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ABSTRACT
Despite its popularity, SimRank is computationally costly,
in both time and space. In particular, its recursive nature
poses a great challenge in using modern distributed comput-
ing power, and also prevents querying similarities individu-
ally. Existing solutions su↵er greatly from these practical
issues. In this paper, we break such dependency for maxi-
mum e�ciency possible. Our method consists of o✏ine and
online phases. In o✏ine phase, a length-n indexing vector
is derived by solving a linear system in parallel. At online
query time, the similarities are computed instantly from the
index vector. Throughout, the Monte Carlo method is used
to maximally reduce time and space. Our algorithm, called
CloudWalker, is highly parallelizable, with only linear time
and space. Remarkably, it responses to both single-pair and
single-source queries in constant time. CloudWalker is or-
ders of magnitude more e�cient and scalable than existing
solutions for large-scale problems. Implemented on Spark
with 10 machines and tested on the web-scale clue-web graph
with 1 billion nodes and 43 billion edges, it takes 110 hours
for o✏ine indexing, 64 seconds for a single-pair query, and
188 seconds for a single-source query. To the best of our
knowledge, our work is the first to report results on clue-
web, which is 10x larger than the largest graph ever reported
for SimRank computation.

1. INTRODUCTION
Graph data arises from various domains such as telecom-

munication, the Internet, e-commerce, social networks, and
the Internet of things. Usually the scales of the graphs are
very large and they continuously grow in rapid speed. While
big graph data is of great value, the huge scale poses non-
trivial challenge in graph mining.

One fundamental task underpinning many graph mining
problems such as recommender systems [14] and informa-
tion retrieval [8] is the computation of similarity between
objects. Among various ways of evaluating object similarity
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on graph [26, 27, 11], SimRank [15] is probably one of the
most popular [10, 22, 21, 19, 29, 16, 23, 28, 25].

SimRank is derived from an intuitive notion of similar-
ity – two objects are similar if they are referenced by sim-
ilar objects [15]. This is similar to PageRank [24], where
a webpage is important if the webpages pointing to it are
important. Like PageRank, SimRank is also governed by a
random surfer model [15]. Studies show that it captures hu-
man perception of similarity and outperforms other related
measures such as co-citation which measures the similarity
of two objects by counting their common neighbors [15, 10].
In a sense, SimRank is a recursive refinement of co-citation.

One major obstacle in applying SimRank to big graph
data lies in its computation, which is notoriously intensive.
It may take up to O(n3) time and O(n2) space for computing
the similarity of two nodes even on a sparse graph, which
is clearly far from acceptable for large problems. Indeed,
since it emerged [15], its scalability has been a critical issue
of study [10, 22, 21, 19, 29, 16, 23, 28]. Despite significant
progress, there is still a large gap to a practically scalable
solution. The major di�culty arises from the recursive de-
pendency in the computation of SimRank, which incurs high
complexity, limits parallelism, and prevents querying indi-
vidual similarities. This paper addresses all these issues.

Large-scale computation is non-trivial. One of the most
e↵ective ways is to distribute it to a large cluster of ma-
chines. While a single machine may support large prob-
lems [5], the degree of parallelism is still constrained by its
limited memory and concurrency in particular. This vision
is well shared with the prevalence of distributed comput-
ing platforms such as Spark [1]. However, to parallelize an
algorithm may not be as easy as it appears. First, if the
complexity of the algorithm is high, say super-linear, then
the required computation may easily outpace the increased
power by more machines. Second, if the algorithm allows
only limited parallelism due to computational dependency,
then there is no much space for distributed computing –
the synchronization and communication cost could be pro-
hibitive. The above arguments suggest that to scale up Sim-
Rank using a cluster of machines, it is equally important
to reduce its complexity and its computational dependency.
Such a perspective guides us in the process of developing a
scalable approach to large-scale SimRank computation.

In this paper, we develop a computational model that
meets all the following criteria: 1) its complexity is no more
than linear, in time and space; 2) it is highly paralleliz-
able; and 3) it can compute individual similarities directly
without computing the rest. Our main contributions are
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summarized as follows.

• We propose a novel distributed approach, called Cloud-
Walker, for SimRank computation, which supports single-
pair, single-source, and all-pair queries.

• Our approach can be decomposed into o✏ine prepro-
cessing and online querying. The complexity of o✏ine
preprocessing is linear to the graph size, in time and
space, while the online querying takes only constant
time for both single-pair and single-source queries.

• We implement our approach, CloudWalker, on a general-
purpose in-memory dataflow system, Spark [1], and
conduct extensive evaluation. In contrast, most exist-
ing methods [23, 13] are designed for a single machine,
which means that the entire graph must fit in the main
memory and the parallelism is limited.

• We test on the web-scale graph, clue-web, with 1 bil-
lion nodes and 43 billion edges, which is 10x larger
than the largest graph reported in the literature of
SimRank computation. It takes 110 hours for prepro-
cessing, 64 seconds for a single-pair query, and 188
seconds for a single-source query.

The rest of the paper is organized as follows. We review
related work in Section 2 and give preliminaries in Section 3.
In Section 4, we propose a parallel algorithm for SimRank
computation with only linear time and space. We describe
our implementation in Section 5, and present experimental
results in Section 6. Section 7 concludes the paper.

2. RELATED WORK
Many approaches have been proposed to scale up Sim-

Rank. One straightforward idea uses iterative matrix mul-
tiplication, which is guaranteed to converge to the solu-
tion [15]. It can be accelerated by pruning [15], partial calcu-
lation memorization [22], or fast matrix multiplication [29].
Most methods are designed for a single machine, and are
therefore limited by its restricted power. Recently, a few ef-
forts attempt to distribute SimRank computation on a clus-
ter.

Cao et al. [4] proposed a MapReduce method. Upon ev-
ery node-pair (c, d) encountered by a mapper job, it at-
taches the SimRank score s(c, d) of nodes c and d to all
neighboring node-pairs (a, b) and outputs a key-value record
(key = (a, b), value = s(c, d)). The subsequent reducer
jobs then use all values under the same key (a, b) to up-
date s(a, b). The amount of data transferred from mapper
to reducer in one iteration is O(p2n2), which can be reduced
to O(p2M) by computing the similarities incrementally and
by transferring only non-zero increments, where p denotes
the average in-degree, n the number of nodes in the graph,
and M the number of non-zero similarities [4]. A similar
idea is used by Li et al. [20]. He et al. [13] employed GPU
to speedup SimRank computation, which however is a sin-
gle machine solution and requires the graph to fit in the
main memory. As pointed out by [23], [13] only computes a
variant of SimRank, like [19, 16].

While the approach of iterative matrix multiplication is
easy to implement, it comes at a great cost – in each it-
eration, it needs to perform expensive matrix multiplica-
tion and maintain all n2 similarities simultaneously, which
is clearly not practical for large problems. In addition to
its high complexity, another consequence of this approach

is that it does not allow querying individual node-pairs or
source nodes without querying the rest. In contrast, our
method has linear complexity in time and space, and also
supports the SimRank query of a single node-pair or source
node, while still being highly parallelizable.

