, SSO algorithms for other data stream models are also
studied such as the inhomogeneous decay stream model [36]
and temporal biased stream model [57]. Nevertheless, how
to adapt these SSO techniques to handle the social activity
data under the PDSAS model in the form of streaming graphs
remains a challenging problem.

For streams related to online social networks,
Wang et al. [27] propose a streaming algorithm to solve
IM over sliding-window dynamic social streams and achieve
a constant approximation ratio. Zhao et al. [58] propose a
streaming algorithm to solve IM over time-decaying dynamic
interaction networks where each edge is associated with a
fixed lifetime. Our work is different from these existing works
on the underlying stream model, and we actually generalize
these works by allowing edges in the graph to decay in a
probabilistic manner.

IX. CONCLUSION

In this work, we studied the influencer tracking problem
under the PDSAS model to address the dynamic influence
challenge. The proposed PDSAS model has the advan-
tage of preserving solution freshness and continuity at the
same time. We propose a family of streaming optimiza-
tion algorithms. SIEVEPAIT can identify influencers from
probabilistic addition-only social activity streams efficiently.
BASICIT leverages SIEVEPAIT as a building block to identify
influencers over general probabilistic-decaying social activ-
ity streams. HISTIT significantly improves the efficiency of
BASICIT, and finally HISTIT-RED is a practical implemen-
tation of HISTIT. We theoretically and empirically show that
our approach can find near-optimal solutions with both time
and space efficiency.

PROOF OF LEMMA 2

Proof: Let Xi ≜ 1
nf(σ(S;S(i)

t)) for i = 1, . . . , n. Then,
Xi ∈ [0, 1

nf(σ(S;St))] and Ft(S) =
∑n

i=1 Xi. By Hoeffd-
ing’s inequality, we have

P
(∣∣Ft(S)− E[f(σ(S;St, h))]

∣∣ ≥ ϵE[f(σ(S;St, h))]
)

≤ 2 exp
(
−2nϵ2E[f(σ(S;St, h))]2

f(σ(S;St))2

)
= 2 exp(−2nϵ2ρ2)

where ρ ≜ E[f(σ(S;St, h))]/f(σ(S;St)). If we expect
the above probability is no larger than δ, then we require
n ≥ ln (2/δ)

2ϵ2ρ2 . □

PROOF OF LEMMA 3

Proof: We first prove the monotonicity of Ft(S). For
any sets S ⊆ T ⊆ V , by the definition of influence spread,

we have σ(S;S(i)
t) ⊆ σ(T ;S(i)

t). It follows that

Ft(S) =
1
n

n∑
i=1

f(σ(S;S(i)
t))≤ 1

n

n∑
i=1

f(σ(T ;S(i)
t)) = Ft(T)

where the inequality holds due to the monotonicity of f .
Next we prove the submodularity of Ft(S), i.e., for any sets

S ⊆ T ⊆ V and user u ∈ V \T , we want to show

Ft(S ∪ {u})− Ft(S) ≥ Ft(T ∪ {u})− Ft(T).

It follows that

Ft(S ∪ {u})− Ft(S)

=
1
n

n∑
i=1

[f(σ(S ∪ {u};S(i)
t))− f(σ(S;S(i)

t))]

=
1
n

n∑
i=1

[f(σ(S;S(i)
t) ∪ σ(u;S(i)

t))− f(σ(S;S(i)
t))].

Because f is a submodular function, hence

f(σ(S;S(i)
t) ∪ σ(u;S(i)

t))− f(σ(S;S(i)
t))

≥ f(σ(T ;S(i)
t) ∪ σ(u;S(i)

t))− f(σ(T ;S(i)
t)).

It follows that

Ft(S ∪ {u})− Ft(S)

≥ 1
n

n∑
i=1

[f(σ(T ;S(i)
t) ∪ σ(u;S(i)

t))− f(σ(T ;S(i)
t))]

=
1
n

n∑
i=1

[f(σ(T ∪ {u};S(i)
t))− f(σ(T ;S(i)

t))]

= Ft(T ∪ {u})− Ft(T).

