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On the Access Pricing and Network Scaling
Issues of Wireless Mesh Networks

Ray K. Lam Dah-Ming Chiu John C.S. Lui∗

Abstract— Distributed wireless mesh network technology is
ready for public deployment in the near future. Yet without an
incentive system, one should not assume private, self-interested
wireless nodes would participate in such a public network and
cooperate in the packet forwarding service. This paper studies
the use of pricing as an incentive mechanism to stimulate
participation and collaboration in public wireless mesh networks.
Our focus is on the “economic behavior” of the network nodes—
the pricing and purchasing strategies of the access point, wireless
relaying nodes, and clients. We use a “game theoretic approach”
to analyze their interactions from one-hop to multi-hop networks
and when the network has an unlimited or limited channel
capacity. The important results we show are that the access point
and relaying wireless nodes will adopt a simple, yet optimal, fixed-
rate pricing strategy in a multi-hop network with an unlimit ed
capacity. Yet, the access price grows quickly with the hop distance
between a client and the access point, which may limit the
“scalability” of the wireless mesh network. In the case that
the network has a limited capacity, the optimal strategy for the
access point is to vary the access charge and may even interrupt
service to connecting clients. To this end, we focus on the access
point adopting a non-self-enforcing but more practical “fixed-
rate, non-interrupted service” model, and propose an algorithm
based on the Markovian decision theory to devise the optimal
pricing strategy. Results show that the scalability of a network
with a limited capacity is upper bound by one with an unlimited
capacity. We believe this work will shed light on the deployment
and pricing issues of distributed public wireless mesh networks.

Keywords: Wireless networks, economics, game theory,
Markov decision process.

I. Introduction

In recent years, we have seen a growing interest of wireless
mesh network technology, and simultaneously the growing
popularity of wireless network devices, at homes, offices and
public places such as cafes, malls and hotels. The two inducea
vision when wireless mesh network technology is deployed in
the public, we would have nearly ubiquitous wireless coverage
in large urban areas, provided that a vast number of private
wireless access points and devices participate in such a mesh
network. Another justification of using the mesh technology
is to bring Internet access to developing areas where wired
network infrastructure is not readily available.

Yet an important question left unanswered is why private
access points and wireless nodes would participate in a public
mesh network and act in a cooperative manner. Connectivity
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in a mesh network relies on nodes forwarding packets for
each other, but relaying packets incurs costs to a node, in
terms of reduced bandwidth, energy consumption, potential
security risks, etc. In community, experimental or proprietary
mesh networks, cooperation can be assumed, but in order that
wireless mesh network goes beyond community borders and
provides ubiquitous wireless coverage to the general public,
we have to take note that nodes in the network will be private,
self-interested, or economically rational. Without incentives,
one should not assume these nodes to cooperate.

In this work, we study the use of pricing as a mechanism
to stimulate participation and collaboration in a public mesh
network. As the objective of most nodes would be to access
the Internet, we take “Internet access” as a service, and hence
access points are the service sellers. Any downstream wireless
nodes may purchase this service, for her own consumption, or
for reselling it to nodes further downstream. Transactionsin-
volved must be on a per-access basis, using technology such as
the PayWord micro-payment scheme [1], [2], which minimizes
the transaction overhead. Monthly prepayment scheme (such
as those implemented in proprietary wireless mesh access
networks) or the like is impossible as nodes here concerned
are not reliable to provide consistent service in the long run.
By this access provision business, participating nodes generate
revenue to compensate their costs for packet forwarding. We
investigate the pricing and purchasing behavior of different
nodes in the network. We seek to answer these questions:

• How will the access point and different wireless relaying
nodes set their prices for the service?

• Will their optimal pricing schemes be complicated, such
as the access point charging a floating rate with time,
which may discourage clients for the service?

• How many clients can afford the price and eventually
receive the Internet service?

• Do we need third-party supervision to enforce the price?
• Is it economically scalable to extend the network in a

multi-hop fashion? Will the price charged to a distant
client be too high after the relaying nodes add in their
costs and desired gains?

We believe answers to these questions will shed light on the
deployment of public wireless mesh networks.

