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ABSTRACT 
Template mining is one of the foundational tasks to support log 
analysis, which supports the diagnosis and troubleshooting of large 
scale Web applications. This paper develops a human-in-the-loop 
template mining framework to support interactive log analysis, 
which is highly desirable in real-world diagnosis or troubleshooting 
of Web applications but yet previous template mining algorithms 
fail to support it. We formulate three types of light-weight user 
feedback and based on them we design three atomic human-in-the-
loop template mining algorithms. We derive mild conditions under 
which the outputs of our proposed algorithms are provably correct. 
We also derive upper bounds on the computational complexity and 
query complexity of each algorithm. We demonstrate the versatility 
of our proposed algorithms by combining them to improve the 
template mining accuracy of �ve representative algorithms over 
sixteen widely used benchmark datasets. 
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• Information systems ! Web mining. 
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1 INTRODUCTION 
With the growing scale and complexity of Web applications such 
as cloud computing and micro-service systems [15, 16, 18], system 
event logs (we call them logs for brevity) provide �rst-hand infor-
mation for engineers to monitor the health status of the system and 
troubleshoot [13]. The raw logs are of a vast volume containing 
much redundant information, making it di�cult for engineers to 
analyze them. Template mining is one of the foundational tasks to 
support log analysis. It aims to partition logs into clusters such that 
similar logs are in the same cluster [13]. It also extracts a “template” 
for each cluster, which summarizes the key information of the logs 
in a cluster [13]. 
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A number of template mining algorithms were proposed [2, 13, 
16, 24–26], which enable the automatic extraction of templates. 
However, previous template mining algorithms do not support 
interactive log analysis, which is highly desirable in real-world 
diagnosis or troubleshooting of Web applications. In particular, in 
the diagnosis or troubleshooting, engineers may have varied gran-
ularity on the clustering or semantics of templates. As she/he dives 
deeper into the diagnosis or troubleshooting, higher clustering or 
semantic granularity on susceptible logs may be preferred, while 
lower clustering or semantic granularity on irrelevant logs is pre-
ferred. Higher clustering or semantic granularity can be achieved 
by splitting a cluster into several smaller clusters with larger in-
ner similarities and extracting templates with richer semantics 
accordingly, while lower clustering granularity can be achieved by 
merging several similar clusters and extracting templates with less 
semantics accordingly. 

We design a human-in-the-loop template mining framework to 
enable interactive log analysis. We do not extract templates from 
scratch; instead, we solicit user feedback to adjust the templates ex-
tracted by a base algorithm toward the user’s needs or preferences. 
Our framework is generic to be deployed on the output of any pre-
vious template mining algorithms. Our framework supports three 
atomic human-in-the-loop operations: (1) improving the richness 
of the semantics of a template; (2) merging merge two clusters; (3) 
splitting split a cluster. To relieve the user’s burden in providing 
feedback, we consider three types of light-weight feedback. The 
�rst one is indicating whether a given template has all semantics 
that the user itself wants. The second one is selecting tokens from 
a given template that the engineer does not care, which we call 
dummy tokens. The third one is selecting a template from a given 
set that has the same semantics as the given template. We design 
computationally e�cient algorithms that creatively combine these 
three types of feedback to implement three desired atomic human-
in-the-loop operations. Our algorithms work in a stream fashion in 
the sense that it only needs to pass the input log data once. Further-
more, we prove upper bounds on the computational complexity 
and query (seek user feedback) complexity, which reveal a funda-
mental understanding of the e�ciency of our proposed algorithms. 
Finally, we demonstrate the application of algorithms by applying 
them to improve the template mining accuracy of �ve representa-
tive algorithms over sixteen widely used benchmark datasets. The 
highlights of our contributions include: 

• Formulation of three types of light-weight user feedback and 
three atomic human-in-the-loop operations. 

• Upper bounds on the computational complexity and query 
(seek user feedback) complexity of proposed algorithms. 
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• Extensive experiment evaluation on sixteen benchmark data-
sets. 

2 RELEATED WORK 
Previous works on log parsing can be categorized into two lines: (1) 
pattern aware log parsing, which extracts frequent patterns of logs; 
(2) semantic aware log parsing, which extracts templates containing 
key semantics of logs. 

2.1 Pattern Aware Log Parsing 
Clustering-based log parsing methods follow the work�ow of clus-
tering logs and then extracting templates of each cluster. LKE [10] 
extracts raw keys of logs by applying empirical rules to erase the 
parameters of logs. The similarity between logs is quanti�ed by 
the edit distance between their raw keys. Based on this similarity 
measure, logs are clustered into di�erent groups, and the common 
part of raw keys serves as the template of a group. IPLoM [17] uti-
lizes hierarchical clustering to partition logs and then produce the 
descriptions of each cluster, i.e., the template for each cluster. LFA 
[21] applies the Simple Log �le Clustering Tool for log abstraction. 
LogMine [11] is composed of a clustering module and a pattern 
recognition module. Its novelty lies in the e�cient computational 
implementation of these two modules in the map-reduce frame-
work. CLF [33] extracts templates via heuristic rules, i.e., clustering 
logs based on heuristic rules, adjusting the clustering based on 
separation rules, and �nally generating a template for each cluster. 
Inspired by word2vec, LPV [32] uses deep learning to vectorize logs, 
cluster logs based on vector similarity, and extract templates from 
the resulting clusters. Vue4logs [2] uses a vector space model to 
extract event templates, which vectorize log and group logs based 
on their vector similarity. Character and length-based �lters are 
used to extract templates. 