We thus conclude that Ft is a monotone submodular func-
tion. □

PROOF OF LEMMA 4

Proof: In incremental sampling, a social activity a ∈
S(i)

t−1 is included in S(i)
t with probability e−λ. This random

process can be modeled as a Markov chain consisting of two
states 1 and 0, where state 1 represents that the social activity
is included in S(i)

t , and state 0 denotes not. The transition
matrix of this Markov chain is P =

[1 0
1−e−λ e−λ

]
.

Consider a social activity a arrived at time ta. its state can
be represented by πta

= [1− p0, p0], i.e., with probability p0,
a is included in a sample. Then at time t, we can obtain that
πt = πtaP t−ta = [1 − p0e

−λ(t−ta), p0e
−λ(t−ta)]. It means

that, at time t, the element is included in S(i)
t with probability

p0e
−λ(t−ta) = pt(a). □

PROOF OF THEOREM 1

Proof: Let S∗t = arg maxS⊆V ∧|S|≤k Ft(S), OPTt ≜
Ft(S∗t), and θ∗ = OPTt/2k. We further define ∆t ≜
maxu∈V Ft({u}). It is easy to observe that max{∆t, LB} ≤
OPTt ≤ k∆t and there is a threshold θ such that (1− ϵ)θ∗ ≤
θ < θ∗.

Let Sθ,t denote the set of users corresponding to threshold
θ maintained in SIEVEPAIT at time t. We partition set Sθ,t

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1474 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

into two disjoint subsets Sθ,t−1 and S′θ,t where Sθ,t−1 is the
maintained users at previous time step t− 1 and S′θ,t ⊆ Va is
the set of users newly selected from Va at time t. Our goal is
to show that Ft(Sθ,t) ≥ (1/2− ϵ)OPTt.

We first inductively show that Ft(Sθ,t) ≥ |Sθ,t|θ. Thus if
|Sθ,t| = k, then Ft(Sθ,t) ≥ kθ ≥ (1− ϵ)OPTt/2.

At time t = 1, by definition, Sθ,1 = S′θ,1 consists of users
such that their utility gains are at least θ. Therefore F1(Sθ,1) ≥
|Sθ,1|θ. Assume Ft−1(Sθ,t−1) ≥ |Sθ,t−1|θ at time t − 1. Let
us consider Ft(Sθ,t) at time t.

Ft(Sθ,t) = Ft(Sθ,t−1 ∪ S′θ,t)
= Ft(Sθ,t−1 ∪ S′θ,t)− Ft(Sθ,t−1)︸ ︷︷ ︸

first part

+ Ft(Sθ,t−1)︸ ︷︷ ︸
second part

The first part corresponds to the gain of newly selected users
S′θ,t at time t. Because each of the newly selected user has
utility gain at least θ by the selection rule of SIEVEPAIT, the
first part is at least |S′θ,t|θ.

For the second part, because a user influence spread cannot
decrease in PAIT, we have Ft(Sθ,t−1) ≥ Ft−1(Sθ,t−1). Then
by our induction assumption, it follows that the second part is
at least |Sθ,t−1|θ.

We thus obtain Ft(Sθ,t) ≥ (|S′θ,t| + |Sθ,t−1|)θ = |Sθ,t|θ.
Therefore, Ft(Sθ,t) ≥ (1− ϵ)/2 ·OPTt when |Sθ,t| = k.

