
Interactive Log Parsing via Light-weight User Feedback
Liming Wang Hong Xie Ye Li

Chongqing University Chongqing University Alibaba
wlm_1203@163.com xiehong2018@foxmail.com liye.li@alibaba-inc.com

Jian Tan John C.S. Lui
Alibaba The Chinese University of Hong Kong

j.tan@alibaba-inc.com cslui@cse.cuhk.edu.hk

ABSTRACT
Template mining is one of the foundational tasks to support log
analysis, which supports the diagnosis and troubleshooting of large
scale Web applications. This paper develops a human-in-the-loop
template mining framework to support interactive log analysis,
which is highly desirable in real-world diagnosis or troubleshooting
of Web applications but yet previous template mining algorithms
fail to support it. We formulate three types of light-weight user
feedback and based on them we design three atomic human-in-the-
loop template mining algorithms. We derive mild conditions under
which the outputs of our proposed algorithms are provably correct.
We also derive upper bounds on the computational complexity and
query complexity of each algorithm. We demonstrate the versatility
of our proposed algorithms by combining them to improve the
template mining accuracy of �ve representative algorithms over
sixteen widely used benchmark datasets.

CCS CONCEPTS
• Information systems ! Web mining.
ACM Reference Format:
Liming Wang, Hong Xie, Ye Li, Jian Tan, and John C.S. Lui. 2023. Interactive
Log Parsing via Light-weight User Feedback. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3543507.3583456

1 INTRODUCTION
With the growing scale and complexity of Web applications such
as cloud computing and micro-service systems [15, 16, 18], system
event logs (we call them logs for brevity) provide �rst-hand infor-
mation for engineers to monitor the health status of the system and
troubleshoot [13]. The raw logs are of a vast volume containing
much redundant information, making it di�cult for engineers to
analyze them. Template mining is one of the foundational tasks to
support log analysis. It aims to partition logs into clusters such that
similar logs are in the same cluster [13]. It also extracts a “template”
for each cluster, which summarizes the key information of the logs
in a cluster [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

A number of template mining algorithms were proposed [2, 13,
16, 24–26], which enable the automatic extraction of templates.
However, previous template mining algorithms do not support
interactive log analysis, which is highly desirable in real-world
diagnosis or troubleshooting of Web applications. In particular, in
the diagnosis or troubleshooting, engineers may have varied gran-
ularity on the clustering or semantics of templates. As she/he dives
deeper into the diagnosis or troubleshooting, higher clustering or
semantic granularity on susceptible logs may be preferred, while
lower clustering or semantic granularity on irrelevant logs is pre-
ferred. Higher clustering or semantic granularity can be achieved
by splitting a cluster into several smaller clusters with larger in-
ner similarities and extracting templates with richer semantics
accordingly, while lower clustering granularity can be achieved by
merging several similar clusters and extracting templates with less
semantics accordingly.

We design a human-in-the-loop template mining framework to
enable interactive log analysis. We do not extract templates from
scratch; instead, we solicit user feedback to adjust the templates ex-
tracted by a base algorithm toward the user’s needs or preferences.
Our framework is generic to be deployed on the output of any pre-
vious template mining algorithms. Our framework supports three
atomic human-in-the-loop operations: (1) improving the richness
of the semantics of a template; (2) merging merge two clusters; (3)
splitting split a cluster. To relieve the user’s burden in providing
feedback, we consider three types of light-weight feedback. The
�rst one is indicating whether a given template has all semantics
that the user itself wants. The second one is selecting tokens from
a given template that the engineer does not care, which we call
dummy tokens. The third one is selecting a template from a given
set that has the same semantics as the given template. We design
computationally e�cient algorithms that creatively combine these
three types of feedback to implement three desired atomic human-
in-the-loop operations. Our algorithms work in a stream fashion in
the sense that it only needs to pass the input log data once. Further-
more, we prove upper bounds on the computational complexity
and query (seek user feedback) complexity, which reveal a funda-
mental understanding of the e�ciency of our proposed algorithms.
Finally, we demonstrate the application of algorithms by applying
them to improve the template mining accuracy of �ve representa-
tive algorithms over sixteen widely used benchmark datasets. The
highlights of our contributions include:

• Formulation of three types of light-weight user feedback and
three atomic human-in-the-loop operations.

• Upper bounds on the computational complexity and query
(seek user feedback) complexity of proposed algorithms.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583456

1960

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Wang et al.

• Extensive experiment evaluation on sixteen benchmark data-
sets.

2 RELEATED WORK
Previous works on log parsing can be categorized into two lines: (1)
pattern aware log parsing, which extracts frequent patterns of logs;
(2) semantic aware log parsing, which extracts templates containing
key semantics of logs.

2.1 Pattern Aware Log Parsing
Clustering-based log parsing methods follow the work�ow of clus-
tering logs and then extracting templates of each cluster. LKE [10]
extracts raw keys of logs by applying empirical rules to erase the
parameters of logs. The similarity between logs is quanti�ed by
the edit distance between their raw keys. Based on this similarity
measure, logs are clustered into di�erent groups, and the common
part of raw keys serves as the template of a group. IPLoM [17] uti-
lizes hierarchical clustering to partition logs and then produce the
descriptions of each cluster, i.e., the template for each cluster. LFA
[21] applies the Simple Log �le Clustering Tool for log abstraction.
LogMine [11] is composed of a clustering module and a pattern
recognition module. Its novelty lies in the e�cient computational
implementation of these two modules in the map-reduce frame-
work. CLF [33] extracts templates via heuristic rules, i.e., clustering
logs based on heuristic rules, adjusting the clustering based on
separation rules, and �nally generating a template for each cluster.
Inspired by word2vec, LPV [32] uses deep learning to vectorize logs,
cluster logs based on vector similarity, and extract templates from
the resulting clusters. Vue4logs [2] uses a vector space model to
extract event templates, which vectorize log and group logs based
on their vector similarity. Character and length-based �lters are
used to extract templates.