Our analysis adopts a game theoretic approach to find out
the strategies that the access points, relaying wireless nodes,
and clients will play throughout the bargaining process at
equilibrium. We focus on mesh networks in which there is
a single access point having the Internet connectivity, and
every wireless client has a single path toward this access point.
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(a) One-hop wireless network (b) Two-hop wireless network (c) Multi-hop wireless network
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Fig. 1. Various wireless mesh networks analyzed in this paper

Figure 1 shows three examples of such a tree-like network.
We differentiate two cases in this setting: (1) the wireless
network and the access point’s wired uplink to the Internet
have an unlimited capacity (or the capacity is sufficiently large
to satisfy all demands); (2) the network has a limited capacity.
In each case, we first look at a one-hop network depicted in
Figure 1(a), in which all clients can reach the access point
directly; then we extend it to the multi-hop case as in Figure
1(c), in which clients have to route through numerous relaying
wireless nodes, or resellers, to the access point, in order to
receive the Internet access service. Note that the one-hop case
and two-hop case (Figure 1(b)) under the unlimited capacity
assumption are first studied in the seminal in [3]. Studying
pricing under the unlimited capacity assumption is worthwhile,
as it provides asymptotic results as the wired and wireless
network capacity go abundant, which can be foreseen due to
technology maturity. The limited capacity model offers a more
realistic investigation, and we expect the access point to play
a rather different strategy when she can only sell her service
to a limited number of clients. Adopting a tree-like network
model simplifies the problem and provides us the basic pricing
structure in wireless mesh networks. As discussed later, results
in tree-like networks will serve as building blocks for pricing
structure in networks with a general topology.

The contributions of this work are summarized as follows.
First, we generalize the model in [3] and show that it is only
a special case when the network has an unlimited capacity, or
equivalently, has an adequate supply of bandwidth to meet all
demands from clients. The elegant results in the unlimited
capacity model—the access point and resellers charging a
“fixed rate” at all time—no longer apply in the limited capacity
case. Secondly, we extend the two-hop case of the unlimited
capacity model in [3] to the multi-hop case, and conclude
that sparseness of nodes in a wireless mesh network results
in low economic scalability of the network. Third, in view
of the fixed-rate pricing strategy being non-optimal when the
network has a limited capacity, we propose a more practical
charging policy, the ‘fixed-rate, non-interrupted service”, for
wireless Internet access. Under this policy, we use the policy-
iteration method from the Markovian decision theory to devise
the optimal pricing strategy of the access point. The algorithm
is made applicable to both the one-hop case and the multi-hop
case of the limited capacity model.

The balance of this paper is as follows. In Section II we
discuss background and related results in [3]. In Section III
we study the unlimited capacity model with explicit client’s
utility distributions in its one-hop case, then extend it tothe

multi-hop case by proposing an equilibrium strategy profile
and analyze its scaling issue. In Section IV we investigate the
limited capacity model, showing the previous equilibrium no
longer holds, then we present the fixed-rate, non-interrupted
service model and devise the optimal pricing strategy of
the access point using the Markovian decision theory. We
finish the section with an analysis of the multi-hop case and
some observations on the network scaling issue of the limited
capacity model. Section V concludes.

II. Related Work and Background

Pricing in computer networks has been receiving much
attention from the community recently. Research efforts have
first been made on pricing in wired networks, and then
in wireless hotspot networks, wireless ad-hoc networks and
wireless mesh networks. Our work differs from existing works
mainly in two ways. First, our paper focuses on multi-
hop wireless mesh networks and investigates whether general
pricing mechanisms are effective to provide incentives to build
such networks in a scalable fashion. Second, as to answer
the first question, we model the utility of all wireless nodes
and allow the theoretically largest action space in the pricing
game. Each selfish node will then maximize her own utility
in the game, and the pricing equilibrium resulted is studiedto
give insights to the practical design of public wireless mesh
networks which exploit pricing as an incentive system.

Pricing in wired networks has been studied by MacKie-
Masonet al. [4] and Kelly et al. [5]. They investigate the use
of pricing as a method to regulate network traffic in view of
congestion and promote network efficiency. In [6], Paschalidis
and Liu further prove that in a network with many small users,
static pricing is asymptotically optimal. In [7] Campos-N´añez
and Patek present, when the assumption of many small users
does not hold, a computational procedure for optimal static
pricing in response to real-time client arrivals and departures.
In [8] Viterbo and Chiasserini study a similar issue but places
the problem scenario in a wireless network. In [9], the authors
present a distributed pricing scheme to eliminate anomaly
when multiple overlays interact with each other.