Frequency-based methods rely on intuition that frequent pat-
terns are more likely to be templates. Ft-tree [34] identify frequent 
combinations of (syslog) words as templates of logs. It supports 
incremental learning of log templates. Logram [6] utilizes the fre-
quency of n-gram dictionaries to parse logs, where frequent n-gram 
dictionaries are identi�ed as templates. It supports online parsing 
of logs. Meting [5] is a parametric log parser, which is also built on 
frequent n-gram mining. AWSOM-LP [26] organizes logs into pat-
terns via a simple text processing method. It then applies frequency 
analysis to logs of the same group to identify static and dynamic 
content of log events. 

Tree-based methods design di�erent trees to encode di�erent 
log parsing rules. Drain [12] uses a �xed depth parse tree to extract 
templates of logs. This �xed depth parse tree encodes specially 
designed parsing rules. Pre�x Graph [4] is a probabilistic graph 
structure, which is an extension of a pre�x tree. Two branches are 
merged together when they have high similarity in the probability 
distribution. The combination of cut-edges in root-to-leaf paths of 
the graph. USTEP [28] uses an evolving tree structure to extract the 
template of logs. It is an online log parsing method. DIP 2022 [24] 
is a tree-based log parser. The primary methodological innovation 
is that DIP considers the actual tokens at which the two messages 
disagree and the percentage of matching tokens. 

A number of works applied deep learning to parse logs. DeepLog 
[8] treats a log as a natural language sequence and applies Long 
Short-Term Memory (LSTM) to extract templates. LogPhrase [19] 
casts the template extraction problem as a word classi�cation prob-
lem. It applies deep learning to learn the features of static words and 
variable words. Nulog [22] casts the parsing task as a masked lan-
guage modeling (MLM) problem and uses a self-supervised learning 
model to address it. UniLog 2021 [37] casts the log analysis prob-
lem as a multi-task learning problem and proposes a log data pre-
trained transformer to parse logs. LogDTL [23] is a semi-supervised 
method. It uses a transfer learning technique together with the deep 
neural network to balance the trade-o� between the accuracy of 
the extracted template and human resources for manual labeling. 
FlexParser [25] trains a stateful LSTM to parse logs. 

We are also aware of the following notable methods that do not 
belong to the above types. Spell [7] is an online streaming template 
mining algorithm. It extracts templates of logs via a longest common 
subsequence-based approach. Logan [1] is a distributed online log 
parser, which is also based on the Longest Common Subsequence 
algorithm. LogPunk 2021 [35] and QuickLogS [9] are two notable 
hash-like methods for log parsing. LogStamp [27] is a sequence 
labeling-based automatic online log parsing method. MoLFI [20] 
casts the log message identi�cation problem as a multi-objective 
problem. It applies evolutionary approaches to solve this problem. 
Paddy [14] uses a dynamic dictionary structure to build an inverted 
index, which enables an e�cient search of the template candidates. 
AECID-PG [31] is a density-based log parsing method. 

2.2 Semantic Aware Log Parsing 
Recently, a few works brings attention to the semantics of tem-
plates [15, 16, 18]. These methods apply deep learning to enrich the 
semantics of templates, which require a large amount of training 
data. Unlike these works, we utilize light-weight human feedback to 
adjust the log mining results. Through this, we not only enrich the 
semantics of templates but also improve the accuracy of the group 
of logs. Furthermore, we have a rigorous analysis of the correctness, 
computational complexity, and human feedback query complexity. 
This aspect is missed in most previous works. 

3 MODEL AND PROBLEM FORMULATION 
3.1 Characterizing Logs and Templates 
To simplify notations, for each integer � 2 N+, we de�ne [� ] as [� ] , 
{1, . . . , � }. Let D denote a dictionary of tokens. We characterize 
each log as a sequence of tokens. To facilitate the presentation, we 
de�ne the following operations regarding sequences of tokens. 

De�nition 1. Given two sequences a=(01, . . . ,0�) and b=(11, . . . ,1 �), 
where 08 ,1 9 2 D, 88 2 [� ], 9 2 [� ]: 

• Equal ‘=’: a and b are equal denoted by a = b, if and only if 
� = � and 08 = 18 , 88 2 [� ]. 

• Subsequence ‘v’: a is a subsequence of b denoted by a v b, if 
and only if there exits a sequence 1  91 < 92 < . . . < 9� < � 
such that 08 = 1 98 , 88 2 [� ]. 

• len(·): len(a) = � . 
• LCS(·, ·): LCS(a, b) = the longest common subsequence be-
tween a and b . 
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To facilitate labeling, we use the <*> symbol to replace all tokens 
except that in the templates and allow one <*> to represent several 
tokens. It does not a�ect the original semantic representation of 
the template. We consider a set of # 2 N+ logs to be parsed. Let 
R= denote log = 2 [# ], which is a sequence of tokens from the 
dictionary D, formally R= , (!=,1, . . . , !=,"= ), where "= 2 N+ 
denote the length of log = and !=,< 2 D, 8< 2 ["= ]. All these # 
logs are partitioned into   2 N+ disjoint clusters based on their 
message or semantics. Let C: ✓ [# ], where : 2 [ ] denote the 
set of indexes of the logs in cluster : . These   clusters are full, i.e., 
[: 2 [  ]C: = [# ] . This property captures each log that belongs 
to at least one cluster. Furthermore, these   clusters are disjoint, 
i.e., C: \ C: 0 = ;, 8:, : 0 2 [ ] and : < : 0 . This property captures 
that there is no log that belongs to more than one cluster. In other 
words, there is no message redundancy or message ambiguity in the 
clusters. Cluster : , where : 2 [ ], is associated with a template Z: , 
which captures the message or semantics of cluster : . The template 
Z: is a common subsequence of the logs that belong to cluster : , i.e., 
Z: v R=, 8= 2 C: . Note that the template Z: is not necessarily the 
longest common subsequence. For example, consider a log cluster 
with two logs "Failed password from port 11, user=root" and "Failed 
password from port 12, user=root". The template of this cluster is 
"Failed password from port <*> user <*>" but not "Failed password 
from port <*> user root". 