Frequency-based methods rely on intuition that frequent pat-
terns are more likely to be templates. Ft-tree [34] identify frequent
combinations of (syslog) words as templates of logs. It supports
incremental learning of log templates. Logram [6] utilizes the fre-
quency of n-gram dictionaries to parse logs, where frequent n-gram
dictionaries are identi�ed as templates. It supports online parsing
of logs. Meting [5] is a parametric log parser, which is also built on
frequent n-gram mining. AWSOM-LP [26] organizes logs into pat-
terns via a simple text processing method. It then applies frequency
analysis to logs of the same group to identify static and dynamic
content of log events.

Tree-based methods design di�erent trees to encode di�erent
log parsing rules. Drain [12] uses a �xed depth parse tree to extract
templates of logs. This �xed depth parse tree encodes specially
designed parsing rules. Pre�x Graph [4] is a probabilistic graph
structure, which is an extension of a pre�x tree. Two branches are
merged together when they have high similarity in the probability
distribution. The combination of cut-edges in root-to-leaf paths of
the graph. USTEP [28] uses an evolving tree structure to extract the
template of logs. It is an online log parsing method. DIP 2022 [24]
is a tree-based log parser. The primary methodological innovation
is that DIP considers the actual tokens at which the two messages
disagree and the percentage of matching tokens.

A number of works applied deep learning to parse logs. DeepLog
[8] treats a log as a natural language sequence and applies Long
Short-Term Memory (LSTM) to extract templates. LogPhrase [19]
casts the template extraction problem as a word classi�cation prob-
lem. It applies deep learning to learn the features of static words and
variable words. Nulog [22] casts the parsing task as a masked lan-
guage modeling (MLM) problem and uses a self-supervised learning
model to address it. UniLog 2021 [37] casts the log analysis prob-
lem as a multi-task learning problem and proposes a log data pre-
trained transformer to parse logs. LogDTL [23] is a semi-supervised
method. It uses a transfer learning technique together with the deep
neural network to balance the trade-o� between the accuracy of
the extracted template and human resources for manual labeling.
FlexParser [25] trains a stateful LSTM to parse logs.

We are also aware of the following notable methods that do not
belong to the above types. Spell [7] is an online streaming template
mining algorithm. It extracts templates of logs via a longest common
subsequence-based approach. Logan [1] is a distributed online log
parser, which is also based on the Longest Common Subsequence
algorithm. LogPunk 2021 [35] and QuickLogS [9] are two notable
hash-like methods for log parsing. LogStamp [27] is a sequence
labeling-based automatic online log parsing method. MoLFI [20]
casts the log message identi�cation problem as a multi-objective
problem. It applies evolutionary approaches to solve this problem.
Paddy [14] uses a dynamic dictionary structure to build an inverted
index, which enables an e�cient search of the template candidates.
AECID-PG [31] is a density-based log parsing method.

2.2 Semantic Aware Log Parsing
Recently, a few works brings attention to the semantics of tem-
plates [15, 16, 18]. These methods apply deep learning to enrich the
semantics of templates, which require a large amount of training
data. Unlike these works, we utilize light-weight human feedback to
adjust the log mining results. Through this, we not only enrich the
semantics of templates but also improve the accuracy of the group
of logs. Furthermore, we have a rigorous analysis of the correctness,
computational complexity, and human feedback query complexity.
This aspect is missed in most previous works.

3 MODEL AND PROBLEM FORMULATION
3.1 Characterizing Logs and Templates
To simplify notations, for each integer � 2 N+, we de�ne [�] as [�] ,
{1, . . . , � }. Let D denote a dictionary of tokens. We characterize
each log as a sequence of tokens. To facilitate the presentation, we
de�ne the following operations regarding sequences of tokens.

De�nition 1. Given two sequences a=(01, . . . ,0�) and b=(11, . . . ,1 �),
where 08 ,1 9 2 D, 88 2 [�], 9 2 [�]:

• Equal ‘=’: a and b are equal denoted by a = b, if and only if
� = � and 08 = 18 , 88 2 [�].

• Subsequence ‘v’: a is a subsequence of b denoted by a v b, if
and only if there exits a sequence 1 91 < 92 < . . . < 9� < �
such that 08 = 1 98 , 88 2 [�].

• len(·): len(a) = � .
• LCS(·, ·): LCS(a, b) = the longest common subsequence be-
tween a and b .

1961

Interactive Log Parsing via Light-weight User Feedback WWW ’23, April 30–May 04, 2023, Austin, TX, USA

To facilitate labeling, we use the <*> symbol to replace all tokens
except that in the templates and allow one <*> to represent several
tokens. It does not a�ect the original semantic representation of
the template. We consider a set of # 2 N+ logs to be parsed. Let
R= denote log = 2 [#], which is a sequence of tokens from the
dictionary D, formally R= , (!=,1, . . . , !=,"=), where "= 2 N+
denote the length of log = and !=,< 2 D, 8< 2 ["=]. All these #
logs are partitioned into 2 N+ disjoint clusters based on their
message or semantics. Let C: ✓ [#], where : 2 [] denote the
set of indexes of the logs in cluster : . These clusters are full, i.e.,
[: 2 []C: = [#] . This property captures each log that belongs
to at least one cluster. Furthermore, these clusters are disjoint,
i.e., C: \ C: 0 = ;, 8:, : 0 2 [] and : < : 0 . This property captures
that there is no log that belongs to more than one cluster. In other
words, there is no message redundancy or message ambiguity in the
clusters. Cluster : , where : 2 [], is associated with a template Z: ,
which captures the message or semantics of cluster : . The template
Z: is a common subsequence of the logs that belong to cluster : , i.e.,
Z: v R=, 8= 2 C: . Note that the template Z: is not necessarily the
longest common subsequence. For example, consider a log cluster
with two logs "Failed password from port 11, user=root" and "Failed
password from port 12, user=root". The template of this cluster is
"Failed password from port <*> user <*>" but not "Failed password
from port <*> user root".

The clusters C: , 8: 2 [] and templates Z: , 8: 2 [] are es-
sential for supporting downstream applications such as anomaly
detection, root cause analysis, etc. We impose the following natural
assumption on templates to simplify the discussion.

Assumption 1. There does not exist two templates Z: and Z: 0 ,
where :, : 0 2 [] and : < : 0 , such that Z: v Z: 0 .