When |Sθ,t| < k, we bound the gap between OPTt and
Ft(Sθ,t). Using the submodularity of Ft, we have

OPTt − Ft(Sθ,t) ≤
∑

u∈S∗t \Sθ,t

∆(u|Sθ,t)

=
∑

u∈S∗t,1\S′θ,t

∆(u|Sθ,t) +
∑

v∈S∗t,2\Sθ,t−1

∆(v|Sθ,t)

where S∗t,1 ≜ S∗t ∩ Va is the set of optimal users chosen at
time t, and S∗t,2 ≜ S∗t \S∗t,1 is the set of reminder optimal
users. For the first part, because these users are not chosen
at time t, therefore ∆(u|Sθ,t) < θ. For the second part,
because Sθ,t−1 ⊆ Sθ,t, then ∆(v|Sθ,t) ≤ ∆(v|Sθ,t−1) due
to submodularity. By definition,

∆(v|Sθ,t−1) = Ft({v} ∪ Sθ,t−1)− Ft(Sθ,t−1)
≤ Ft−1({v} ∪ Sθ,t−1)− Ft−1(Sθ,t−1)
≤ θ.

The first inequality holds due to the fact that the influence
spread of v /∈ Va does not increase at t. For the second
inequality, we can continue the reasoning as the first inequality
until some time t′ < t when v’s influence spread changed.
Because v is not chosen at time t′, its utility gain must be less
than θ. Therefore, it follows that

OPTt − Ft(Sθ,t) ≤ kθ ≤ k(1 + ϵ)
OPTt

2k
=

1 + ϵ

2
OPTt,

which implies Ft(Sθ,t) ≥ (1− ϵ)OPTt/2.
Because SIEVEPAIT outputs a set of users whose value

is at least Ft(Sθ,t), we thus conclude that the approximation
ratio of SIEVEPAIT is (1− ϵ)/2 ≥ (1/2− ϵ). □

PROOF OF THEOREM 2

Proof: Notice that the threshold set Θ contains at most
log1+ϵ 2k = O(ϵ−1 log k) thresholds.

• Update complexity. For each user, we need to calculate
the utility gain |Θ| times (with respect to each Sθ) resulting in
O(nϵ−1 log k) oracle calls of function f . Because each social
activity cause γ users to be added in the user stream, hence
the update time complexity is O(γnϵ−1 log k).

• Space complexity. SIEVEPAIT needs to maintain sets
{Sθ : θ ∈ Θ} in memory. According to the analysis in
SIEVESTREAMING++, for thresholds θ ≤ LB/k, |Sθ| is
trivial upper bounded by k and there are log1+ϵ 2 = O(ϵ−1)
such thresholds; for thresholds θ > LB/k, |Sθ| decreases as
θ increases by a factor of (1 + ϵ). Thus the space complexity
is O(kϵ−1). □

PROOF OF LEMMA 5

Proof: If no other instance is created between Ali and
Ali+1 after they were created, then Ali and Ali+1 will be
consecutive at time t. This happens when there is no segment
[l, r] with r falling between li and li+1, which is Case 1.

Otherwise, Ali and Ali+1 may not be consecutive at the
time they were both created but became consecutive due to
the removal of redundant instances between them. Suppose
the redundant instances were removed at the most recent time
t′ < t. The ReduceRedundancy procedure then ensures
that A′li+1

≥ (1− ϵ)A′li at time t′. From time t′ to t, it is also
impossible to have new indexes being created between these
two instances. Otherwise we will meet a contradiction: either
redundant instances were created again thus t′ is not the most
recent time as claimed, or non-redundant indexes were created
thus Ali and Ali+1 cannot be consecutive at time t. We thus
get Case 2. □

PROOF OF THEOREM 5

Proof: If l1 = 0 at time t, i.e., instance A0 exists.
Because A0’s input is exactly It, hence we have

Al1 = A0 ≥
1− ϵ

2
OPTt.

Otherwise l1 > 0 at time t. In this case, instance Al1 actually
processed a family of I-sets that is different from It, and hence
incurs a loss on solution quality. Below, we show that this loss
can be bounded.

Note that indexes in lt will gradually shift to the left and
then expire. Let l0 be the most recent expired predecessor of
l1 at time t. Because l0 and l1 were two consecutive indexes
(at the time l0 did not expire), then by Lemma 5, we shall
have two cases.