The clusters C: , 8: 2 [ ] and templates Z: , 8: 2 [ ] are es-
sential for supporting downstream applications such as anomaly 
detection, root cause analysis, etc. We impose the following natural 
assumption on templates to simplify the discussion. 

Assumption 1. There does not exist two templates Z: and Z: 0 , 
where :, : 0 2 [ ] and : < : 0 , such that Z: v Z: 0 . 

Assumption 1 captures that there are no templates whose message 
is part of another template. It ensures that each template contains 
a new message compared with the other. 
Remark. The clusters C: , 8: 2 [ ] and templates Z: , 8: 2 [ ] are 
the ground truth, and they are de�ned by user preference or needs. 
This ground truth may vary across di�erent users, as di�erent users 
may have di�erent preferences over the semantics of templates. 
For example, di�erent users may prefer di�erent granularity on 
the templates. Even for the same user, she/he may prefer a low 
granularity when the system is at normal status while preferring a 
high granularity in abnormal status. 

3.2 Characterizing A Log Mining Algorithm 
A number of rule-based or machine learning-based algorithms aim 
to recover the clusters and templates automatically. We present a 
uni�ed way to characterize them through their output. Formally, let 
Cb1, . . . , Cbb denote the clusters extracted by a log mining algorithm,   
where  b 2 N+, which satisfy 

b b[: 2 [ b]C: = [# ], C: \ Cb: 0 = ;, 8:, : 0 2 [ ] and : < : 0 . 

Namely, the mined clusters satisfy the full property and disjoint 
property. Note that  b can be greater, equal, or smaller than  , 
depending on the selected algorithm and hyperparameter selection. 
Let bZ: denote the template associated with cluster Cb: , where : 2 

[ b]. We call Cb: and bZ: , where 8: 2 [ b] is the mined cluster and 
mined template. The mined templates satisfy Assumption 1. 

The following notion characterizes the errors at the cluster level. 

De�nition 2. A mined cluster Cb: , where : 2 [ b], is pure, if there 
exists : 0 2 [ ] such that 

Cb: ✓ C: 0 , (1) 

otherwise it is mixed. A pure cluster is full, if the equality in (1) holds, 
otherwise it is partial. 

De�nition 2 states that a pure mined cluster contains only one 
type (the type is de�ned concerning the ground truth template 
associated with it) of logs. A mixed mined cluster contains more 
than one type of logs. A mixed mined cluster indicates an error in 
the cluster level. A partial pure cluster also indicates an error in the 
cluster level. For example, consider three mined clusters Cb1 = {R1}, b bC2 = {R2}, C3 = {R3, R4}, and ground truth clusters C1 = {R1, R2}, 
C1 = {R3}, C1 = {R4}. Under this de�nition, all mined clusters are 
inaccurate. And Cb3 is a mixed mined error, while Cb1 and Cb1 are 
partial pure errors. As with [36], we use the group accuracy (GA) 
metric to quantify the clustering accuracy, formally: 

’ 1
GA , 

# : 2 [ b] 1{9: 0 2 [  ],C: 0 =⇠b: } |⇠
b: | 

The following de�nition characterizes message level errors. 

De�nition 3. A mined template bZ: , where : 2 [ b], has complete 
message, if there exists : 0 2 [ ] such that Z: 0 v bZ: . Otherwise it has 
message loss. 

De�nition 3 states that a mined template has the complete message 
if it contains a ground truth template as a subsequence. Namely, 
at the message level, it has the full message of a ground truth 
temple. Otherwise, it has message loss. In other words, it does not 
contain the full message of any ground truth template. For example, 
consider a ground truth template Z1 = "Failed password from port 
<*> user <*>". Two mined templates are bZ1 = "Failed password 
from port <*>" and bZ2 = "Failed password from port <*> user 
root". Even though both mined templates are inconsistent with 
the ground truth template, bZ1 loses critical information about the 
user, while bZ2 only has partial data redundancy and no semantic 
information loss. A template with message loss may not support 
the downstream applications well. Meanwhile, if a mined cluster is 
pure, although a mined template with the complete message may 
contain some redundancy, this redundancy does not distract the 
user a lot. Thus we focus on templates with message loss. Based on 
this, we propose the message accuracy (MA) metric to quantify the 
message level accuracy of templates, formally: 

’ ’ 1
MA, 1 

# : 2 [ b] = 2⇠b: {ground-truth template of R= v)b: } 

The following proposition states that a mixed-mined cluster has 
message loss in its associated mined template. 

Proposition 1. If a cluster is mixed, then the template associated 
with it has message loss. 
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3.3 Problem Formulation 
Connecting mined clusters with templates, the notions de�ned 
in De�nitions 2 and 3 enable us to classify the errors into the 
following three types: (1) Loss-pure error, which corresponds to 
that a cluster is pure but its associated template has message loss. 
(2) Complete-partial error, which corresponds to that a cluster 
is partial, but the associated template has the complete message. 
(3) Loss-mixed error, which corresponds to a mixed cluster and 
its associated template has message loss. Our objective is to design 
a human-in-the-loop algorithm to eliminate these three types of 
errors. 