Assumption 1 captures that there are no templates whose message
is part of another template. It ensures that each template contains
a new message compared with the other.
Remark. The clusters C: , 8: 2 [] and templates Z: , 8: 2 [] are
the ground truth, and they are de�ned by user preference or needs.
This ground truth may vary across di�erent users, as di�erent users
may have di�erent preferences over the semantics of templates.
For example, di�erent users may prefer di�erent granularity on
the templates. Even for the same user, she/he may prefer a low
granularity when the system is at normal status while preferring a
high granularity in abnormal status.

3.2 Characterizing A Log Mining Algorithm
A number of rule-based or machine learning-based algorithms aim
to recover the clusters and templates automatically. We present a
uni�ed way to characterize them through their output. Formally, let
Cb1, . . . , Cbb denote the clusters extracted by a log mining algorithm,
where b 2 N+, which satisfy

b b[: 2 [b]C: = [#], C: \ Cb: 0 = ;, 8:, : 0 2 [] and : < : 0 .

Namely, the mined clusters satisfy the full property and disjoint
property. Note that b can be greater, equal, or smaller than ,
depending on the selected algorithm and hyperparameter selection.
Let bZ: denote the template associated with cluster Cb: , where : 2

[b]. We call Cb: and bZ: , where 8: 2 [b] is the mined cluster and
mined template. The mined templates satisfy Assumption 1.

The following notion characterizes the errors at the cluster level.

De�nition 2. A mined cluster Cb: , where : 2 [b], is pure, if there
exists : 0 2 [] such that

Cb: ✓ C: 0 , (1)

otherwise it is mixed. A pure cluster is full, if the equality in (1) holds,
otherwise it is partial.

De�nition 2 states that a pure mined cluster contains only one
type (the type is de�ned concerning the ground truth template
associated with it) of logs. A mixed mined cluster contains more
than one type of logs. A mixed mined cluster indicates an error in
the cluster level. A partial pure cluster also indicates an error in the
cluster level. For example, consider three mined clusters Cb1 = {R1}, b bC2 = {R2}, C3 = {R3, R4}, and ground truth clusters C1 = {R1, R2},
C1 = {R3}, C1 = {R4}. Under this de�nition, all mined clusters are
inaccurate. And Cb3 is a mixed mined error, while Cb1 and Cb1 are
partial pure errors. As with [36], we use the group accuracy (GA)
metric to quantify the clustering accuracy, formally:

’ 1
GA ,

: 2 [b] 1{9: 0 2 [],C: 0 =⇠b: } |⇠
b: |

The following de�nition characterizes message level errors.

De�nition 3. A mined template bZ: , where : 2 [b], has complete
message, if there exists : 0 2 [] such that Z: 0 v bZ: . Otherwise it has
message loss.

De�nition 3 states that a mined template has the complete message
if it contains a ground truth template as a subsequence. Namely,
at the message level, it has the full message of a ground truth
temple. Otherwise, it has message loss. In other words, it does not
contain the full message of any ground truth template. For example,
consider a ground truth template Z1 = "Failed password from port
<*> user <*>". Two mined templates are bZ1 = "Failed password
from port <*>" and bZ2 = "Failed password from port <*> user
root". Even though both mined templates are inconsistent with
the ground truth template, bZ1 loses critical information about the
user, while bZ2 only has partial data redundancy and no semantic
information loss. A template with message loss may not support
the downstream applications well. Meanwhile, if a mined cluster is
pure, although a mined template with the complete message may
contain some redundancy, this redundancy does not distract the
user a lot. Thus we focus on templates with message loss. Based on
this, we propose the message accuracy (MA) metric to quantify the
message level accuracy of templates, formally:

’ ’ 1
MA, 1

: 2 [b] = 2⇠b: {ground-truth template of R= v)b: }

The following proposition states that a mixed-mined cluster has
message loss in its associated mined template.

Proposition 1. If a cluster is mixed, then the template associated
with it has message loss.

1962

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Wang et al.

3.3 Problem Formulation
Connecting mined clusters with templates, the notions de�ned
in De�nitions 2 and 3 enable us to classify the errors into the
following three types: (1) Loss-pure error, which corresponds to
that a cluster is pure but its associated template has message loss.
(2) Complete-partial error, which corresponds to that a cluster
is partial, but the associated template has the complete message.
(3) Loss-mixed error, which corresponds to a mixed cluster and
its associated template has message loss. Our objective is to design
a human-in-the-loop algorithm to eliminate these three types of
errors.

4 ELIMINATING LOSS-PURE ERROR
4.1 Human Feedback Model
We consider three types of lightweight user feedback, which are
provided based on users’ perception of the message of token se-
quences. Algorithm 1 summarizes the procedures that we design
to solicit such user feedback.

Algorithm 1 Human Feedback

1: SubFunction Human-Message-Loss (bZ)
2: Present the template bZ to the user
3: return user feedback 1 (message loss) or 0 (no loss)
4: SubFunction Human-Dummy-Token (bZ)
5: Present the template bZ to the user
6: The user selects at least one dummy token
7: return the selected dummy tokens
8: SubFunction Human-Select (bZ , T)
9: For each template in T , extract the LCS between bZ and it
10: Sort templates in T based on the length of extracted LCS

in descending order
11: Delete all templates with zero length extracted LCS and

present the remaining sorting list to the user
12: return the selected template or null (if none is selected)

Feedback on message loss. The Human-Message-Loss (bZ) solicits
user feedback on whether template bZ has message loss or not.
Feedback on dummy tokens. The function Human-Dummy-Token
(bZ) takes template bZ , which has dummy tokens, as input, and it
requests the user to select at least one dummy token.
Feedback on message comparison. The function Human-Select
(bZ , T) assists users to select a template from the candidate set T
that has the same message as the template bZ . Steps 9 to 11 generate
a user-friendly list for the user. More speci�cally, this list sorts
templates in bZ based on their message distance (quanti�ed by the
length of the longest common subsequence) to bZ in descending
order. Furthermore, this list eliminates templates that share no
common subsequence with bZ . The user just needs to scan through
the list in order to select the one having the same message as bZ .
The chosen template is returned as the output. If none is selected,
return “null”.