• Case 1 holds. Then, no social activity has a segment
with the right end lying between A′l0 and A′l1 since they were
created. In other words, instance Al1 has the same inputs
as A0 because their input I-sets always belong to the same
segment. Hence, Al1 and A0 have the same output at time t.
So we have

Al1 = A0 ≥
1− ϵ

2
OPTt.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: TRACKING INFLUENCERS IN DECAYING SOCIAL ACTIVITY STREAMS 1475

Fig. 16. Indices at time t′, t, and t.

• Case 2 holds. Then, there exists time t′ < t such that

A′l1 ≥ (1− ϵ)A′l0 , (6)

and from t′ to t, no instance is created between A′l0 and A′l1 .
Let us clarify the relation of the inputs of three SIEVEPAIT

instances Al0 , A0, and Al1 . Note that at time t, only Al1 is
practically maintained, while the other two actually do not
exist. At time t′, let I1, I2, and I3 denote the processed I-sets
of A′l0 , A′0, and A′l1 , respectively, as illustrated in Fig. 16.
From t′ to t, as claimed in Case 2 of Lemma 5, the I-sets fed
to A0 and Al1 always belong to the same segment. Hence,
A0 and Al1 have the same inputs in time interval (t′, t],
denoted by I0, as illustrated in Fig. 16. At time t, instance
A0 has processed I-sets I2||I0, and Al1 has processed I-sets
I3||I0, where || denotes the concatenation of two I-set streams.
We want to find out how close the output of Al1 is to that of
A0.

To clearly point out the inputs of each SIEVEPAIT instance,
we let A(I) denote the output utility of instance A when the
input is I-sets I. Similarly, let OPT(I) denote the utility of
an optimal solution found in I. Let F (S; I) denote the utility
of a user set S in I-sets I. Note that I-sets I are equivalent to
n social activity samples, denoted by I(i), i = 1, . . . , n. Then,
on each sample, we can evaluate the influence scopes of users,
hence F (S; I) = 1

n

∑n
i=1 f(σ(S; I(i))).

At time t, we have

Al1 = A(I3||I0) =
1
2
(
A(I3||I0) +A(I3||I0)

)
≥ 1

2
(
A(I3) +A(I3||I0)

)
≥ 1

2
(
(1− ϵ)A(I1) +A(I3||I0)

)
≥ 1− ϵ

2
(
A(I1) +A(I3||I0)

)
Here, the first inequality holds due to the monotonicity of
SIEVEPAIT, i.e., when feeding more I-sets, the output utility
of a SIEVEPAIT instance does not decrease. The second
inequality holds due to claim (6). Because SIEVEPAIT is
(1 − ϵ)/2 approximate, hence A(I1) ≥ (1 − ϵ)/2 · OPT(I1)
and A(I3||I0) ≥ (1− ϵ)/2 ·OPT(I3||I0). It follows that

Al1 ≥
1
4
(1− ϵ)2

(
OPT(I1) + OPT(I3||I0)

)
.

Let S∗t denote an optimal user set in I-sets I2||I0, i.e.,
F (S∗t ; I2||I0) = OPT(I2||I0) = OPTt. Since OPT(I1) is
the optimal utility in I1, we have

OPT(I1) ≥ F (S∗t ; I1).

Note that I1 contains more social activities than I2, hence

F (S∗t ; I1) ≥ F (S∗t ; I2).

Since OPT(I3||I0) is the optimal utility in I3||I0, hence

OPT(I3||I0) ≥ F (S∗t ; I3||I0).