4 ELIMINATING LOSS-PURE ERROR 
4.1 Human Feedback Model 
We consider three types of lightweight user feedback, which are 
provided based on users’ perception of the message of token se-
quences. Algorithm 1 summarizes the procedures that we design 
to solicit such user feedback. 

Algorithm 1 Human Feedback 

1: SubFunction Human-Message-Loss (bZ ) 
2: Present the template bZ to the user 
3: return user feedback 1 (message loss) or 0 (no loss) 
4: SubFunction Human-Dummy-Token (bZ ) 
5: Present the template bZ to the user 
6: The user selects at least one dummy token 
7: return the selected dummy tokens 
8: SubFunction Human-Select (bZ , T ) 
9: For each template in T , extract the LCS between bZ and it 
10: Sort templates in T based on the length of extracted LCS 

in descending order 
11: Delete all templates with zero length extracted LCS and 

present the remaining sorting list to the user 
12: return the selected template or null (if none is selected) 

Feedback on message loss. The Human-Message-Loss (bZ ) solicits 
user feedback on whether template bZ has message loss or not. 
Feedback on dummy tokens. The function Human-Dummy-Token 
(bZ ) takes template bZ , which has dummy tokens, as input, and it 
requests the user to select at least one dummy token. 
Feedback on message comparison. The function Human-Select 
(bZ , T) assists users to select a template from the candidate set T 
that has the same message as the template bZ . Steps 9 to 11 generate 
a user-friendly list for the user. More speci�cally, this list sorts 
templates in bZ based on their message distance (quanti�ed by the 
length of the longest common subsequence) to bZ in descending 
order. Furthermore, this list eliminates templates that share no 
common subsequence with bZ . The user just needs to scan through 
the list in order to select the one having the same message as bZ . 
The chosen template is returned as the output. If none is selected, 
return “null”. 

4.2 Message Completion 
bDesign objective. Given an extracted cluster-template pair (Cb: , Z: ), 

our objective is to improve the message completeness of the tem-
plate bZ: without changing the cluster Cb: . Note that the input 
( b bZ: ) is speci�ed by the user, which re�ects the user’s needs C: , 
or preferences. To make the objective more precise, we consider 
the following two cases: 
• Cb: is pure. All logs in cluster Cb: have the same ground-truth 
template, and we denote this ground-truth template as Ztrue 2 
{Z: |: 2 [ ]}. Denote the set of all message-complete common 
subsequence of logs in Cb: as n o 

.Scomplete , Y |Ztrue v Y, Y v R=, 8= 2 Cb: 

Note that Ztrue 2 Scomplete, i.e., the ground truth template is one 
element of Scomplete. Our objective is to locate one element in 
Scomplete. Note that the located element may not be the exact 
ground truth template; instead, it may contain some dummy 
tokens. This relaxation of the searching objective enables us to 
design fast algorithms. From a practice point of view, dummy 
tokens do not damage the message of a template provided that 
the temple has no message loss. 

• Cb: is mixed. Di�erent logs in Cb: may have di�erent ground-
truth template. Denote the set of all common subsequence of logs 
in Cb: that have no less message than bZ: as n o 

Spartial , Y |bZ: v Y, Y v R=, 8= 2 Cb: . 

In general, templates in Spartial have partial message, but they 
have at least the same message as bZ: . Our objective is to locate 
one template in Spartial. 

Algorithm design & analysis. Algorithm 2 outlines procedures 
to achieve the above objectives. Algorithm 2 only needs one pass 
of the logs in Cb: and it works in a “stream” fashion. Steps 1 and 
2 get one log from cluster Cb: . It is used to initialize the temporal 
template, which will be updated later. Each iteration in the while 
loop processes one log from the cluster Cb: till all logs are processed. 
For each log, if the temporal template matches it (step 5), i.e, being 
a subsequence of the log, then we move to the next iteration. If it 
does not match the log, the longest common subsequence between 
the temporal template and the log is extracted (8). The extracted 
longest common subsequence replaces the temporal template (8). 
Early termination happens once the temporal template does not 
have more messages than the mined template Z: (steps 9-11). The 
following theorems prove the correctness of Algorithm 2. 

Theorem 1. Suppose LCS satis�es that for any 8, 9 2 C: , 8: , 
Z: v LCS(R8 , R 9 ). (2) 

Suppose Cb: is pure and its associated ground-truth template is Z . The 
output of Algorithm 2 satis�es that Zmc 2 Scomplete if Cb: is pure, 
otherwise Zmc 2 Spartial. 

All proofs are in our full technical report [30]. Theorem 1 states 
that under mild assumptions, Algorithm 2 eliminates loss-pure 
errors. In particular, if the cluster is pure, Algorithm 2 outputs a 
template that has the complete message. Otherwise, Algorithm 2 
outputs a template with at least the same message as the mined 
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bAlgorithm 2 Message-Completion ( b Z: )C: , 

1: =   an index from Cb: b2: Zmc   R= , C:  Cb: \ {=}
3: while Cb: < ; do 
4: =   an index from Cb: 
5: if Match(Zmc, R= ) == 1 then b6: C:  Cb: \ {=}
7: else 
8: Zmc   LCS(Zmc, R= )
9: if Match(bZ: , Zmc) < 1 then 
10: Zmc   bZ: 
11: Break while 
12: return Zmc 
13: SubFunction LCS (a, b) 
14: return Longest common subsequence of a and b [29] 
15: SubFunction Match (a, b) (adapt from [3]) 

template. The condition 2 states that the longest subsequence of 
two logs that have the same template summarizes and extracts 
the complete message of these two logs. In fact, experiments on 
real-world datasets show that condition 2 is rarely violated. If it 
is violated, one can apply Algorithm 3 (whose details are deferred 
to the last part of this section) to extract the message complete 
subsequence. 