4.2 Message Completion
bDesign objective. Given an extracted cluster-template pair (Cb: , Z:),

our objective is to improve the message completeness of the tem-
plate bZ: without changing the cluster Cb: . Note that the input
(b bZ:) is speci�ed by the user, which re�ects the user’s needs C: ,
or preferences. To make the objective more precise, we consider
the following two cases:
• Cb: is pure. All logs in cluster Cb: have the same ground-truth
template, and we denote this ground-truth template as Ztrue 2
{Z: |: 2 []}. Denote the set of all message-complete common
subsequence of logs in Cb: as n o

.Scomplete , Y |Ztrue v Y, Y v R=, 8= 2 Cb:

Note that Ztrue 2 Scomplete, i.e., the ground truth template is one
element of Scomplete. Our objective is to locate one element in
Scomplete. Note that the located element may not be the exact
ground truth template; instead, it may contain some dummy
tokens. This relaxation of the searching objective enables us to
design fast algorithms. From a practice point of view, dummy
tokens do not damage the message of a template provided that
the temple has no message loss.

• Cb: is mixed. Di�erent logs in Cb: may have di�erent ground-
truth template. Denote the set of all common subsequence of logs
in Cb: that have no less message than bZ: as n o

Spartial , Y |bZ: v Y, Y v R=, 8= 2 Cb: .

In general, templates in Spartial have partial message, but they
have at least the same message as bZ: . Our objective is to locate
one template in Spartial.

Algorithm design & analysis. Algorithm 2 outlines procedures
to achieve the above objectives. Algorithm 2 only needs one pass
of the logs in Cb: and it works in a “stream” fashion. Steps 1 and
2 get one log from cluster Cb: . It is used to initialize the temporal
template, which will be updated later. Each iteration in the while
loop processes one log from the cluster Cb: till all logs are processed.
For each log, if the temporal template matches it (step 5), i.e, being
a subsequence of the log, then we move to the next iteration. If it
does not match the log, the longest common subsequence between
the temporal template and the log is extracted (8). The extracted
longest common subsequence replaces the temporal template (8).
Early termination happens once the temporal template does not
have more messages than the mined template Z: (steps 9-11). The
following theorems prove the correctness of Algorithm 2.

Theorem 1. Suppose LCS satis�es that for any 8, 9 2 C: , 8: ,
Z: v LCS(R8 , R 9). (2)

Suppose Cb: is pure and its associated ground-truth template is Z . The
output of Algorithm 2 satis�es that Zmc 2 Scomplete if Cb: is pure,
otherwise Zmc 2 Spartial.

All proofs are in our full technical report [30]. Theorem 1 states
that under mild assumptions, Algorithm 2 eliminates loss-pure
errors. In particular, if the cluster is pure, Algorithm 2 outputs a
template that has the complete message. Otherwise, Algorithm 2
outputs a template with at least the same message as the mined

1963

Interactive Log Parsing via Light-weight User Feedback WWW ’23, April 30–May 04, 2023, Austin, TX, USA

bAlgorithm 2 Message-Completion (b Z:)C: ,

1: = an index from Cb: b2: Zmc R= , C: Cb: \ {=}
3: while Cb: < ; do
4: = an index from Cb:
5: if Match(Zmc, R=) == 1 then b6: C: Cb: \ {=}
7: else
8: Zmc LCS(Zmc, R=)
9: if Match(bZ: , Zmc) < 1 then
10: Zmc bZ:
11: Break while
12: return Zmc
13: SubFunction LCS (a, b)
14: return Longest common subsequence of a and b [29]
15: SubFunction Match (a, b) (adapt from [3])

template. The condition 2 states that the longest subsequence of
two logs that have the same template summarizes and extracts
the complete message of these two logs. In fact, experiments on
real-world datasets show that condition 2 is rarely violated. If it
is violated, one can apply Algorithm 3 (whose details are deferred
to the last part of this section) to extract the message complete
subsequence.

Theorem 2. The computational complexity of Algo. 2 is $ (|Cb: |"bmax
+ "b3) where "bmax , max len(R=).max = 2Cb:

Theorem 2 states that the computational complexity is linear in the
number of input logs with a scaling factor of the maximum length
of the input log. It is cubic in the maximum length of the input log.
No loss template extraction. Algorithm 3 relies on user feed-
back to extract a template, i.e., a common subsequence, from two
sequences of tokens. The extracted template does not have mes-
sage loss. It is highly likely that the longest common subsequence
of two sequences does not have message loss. Step 1 extracts the
longest common subsequence. To avoid the rare corner case that the
longest common subsequence has message loss, the user provides
feedback on whether the message is complete. If not, it indicates
that the extracted template must contain some variables. In Step
3, the user selects at least one variable out. Step 4 and 5 trim the
selected variables from two sequences. Steps 6 extracts the longest
common subsequence between these updated sequences. We repeat
this process, until the termination condition is met.

Algorithm 3 Lossless-Template (a, b)

1: bZ LCS(a, b)
2: while Human-Message-Loss(bZ)==1 & a <null & b <null do
3: V Human-Dummy-Token(bZ)
4: a trim elements in V from a
5: b trim elements in V from b
6: bZ LCS(a, b)
7: return bZ

The following lemma derives an upper bound on the number of
iterations taken by Algorithm 3. It also states the condition under
which the output of Algorithm 3 has the complete message.

Lemma 1. Algorithm 3 terminates in at most min{len(a), len(a)}
rounds. If a and b have the same ground-truth template denoted by Z
and the user does make errors in providing feedback, the output bZ of
Algorithm 3 satis�es Z v bZ .

5 ELIMINATING COMPLETE-PARTIAL ERROR
5.1 Design Objective

bGiven a set of mined cluster-template pairs Pmg ✓ {(b Z:) |: 2C: ,
[b]} our objective is to eliminate the complete-partial error in it,
i.e, merge partial clusters that belong to the same ground-truth
cluster together. Note that the input set Pmg is speci�ed by the
user, which re�ects the user’s needs or preferences. To make the
objective more precise, we consider the following two cases:
• Clusters with message-loss templates. The associated mixed
cluster may cause the message loss of a template, or the associated
cluster is pure, but the base log mining algorithm misses some
messages. From the user’s perspective, it is di�cult for them
to tell whether a cluster is pure or mixed when the associated
template has message loss. Thus, we only aim to identify the
message-loss template.