Another approach takes advantage of the random surfer
model of SimRank [10, 21]. It has been shown that the Sim-
Rank score of a single node-pair is solely determined by the
first expected meeting time of random walkers starting from
two nodes respectively, following the graph backwardly [15].
The appeal of this random surfer view, as opposed to the
above iterative matrix multiplication view, is that it can
compute individual similarities directly. Two methods exist
for evaluating meeting times on a graph. The First Meet-
ing Time (FMT) method [10] simulates random walks for
each node and stores the paths, called fingerprints, in exter-
nal memory; and at query time, estimates the meeting time
from the fingerprints. This method is stochastic in nature
and usually requires a large number of samples of random
paths for reasonable accuracy [23]. In contrast, the other
method [21] is deterministic, which needs to evaluate the
meeting probability exactly in k-th step for every k. Con-
sequently, it can be time-consuming, compared to the FMT
method. The two methods pre-compute and store the paths
of random surfers, and both need external storage for large
graphs. In that regard, they trade space for scalability. Our
approach also consists of o✏ine indexing and online query-
ing, but our index data is just a length-n vector.

The most related work to ours is [23], where the bottleneck
is in estimating a diagonal correction matrix that accounts
for the boundary conditions of SimRank, i.e., 1) each object
is maximally similar to itself, and 2) the self-similarity is de-
fined to be one (Section 4.1). The key di↵erence lies in the
way that the correction matrix is estimated, which leads to
a dramatically di↵erent consequence. In [23], the matrix is
initialized with an (inaccurate) correction matrix. Then, its
each diagonal entry is updated iteratively, in a greedy man-
ner, with each update dependent on all previous updates.
This leaves little room for parallelization. In contrast, we
impose linear constraints on all entries in such a way that
each entry can be updated independently. Consequently,
our algorithm can be easily distributed across di↵erent ma-
chines, which enables the use of modern distributed com-
puting platforms such as Spark [1] as we show in this paper.

3. PRELIMINARIES
Let G = {V,E} be a directed graph with node set V and

edge set E (n=|V |, m=|E|). An ordered node-pair (i, j) 2 E
denotes an edge from node i to node j. Here, i is called an
in-neighbor of j, and j an out-neighbor of i. The sets of
in-neighbors and out-neighbors of node j are respectively
denoted by I(j) := {i : (i, j) 2 E} and O(j) := {i : (j, i) 2
E}. The SimRank score (similarity) between nodes i and j
is denoted by s(i, j), and the similarity matrix of SimRank
is denoted by S with Sij = s(i, j).

3.1 SimRank
There exists various ways to evaluate node similarity on

graph. In SimRank, the similarity of two nodes i and j is the
average of the similarities of their in-neighbors, decayed by a
factor; and the similarity of a node and itself is maximal and
defined to be one. Mathematically, the similarity of nodes i
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and j is defined as follows:

s(i, j) =

8

<

:

1, i = j;
c

|I(i)||I(j)|
X

i02I(i),j02I(j)

s(i0, j0), i 6= j. (1)

Here, c is a decay factor, c 2 [0, 1]. Its role is two-fold. It
weights down the influence of in-neighbors, and it makes the
problem well-conditioned. By definition, s(i, j) = 0 if I(i) =
; or I(j) = ;. A unique solution to Eq. (1) is guaranteed to
exist [15].

A solution to Eq. (1) can be computed in an iterative

fashion. Suppose R(k) is an n⇥n matrix, and R
(k)
ij gives the

SimRank score between i and j on iteration k. Then we set
R(0) to the lower bound of the actual SimRank scores:

R
(0)
ij =

⇢

1, i = j;
0, i 6= j.

(2)

To compute R(k+1), we use Eq. (1) to get

R
(k+1)
ij =

8

<

:

1, i = j;
c

|I(i)||I(j)|
X

i02I(i),j02I(j)

R
(k)
i0,j0 , i 6= j. (3)

It has been shown that limk!1 R
(k)
ij = s(i, j) [15].

3.2 Spark
Our approach is distributed in nature. Hence, in prin-

ciple, it can be implemented on any distributed data pro-
cessing platforms. We choose Spark [1] because: 1) it is a
popular general-purpose distributed dataflow framework for
large-scale data processing, and facilitates in-memory clus-
ter computing, which is essential for iterative algorithms in-
cluding ours; 2) it provides easy-to-use operations for build-
ing distributed and fault-tolerant applications; and 3) it en-
ables the development of concise programs: it is developed
in Scala, which supports both object-oriented and functional
programming. It would also be interesting to study how to
deploy our algorithm on other platforms.

Spark provides an in-memory storage abstraction known
as Resilient Distributed Datasets (RDDs) [30] that allows
applications to keep data in the shared memory of multiple
machines. RDDs are fault-tolerant since Spark can automat-
ically recover lost data. An RDD can be seen as a collection
of records, where two types of operations over RDDs are
available: transformations which create new RDDs based on
existing ones, and actions which return some local variables
to the master. The processing in Spark is in multiple stages
and the lineage of operations to construct an RDD is auto-
matically logged, which enables fault-tolerance with negligi-
ble runtime overhead. Transformations used in this paper
include map, flatMap, reduceByKey, and leftOuterJoin. In
detail, map constructs an one-to-one mapping of the input
RDD, and flatMap constructs an one-to-many of the input
(similar to the map operation in MapReduce); reduceByKey
only works on RDDs of key-value pairs and it generates a
new RDD of key-value pairs where the values for each key
are aggregated using the given reduce function (similar to
the reduce operation in MapReduce); and leftOuterJoin

can perform left join operation over two key-value RDDs.
Note that reduceByKey and leftOuterJoin need to shu✏e
data among machines with some network communication
cost. In this paper, we only use one action, collect, and it

returns all elements of an RDD. In addition to these oper-
ators, the user can call persist to indicate which RDD to
be reused in future and Spark will cache persistent RDDs
in memory. Spark also allows the user to broadcast a local
variable from the master node to every slave node in the
cluster.

4. EVALUATING SIMRANK QUERIES
In this section, we propose a novel approach to SimRank

computation. We focus on several practical issues: 1) low
complexity, in time and space, which is critical for large
problems; 2) high degree of parallelism, which allows to har-
ness the power of a distributed cluster; 3) online querying,
which needs real-time response and is important for inter-
active applications; and 4) reasonably high accuracy, which
guarantees the correctness of the computation. For the Sim-
Rank problem, there are generally three types of queries:
1) single-pair query, which returns the similarity of a sin-
gle node pair; 2) single-source query, which returns the n
similarities of a given source node and every node; and 3)
all-pair query, which returns all n2 pair-wise similarities. We
consider all these queries1.

Towards the above goals, in what follows, we will show
1) how the recursive dependency of SimRank can be elim-
inated; 2) how o✏ine indexing enables online querying; 3)
how o✏ine indexing (and online querying) can be done in
parallel; and 4) how the complexity can be reduced by ex-
ploiting the problem structures.

4.1 Problem Statement
SimRank, as defined in Eq. (1), can be written in a matrix

form [29, 16]:

S = (cP>SP ) _ I, (4)

where P> denotes the transpose matrix of P , and P is the
transition matrix of the transpose graph2 G>,

Pij :=

⇢

1/|I(j)|, (i, j) 2 E
0, (i, j) /2 E

(5)

and _ denotes element-wise maximum, i.e., (A _ B)ij =
max{Aij , Bij}.

Diagonal Factorization. By Eq. (4), cP>SP and S
di↵er only in the diagonal, and so the following diagonal
factorization holds

S = cP>SP +D, (6)

for some unknown diagonal matrix D [16]. We call D the
diagonal correction matrix, as it makes up the diagonal of
cP>SP so that the diagonal of S are 1’s.