Theorem 2. The computational complexity of Algo. 2 is $ ( |Cb: |"bmax 
+ "b3 ) where "bmax , max len(R= ).max = 2Cb: 

Theorem 2 states that the computational complexity is linear in the 
number of input logs with a scaling factor of the maximum length 
of the input log. It is cubic in the maximum length of the input log. 
No loss template extraction. Algorithm 3 relies on user feed-
back to extract a template, i.e., a common subsequence, from two 
sequences of tokens. The extracted template does not have mes-
sage loss. It is highly likely that the longest common subsequence 
of two sequences does not have message loss. Step 1 extracts the 
longest common subsequence. To avoid the rare corner case that the 
longest common subsequence has message loss, the user provides 
feedback on whether the message is complete. If not, it indicates 
that the extracted template must contain some variables. In Step 
3, the user selects at least one variable out. Step 4 and 5 trim the 
selected variables from two sequences. Steps 6 extracts the longest 
common subsequence between these updated sequences. We repeat 
this process, until the termination condition is met. 

Algorithm 3 Lossless-Template (a, b) 

1: bZ   LCS(a, b)
2: while Human-Message-Loss(bZ )==1 & a <null & b <null do 
3: V   Human-Dummy-Token(bZ )
4: a   trim elements in V from a 
5: b   trim elements in V from b 
6: bZ   LCS(a, b)
7: return bZ 

The following lemma derives an upper bound on the number of 
iterations taken by Algorithm 3. It also states the condition under 
which the output of Algorithm 3 has the complete message. 

Lemma 1. Algorithm 3 terminates in at most min{len(a), len(a)} 
rounds. If a and b have the same ground-truth template denoted by Z 
and the user does make errors in providing feedback, the output bZ of 
Algorithm 3 satis�es Z v bZ . 

5 ELIMINATING COMPLETE-PARTIAL ERROR 
5.1 Design Objective 

bGiven a set of mined cluster-template pairs Pmg ✓ {( b Z: ) |: 2C: , 
[ b]} our objective is to eliminate the complete-partial error in it, 
i.e, merge partial clusters that belong to the same ground-truth 
cluster together. Note that the input set Pmg is speci�ed by the 
user, which re�ects the user’s needs or preferences. To make the 
objective more precise, we consider the following two cases: 
• Clusters with message-loss templates. The associated mixed 
cluster may cause the message loss of a template, or the associated 
cluster is pure, but the base log mining algorithm misses some 
messages. From the user’s perspective, it is di�cult for them 
to tell whether a cluster is pure or mixed when the associated 
template has message loss. Thus, we only aim to identify the 
message-loss template. 

• Clusters with message-complete templates. We �rst de�ne 
the equivalence between two message-complete templates. Two 
mined templates bZ: and bZ9 are equal with respect to the message 

msg
(denoted by bZ: = bZ9 ), if they are message complete and satisfy 

⇣ ⌘ ⇣ ⌘ 
arg: 2 [  ] Z: v bZ: = arg: 2 [  ] Z: v bZ9 . 

Note that the clusters corresponding to two equal templates are 
partial and they belong to the same ground-truth cluster. This 
implies that they should be clustered together. We aim to identify 
such partial clusters out and merge them together. 

5.2 Algorithm Design & Analysis. 
Algorithm 4 outlines procedures to achieve the above merge objec-
tives. Algorithm 4 only needs one pass of the cluster-template pairs 
in Pmg and it works in a “stream” fashion. It maintains a set of the 
latest distinct cluster-template pairs with the complete message, 
and the set is initialized as an empty set (step 1). Each iteration 
of the while loop process on the template-cluster pair from Pmg, 
and terminates till all pairs are processed (step 2). When a template 
comes in, the algorithm �rst searches from the message-complete 
pairs to see whether there exists a message-complete template that 
is a subsequence of the coming template (step 5). If a matched one 
is found, the coming cluster-template pair is added to the message-
complete set (steps 6-8). If none is found, then request the user to 
judge whether the message is complete. If it has message loss, add 
this template and the corresponding cluster to the message loss set 
(steps 10-11). If it has the complete message, then we request the 
user to select the template that should be merged with this template 
(step 14). If none is selected, we add this coming cluster-template 
pair is added to the message-complete set (step 16). If one is selected, 
we add the index of this log to the cluster of the selected template, 
and we replace the selected template by the common sequence of 
the template and the log (steps 18-21). 
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Algorithm 4 Merge(Pmg) 
1: Ploss  ;, Pcomplete  ;
2: while Pmg < ; do b3: (bZ , C)   a template-cluster pair form Pmgb4: Pmg  Pmg \ {(bZ , C)}
5: (Zmatch, Cmatch) 2 arg(Z ,C)2Pcomplete 