• Clusters with message-complete templates. We �rst de�ne
the equivalence between two message-complete templates. Two
mined templates bZ: and bZ9 are equal with respect to the message

msg
(denoted by bZ: = bZ9), if they are message complete and satisfy

⇣ ⌘ ⇣ ⌘
arg: 2 [] Z: v bZ: = arg: 2 [] Z: v bZ9 .

Note that the clusters corresponding to two equal templates are
partial and they belong to the same ground-truth cluster. This
implies that they should be clustered together. We aim to identify
such partial clusters out and merge them together.

5.2 Algorithm Design & Analysis.
Algorithm 4 outlines procedures to achieve the above merge objec-
tives. Algorithm 4 only needs one pass of the cluster-template pairs
in Pmg and it works in a “stream” fashion. It maintains a set of the
latest distinct cluster-template pairs with the complete message,
and the set is initialized as an empty set (step 1). Each iteration
of the while loop process on the template-cluster pair from Pmg,
and terminates till all pairs are processed (step 2). When a template
comes in, the algorithm �rst searches from the message-complete
pairs to see whether there exists a message-complete template that
is a subsequence of the coming template (step 5). If a matched one
is found, the coming cluster-template pair is added to the message-
complete set (steps 6-8). If none is found, then request the user to
judge whether the message is complete. If it has message loss, add
this template and the corresponding cluster to the message loss set
(steps 10-11). If it has the complete message, then we request the
user to select the template that should be merged with this template
(step 14). If none is selected, we add this coming cluster-template
pair is added to the message-complete set (step 16). If one is selected,
we add the index of this log to the cluster of the selected template,
and we replace the selected template by the common sequence of
the template and the log (steps 18-21).

1964

�
WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Algorithm 4 Merge(Pmg)
1: Ploss ;, Pcomplete ;
2: while Pmg < ; do b3: (bZ , C) a template-cluster pair form Pmgb4: Pmg Pmg \ {(bZ , C)}
5: (Zmatch, Cmatch) 2 arg(Z ,C)2Pcomplete

Z v bZ
6: if (Zmatch, Cmatch) < null then
7: Pcomplete Pcomplete \ {(Zmatch, Cmatch)}
8: C)}Pcomplete Pcomplete [{(Zmatch, Cmatch [b
9: else
10: if Human-Message-Loss (bZ) == 1 thenb11: Ploss Ploss [{(bZ , C)}
12: else
13: Tcomplete {Z | (Z , C) 2 Pcomplete}
14: Z⌘B = Human-Select(bZ , Tcomplete)
15: if Z⌘B == null then b16: Pcomplete Pcomplete [{(bZ , C)}
17: else b18: Zmerge Lossless-Template (Z⌘B , Z)
19: C⌘B the cluster associated with Z⌘B
20: Pcomplete Pcomplete \ {(Zhs, Chs)}
21: C)}Pcomplete Pcomplete [{(Zhs, Chs [b
22: Ploss Pcomplete

Theorem 3. Suppose the user provides correct feedback. The output
of Algorithm 4, i.e., Ploss and Pcomplete, satis�es:

[(C [,Z)2Pcomplete[P C =loss (C,Z)2P Cmg (3)�
Ploss = (C, Z) | (C, Z) 2 Pmg, Zhas message loss , (4)
{(C, Z) | (C, Z) 2 Pcomplete, Zhas message loss} = ;. (5)
{(C, Z) | (C, Z) 2 Pcomplete, Cis mixed} = ;. (6)

ö b b msg(C: , Z): , (Cb9 ,bZ9) 2 P b bcomplete, Z: = Z9 (7)

return and

Theorem 3 states that each log is placed either in the message-
loss set or the message-complete set (Eq. (3)). The message-loss
set contains exactly all cluster-templates pair with message loss
(Eq. (4)). All pure clusters with complete messages are properly
merged whenever needed and placed in the message-complete set
such that all clusters in the message-complete set are pure with a
template having the complete message, and there does not exist
two templates equal respect to the message (Eq. (5)-(7)).

We de�ne the following notations to quantify the number of
complete-message templates and the number of distinct (in the
sense of message equivalence) complete-message templates in the
input set Pmg: # dst mg , |{: |: 2 [], 9(C, Z) 2 Pmg, Z: v Z }|. Due
to page limit, we present the computational complexity of Algo. 4
in our technical report [30].

Theorem 4. Suppose the user provides correct feedback. The number
of user feedback requested by Algo. 4 satis�es:

of Human-Message-Less feedback = |P<6 |,
of Human-Select feedback = # dst (3e max + 1),mg

e# of Human-Dummy-Token feedback # dst32
mg max,

Wang et al.

where 3e max , max(C,Z)2Pmg 1{Z has complete message} len(Z)��
len(ground-truth template of C) .
Theorem 4 states that the number of human-message-loss feedback
requested by Algo. 4 is exactly the number of cluster-template pairs
in the input, while the numbers of human-select or human-dummy-
token feedback requested by Algo. 4 are invariant of the number
of cluster-template pairs in the input. In particular, the number
of human-select feedback and increases linearly in the number of
distinct message-complete templates in the input and increases lin-
early in the maximum number of dummy tokens of input templates.
The number of human-dummy-token feedback increases linearly
in the number of distinct message-complete templates in the input
increases quadratically in the maximum number of dummy tokens
of input templates.

6 ELIMINATING LOSS-MIXED ERROR
6.1 Design Objective
We design an algorithm to eliminate loss-mixed error. Users rely on
the message of a template to assess whether a cluster is mixed or
pure. A pure cluster may be input for separation. In this case, our
objective is: Separate di�erent clusters out, and for each separate
clusters extract its template with the complete message. We want
to emphasize that the message is complete, not meaning the exact
template. This also works for the case that the input cluster is pure.

6.2 Algorithm Design & Analysis
Algorithm 5 outlines our algorithm to eliminate loss-mixed error. It
only needs to conduct one pass of the logs in cluster Cbsep in a stream
fashion. It maintains a set of the latest distinct cluster-template,
and the list is initialized as an empty list (step 1). When a log comes
in, the algorithm �rst search from the template list to see whether
there exists a template that matches the log (steps 3-5). If a matched
one is found, add the index of the log to the matched template
cluster (step 6 and 7). If none is found, sort templates in the list and
request the user to select a template from the candidate set that
should be merged with this log (step 10). If none is selected, we
add this log to the template list and initialize its associated cluster
as the index of the log (12). If one is selected, we add the index of
this log to the cluster of the selected template, and we replace the
selected template by the common sequence of the template and the
log (steps 14-17).