The Roles of D. The diagonal factorization essentially
breaks the original recursive dependence of SimRank. In
fact, S can be factorized in terms of D, as follows:

S =
1
X

t=0

ctP>tDP t. (7)

The significance here is that the computation of the simi-
larity of a node pair does not rely on the similarity of any
1Our method can be readily extended to support the top-
k query, say, by returning just the top-k nodes obtained
from the single-source query, or more e�ciently by using
the recent technique in [16].
2The direction of each edge is reversed.
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other node pairs. This allows querying individual similarity
independently which enables parallelism. Moreover, as D
is independent of any query, it can be computed o✏ine. In
this regard, D can be seen as the index data of the graph for
SimRank computation. Below, we first review related work
for computing D, and then present our proposed approach.

Related Work on Computing D. In [23], an iterative
procedure is proposed to compute D. The key observation
is that the operator SL(⇥) := cP>SL(⇥)P + ⇥ is linear
in ⇥, and the key idea is to find a diagonal matrix ⇥ such
that the diagonal of SL(⇥) are all 1’s, which implies that
SL(⇥) is the desired similarity matrix [23]. Starting with
an initial diagonal matrix D (say D = I), the procedure
updates its diagonal entries, one at a time. To update Dkk,
it imposes SL(D + �E(k,k))kk = 1, which, by the linearity,
yields � = (1 � SL(D)kk)/S

L(E(k,k))kk, where E(k,k) is a
zero matrix except its (k, k)-th entry being 1.

The major limitation of this algorithm is that it needs to
evaluate SL(D)kk for a large number of times. Moreover,
the update of Dkk relies on previous updates of other di-
agonal entries. Consequently, it cannot be parallelized. In
contrast, our approach is easily parallelizable, as shown in
the following section.

4.2 Offline SimRank Indexing
We cast the problem of estimating D as a linear system.

We will show how to derive the linear system, and how to
solve it in parallel.

4.2.1 Linear System

In light of Eq. (7) and noting that ci exponentially de-
creases with i, we can make the following approximation:

S ⇡ S(T ) =
T
X

t=0

ctP>tDP t, (8)

where T is a small integer (we set T = 10 in this paper).
The approximation error is bounded as follows.

Theorem 4.1. (S(T ))ij  Sij  (S(T ))ij + cT+1

1�c .

Proof. First, we show that 1� c  Dii  1. By Eq. (6),
Dii = 1 � cp>

i Spi. Here pi denotes the i-th column of P ,
and so 1

>
pi = 1 or 03. By definition, 0  S  1, and so

0  p

>
i Spi  1, which implies 1 � c  Dii  1. Based

on this result, we can see that 0  (P>tDP t)ij  1 for
t = 0, 1, . . . ,1.
Now, since S = S(T )+

P+1
t=T+1 c

tP>tDP t, Sij = (S(T ))ij+
P+1

t=T+1 c
t(P>tDP t)ij , implying that (S(T ))ij  Sij  (S(T ))ij+

P+1
t=T+1 c

t. Since
P+1

t=T+1 c
t = cT+1

1�c , our proof is com-
plete.

Recall that by definition, the diagonal of S are 1’s. Com-
bined with the above arguments, we consider the following
n linear constraints:

e

>
i S

(T )
ei = 1, for i = 1, . . . , n, (9)

where ei is the i-th unit vector whose i-th coordinate is 1,
and other coordinates are zeros.

3By definition, pi = 0 if I(i) = ;.

Plugging Eq. (8) into Eq. (9) and with some mathematical
operations, the constraints can be made explicitly on the
unknown diagonal of D, x := (D11, . . . , Dnn)

>, as follows:

a

>
i x = 1, i = 1, . . . , n, (10)

where

ai =
T
X

t=0

ct(P t
ei) � (P t

ei), i = 1, . . . , n. (11)

Here � denotes element-wise product, i.e., (a�b)i = (a)i(b)i.
By Eq. (11), to compute one ai takes O(Tm) time, where

m denotes the number of edges in the graph, and it takes
O(Tmn) time for all ai’s, which is not practical for large
graphs. It turns out that this cost can be greatly reduced
using the problem structure. Before we show that, we first
show how the linear system can be solved in parallel, assum-
ing ai’s are available.

4.2.2 The Jacobi Method

Suppose we have a square system of n linear equations:

Ax = 1, (12)

where A = (a1, . . . ,an)
>. By the Jacobi method [12], the

following iteration

x
(k+1)
i =

1
Aii

(1�
X

j 6=i

Aijx
(k)
j ), i = 1, . . . , n, (13)

will converge to the true solution under some mild condi-
tions4. Note that Aij = (ai)j .

From Eq. (13), we can observe the high potential of paral-
lelism of the Jacobi method: since in the (k+1)-th iteration,
the solution x

(k+1) is calculated only from the solution of the
previous iteration x

(k), we can update x(k+1)
i for i = 1, . . . , n

in parallel assuming A is available.

4.2.3 The Monte Carlo Method

Now we show how a linear constraint ai can be computed
e�ciently. According to Eq. (11), in order to compute ai we
need to compute P t

ei for t = 1, . . . , T which equals to the
t-th step distribution of random walks starting from node
i following in-edges on the input graph [9]. Let e

(t)
i be the

n-dimensional state random variable of the walker after t
steps, i.e., (e(t)

i )` = 1 if the walker is in state ` (node `), and
0 otherwise. Then

E(e(t)
i ) = P t

ei. (14)

To estimate P t
ei, the expectation of the random vector e(t)

i ,
we can use sampling. Particularly, we simulate R indepen-
dent length-t random walks, and denote by R` the number
of times the walker is in state `. Then

(P t
ei)` ⇡

R`

R
. (15)

It can be shown that to achieve accuracy within error ✏, we
need R = O((log n)/✏2) samples [23]. Precisely, it holds

P

n

kP t
ei � p

(t)
i k > ✏

o

 2n · exp
✓

� (1� c)R✏2

2

◆

, (16)

where P denotes probability and p

(t)
i = (R1

R , · · · , Rn
R )>.

4In our experiments, we never encounter convergence issues.
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Next we use one example to illustrate the Monte Carlo
estimation method.

Example 4.1. Let G be a graph in Figure 1(a). Its trans-
pose graph G> is shown in Figure 1(b). The transition ma-
trix of G> is

P =

2

6

6

4

0 0 0 1
0.5 0 0 0
0.5 1 0 0
0 0 1 0

3

7

7

5

. (17)

Let e1 = (1, 0, 0, 0)>. To compute Pe1 using Monte Carlo,
we can place R walkers on node 1 of G> and push them
to walk one step randomly, following the out-edges of G>

(i.e. the in-edges of G). Ideally, there will be 1
2R walkers on

nodes 2 and 3, respectively, and the estimated distribution of
walkers on the nodes will be (0, 0.5, 0.5, 0)>, which is exactly
Pe1.
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Figure 1: Monte Carlo simulation

4.2.4 Complexity of Computing D

Previously, when we use the Jacobi method to solve Ax =
1, we assume that A is available beforehand. Here we dis-
cuss the complexity of computing A using the Monte Carlo
method. In order to approximate each ai, we push R walk-
ers to move T steps. Hence, the time complexity to compute
A is O(nTR). For each i, ai contains at most O(TR) non-
zero elements, which means the space used to store A is also
O(nTR).