It follows that

OPT(I1) + OPT(I3||I0)
≥ F (S∗t ; I2) + F (S∗t ; I3||I0)

=
1
n

n∑
i=1

[
f
(
σ(S∗t ; I(i)

2)
)

+ f
(
σ(S∗t ; I(i)

3 ||I(i)
0)

)]
≥ 1

n

n∑
i=1

f
(
σ(S∗t ; I(i)

2) ∪ σ(S∗t ; I(i)
3 ||I(i)

0)
)

=
1
n

n∑
i=1

f
(
σ(S∗t ; I(i)

2 ||I(i)
0)

)
=F (S∗t ; I2||I0) = OPT(I2||I0) = OPTt

where the second inequality holds due to the submodularity
of f . We thus conclude that

A(I3||I0) ≥
1
4
(1− ϵ)2OPTt ≥ (

1
4
− ϵ)OPTt.

which completes the proof. □

PROOF OF THEOREM 6

Proof: The reducing redundancy operation ensures that
Ali+2 < (1 − ϵ)Ali always holds. Because Al ∈ [∆, k∆]
where ∆ ≜ maxu Ft(u), then |lt| is upper bounded by
O(log(1−ϵ)−1 k) = O(ϵ−1 log k).

• Update complexity. For each user, in the worst case,
we need to update |lt| SIEVEPAIT instances, and each SIEVE-
PAIT instance requires O(γnϵ−1 log k) oracle calls. Hence the
total number of oracle calls for each user is O(γnϵ−2 log2 k).

• Space complexity. Because each SIEVEPAIT instance has
space complexity O(kϵ−1), thus maintaining |lt| SIEVEPAIT
instances requires space O(kϵ−2 log k). □

REFERENCES

[1] (May 2022). Amazon Influencer Program. [Online]. Available:
https://affiliate-program.amazon.com/influencers

[2] (May 2022). Influencer Marketing: Social Media Influencer
Market Stats and Research for 2021. [Online]. Available:
https://www.businessinsider.com/influencer-marketing-report

[3] (May 2022). To Fight Vaccine Lies, Authorities Recruit an
‘Influencer Army’. [Online]. Available: https://www.nytimes.com/
2021/08/01/technology/vaccine-lies-influencer-army.html

[4] (May 2022). The First TikTok War: How are Influencers in Russia and
Ukraine Responding? [Online]. Available: https://www.theguardian.
com/media/2022/feb/26/social-media-influencers-russia-ukraine-tiktok-
instagram

[5] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2001, pp. 57–66.

[6] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2003, pp. 137–146.

[7] K. Saito, R. Nakano, and M. Kimura, “Prediction of information
diffusion probabilities for independent cascade model,” in Proc. KES,
2008, pp. 67–75.

[8] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learning influence
probabilities in social networks,” in Proc. 3rd ACM Int. Conf. Web
Search Data Mining, Feb. 2010, pp. 241–250.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

1476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

[9] K. Kutzkov, A. Bifet, F. Bonchi, and A. Gionis, “STRIP: Stream learning
of influence probabilities,” in Proc. 19th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2013, pp. 275–283.

[10] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proc. 24th Annu. ACM-SIAM Symp.
Discrete Algorithms, Jan. 2014, pp. 946–957.

[11] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. 16th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2010,
pp. 1029–1038.

[12] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proc. ACM SIGMOD
Int. Conf. Manag. Data, Jun. 2014, pp. 75–86.

[13] B. Lucier, J. Oren, and Y. Singer, “Influence at scale: Distributed compu-
tation of complex contagion in networks,” in Proc. 21st ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2015, pp. 735–744.

[14] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, May 2015, pp. 1539–1554.

[15] W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou, “Robust influence
maximization,” in Proc. ACM SIGKDD, 2016, pp. 795–804.

[16] I. Litou, V. Kalogeraki, and D. Gunopulos, “Influence maximization in
a many cascades world,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2017, pp. 911–921.

[17] Y. Lin, W. Chen, and J. C. S. Lui, “Boosting information spread:
An algorithmic approach,” in Proc. IEEE 33rd Int. Conf. Data Eng.
(ICDE), Apr. 2017, pp. 883–894.