A number of researchers have investigated pricing in wire-
less networks as a mechanism to promote participation and
cooperation in packet forwarding among wireless clients, using
different modeling approaches and under different assump-
tions. Friedman and Parkes study a strategy-proof VCG fixed-
rate pricing scheme for WiFi and wireless ad-hoc networks
[10]. Chen et al. propose pricing mechanisms for different
multi-hop network structures based on a demand-and-supply
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market model [11]. Anderegg and Eidenbenz develop a VCG
routing protocol which achieves truthfulness from wireless
clients and cost efficiency by assuming a selfish relaying
node will forward a packet if her cost of forwarding is
covered [12]. Musacchio and Walrand shows that fixed-rate
pricing is optimal in a WiFi network when users have a
“web browsing utility”, under the assumption that the net-
work has an unlimited capacity [3]. Zhonget al. propose
a cooperation-optimal routing and forwarding protocol for
wireless ad-hoc networks, which integrates VCG mechanism
and cryptographic technique [13]. In [14], Wanget al. present
a multicast routing protocol for wireless networks without
using VCG mechanism. The protocol guarantees truthfulness
from clients. In [15], [16], the authors present an incentive
mechanism and service differentiation policy so as to promote
contribution in P2P networks.

The seminal work by Musacchio and Walrand [3] presents
the economic behavior of wireless nodes under a specific
network topology. In particular, they study “one-hop” and
“two-hop” wireless networks using a game theoretic approach,
and prove that “fixed-rate pricing” is optimal to the access
point, given that clients have the so-called “web browsing”
utility function. Web browsing utility function models, for
a client browsing the web, her utility of having Internet
access—the utility grows proportionally with the time she
gains access initially, and saturates when she no longer intends
to browse.1 Note that the analysis adopted and the results
proven are only valid under a strong assumption: the network
has anunlimited capacity, i.e. the channel capacity of the
wireless network is unlimited and the access point has an
unlimited uplink bandwidth to the Internet, or the access
point provides no bandwidth guarantee to clients, while clients
value the connection service without considering the available
bandwidth. This assumption allows the access point to admit
infinitely many clients; the admission of one client has no
influence on the admission of others. Thus, the access point’s
total profit can be maximized by separately maximizing her
gain in each interaction with a client. In the one-hop case, a
two-player game between the access point and a single client
abstracts all details of the aggregated system; while in thetwo-
hop case, a three-player game among the access point, a single
relaying node, and a single client will do. Our work relaxes
the unlimited capacity assumption and shows that fixed-rate
pricing is no longer optimal to the access point. The model
adopted by [3] is hereafter termed unlimited capacity model.
In the following, we first present the related results, which
serve as the basis of our work.

A. Unlimited Capacity Model—One-hop Case

The one-hop case of the unlimited capacity model describes
a wireless network where all clients can reach the access

1In [3] the authors also study another type of utility function called the “file
transfer” utility function. It models the case in which a client is downloading
a file, who must remain connected before the download is finished in order to
earn any utility. The function is like a step function. As theauthors in [3] point
out that such utility is uncommon today since software for downloading or
sharing large files often provides the “resume” function forbroken download,
we will not further the analysis with this utility in our work.

Client
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Access point

Fig. 2. Game modeling of the one-hop case with a slot pricept charged by
the access point
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Fig. 3. A uniform distribution of client’s per-slot utilityU , with shaded area
representingP (U ≥ p∗), the expected proportion of connecting clients when
the access point charges at pricep∗.

point directly (i.e., without the need of packet forwardingby
other nodes). The dynamics among the access point and the
numerous clients is captured using a two-player game between
the access point and a single client as shown in Figure 2. Time
is divided into discrete slots. At the beginning of each time
slot t, the client requests for connection service over the slot
and the access point replies with a slot pricept. The client
chooses to accept the price and connect to the access point,
or to reject and leave. The game ends once the client rejects a
slot price, and the number of time slots the client connects is
denoted byT . The client has a web browsing utility function:

F (T, τ) = U · min(T, τ),

whereτ is adiscrete random variablerepresenting the number
of time slots the client intends to connect and browse the
web, andU is a continuous random variablerepresenting
the client’s utility of gaining Internet access in one time slot.
The client knows her values ofU and τ , while the access
point’s prior knowledge of them includes only their probability
distributions, obtained for example from market survey. Figure
3 depicts one possible distribution of client’s per-slot utility
U—a uniform distribution. At the end of the game, the client
has a net payoff ofF (T, τ)−

∑T
t=1 pt, while the access point

has a profit of
∑T

t=1 pt. Authors in [3] prove that the following
strategy is a perfect Bayesian equilibrium (PBE) [17]:

• The client connects or remains connected in slott iff
t ≤ τ andpt ≤ U ;

• The access point charges a non-decreasing price sequence
{pt} such thatpt ∈ arg maxp pP (U ≥ p).