Z v bZ 
6: if (Zmatch, Cmatch) < null then
7: Pcomplete  Pcomplete \ {(Zmatch, Cmatch)} 
8: C)}Pcomplete  Pcomplete [ {(Zmatch, Cmatch [ b 
9: else 
10: if Human-Message-Loss (bZ ) == 1 thenb11: Ploss  Ploss [ {(bZ , C)}
12: else 
13: Tcomplete  {Z | (Z , C) 2 Pcomplete}
14: Z⌘B = Human-Select(bZ , Tcomplete)
15: if Z⌘B == null then b16: Pcomplete  Pcomplete [ {(bZ , C)}
17: else b18: Zmerge  Lossless-Template (Z⌘B , Z )
19: C⌘B   the cluster associated with Z⌘B
20: Pcomplete  Pcomplete \ {(Zhs, Chs)} 
21: C)}Pcomplete  Pcomplete [ {(Zhs, Chs [ b 
22:  Ploss  Pcomplete

Theorem 3. Suppose the user provides correct feedback. The output
of Algorithm 4, i.e., Ploss and Pcomplete, satis�es:

[(C [,Z )2Pcomplete[P C =loss (C,Z )2P Cmg (3)�   
Ploss = (C, Z ) | (C, Z ) 2 Pmg, Zhas message loss , (4)
{(C, Z ) | (C, Z ) 2 Pcomplete, Zhas message loss} = ;. (5)
{(C, Z ) | (C, Z ) 2 Pcomplete, Cis mixed} = ;. (6)

ö b b msg(C: , Z ): , (Cb9 ,bZ9 ) 2 P b bcomplete, Z: = Z9 (7)

return and

Theorem 3 states that each log is placed either in the message-
loss set or the message-complete set (Eq. (3)). The message-loss 
set contains exactly all cluster-templates pair with message loss 
(Eq. (4)). All pure clusters with complete messages are properly 
merged whenever needed and placed in the message-complete set 
such that all clusters in the message-complete set are pure with a 
template having the complete message, and there does not exist 
two templates equal respect to the message (Eq. (5)-(7)). 

We de�ne the following notations to quantify the number of 
complete-message templates and the number of distinct (in the 
sense of message equivalence) complete-message templates in the 
input set Pmg: # dst mg , |{: |: 2 [ ], 9(C, Z ) 2 Pmg, Z: v Z }|. Due
to page limit, we present the computational complexity of Algo. 4 
in our technical report [30]. 

Theorem 4. Suppose the user provides correct feedback. The number
of user feedback requested by Algo. 4 satis�es: 

# of Human-Message-Less feedback = |P<6 |,
# of Human-Select feedback = # dst (3e max + 1),mg 

e# of Human-Dummy-Token feedback  # dst32 
mg max, 
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where 3e max , max(C,Z )2Pmg 1{Z has complete message} len(Z )�� 
len(ground-truth template of C) . 
Theorem 4 states that the number of human-message-loss feedback 
requested by Algo. 4 is exactly the number of cluster-template pairs 
in the input, while the numbers of human-select or human-dummy-
token feedback requested by Algo. 4 are invariant of the number 
of cluster-template pairs in the input. In particular, the number 
of human-select feedback and increases linearly in the number of 
distinct message-complete templates in the input and increases lin-
early in the maximum number of dummy tokens of input templates. 
The number of human-dummy-token feedback increases linearly 
in the number of distinct message-complete templates in the input 
increases quadratically in the maximum number of dummy tokens 
of input templates. 

6 ELIMINATING LOSS-MIXED ERROR 
6.1 Design Objective 
We design an algorithm to eliminate loss-mixed error. Users rely on 
the message of a template to assess whether a cluster is mixed or 
pure. A pure cluster may be input for separation. In this case, our 
objective is: Separate di�erent clusters out, and for each separate 
clusters extract its template with the complete message. We want 
to emphasize that the message is complete, not meaning the exact 
template. This also works for the case that the input cluster is pure. 

6.2 Algorithm Design & Analysis 
Algorithm 5 outlines our algorithm to eliminate loss-mixed error. It 
only needs to conduct one pass of the logs in cluster Cbsep in a stream
fashion. It maintains a set of the latest distinct cluster-template, 
and the list is initialized as an empty list (step 1). When a log comes 
in, the algorithm �rst search from the template list to see whether 
there exists a template that matches the log (steps 3-5). If a matched 
one is found, add the index of the log to the matched template 
cluster (step 6 and 7). If none is found, sort templates in the list and 
request the user to select a template from the candidate set that 
should be merged with this log (step 10). If none is selected, we 
add this log to the template list and initialize its associated cluster 
as the index of the log (12). If one is selected, we add the index of 
this log to the cluster of the selected template, and we replace the 
selected template by the common sequence of the template and the 
log (steps 14-17). 

Theorem 5. Suppose the user provide correct feedback. The output
of Algorithm 5, i.e., Psep, satis�es: 

b[(C,Z )2Psep C = Csep, (8) 
{(C, Z ) | (C, Z ) 2 Psep, Z has message loss} = ;, (9) 
{(C, Z ) | (C, Z ) 2 Psep, Cis mixed} = ;, (10) 