[18] X. Ke, A. Khan, and G. Cong, “Finding seeds and relevant tags jointly:
For targeted influence maximization in social networks,” in Proc. ACM
SIGMOD, 2018, pp. 1097–1111.

[19] S. Kumar, A. Mallik, A. Khetarpal, and B. S. Panda, “Influence max-
imization in social networks using graph embedding and graph neural
network,” Inf. Sci., vol. 607, pp. 1617–1636, Aug. 2022.

[20] S. A. Myers and J. Leskovec, “The bursty dynamics of the Twitter infor-
mation network,” in Proc. 23rd Int. Conf. World Wide Web, Apr. 2014,
pp. 913–924.

[21] C. C. Aggarwal, S. Lin, and P. S. Yu, “On influential node discovery
in dynamic social networks,” in Proc. SIAM Int. Conf. Data Mining,
Apr. 2012, pp. 636–647.

[22] H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun, “Influence maximiza-
tion in dynamic social networks,” in Proc. IEEE 13th Int. Conf. Data
Mining, Dec. 2013, pp. 1313–1318.

[23] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi, “Dynamic
influence analysis in evolving networks,” Proc. VLDB Endowment,
vol. 9, no. 12, pp. 1077–1088, 2016.

[24] Y. Yang, Z. Wang, J. Pei, and E. Chen, “Tracking influential individuals
in dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 11,
pp. 2615–2628, Nov. 2017.

[25] G. Song, Y. Li, X. Chen, X. He, and J. Tang, “Influential node tracking
on dynamic social network: An interchange greedy approach,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 2, pp. 359–372, Feb. 2017.

[26] (May 2022). Internet Live Stats. [Online]. Available:
https://www.internetlivestats.com/one-second/

[27] Y. Wang, Q. Fan, Y. Li, and K.-L. Tan, “Real-time influence maximiza-
tion on dynamic social streams,” in Proc. VLDB, 2017, pp. 805–816.

[28] K. Subbian, C. C. Aggarwal, and J. Srivastava, “Querying and tracking
influencers in social streams,” in Proc. 9th ACM Int. Conf. Web Search
Data Mining, Feb. 2016, pp. 493–502.

[29] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions—I,” Math. Program., vol. 14,
pp. 265–294, Dec. 1978.

[30] A. Krause and D. Golovin, Submodular Function Maximization.
Cambridge, U.K.: Cambridge Univ. Press, 2014, pp. 71–104.

[31] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cliques
from an uncertain graph,” in Proc. IEEE 31st Int. Conf. Data Eng.,
Apr. 2015, pp. 243–254.

[32] C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer
Texts in Statistics), G. Casella, S. Fienberg, and I. Olkin, Eds., 2nd ed.
New York, NY, USA: Springer, 2004.

[33] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause,
“Streaming submodular maximization: Massive data summarization on
the fly,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2014, pp. 671–680.

[34] J. Chen, H. L. Nguyen, and Q. Zhang, “Submodular maximization over
sliding windows,” 2016, arXiv:1611.00129.

[35] A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam, “Sub-
modular optimization over sliding windows,” in Proc. 26th Int. Conf.
World Wide Web, Apr. 2017, pp. 421–430.

[36] J. Zhao, S. Shang, P. Wang, J. C. Lui, and X. Zhang, “Submodular
optimization over streams with inhomogeneous decays,” in Proc. AAAI,
2019, pp. 5861–5868.

[37] E. Kazemi, M. Mitrovic, M. Zadimoghaddam, S. Lattanzi, and
A. Karbasi, “Submodular streaming in all its glory: Tight approximation,
minimum memory and low adaptive complexity,” in Proc. ICML, 2019,
pp. 3311–3320.

[38] V. Braverman and R. Ostrovsky, “Smooth histograms for sliding win-
dows,” in Proc. 48th Annu. IEEE Symp. Found. Comput. Sci. (FOCS),
Oct. 2007, pp. 283–293.

[39] R. Krauthgamer and D. Reitblat, “Almost-smooth histograms and
sliding-window graph algorithms,” 2019, arXiv:1904.07957.