There are three points to be noted here. First, the client’s
strategy is named the “myopic strategy”, for its sole depen-
dence on the immediate slot price. Second, it is often the
case that the access point charges a “constant”, or fixed price
sequence, since the expressionpP (U ≥ p) is maximized by a
single pricep∗ for most distributions ofU , and the pricep∗

does not vary over time slots. Third, the quantityP (U ≥ p∗),
as shaded in Figure 3 for a uniform distribution ofU , has a
physical meaning of the expected proportion of clients who
are willing to pay and connect to the access point at the PBE.



4

This is because each instance of price negotiation between the
access point and a client at the first time slot can be taken
as a Bernoulli trial with a probability ofP (U ≥ p∗) that
the negotiation is a success. Withn independent negotiations
with n clients, the number of successes is a binomial random
variable with an expected value ofnP (U ≥ p∗). Hence the
expected proportion of clients willing to pay and connect the
access point isP (U ≥ p∗).

B. Unlimited Capacity Model—Two-hop Case

Reseller Client

ct

Access point

pt

Fig. 4. Game modeling of the two-hop case with a slot pricect charged by
the access point, and a slot pricept charged by the reseller

The two-hop case describes the situation when a client is
incapable of reaching the access point directly, but has to route
her traffic through an intermediate wireless node, referredas
the reseller. The game now involves three players, with the
additional reseller, as shown in Figure 4. At the beginning of
each time slott, the client requests service from the reseller.
The reseller in turn requests service from the access point,
who replies her with a slot pricect. Based onct, the reseller
decides how to charge and sends a slot pricept to the client.
The client chooses to accept or reject the price. If the client
acceptspt, the reseller replies “accept” to the access point; and
vice versa. When game ends, resulted from the first rejection
of a slot price by the client, the net payoff of the client is
F (T, τ)−

∑T
t=1 pt, while the reseller and the access point have

profit of
∑T

t=1(pt − ct) and
∑T

t=1 ct respectively. Authors in
[3] prove that the following strategy profile is a PBE:

• The client follows the myopic strategy, connecting ifft ≤
τ andpt ≤ U ;

• The reseller picks a price mark-up functionp∗(c) that
satisfies the properties:

p∗(c) ∈ arg max
p

(p − c)P (U ≥ p)

p∗(c′) ≥ p∗(c) ∀c′ > c

and charges the pricept = p∗(ct) in slot t;
• The access point charges a non-decreasing price sequence

{ct} such thatct ∈ argmaxc cP (U ≥ p∗(c)).

As in the one-hop case, it is common for the access point
and the reseller to adopt a fixed-price strategy, since most
distributions ofU yield single maximizers of(p−c)P (U ≥ p)
andcP (U ≥ p∗(c)) respectively.

The most important result of [3] is the proof of the natural
selection of the fixed-rate pricing strategy by the access point
and the reseller, without the need of contract enforcement.
Fixed-rate pricing is appealing to customers for its simple
charging scheme; while the exclusion of contract enforcement
allows the service mechanism to be on a pure peer-to-peer
basis and hence be scalable. However, as we are going to

show in Section IV, this result only applies to the following
special situations:

• The wireless network channel and the access point’s
uplink have an unlimited capacity, or have a sufficient
capacity to meet all demands;

• The network has a limited capacity, but the access point
does not provide bandwidth guarantee to clients; while
clients’ valuations of the service are independent to its
quality.

Clearly, the first condition is not always true while the second
condition may not be realistic. For networks where the above
conditions do not hold, the pricing and purchasing strategies
remain to be investigated.
Remark: It is shown in [3] that a one-hop or two-hop wireless
mesh network in which the network has an unlimited capacity,
clients will be charged at a fixed rate by the access point or
relaying wireless nodes.

III. Extensions to the Unlimited Capacity Model

The game theoretic modeling in [3] provides a useful
methodology to analyze the pricing dynamics in a wireless
mesh network; one in which either the network has an unlim-
ited capacity, or clients do not differentiate services of different
bandwidths but only require an Internet access. In this section,
we provide a methodology which offers a more comprehensive
analysis. We first examine the game PBE in its one-hop case
with various probability distributions of client’s per-slot utility
U , followed by a natural extension of the analysis into the
multi-hop case. We then discuss some important network
scaling issues in the economic perspective of such a network.

A. Optimal Pricing for the One-hop Case under Various
Utility Distributions

In [3], authors provide generalized perfect Bayesian equi-
libria, applicable for any arbitrary distribution of client’s per-
slot utility U , for both the one-hop and two-hop case. It
would be helpful to analyze the one-hop case PBE with some
sample utility distributions before moving on to the more
sophisticated multi-hop case. In the following, we study the
one-hop case PBE with the uniform utility distribution, forits
mathematical tractability to obtain closed-form results;and the
normal utility distribution2, for its realistic representation of
a real-world market. In particular, we are interested to obtain
p∗, the optimal price per slot, with which the access point
maximizespP (U ≥ p); and also the quantityP (U ≥ p∗),
which physically represents the proportion of clients who
are willing to pay the pricep∗ so as to obtain the wireless
connection.