msgb b b bö( b Z: ), (Cb9 , Z9 ) 2 Psep, Z: = Z9 . (11)C: , 

Theorem 5 states that the output of Algorithm 5 is correct when the 
user provides correct feedback. Speci�cally, each log in the input 
belongs to one of the templates in the output (Eq. (8)). All clusters 
in the output set are pure with templates having the complete 
message, and there do not exist two templates with equal respect 
to the message (Eq. (9)-(11)). 
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Algorithm 5 Separation(Cbsep) 
1: PB4?  ; 
2: while Cbsep < ; do 
3: =   an index from Cbsep b4: Csep  Cbsep \ {=}
5: Z v R= (Cmatch, Zmatch) 2 arg(C,Z )2Psep 
6: if (Cmatch, Zmatch) < null then 
7: Cmatch  Cmatch [ {=}
8: else 
9: Tsep  {Z | (Z , C) 2 Psep}
10: Zhs   Human-Select(R=, Tsep)
11: if Zhs == null then 
12: Psep  Psep [ {({=}, R= )} 
13: else 
14: Chs   the cluster associated with Zhs 
15: Psep  Psep \ {(Chs, Zhs)} 
16: Zmerge   Lossless-Template(Zhs, R= )
17: Psep  Psep [ {(Chs [ {=}, Zmerge)} 
18: return PB4? 

Theorem 6. Suppose the user provides correct feedback. The number 
of user feedback requested by Algo. 5 satis�es: 

tpl# of Human-Select feedback  # (3max + 1),sep 

# of Human-Dummy-Token feedback  # tpl32 
sep max, 

tpl bwhere # , |{: |: 2 [ ], 9= 2 Csep, Z: v R= }| and 3max ,sep 
max "= � len(template of R= ).=2Cb sep 

Theorem 6 states that the number of user feedback requested by 
Algo. 5 is invariant with the number of input logs. In particular, 
the number of human-select feedback increases linearly in the 
number of distinct templates associated with the input logs and 
increases linearly in the maximum number of dummy tokens of 
logs. In particular, the number of human-dummy-token feedback 
increases linearly in the number of distinct templates associated 
with the input logs and increases quadratically in the maximum 
number of dummy tokens of logs. Due to page limit, we present the 
computational complexity of Algorithm 5 in our technical report 
[30]. 

7 APPLICATIONS 
Engineers can apply our proposed Message-Completion, Merge, 
and Separation separately or combine some of them to ful�ll their 
needs. Here, Algorithm 6 shows one combination of these algo-
rithms, which is generic to improve the accuracy of any based 
template mining algorithms. Algorithm 6 �rst applies the base tem-
plate mining algorithm to extract templates of logs. Then it applies 
Message-Completion to eliminate pure-loss errors. Then it repeats 
the merge-separation process for a given number of #repeat rounds. 
In each round, it �rst applies the Merge algorithm to eliminate 
complete-partial errors, then applies the Separation algorithm to 
eliminate loss-mixed errors. Early termination happens when there 
are errors. 
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Algorithm 6 Human-in-the-loop Template Mining 
Input: a set of logs {R= |= 2 [# ]}, #repeat 

base template mining algorithm BaseAlgo 
Output: a set of cluster-template pairs P 
1: Ptemp   BaseAlgo({R= |= 2 [# ]}), Qtemp  ; 
2: while Ptemp < ; do 
3: (C, Z )   a cluster-template pair from Ptemp 
4: Ptemp  Ptemp \ {(C, Z )} 
5: Z   Message-Completion(C, Z )
6: Qtemp  Qtemp [ {(C, Z )} 
7: while #repeat � 0 do 
8: #repeat   #repeat�1, (Ploss, Pcomplete)   Merge(Qtemp)
9: if Ploss == ; then 
10: Break while 
11: while Ploss < ; do b12: (⇠bsep, Zsep)   one cluster-template pair from Ploss 
13: Psep   Separation(⇠bsep)
14: Pcomplete  Pcomplete [ Psep 
15: QC4<?  Pcomplete 
16: P  QC4<? 
17: return P 

8 EXPERIMENTS 
8.1 Experiment Setting 
We conduct experiments on sixteen widely used benchmark datasets 
[36]. We recruit ten graduate students to conduct human-in-the-
loop experiments. To extensively evaluate our proposed algorithms 
under a large number of settings and datasets, Algorithm 7 outlines 
procedures to simulate human feedback. If template bZ has message 
loss, the Simulator-Select and Simulator-Dummy-Token always 
return null. Namely, these two simulators are weaker than human. 
The Simulator-Message-Loss always provides correct feedback. 
This simulator is not weaker than human. We consider �ve popular 
base template mining algorithms: Drain [12], Spell [7], IPLoM [17], 
Logram [6], Pre�x Graph [4]. For each base algorithm, we consider 
two parameters: (1) �ne tuned parameter that achieves nearly the 
best performance on each dataset [4, 36]; (2) an arbitrarily selected 
sub-optimal parameter. In the following, we �rst evaluate the over-
all performance of a combination of our proposed algorithms, i.e., 
Algorithm 6. Unless explicitly stated otherwise, we set the parame-
ter #repeat of Algorithm 6 as 0, i.e., do not repeat. Then we evaluate 
each individual human-in-the-loop algorithm. 

Algorithm 7 Feedback Simulator 

1: SubFunction Simulator-Message-Loss ( bZ ) 
2: return O{{: |: 2 [  ],Z: vZb}<;} 
3: SubFunction Simulator-Dummy-Token (bZ ) 
4: : 0  {: |: 2 [ ], Z: v bZ }
5: A  {0 |0 is an element of bZ , 0 is not an element of Z: 0 }
6: return the �rst element of A 
7: SubFunction Simulator-Select (bZ , T ) 

0 8: Z 2 arg: 2 [  ] Z: v bZ , Z 2 arge Z v eZ Z 2T 0 9: return Z 
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8.2 Evaluating the Overall Performance 
Table 1 shows the GA and MA of Algorithm 6 under human feedback 
and simulated feedback respectively. Due to constraints in human 
resources, we only select four datasets to conduct human feedback 
experiments. The column labeled “human” (or “simu.”) denotes the 
accuracy of Algorithm 6 under human (or simulated) feedback. One 
can observe that the GA (or MA) of Algorithm 6 is no less than 0.95 
(0.99) under both human feedback and simulated feedback. In other 
words, Algorithm 6 has extremely high accuracies. Furthermore, 
the GA (or the MA) of Algorithm 6 under the simulated feedback 
is nearly the same as that under human feedback. This shows that 
our simulator is accurate in approximating human feedback. Thus, 
in later experiments, we use our simulator to test our proposed 
algorithms under a large number of settings. 