However, for large-scale graphs such as the clue-web of 1
billion nodes and 43 billion edges (Table 1) considered in this
paper, it is generally impractical to store the entire A in the
distributed memory of a cluster of machines. To solve this
problem, we observe that, in the Jacobi method, to com-
pute x

(k+1)
i , we only need ai and also x

(k)
i . So we can split

1, 2, . . . , n into disjoint intervals of length b, where b is the
number of ai’s we can compute in parallel. In iteration k+1
of the Jacobi method, we first compute ai’s, i = 1, . . . , b, in
parallel, and then update x

(k+1)
i ’s, i = 1, . . . , b, also in par-

allel. After that, we can compute ai and update x
(k+1)
i for

i = b+ 1, . . . , 2b in parallel, and we can compute the rest of
ai and x

(k+1)
i in a similar way. By recomputing A, we only

need O(bTR) space to store A. Suppose the Jacobi method
takes L iterations to converge, then the time complexity
of computing D is O(nLTR) and the space complexity is
O(bTR+ n+m). To reduce the computation time, we par-
allelize the computation of D on the distributed platform,
Spark, as detailed in Section 5.

4.3 Online SimRank Queries
As mentioned above, there are three fundamental prob-

lems on SimRank computation, the single-pair, single-source,
and all-pair SimRank computation. In this section, we pro-
pose algorithms for the three problems based on Monte Carlo
simulation, which are called MCSP, MCSS, and MCAP re-
spectively.

4.3.1 The MCSP Algorithm

Given a pair of nodes i and j, we want to return the
SimRank score s(i, j) = e

>
i Sej . By Theorme 4.1, it can be

done approximately as:

s(i, j) ⇡
T
X

t=0

ct(P t
ei)

>D(P t
ej). (18)

We could simply evaluate it with matrix-by-vector product,
but it would take O(Tm) time, and it would be costly to
answer many single-pair queries especially for large graphs.

A more e�cient way is to use the Monte Carlo method.
Consider one of its items,

ct(P t
ei)

>D(P t
ej). (19)

Since D has been computed in the preprocessing stage, we
only focus on computing P t

ei using Monte Carlo. Initially,
we assign R0 walkers on both nodes i and j. We then ob-
tain the values of Pei, · · · , PT

ei, Pej , · · · , PT
ej by pushing

these walkers to walk T steps following the in-edges of G.
Finally we obtain s(i, j) according to Eq. (18).

Complexity. For any node i, since all the Pei, P 2
ei,

· · · , PT
ei can be computed by pushing R0 walkers to walk

T steps on the graph, the time complexity of Monte Carlo
simulation is O(TR0). Thus, the total time complexity of
MCSP is O(TR0). The space complexity is also O(TR0),
since there are at most R0 non-zero entries for each P t

ei.

4.3.2 The MCSS Algorithm

Given a node i, we want to compute its similarities to
every node in the graph, i.e., the i-th column of S given by
Sei. By Theorme 4.1, it can be approximated as follows:

Sei ⇡
T
X

t=0

ctP>tD(P t
ei). (20)

Computing Eq. (20) by using the matrix-by-vector product
would take O(T 2m) time, which is not e�cient enough for
large graphs. Below we show that Monte Carlo simulation
can again be applied to the single-source problem, leading
to an e�cient algorithm.

Let us consider one of its items:

ctP>tDP t
ei. (21)

As before, we can compute P t
ei using Monte Carlo. Then,

we compute DP t
ei and denote the result as v = DP t

ei.
Since 1�c  Dii  1, as shown in the proof of Theorem 4.1,
we can conclude that v � 0.

Now the task becomes computing P>t
v. For simplic-

ity, let us focus on P>
v first (P>t

v can be computed sim-
ply by repeating this procedure). Note that P> is usually
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not column-normalized as P , and thus P>
v is not an one-

step distribution of random walks. Fortunately, P> can be
turned into such a matrix, P̂ , as follows:

P> = P̂F, (22)

where F is a diagonal matrix with Fii =
n
P

j=0
Pij � 0, and P̂

is an n⇥ n matrix with P̂ij =
Pji

Fjj
.

Now P>
v = P̂Fv. Noting that Fv � 0, we can write

Fv = u · w, (23)

such that 1>
u = 1 and w = 1

>(Fv), u � 0, w � 0.
Now P>

v = wP̂u. Let us consider P̂u. Given a matrix
P̂ , we can construct a new directed weighted graph Ĝ with
n nodes so that P̂ is its transition probability matrix. Ĝ has
the same graph structure as G, except that it is weighted
(Figure 1(c)). Given the start distribution u on Ĝ, we can
simulate P̂u using Monte Carlo, as follows.

1. For each node i, if ui > 0, we place

Ri =

⇢

duiR
0e, uiR

0 � buiR
0c � 0.5

buiR
0c, uiR

0 � buiR
0c < 0.5

(24)

walkers on this node, where R0 is the initial total num-
ber of walkers.

2. Each walker randomly chooses one out-neighbor ac-
cording to P̂ and walks to it.

3. Count the number of walkers on each node. Denote by
ci the number for node i.

4. Return (P̂u)i ⇡ ci/
n
P

j=1
Rj , i = 1, . . . , n.

Example 4.2. Consider the graph G in Figure 1(a). The
corresponding P̂ and F are as follows:

P̂ =

2

6

6

4

0 1 1/3 0
0 0 2/3 0
0 0 0 1
1 0 0 0

3

7

7

5

, F =

2

6

6

4

1 0 0 0
0 0.5 0 0
0 0 1.5 0
0 0 0 1

3

7

7

5

. (25)

The graph Ĝ with P̂ as transition matrix is shown in Fig-
ure 1(c). The values on the edges denote the transition prob-
abilities. Let u=(0, 0, 1, 0)>. To compute P̂u using Monte
Carlo, we can place R0 walkers on node 3 of Ĝ and push them
to walk one step according to the probabilities randomly. Ide-
ally, there will be 1

3R
0, 2

3R
0 walkers on nodes 1 and 2, re-

spectively. Hence, the distribution of walkers on the nodes
is ( 13 ,

2
3 , 0, 0)

>, which is exactly P̂u.

After P̂u is simulated, we can compute P>
v easily, Then,

P>t
v = P>(t�1)(P>

v) can be computed by repeating the
same procedure. Finally, we obtain the single-source Sim-
Rank scores Sei. It should be mentioned that the matrices
F and P̂ need to be computed only once, and can be done
o✏ine in the preprocessing stage.

Complexity. The time complexity for computing F is
O(m), since for each diagonal entry, we only need to go
through all the non-zero entries in one column of P>. The
time complexity for computing P̂ is also O(m), since each
entry can be computed in O(1). The space complexities for
computing F and P̂ are O(n) and O(m) respectively.

In the online MCSS computation, all the Pei, · · · , PT
ei

can be computed by pushing R0 walkers to walk T steps on
G>, and thus its time complexity is O(TR0). In computing
P̂u, placing walkers can be done in O(R0) time. To move a
step for each walker, we need to select an out-neighbor in Ĝ
randomly according to P̂ , which can be done inO(log d) time
by binary search [7], where d is the out-degree of the current
node (in the original graph G). So the time complexity of
moving a step for all the walkers is O(R0 log d) (for an abuse
of notion, d here denotes the average out-degree in G). The
counting takes O(R0) time. So the overall time complexity
of computing P̂u is O(R0 log d).

For each item ctP>tDP t
ei, we need to repeat the random

walk procedure t  T times and thus the time complexity of
computing ctP>tDP t

ei is O(TR0 log d). Since there are T
such items, the overall time complexity of computing MCSS
is O(T 2R0 log d). The space complexity is O(T 2R0 +m).