[40] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2011,
pp. 1082–1090.

[41] (May 2022). Reddit Data Dump. [Online]. Available: https://
files.pushshift.io/reddit/

[42] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi, “The anatomy
of a scientific rumor,” Sci. Rep., vol. 3, no. 1, pp. 1–9, Oct. 2013.

[43] J. Zhao, J. C. S. Lui, D. Towsley, and X. Guan, “Whom to follow:
Efficient followee selection for cascading outbreak detection on online
social networks,” Comput. Netw., vol. 75, pp. 544–559, Dec. 2014.

[44] M. Minoux, “Accelerated greedy algorithms for maximizing submodular
set functions,” in Optimization Techniques, vol. 7. Berlin, Germany:
Springer, 1978, pp. 234–243.

[45] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “A billion-scale approxima-
tion algorithm for maximizing benefit in viral marketing,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2419–2429, Aug. 2017.

[46] Z. Shi, G. Yang, X. Gong, S. He, and J. Chen, “Quality-aware incentive
mechanisms under social influences in data crowdsourcing,” IEEE/ACM
Trans. Netw., vol. 30, no. 1, pp. 176–189, Feb. 2022.

[47] S. Feng, G. Cong, A. Khan, X. Li, Y. Liu, and Y. M. Chee, “Inf2vec:
Latent representation model for social influence embedding,” in Proc.
IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 941–952.

[48] K. Zhang, J. Zhou, D. Tao, P. Karras, Q. Li, and H. Xiong,
“Geodemographic influence maximization,” in Proc. 26th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2020,
pp. 2764–2774.

[49] W. Chen, X. Sun, J. Zhang, and Z. Zhang, “Network inference
and influence maximization from samples,” in Proc. ICML, 2021,
pp. 1707–1716.

[50] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart, “Online influence
maximization,” in Proc. ACM SIGKDD, 2015, pp. 645–654.

[51] S. Li, F. Kong, K. Tang, Q. Li, and W. Chen, “Online influence
maximization under linear threshold model,” in Proc. NIPS, 2020,
pp. 1192–1204.

[52] K. Subbian, C. Aggarwal, and J. Srivastava, “Content-centric flow
mining for influence analysis in social streams,” in Proc. 22nd ACM
Int. Conf. Conf. Inf. Knowl. Manag., 2013, pp. 841–846.

[53] S. Huang, Z. Bao, J. S. Culpepper, and B. Zhang, “Finding temporal
influential users over evolving social networks,” in Proc. IEEE 35th Int.
Conf. Data Eng. (ICDE), Apr. 2019, pp. 398–409.

[54] G. Tong, W. Wu, S. Tang, and D.-Z. Du, “Adaptive influence maximiza-
tion in dynamic social networks,” IEEE/ACM Trans. Netw., vol. 25, no. 1,
pp. 112–125, Feb. 2017.

[55] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani, “Fast greedy
algorithms in MapReduce and streaming,” in Proc. ACM SPAA, 2013,
pp. 1–10.

[56] J. Zhao, P. Wang, J. Tao, S. Zhang, and J. C. S. Lui, “Continuously
tracking core items in data streams with probabilistic decays,” in Proc.
IEEE 36th Int. Conf. Data Eng. (ICDE), Apr. 2020, pp. 769–780.

[57] J. Zhao, P. Wang, C. Deng, and J. Tao, “Temporal biased streaming
submodular optimization,” in Proc. 27th ACM SIGKDD Conf. Knowl.
Discovery Data Mining, Aug. 2021, pp. 2305–2315.

[58] J. Zhao, S. Shang, P. Wang, J. C. S. Lui, and X. Zhang, “Track-
ing influential nodes in time-decaying dynamic interaction networks,”
in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Apr. 2019,
pp. 1106–1117.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 07:03:24 UTC from IEEE Xplore. Restrictions apply.