Theorem 5. Suppose the user provide correct feedback. The output
of Algorithm 5, i.e., Psep, satis�es:

b[(C,Z)2Psep C = Csep, (8)
{(C, Z) | (C, Z) 2 Psep, Z has message loss} = ;, (9)
{(C, Z) | (C, Z) 2 Psep, Cis mixed} = ;, (10)

msgb b b bö(b Z:), (Cb9 , Z9) 2 Psep, Z: = Z9 . (11)C: ,

Theorem 5 states that the output of Algorithm 5 is correct when the
user provides correct feedback. Speci�cally, each log in the input
belongs to one of the templates in the output (Eq. (8)). All clusters
in the output set are pure with templates having the complete
message, and there do not exist two templates with equal respect
to the message (Eq. (9)-(11)).

1965

Interactive Log Parsing via Light-weight User Feedback

Algorithm 5 Separation(Cbsep)
1: PB4? ;
2: while Cbsep < ; do
3: = an index from Cbsep b4: Csep Cbsep \ {=}
5: Z v R= (Cmatch, Zmatch) 2 arg(C,Z)2Psep
6: if (Cmatch, Zmatch) < null then
7: Cmatch Cmatch [{=}
8: else
9: Tsep {Z | (Z , C) 2 Psep}
10: Zhs Human-Select(R=, Tsep)
11: if Zhs == null then
12: Psep Psep [{({=}, R=)}
13: else
14: Chs the cluster associated with Zhs
15: Psep Psep \ {(Chs, Zhs)}
16: Zmerge Lossless-Template(Zhs, R=)
17: Psep Psep [{(Chs [{=}, Zmerge)}
18: return PB4?

Theorem 6. Suppose the user provides correct feedback. The number
of user feedback requested by Algo. 5 satis�es:

tpl# of Human-Select feedback # (3max + 1),sep

of Human-Dummy-Token feedback # tpl32
sep max,

tpl bwhere # , |{: |: 2 [], 9= 2 Csep, Z: v R= }| and 3max ,sep
max "= � len(template of R=).=2Cb sep

Theorem 6 states that the number of user feedback requested by
Algo. 5 is invariant with the number of input logs. In particular,
the number of human-select feedback increases linearly in the
number of distinct templates associated with the input logs and
increases linearly in the maximum number of dummy tokens of
logs. In particular, the number of human-dummy-token feedback
increases linearly in the number of distinct templates associated
with the input logs and increases quadratically in the maximum
number of dummy tokens of logs. Due to page limit, we present the
computational complexity of Algorithm 5 in our technical report
[30].

7 APPLICATIONS
Engineers can apply our proposed Message-Completion, Merge,
and Separation separately or combine some of them to ful�ll their
needs. Here, Algorithm 6 shows one combination of these algo-
rithms, which is generic to improve the accuracy of any based
template mining algorithms. Algorithm 6 �rst applies the base tem-
plate mining algorithm to extract templates of logs. Then it applies
Message-Completion to eliminate pure-loss errors. Then it repeats
the merge-separation process for a given number of #repeat rounds.
In each round, it �rst applies the Merge algorithm to eliminate
complete-partial errors, then applies the Separation algorithm to
eliminate loss-mixed errors. Early termination happens when there
are errors.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Algorithm 6 Human-in-the-loop Template Mining
Input: a set of logs {R= |= 2 [#]}, #repeat

base template mining algorithm BaseAlgo
Output: a set of cluster-template pairs P
1: Ptemp BaseAlgo({R= |= 2 [#]}), Qtemp ;
2: while Ptemp < ; do
3: (C, Z) a cluster-template pair from Ptemp
4: Ptemp Ptemp \ {(C, Z)}
5: Z Message-Completion(C, Z)
6: Qtemp Qtemp [{(C, Z)}
7: while #repeat � 0 do
8: #repeat #repeat�1, (Ploss, Pcomplete) Merge(Qtemp)
9: if Ploss == ; then
10: Break while
11: while Ploss < ; do b12: (⇠bsep, Zsep) one cluster-template pair from Ploss
13: Psep Separation(⇠bsep)
14: Pcomplete Pcomplete [Psep
15: QC4<? Pcomplete
16: P QC4<?
17: return P

8 EXPERIMENTS
8.1 Experiment Setting
We conduct experiments on sixteen widely used benchmark datasets
[36]. We recruit ten graduate students to conduct human-in-the-
loop experiments. To extensively evaluate our proposed algorithms
under a large number of settings and datasets, Algorithm 7 outlines
procedures to simulate human feedback. If template bZ has message
loss, the Simulator-Select and Simulator-Dummy-Token always
return null. Namely, these two simulators are weaker than human.
The Simulator-Message-Loss always provides correct feedback.
This simulator is not weaker than human. We consider �ve popular
base template mining algorithms: Drain [12], Spell [7], IPLoM [17],
Logram [6], Pre�x Graph [4]. For each base algorithm, we consider
two parameters: (1) �ne tuned parameter that achieves nearly the
best performance on each dataset [4, 36]; (2) an arbitrarily selected
sub-optimal parameter. In the following, we �rst evaluate the over-
all performance of a combination of our proposed algorithms, i.e.,
Algorithm 6. Unless explicitly stated otherwise, we set the parame-
ter #repeat of Algorithm 6 as 0, i.e., do not repeat. Then we evaluate
each individual human-in-the-loop algorithm.

Algorithm 7 Feedback Simulator

1: SubFunction Simulator-Message-Loss (bZ)
2: return O{{: |: 2 [],Z: vZb}<;}
3: SubFunction Simulator-Dummy-Token (bZ)
4: : 0 {: |: 2 [], Z: v bZ }
5: A {0 |0 is an element of bZ , 0 is not an element of Z: 0 }
6: return the �rst element of A
7: SubFunction Simulator-Select (bZ , T)

0 8: Z 2 arg: 2 [] Z: v bZ , Z 2 arge Z v eZ Z 2T 0 9: return Z

1966

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Wang et al.