Compared with the naive algorithm with time complexity
O(T 2m), our algorithm is much faster since R0 log d ⌧ m.
Also, since R0 is constant and independent of the graph size,
our algorithm is scalable for large graphs.

4.3.3 The MCAP Algorithm

The all-pair SimRank computation can be done by calling
MCSS algorithm for each node (We call it MCAP). Thus,
the overall time complexity is O(nT 2R0 log d), and the space
complexity is the same as in MCSS, which is O(T 2R0 +m).

Our algorithms for MCSP, MCSS, and MCAP are based
on random walks. In the distributed environment, the ran-
dom walk simulation can be executed in parallel. Thus, all
our SimRank computation algorithms can e↵ectively har-
ness the power of the distributed cluster for large graphs.

5. IMPLEMENTATION
In this section, we describe the implementation of our

algorithms on top of Spark [1]. As explained in Section 4,
in the computation of the diagonal correction matrix D and
the SimRank scores, we mainly use the Monte Carlo method
which needs to simulate random walks frequently. To sample
a random walk on the underlying graph, a walker repeatedly
walks from one node to its neighbors. To achieve the best
possible performance, we consider two di↵erent cases when
implementing our approach on Spark.

• Case 1: The input graph G is small enough to be kept
in the main memory of a single machine.

• Case 2: G is large and must be stored as an RDD.

In Case 1, the random walk sampling can be done on a sin-
gle machine e�ciently, since all the nodes can be accessed
instantly from main memory. However, the scale of input
graphs is limited by the memory of a single machine. In
Case 2, since G is stored in an RDD distributively, we can
handle much larger graphs. This, however, incurs much net-
work communication overhead, since the involved random
walk sampling requires to access the neighbors of each ver-
tex repeatedly, which can be resided on multiple machines.
To reduce the communication overhead, we use transforma-
tions in Spark to simulate thousands or millions of random
walks simultaneously. Next, we introduce the implementa-
tion details of both cases.
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5.1 Case 1: graph stored in each machine
When the input graph can fit in the memory of a single

machine, the implementation of our approach is straightfor-
ward. Here we elaborate on how to parallelize our approach
using Spark so as to accelerate the computation of D.

Computing D. As shown in Algorithm 1, suppose we
already load the input graph and store G as an adjacent list
in the memory of the driver program. We first initialize x

with 1 (line 2). Note that x represents the elements on the
main diagonal of D. Next, we broadcast G to the memory
of each machine (line 3).

After broadcasting, we invoke the iterative processing of
the Jacobi algorithm (lines 4-13). In each iteration, we first
broadcast the latest values in x to each machine. Here, x is
of length n and we assume it can also be cached in the mem-
ory of each machine. Then we split the set of nodes from 1 to
n into intervals of length b and compute ai and xi in each in-
terval as discussed in Section 4.2.4. For each interval [p, q],
we construct an RDD, namely idxRDD , which represents
the indices from p to q. After that, we use a map function
to compute a batch of ai values in parallel (line 10). Here,
“i) ai” is an anonymous function, in which given i, it com-
putes the corresponding ai. The procedure of computing ai

using random walks is executed in a single machine and the
details are already described in Section 4.2.3. We store a
group of ai values in aiRDD . According to the Jacobi algo-
rithm, we update the i-th entry of x as (1�

P

j 6=i
xi(ai)j)/(ai)i

and store it in xRDD (line 11). At last, we collect all the
updated entries of x (line 12).

MCSP and MCSS. When G can be stored on a sin-
gle machine, the implementation of MCSP and MCSS is
straightforward and we omit the details here. Note that
we can also compute the SimRank scores of multiple node
pairs or sources in parallel where each machine executes an
instance of MCSP or MCSS algorithm simultaneously.

Algorithm 1 Case 1: Computing D

1: procedure computingD(G)
2: x (1, 1, · · · , 1);
3: broadcast G;
4: for l = 1, 2, . . . , L do

5: broadcast x;
6: p 1;
7: for p  n do

8: q  min(p+ b� 1, n);
9: idxRDD  p, p+ 1, . . . , q;
10: aiRDD  idxRDD .map(i) ai);
11: xRDD  aiRDD .map(ai ) xi);
12: update x using xRDD .collect();
13: p p+ b;
14: return x.

5.2 Case 2: graph stored in an RDD
When the input graph must be stored in an RDD, simulat-

ing each random walk independently becomes too costly. In-
stead, we simulate multiple random walks by utilizing high-
level operators provided by Spark.

Computing D. Algorithm 2 shows the details of our pro-
cedure for computing D when G is stored as an RDD. Sim-
ilar to Case 1, we first initialize x (line 2). Then we use the
input graph G to construct an RDD, namely inedgesRDD
(line 3). Each record in inedgesRDD is a pair of a node
ID and an array of all in-neighbors of that node. We call

persist on inedgesRDD since it will be reused during the
random walk sampling (line 4).

In each iteration of the Jacobi algorithm (lines 5-16), we
first broadcast the latest x values to each machine. Then,
similar to Case 1, we split all the n nodes into intervals of
length b. For each interval [p, q], we construct walkerRDD
with R walkers for each node. Each record in walkerRDD is
a pair of a node ID and an array of all walkers on that node.
Each walker is represented as a pair of the current node
it resides and the sequence of visited nodes so far during
the random walk sampling. All walkers will walk T steps in
total. Each step is done with two transformation operations,
leftOuterJoin and map (line 12). After the final step, we
compute all ai values by counting the landing positions of
all walkers (line 13) and update xRDD which includes xi

for i = p, . . . , q accordingly (line 14). At last, we update x

using the values in xRDD (line 15).
Choice of b. In the computation of D of both cases (see

Algorithm 1 and Algorithm 2), the parameter b represents
the number of ai that we store in aiRDD . To save the
network communication cost used to compute aiRDD each
time, we usually choose the largest b while aiRDD can still
be cached in the distributed memory. A special case is when
b equals to n. In this case, we only need to compute A once,
and then we can cache aiRDD during the whole computation
of D.

Algorithm 2 Case 2: Computing D

1: procedure computingD(G)
2: x (1, 1, · · · , 1);
3: init inedgesRDD with G;
4: inedgesRDD .persist();
5: for l = 1, 2, . . . , L do

6: broadcast x;
7: p 1;
8: for p  n do

9: q  min(p+ b� 1, n);
10: init walkerRDD using interval [p, q];
11: for t = 1, 2, . . . , T do

12: walkerRDD  walkerRDD .
leftOuterJoin(inedgesRDD).map();

13: aiRDD  walkerRDD .map().reduceByKey();
14: xRDD  aiRDD .map(ai ) xi);
15: update x using xRDD .collect();
16: p p+ b;
17: return x.

MCSP. The computation of the single-pair SimRank score
between nodes i and j using MCSP is shown in Algorithm 3.
The idea is to approximate P t

ei and P t
ej for t = 0, 1, . . . , T

using the Monte Carlo method, where the simulation is per-
formed by Procedure walkIn. In walkIn, we start R0 ran-
dom walks from node k to approximate P t

ek. Here, PE is
an n⇥ (T +1) matrix and the t-th column PE(t) represents
P t

ek. Since PE(t) is a sparse vector which includes R non-
zero elements at most, we assume PE can be stored in the
memory of the driver program. walkerMap is a map in the
driver program which stores the current positions of the R0

walkers. For each key-value pair in walkerMap, the key is
a node ID and the value is the number of walkers on that
node. So walkerMap is initialized with a map that repre-
sents all R0 walkers initially at node k (line 9). Then, each
walker moves T steps by selecting a random in-neighbor at
each step. We use a transformation, flatMap, to simulate
each step, and then store the new landing nodes in landRDD
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(line 12). Finally, we use all those landing positions to up-
date walkerMap and PE(t) (lines 13-14).