Table 1: Accuracy (human feedback vs. simulator). 

Method Dataset GA 
human simu. 

MA 
human simu. 

Android 0.998 0.998 0.9995 0.9995 

Drain BGL 
HPC 

1 
1 

1 
1 

1 
1 

1 
1 

OpenStack 1 1 1 1 
Android 0.998 0.998 0.9995 0.9995 

Spell BGL 
HPC 

1 
0.9579 

1 
0.9595 

1 
1 

1 
1 

OpenStack 1 1 1 1 
Android 0.998 1 0.9995 0.9995 

IPLoM BGL 
HPC 

1 
1 

1 
1 

1 
1 

1 
1 

OpenStack 1 1 1 1 
Android 0.998 0.998 0.9995 0.9995 

Logram BGL 
HPC 

1 
0.962 

1 
0.9665 

1 
1 

1 
1 

OpenStack 1 1 1 1 
Android 0.998 0.998 0.9995 0.9995 

Pre�x BGL 1 1 1 1 
Graph HPC 1 1 1 1 

OpenStack 1 1 1 1 

Table 2 shows the accuracy improvement of Algorithm 6 over the 
base template mining algorithm Drain. We run Algorithm 6 with 
simulated feedback and run Drain with �ne tuned parameters. The 
column labeled “drain” (or “simu.” or “rpt”) denotes the accuracy of 
the base template mining algorithm Drain (or Algorithm 6 without 
repeat or Algorithm 6 with one round of #repeat = 1 ). One can 
observe that Algorithm 6 improves the GA of Drian to close to 1, 
whether the GA under Drain is high or low. Repeat our Algorithm 6 
to do another round of merge and separation; the GA is increased to 
nearly 1. Similar observations can be found on the MA metric. Table 
3 shows similar improvement in GA and MA when Drain is run with 
sub-optimal parameters. They show the superior performance of 
Algorithm 6. For other base template mining algorithms, i.e., Spell, 
IPLoM, etc., Algorithm 6 has a similar improvement in accuracy. 
Due to the page limit, more experiments are in our technical report 
[30]. 

Table 2: Accuracy (Drain, �ne tuned parameter). 

GA MADataset drain simu. rpt drain simu. rpt 
Andriod 0.911 0.998 0.998 0.972 0.9995 0.9995 
Apache 1 1 1 1 1 1 
BGL 0.9625 1 1 0.976 1 1 
Hadoop 0.9475 0.9975 1 0.963 1 1 
HDFS 0.9975 1 1 1 1 1 
HealthApp 0.78 1 1 0.9005 1 1 
HPC 0.887 1 1 0.8965 1 1 
Linux 0.69 0.8785 1 0.7515 0.941 0.941 
Mac 0.7865 0.902 1 0.907 0.99 0.99 
OpenSSH 0.7875 1 1 0.7865 1 1 
OpenStack 0.7325 0.989 1 0.207 1 1 
Proxi�er 0.5265 1 1 1 1 1 
Spark 0.92 1 1 0.9195 1 1 
Thunderb. 0.955 0.993 0.993 0.9835 1 1 
Windows 0.997 1 1 0.759 1 1 
Zookeeper 0.9665 1 1 0.972 1 1 

Table 3: Accuracy (Drain, sub-opt parameter) 

GA MADataset drain simu. rpt drain simu. rpt 
Andriod 0.712 0.998 0.998 0.7885 0.9995 0.9995 
Apache 1 1 1 1 1 1 
BGL 0.9115 1 1 0.918 1 1 
Hadoop 0.962 1 1 0.963 1 1 
HDFS 0.9975 1 1 1 1 1 
HealthApp 0.78 1 1 0.9005 1 1 
HPC 0.887 1 1 0.8965 1 1 
Linux 0.681 0.8785 1 0.7425 0.941 0.941 
Mac 0.6495 0.8995 1 0.7245 0.99 0.99 
OpenSSH 0.718 1 1 0.717 1 1 
OpenStack 0.2775 0.956 1 0.1955 1 1 
Proxi�er 0.0255 1 1 0.499 1 1 
Spark 0.92 1 1 0.9195 1 1 
Thunderb. 0.947 0.993 0.993 0.973 1 1 
Windows 0.568 1 1 0.4485 1 1 
Zookeeper 0.9665 1 1 0.972 1 1 

9 CONCLUSION 
This paper develops a human-in-the-loop template mining frame-
work to support interactive log analysis. We formulated three types 
of light-weight user feedback, and based on them we designed 
three atomic human-in-the-loop template mining algorithms. We 
derived mild conditions under which the output of our proposed 
algorithms are provably correct. We also derived upper bounds 
on the computational complexity and query complexity of each 
algorithm. Extensive experiments demonstrated the versatility and 
e�ciency of our proposed algorithms. 
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