8.2 Evaluating the Overall Performance
Table 1 shows the GA and MA of Algorithm 6 under human feedback
and simulated feedback respectively. Due to constraints in human
resources, we only select four datasets to conduct human feedback
experiments. The column labeled “human” (or “simu.”) denotes the
accuracy of Algorithm 6 under human (or simulated) feedback. One
can observe that the GA (or MA) of Algorithm 6 is no less than 0.95
(0.99) under both human feedback and simulated feedback. In other
words, Algorithm 6 has extremely high accuracies. Furthermore,
the GA (or the MA) of Algorithm 6 under the simulated feedback
is nearly the same as that under human feedback. This shows that
our simulator is accurate in approximating human feedback. Thus,
in later experiments, we use our simulator to test our proposed
algorithms under a large number of settings.

Table 1: Accuracy (human feedback vs. simulator).

Method Dataset GA
human simu.

MA
human simu.

Android 0.998 0.998 0.9995 0.9995

Drain BGL
HPC

1
1

1
1

1
1

1
1

OpenStack 1 1 1 1
Android 0.998 0.998 0.9995 0.9995

Spell BGL
HPC

1
0.9579

1
0.9595

1
1

1
1

OpenStack 1 1 1 1
Android 0.998 1 0.9995 0.9995

IPLoM BGL
HPC

1
1

1
1

1
1

1
1

OpenStack 1 1 1 1
Android 0.998 0.998 0.9995 0.9995

Logram BGL
HPC

1
0.962

1
0.9665

1
1

1
1

OpenStack 1 1 1 1
Android 0.998 0.998 0.9995 0.9995

Pre�x BGL 1 1 1 1
Graph HPC 1 1 1 1

OpenStack 1 1 1 1

Table 2 shows the accuracy improvement of Algorithm 6 over the
base template mining algorithm Drain. We run Algorithm 6 with
simulated feedback and run Drain with �ne tuned parameters. The
column labeled “drain” (or “simu.” or “rpt”) denotes the accuracy of
the base template mining algorithm Drain (or Algorithm 6 without
repeat or Algorithm 6 with one round of #repeat = 1). One can
observe that Algorithm 6 improves the GA of Drian to close to 1,
whether the GA under Drain is high or low. Repeat our Algorithm 6
to do another round of merge and separation; the GA is increased to
nearly 1. Similar observations can be found on the MA metric. Table
3 shows similar improvement in GA and MA when Drain is run with
sub-optimal parameters. They show the superior performance of
Algorithm 6. For other base template mining algorithms, i.e., Spell,
IPLoM, etc., Algorithm 6 has a similar improvement in accuracy.
Due to the page limit, more experiments are in our technical report
[30].

Table 2: Accuracy (Drain, �ne tuned parameter).

GA MADataset drain simu. rpt drain simu. rpt
Andriod 0.911 0.998 0.998 0.972 0.9995 0.9995
Apache 1 1 1 1 1 1
BGL 0.9625 1 1 0.976 1 1
Hadoop 0.9475 0.9975 1 0.963 1 1
HDFS 0.9975 1 1 1 1 1
HealthApp 0.78 1 1 0.9005 1 1
HPC 0.887 1 1 0.8965 1 1
Linux 0.69 0.8785 1 0.7515 0.941 0.941
Mac 0.7865 0.902 1 0.907 0.99 0.99
OpenSSH 0.7875 1 1 0.7865 1 1
OpenStack 0.7325 0.989 1 0.207 1 1
Proxi�er 0.5265 1 1 1 1 1
Spark 0.92 1 1 0.9195 1 1
Thunderb. 0.955 0.993 0.993 0.9835 1 1
Windows 0.997 1 1 0.759 1 1
Zookeeper 0.9665 1 1 0.972 1 1

Table 3: Accuracy (Drain, sub-opt parameter)

GA MADataset drain simu. rpt drain simu. rpt
Andriod 0.712 0.998 0.998 0.7885 0.9995 0.9995
Apache 1 1 1 1 1 1
BGL 0.9115 1 1 0.918 1 1
Hadoop 0.962 1 1 0.963 1 1
HDFS 0.9975 1 1 1 1 1
HealthApp 0.78 1 1 0.9005 1 1
HPC 0.887 1 1 0.8965 1 1
Linux 0.681 0.8785 1 0.7425 0.941 0.941
Mac 0.6495 0.8995 1 0.7245 0.99 0.99
OpenSSH 0.718 1 1 0.717 1 1
OpenStack 0.2775 0.956 1 0.1955 1 1
Proxi�er 0.0255 1 1 0.499 1 1
Spark 0.92 1 1 0.9195 1 1
Thunderb. 0.947 0.993 0.993 0.973 1 1
Windows 0.568 1 1 0.4485 1 1
Zookeeper 0.9665 1 1 0.972 1 1

9 CONCLUSION
This paper develops a human-in-the-loop template mining frame-
work to support interactive log analysis. We formulated three types
of light-weight user feedback, and based on them we designed
three atomic human-in-the-loop template mining algorithms. We
derived mild conditions under which the output of our proposed
algorithms are provably correct. We also derived upper bounds
on the computational complexity and query complexity of each
algorithm. Extensive experiments demonstrated the versatility and
e�ciency of our proposed algorithms.

ACKNOWLEDGMENTS
This work was supported in part by Alibaba Innovative Research
grant (ATA50DHZ4210003), the RGC’s GRF (14200321), Chongqing
Talents: Exceptional Young Talents Project (cstc2021ycjhbgzxm0195).
Hong Xie is the corresponding author.

1967

Interactive Log Parsing via Light-weight User Feedback

REFERENCES
[1] Amey Agrawal, Rohit Karlupia, and Rajat Gupta. 2019. Logan: A distributed

online log parser. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1946–1951.

[2] Isuru Boyagane, Oshadha Katulanda, Surangika Ranathunga, and Srinath Perera.
2022. vue4logs–Automatic Structuring of Heterogeneous Computer System Logs.
arXiv preprint arXiv:2202.07504 (2022).

[3] William I. Chang and Eugene L. Lawler. 1994. Sublinear approximate string
matching and biological applications. Algorithmica 12, 4 (1994), 327–344.