Algorithm 3 Case 2: Computing MCSP

1: procedure computingMCSP(inedgesRDD, D, i, j)
2: init s 0;
3: X  walkIn(inedgesRDD , i);
4: Y  walkIn(inedgesRDD , j);
5: for t = 0, 1, . . . , T do

6: s s+ ctX(t)TDY (t);
7: return s.
8: procedure walkIn(inedgesRDD , k)
9: init PE  0, walkerMap  {(k,R0)};
10: for t = 0, 1, . . . , T do

11: broadcast walkerMap;
12: landRDD  inedgesRDD .flatMap(walkerMap);
13: walkerMap  landRDD .collect();
14: compute PE(t) using walkerMap;
15: return PE .

MCSS. The computation of the single-source SimRank
scores for node i using MCSS is shown in Algorithm 4. The
input parameter F is a diagonal matrix of n ⇥ n, so we
assume F can be pre-computed and stored in the driver
program. Another input parameter outedgesRDD is an
RDD that represents the matrix P̂ . The meanings of F
and P̂ have already described in Section 4.3.2. To repre-
sent P̂ in an RDD, we define each record in outedgesRDD
as a pair of node ID i and a list of pairs, where each pair
equals to (j,

Pji

Fjj
) which corresponds to an out-neighbor j

of i. Then, we call Procedure walkIn in Algorithm 3 to
compute P t

ei for t = 0, 1, . . . , T (line 3). In line 4, we en-
ter the for-loop to compute ctP>tDP t

ei for t = 1, 2, . . . , T
as described in Section 4.3.2. Note that at the end of the
for-loop, v equals P>tDP t

ei (line 12). Most computation
in the for-loop is done in the driver program, except for
line 10, where we call Procedure walkOut to compute P̂u

using the Monte Carlo method. The implementation of Pro-
cedure walkOut is similar to Procedure walkIn. First, we
initialize the positions of walkers, walkerMap, using the dis-
tribution u (line 15). Then, each walker moves one step
to an out-neighbor according to the probabilities stored in
outedgesRDD randomly (line 17). Finally, we obtain ��� =
P̂u from the new landing positions (line 19).

As described above, our approach is highly parallelizable,
where the key component is in simulating a large num-
ber of random walks on a distributed computing platform
(“cloud”) in parallel. In this sense, we called our approach
CloudWalker.

6. EXPERIMENTAL RESULTS
In this section, we evaluate CloudWalker experimentally.

We first describe the experimental setup in Section 6.1. Then
we report the results in terms of e↵ectiveness and e�ciency
in Section 6.2 and Section 6.3, respectively. We show the
speedup of CloudWalker in Section 6.4. The comparison
with existing SimRank algorithms is presented in Section 6.5.

6.1 Setup
Cluster. We perform all experiments on a cluster of

10 machines, each with two eight-core Intel Xeon E5-2650
2.0 GHz processors, 377 GB RAM, and 20 TB hard disk,
running Ubuntu 14.04. All machines are connected via a

Algorithm 4 Case 2: Computing MCSS

1: procedure computingMCSS(outedgesRDD, D, F , i)
2: ��� = 0;
3: X  walkIn(inedgesRDD , i);
4: for t = 0, 1, . . . , T do

5: v D ·X(t) . v = DP t
ei.

6: for s = 1, 2, . . . , t do
7: u Fv;
8: w  

Pn
i=1 u(i);

9: u w�1 · u; . Normalize u.
10: ��� walkOut(outedgesRDD ,u);
11: v w ·���;
12: ���  ��� + ctv;
13: return ���.
14: procedure walkOut(outedgesRDD ,u)
15: init walkerMap with u;
16: broadcast walkerMap;
17: landRDD  outedgesRDD .flatMap(walkerMap);
18: walkerMap  landRDD .collect();
19: compute ��� using walkerMap;
20: return ���.

Gigabit network. We deploy Spark of version 1.2.0 on each
machine in the cluster, and configure one machine as the
master node and the other nine machines as slaves. We also
install HDFS with Hadoop of version 2.2.0 in the same clus-
ter, which is only used to the input graphs. The other de-
tails of the configuration are as follows: 1) Spark consumes
360 GB RAM at most on each node; 2) the total number
of cores used by Spark is 160; and 3) the data replication
factor of HDFS is 3. All our algorithms are implemented in
the Scala programming language.

Datasets. We tested on 6 benchmark datasets of various
scales5. The description of each dataset, including its size
in disk, is shown in Table 1. In each dataset file, each line
contains a node ID and the IDs of its in-neighbors. All
datasets are uploaded into the HDFS before computation.

Table 1: Datasets used in our experiments

Dataset Nodes Edges Size

wiki-vote [18] 7,115 103,689 476.76KB

ca-hepth [18] 9,877 25,998 287.18KB

wiki-talk [18] 2,394,385 5,021,410 45.62MB

twitter-2010 [17] 41,652,230 1,468,365,182 11.43GB

uk-union [3, 2] 131,814,559 5,507,679,822 48.31GB

clue-web [3, 2] 978,408,098 42,574,107,469 401.12GB

Parameters. The meanings and default values of the
parameters of our algorithms are listed in Table 2, where c
and T are set following the previous study [23].

Accuracy. The accuracy is evaluated by comparison to
the exact SimRank scores (Section 3). Specifically, we com-
pute the following mean error :

ME =
1
n2

n
X

i=1

n
X

j=1

�

�s(i, j)� s0(i, j)
�

�, (26)

5wiki-vote, ca-hepth, and wiki-talk are downloaded
from http://snap.standford.edu/data/index.html, and
twitter-2010, uk-union, and clue-web are obtained from
http://law.di.unimit.it/datasets.php.
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Table 2: Default values of parameters

Parameter Value Meaning

c 0.6 decay factor of SimRank

T 10 # of walk steps

L 3 # of iterations in Jacobi algorithm

R 100 # of walkers in simulating ai

R0 10,000 # of walkers in MCSP and MCSS

where s(i, j) is the exact SimRank score and s0(i, j) is the
one from CloudWalker. Apparently, the lower the mean
error, the higher the accuracy.

6.2 Effectiveness
We evaluate the e↵ectiveness of CloudWalker by varying

the values of R, L, and R0. Because computing and storing
the exact SimRank similarity matrix is impractical for large
graphs, we use wiki-vote and ca-hepth for this test.

6.2.1 Effect of R and L on Computing D

In this subsection, we show how to choose appropriate
values for R and L when computing D. In the experiment,
we first use our proposed approach to compute D, and then
compute the estimated SimRank values using Eq. (8). Note
that in this experiment, given D, we do not use the Monte
Carlo method in computing the SimRank scores and thus
do not need to consider R0 for now. We vary the values of
R and L, and report the mean errors in Figure 2.

0 1 2 3 4 5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

the value of L

m
ea

n 
er

ro
r

 

 
R=50
R=100
R=1000

R=10000
R=100000

(a) wiki-vote

0 1 2 3 4 5

10−6

10−5

10−4

the value of L

m
ea

n 
er

ro
r

 

 

R=50
R=100
R=1000

R=10000
R=100000

(b) ca-hepth

Figure 2: E↵ect of L and R

From Figures 2(a) and 2(b), we can observe that, when the
value of R increases, the mean error decreases. To achieve
ME around 10�5 ⇠ 10�6, which is the same level as previous
work [23, 29], it su�ces to set R = 100 in simulating the
matrix A using Monte Carlo. Besides, it is interesting to
notice that our algorithm converges very fast in just 3 to 4
Jacobi iterations.