[4] Guojun Chu, Jingyu Wang, Qi Qi, Haifeng Sun, Shimin Tao, and Jianxin Liao.
2021. Pre�x-Graph: A Versatile Log Parsing Approach Merging Pre�x Tree
with Probabilistic Graph. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2411–2422.

[5] Oihana Coustié, Josiane Mothe, Olivier Teste, and Xavier Baril. 2020. Meting: A
robust log parser based on frequent n-gram mining. In 2020 IEEE International
Conference on Web Services (ICWS). IEEE, 84–88.

[6] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: E�cient log parsing using n-gram dictionaries. IEEE Transactions on
Software Engineering (2020).

[7] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[9] Luyue Fang, Xiaoqiang Di, Xu Liu, Yiping Qin, Weiwu Ren, and Qiang Ding. 2021.
QuickLogS: A Quick Log Parsing Algorithm based on Template Similarity. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 1085–1092.

[10] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158.

[11] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1573–1582.

[12] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with �xed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[13] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
Computing Surveys (CSUR) 54, 6 (2021), 1–37.

[14] Shaohan Huang, Yi Liu, Carol Fung, Rong He, Yining Zhao, Hailong Yang, and
Zhongzhi Luan. 2020. Paddy: An event log parsing approach using dynamic
dictionary. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 1–8.

[15] Yintong Huo, Yuxin Su, Baitong Li, and Michael R Lyu. 2021. SemParser: A
Semantic Parser for Log Analysis. arXiv preprint arXiv:2112.12636 (2021).

[16] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. UniParser: A Uni�ed Log
Parser for Heterogeneous Log Data. In Proceedings of the ACM Web Conference
2022. 1893–1901.

[17] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2009.
Clustering event logs using iterative partitioning. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1255–1264.

[18] Weibin Meng, Ying Liu, Yuheng Huang, Shenglin Zhang, Federico Zaiter, Bingjin
Chen, and Dan Pei. 2020. A semantic-aware representation framework for online
log analysis. In 2020 29th International Conference on Computer Communications
and Networks (ICCCN). IEEE, 1–7.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[19] Weibin Meng, Ying Liu, Federico Zaiter, Shenglin Zhang, Yihao Chen, Yuzhe
Zhang, Yichen Zhu, En Wang, Ruizhi Zhang, Shimin Tao, et al. 2020. Logparse:
Making log parsing adaptive through word classi�cation. In 2020 29th Interna-
tional Conference on Computer Communications and Networks (ICCCN). IEEE,
1–9.

[20] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identi�ca-
tion of log message formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). IEEE, 167–16710.

[21] Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines to log
event types for mining software system logs. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). IEEE, 114–117.

[22] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. 2020. Self-supervised log parsing. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 122–138.

[23] Thieu Nguyen, Satoru Kobayashi, and Kensuke Fukuda. 2021. LogDTL: Net-
work Log Template Generation with Deep Transfer Learning. In 2021 IFIP/IEEE
International Symposium on Integrated Network Management (IM). IEEE, 848–853.

[24] Daniel Plaisted and Mengjun Xie. 2022. DIP: a log parser based on" disagreement
index token" conditions. In Proceedings of the 2022 ACM Southeast Conference.
113–122.

[25] Nadine Rücker and Andreas Maier. 2022. FlexParser—The adaptive log �le parser
for continuous results in a changing world. Journal of Software: Evolution and
Process 34, 3 (2022), e2426.

[26] Issam Sedki, Abdelwahab Hamou-Lhadj, and Otmane Ait-Mohamed. 2021.
AWSOM-LP: An E�ective Log Parsing Technique Using Pattern Recognition
and Frequency Analysis. arXiv preprint arXiv:2110.15473 (2021).

[27] Shimin Tao, Weibin Meng, Yimeng Cheng, Yichen Zhu, Ying Liu, Chunning Du,
Tao Han, Yongpeng Zhao, Xiangguang Wang, and Hao Yang. 2022. LogStamp:
Automatic Online Log Parsing Based on Sequence Labelling. ACM SIGMETRICS
Performance Evaluation Review 49, 4 (2022), 93–98.

[28] Arthur Vervaet, Raja Chiky, and Mar Callau-Zori. 2021. USTEP: Un�xed Search
Tree for E�cient Log Parsing. In 2021 IEEE International Conference on Data
Mining (ICDM). IEEE, 659–668.

[29] Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction
problem. Journal of the ACM (JACM) 21, 1 (1974), 168–173.

[30] Liming Wang, Hong Xie, Ye Li, Jian Tan, and John Lui. 2023. Interactive Log
Parsing via Light-weight User Feedback. arXiv preprint arXiv:2301.12225 (2023).

[31] Markus Wurzenberger, Max Landauer, Florian Skopik, and Wolfgang Kastner.
2019. Aecid-pg: A tree-based log parser generator to enable log analysis. In 2019
IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE,
7–12.

[32] Tong Xiao, Zhe Quan, Zhi-Jie Wang, Kaiqi Zhao, and Xiangke Liao. 2020. LPV: A
Log Parser Based on Vectorization for O�ine and Online Log Parsing. In 2020
IEEE International Conference on Data Mining (ICDM). IEEE, 1346–1351.

[33] Lin Zhang, Xueshuo Xie, Kunpeng Xie, Zhi Wang, Ye Lu, and Yujun Zhang.
2019. An e�cient log parsing algorithm based on heuristic rules. In International
Symposium on Advanced Parallel Processing Technologies. Springer, 123–134.

[34] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan Pei, Jun Xu,
Yu Chen, Hui Dong, Xianping Qu, et al. 2017. Syslog processing for switch
failure diagnosis and prediction in datacenter networks. In 2017 IEEE/ACM 25th
International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[35] Shijie Zhang and Gang Wu. 2021. E�cient Online Log Parsing with Log Punctu-
ations Signature. Applied Sciences 11, 24 (2021), 11974.

[36] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

[37] Yichen Zhu, Weibin Meng, Ying Liu, Shenglin Zhang, Tao Han, Shimin Tao, and
Dan Pei. 2021. UniLog: Deploy One Model and Specialize it for All Log Analysis
Tasks. arXiv preprint arXiv:2112.03159 (2021).

1968