6.2.2 Effect of R0
on Computing MCSP and MCSS

In this experiment, we compute the SimRank scores using
our proposed algorithms, MCSP and MCSS. We report the
mean error for each algorithm. D is still computed using
our proposed approach.

The results are shown in Figures 3 and 4. We can observe
that the accuracy improves as the number of random walkers
R0 increases for both MCSP and MCSS. To achieve ME
around 10�5 ⇠ 10�6, MCSP needs R0=1, 000 while MCSS
needs R0=100, 000. The reasons are as follows: 1) in MCSP,
T walks can finish all Pei, . . . , P

T
ei, thanks to the nested

structure of the problems; 2) in MCSS, it takes O(T 2) walks
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on computing MCSP
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Figure 4: E↵ect of R0
on computing MCSS

for estimating P>t
vt, t = 1, . . . , T , as the start distribution

vt := DP t
ei (upon normalization) changes with t. Note

that MCSS computes n scores while MCSP just computes
one.

6.3 Efficiency
To measure the e�ciency of CloudWalker, we report the

running time and the network communication cost, mea-
sured by the amount of data transmitted via the network
during the operations of broadcasting and shu✏ing on Spark.

6.3.1 Case 1: graph stored in each machine

All the datasets, except clue-web, can be cached in the
memory of a single machine in our cluster, and thus can be
handled by the algorithms designed for case 1 (Section 5.1).
The clue-web dataset will be considered in case 2.

Let us first focus on the running time of computing D as
shown in Table 3. As discussed in Section 5.2, if the matrix
A can be kept in the distributed memory, then we only need
to compute A for once, and we use “D : A(1)” to denote
this scenario in the following evaluation. To evaluate our
approach under limited memory resource, we also consider
the scenario when b is less than n and we have to compute A
repeatedly in each iteration of the Jacobi method. Since A is
computed for L = 3 times, we use “D : A(3)” to denote this
scenario. In either scenario, as it can be observed, the over-
all time of computing D on the first two small datasets does
not change much. The reason is that, when the datasets
are small, the overhead of Spark in cluster management and
scheduling tends to be significantly larger than the compu-
tation cost. The e↵ect of this overhead becomes smaller as
the data size becomes larger. This can be seen from the
results on the rest 3 datasets, where the running time of
“D : A(3)” is about twice of that of “D : A(1)”.

Although having to compute A for 3 time, the overall run-
ning time of “D : A(3)” is less than 3 times of “D : A(1)”.
The reason is that since matrix P is broadcast to each ma-
chine before computing A, the random walk simulation and
updating elements of D can be done in each machine locally,
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Table 3: Results of Case 1

Dataset

D:A(1) D:A(3)

R0
of MCSP R0

of MCSS

1,000 10,000 100,000 1,000 10,000 100,000

wiki-vote 7s 8s 0.0008s 0.0040s 0.0541s 0.0056s 0.0420s 0.2997s

ca-hepth 8s 9s 0.0042s 0.0300s 0.2749s 0.0161s 0.1225s 0.8396s

wiki-talk 59s 116s 0.0053s 0.0461s 0.4302s 0.0267s 0.1799s 1.977s

twitter-2010 975s 1847s 0.0059s 0.0490s 0.5769s 0.1116s 0.2810s 3.253s

uk-union 3323s 6034s 0.0036s 0.0247s 0.2730s 0.2755s 0.2914s 2.664s

and therefore there is no shu✏ing cost. So the network com-
munication cost for broadcasting P and D dominates the
total running time (Algorithm 1).

As P can be kept in the memory of one machine, MCSP
and MCSS can be computed in one machine directly with a
given D. The experimental results of MCSP and MCSS on a
single machine with R0 = 103, 104, and 105 are also reported
in Table 3. The results are the average of 200 trials. We can
draw two observations: 1) for a given R0, the running time of
MCSS is often 10+ times more than that of MCSP, which
should not be surprising as the time complexity of MCSS
is higher than that of MCSP, in T ; and 2) in MCSP and
MCSS, when the value of R0 increases 10 times, the running
time also increases 10 times, which is expected as the time
complexity of each algorithm is linear in R0.

A final note is that we can easily run multiple MCSP and
MCSS instances on multiple machines in parallel.

Remark. From the above experimental results, we can
conclude that, if each machine can hold G and the remaining
memory of the cluster can hold A, we can compute A only
once for the best e�ciency.

6.3.2 Case 2: graph stored in an RDD

In case 2, the graph is stored as an RDD in the cluster-
wide memory, where each machine only keeps one portion
of the graph. In our experiment, the clue-web, with size
over 400GB, is larger than the memory of each machine
and is required to be stored as an RDD. The experimental
results of all datasets on case 2 are reported in Table 4,
where “network” denotes the total amount of data shu✏ed
via the network.

Let us first examine the results of computing D. For each
dataset, we can observe that the running time of computing
D is usually 2⇠4 times as that in case 1. This is mainly due
to the much more frequent network communications in case
2 than in case 1. Recall that we use random walk sampling to
approximate ai. As each machine only keeps a small portion
of the graph, a walker can easily walk to a node stored in
another machine which incurs network communication. In
contrast, in case 1, each machine holds a copy of the graph,
and so a walker can access its in-neighbors locally. Like case
1, we also compute D in two di↵erent scenarios: “D : A(1)”
and “D : A(3)”. Here, the running time of “D : A(3)” is
around 3 times as that of “D : A(1)”, because the time used
to simulate random walks on a distributed graph dominates
the total running time due to more network communication.

The running time of MCSP and MCSS in case 2 is re-
ported in the right-hand side of Table 4. The results are the
average of 200 trials. We can observe that, in all cases, the
running time grows as the size of dataset increases. How-
ever, it does not grow linearly with the size of dataset, but
much slower. For example, for a single-source SimRank

query (R0=10,000), it takes around 188 seconds on clue-
web and 12 seconds on wiki-talk, even though the clue-web
(43B edges) is almost 10,000 times larger than wiki-talk (5M
edges). This is thanks to the fact that, in principle, the time
complexity, in either MCSP or MCSS, is independent of the
graph size (Section 4.3).

For a specific dataset, the running time for a single-pair
or single-source SimRank computation does not change lin-
early with the value of R0, the number of walkers. Let us
take the results of MCSP on clue-web as an example. When
R0=1,000, the running time is 62.85 seconds. After increas-
ing R0 10 times to 10,000, the running time increases less
than 2 seconds. This can be explained as follows. In Algo-
rithm 3 and Algorithm 4, we use a hash table, walkerMap,
to maintain all walkers, in which each element is a key-value
pair, where the key is a node ID and the value is the number
of walkers on that node. In each step of the random walk
sampling, we need to broadcast walkerMap which incurs a
lot network communication and dominates the computation
time. However, in power-law graphs, the landing positions
of walkers tend to concentrate on a few popular nodes. So
when we increase R0 10 times, the size of walkerMap will not
increase much. This result suggests that, to achieve high ac-
curacy, we can increase the value of R0 without sacrificing
much e�ciency.

We also observe that the speed of MCSP and MCSS com-
putation in case 2 is slower than that in case 1. This is
because more network cost is needed in case 2; and as the
graph is organized as an RDD, we cannot access a specific
node randomly as in case 1, even with built-in index.

Remark. From the above experimental results, we can
conclude that, if the memory of each machine is enough to
hold the graphs G and Ĝ, the algorithms for case 1 are more
e�cient than those of case 2, but otherwise the latter are a
nice choice due to its great scalability.

6.4 Speedup
In this experiment, we test our algorithms with di↵erent

numbers of slave nodes for computing D. We look into both
cases 1 and 2, where the matrix A is repeatedly computed
for three times (“D : A(3)”). The experimental results on
the twitter-2010 are depicted in Figure 5.

The overall running time decreases as the number of slave
nodes increases, but the speedup is not linear. For exam-
ple, in case 1, when there is only 1 slave node, it takes
11,325 seconds, which is only 6.13 times larger than that
(1,847 seconds) of the case when the number of slave nodes
is 9. Similar results can be observed from case 2. This is
mainly because the network communication cost increases
with more slave nodes. With more slave nodes, the running
time on managing the cluster (e.g., task scheduling, heart-
beating detection, etc.) also increases.

33



Table 4: Results of Case 2

Dataset

D:A(1) D:A(3) R0
of MCSP R0

of MCSS

time network time network 1,000 10,000 100,000 1,000 10,000 100,000

wiki-vote 12s 371MB 50s 554MB 2.67s 2.69s 2.84s 2.50s 2.99s 3.73s

ca-hepth 13s 670.2MB 59s 1901MB 6.43s 6.61s 7.27s 11.68s 11.98s 13.09s

wiki-talk 236s 108.7GB 620s 345.8GB 7.85s 8.44s 13.74s 12.97s 13.85s 22.43s

twitter-2010 2967s 2.1TB 8424s 6.1TB 11.2s 11.75s 20.63s 21.15s 22.32s 64.1s

uk-union – – 6.4h 16.1TB 12.94s 13.07s 14.21s 25.79s 27.19s 35.31s

clue-web – – 110.2h 139.2TB 62.85s 64.01s 66.29s 187.7s 188.1s 191.9s

1 3 5 7 9

2000

4000

6000

8000

10000

12000

the number of slave nodes

th
e 

ru
nn

in
g 

tim
e 

(s
ec

on
d)

(a) Case 1

1 3 5 7 9

0.6

1.2

1.8

2.4

3

3.6 x 104

the number of slave nodes

th
e 

ru
nn

in
g 

tim
e 

(s
ec

on
d)

(b) Case 2

Figure 5: Speedup of computing D

6.5 Comparison with Other Algorithms
In this section, we compare CloudWalker with other state-

of-the-art algorithms, including IteMat, IteMat-✏, FMT,
Fast-IteMat, and LIN, which are described below.

• IteMat is a parallel algorithm for SimRank, imple-
mented by us on Spark, following the iterative matrix
multiplication procedure (Section 3). In IteMat, P is
broadcast to each machine, and S is constructed as an
RDD and initialized as S = I.

• IteMat-✏ is a variant of IteMat, except that the entries
below the threshold ✏ in S are pruned during each it-
eration (✏ = 1.0�4).

• Fast-IteMat [29] uses the fast multiplication technique,
the Coppersmith-Winograd algorithm [6], to acceler-
ate the iterations in IteMat.

• FMT [10] follows the random surfer model of SimRank.
It first simulates and stores the random paths for each
node, and at query time computes the similarities from
the random paths.

• LIN [23] is a recent state-of-the-art algorithm for Sim-
Rank computation. Like CloudWalker, it first esti-
mates the diagonal correction matrix D, and at query
time computes the similarities based on D. One key
limitation of LIN is that its parallelism is quite lim-
ited due to its interwinding dependency in computa-
tion (Section 4.1).

The results of FMT [10], LIN [23], and Fast-IteMat [29]
are obtained from [23]. “N/A” means the experiment was
not conducted and “–” means the experiment failed. Since
they did not evaluate on uk-union in [23], we use their re-
sults on the uk-2007-05 dataset instead. Note that uk-2007-
05 is a subgraph of the uk-union dataset with 106 million
nodes and 3.7 billion edges. All of their experiments were
implemented in C++ and were conducted on a single ma-
chine with an Intel Xeon E5-2690 2.90GHz CPU and 256GB

memory running Ubuntu 12.04. For CloudWalker, we report
case 1 on the first 5 datasets and case 2 on clue-web. We
first compute D and then compute the single-pair, single-
source, and all-pair SimRank scores, using MCSP, MCSS,
and MCAP, respectively (R0 = 10, 000).

The results on preprocessing, single-pair and single-source
computation are reported in Table 5. The preprocessing
time cost of LIN is the lowest on the two small datasets,
wiki-vote and ca-hepth. However, for the preprocessing on
large datasets like twitter-2010, CloudWalker is around 15
times faster than LIN. This is mainly because CloudWalker
can harness the power of the parallel computation. For
single-pair and single-source computation, the running time
of FMT and LIN grows as the size of dataset increases,
while the time cost of CloudWalker increases only slightly
thanks to the fact that the time complexity of either MCSP
or MCSS in CloudWalker is independent of the graph size.
It is worth mentioning that no results on clue-web can be
reported for FMT and LIN. In contrast, CloudWalker com-
pletes the preprocessing, the single-pair and the single-source
computation in 110 hours, 64 seconds, and 188 seconds, re-
spectively. This shows that CloudWalker is much more scal-
able than FMT and LIN.

The results on all-pair computation are reported in Ta-
ble 6. We can see that while all algorithms can easily deal
with the two small datasets, only CloudWalker can finish
the computation on wiki-talk and twitter-2010 in reason-
able time. This again confirms the superior scalability of
CloudWalker. While in principle CloudWalker can be ap-
plied to compute all-pair SimRank scores for the clue-web
dataset, it would take around 5800 years.

7. CONCLUSIONS
We have proposed and implemented a highly parallelizable

approach, CloudWalker, for the SimRank computation. It
consists of o✏ine indexing and online querying. The index-
ing takes linear time and results in just a length-n vector.
The online phase responds to the fundamental single-pair
query and single-source query in constant time, and all-pair
query in linear time. The space complexity of our solution
is linear in the number of edges. Extensive experimental re-
sults show that it is orders of magnitude more e�cient and
scalable than existing solutions for large-scale problems.
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Table 5: Comparison on preprocessing, single-pair and single-source SimRank computation

Dataset

FMT LIN CloudWalker

Prep. SinglePair SingleSrc. Prep. SinglePair SingleSrc. Prep. SinglePair SingleSrc.

wiki-vote 43.4s 30.4ms 42.5ms 187ms 0.613ms 5.26ms 7s 4ms 42ms

ca-hepth 205s 61.2ms 262ms 698ms 0.493ms 3.24ms 8s 30ms 122.5ms

wiki-talk N/A N/A N/A N/A N/A N/A 59s 46ms 179.9ms

twitter-2010 – – – 14376s 3.17s 11.9s 975s 49ms 281ms

uk-union – – – 8291s 9.42s 21.7s 3323s 24.7ms 291.4ms

clue-web – – – – – – 110.2h 64.01s 188.1s

Table 6: Comparison on all-pair SimRank computation

Dataset IteMat IteMat-✏ Fast-IteMat LIN CloudWalker

wiki-vote 95s 79s 8.74s 37.4s 22s

ca-hepth 784s 216s 23.3s 39s 93s

wiki-talk – – N/A N/A 7.03h

twitter-2010 – – – – 146.9h
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