Consider the case that the client’s per-slot utilityU has a
uniform distribution on the interval[a, b] with a ≤ b. Any price
lower thana would be accepted by a client, so the access point
can set a price ata which outperforms all such prices. Any

2When we use the normal utility distribution, the “tail” of the probability
density function which falls in the negative region is not truncated. A client
having a negative utility physically represents, for example, a user who is not
interested in browsing the web, and the access service implies a cost to her,
such as the cost on battery usage.
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Fig. 5. Expected profit per slot per client (pP (U ≥ p)) vs. pricep

price higher thanb would be rejected by a client, hence a price
higher thanb yields zero expected payoff. Thus we are sure
that the optimal price for the access point lies on the interval
[a, b]. With this assumption, we may write:

pP (U ≥ p) = p

(

b − p

b − a

)

. (1)

Differentiating Eq. (1) withp and equate it to zero yield the
unique PBE pricep∗ set by the access point:

p∗ =

{

b/2 if a ≤ b/2
a otherwise.

The price sequence{pt} is hence afixedsequence withpt =
p∗ for all time slot t. At the PBE pricep∗, the proportion of
connecting clients is:

P (U ≥ p∗) =

{

b
2(b−a) if a ≤ b/2

1 otherwise.

The closed-form results can be confirmed with the numerical
examples in Figure 5(a) and Table III-A, which test four
uniform distributions ofU on the interval [2, 10], [4, 10],
[6, 10] and [5, 11] respectively. Figure 5(a) plots the function
pP (U ≥ p), or the expected profit per slot for the access point,
againstp for the four different distributions. It can be observed
that each curve is composed of three parts: on the interval
[0, a], the function grows linearly withp, since a price below
a will definitely be accepted by a client; on[a, b], the curve has
a single maximization point, at whichp∗ is located; on[b,∞],
the function has zero value since no client will be willing to
pay a price higher thanb. Except for the third distribution,
uniform on [6, 10], all distributions havea ≤ b/2 and p∗

at b/2, which are classified as normal cases. The remaining
distribution hasp∗ at a, contributing the boundary case, asp∗

is at the boundary of[a, b].
When the utility U has a normal distribution, closed-

form results are no longer tractable and one has to resort
to numerical analysis. Four different normal distributions are
used and the results are illustrated in Figure 5(b) and Table
III-A. The curves again possess the three-part characteristic
as discussed above, but there are no discrete boundaries
between the composing parts due to the smoothness of the
cumulative density function of normal distribution. Note that
the maximizing pricep∗ is still unique in this case.

Distribution p∗ P (U ≥ p∗) pP (U ≥ p∗)

Uniform on [2, 10] 5.00 0.63 3.13
Uniform on [4, 10] 5.00 0.83 4.17
Uniform on [6, 10] 6.00 1.00 6.00
Uniform on [5, 11] 5.50 0.92 5.04

Normal (µ = 6,σ = 1.33) 4.66 0.84 3.91
Normal (µ = 7,σ = 1.00) 5.65 0.91 5.15
Normal (µ = 8,σ = 0.67) 6.86 0.96 6.56
Normal (µ = 8,σ = 1.00) 6.56 0.93 6.07

TABLE I

THE PBE PRICING FOR THE ONE-HOP NETWORK

B. Optimal Pricing for Multi-hop Wireless Network

We now extend the unlimited capacity analysis into the
multi-hop case, which is derived naturally from the two-hop
case in [3]. The multi-hop case describes pricing dynamics in
a multi-hop wireless network where a client is at an arbitrary
number of hops away from the access point. We first define
the model and some notations, then propose a game PBE, and
follow it by examples under various distributions of client’s
per-slot utility. Results in this section also contribute to the
solution to the multi-hop case under the limited capacity model
later in Section IV-B.

Reseller 1 ClientReseller 2Reseller n-1

pt
n

Access point n

......

......

pt
n-1 pt

3 pt
2 pt

1

Fig. 6. Game modeling of the multi-hop case

The multi-hop case allows clients to be arbitrarilyn-hop
away from the access point. Due to the unlimited capacity
assumption, we can abstract the aggregated system to a game
involving all nodes on the path from a client to the access
point. The game involvesn+1 players: the access point,n−1
resellers and the client. as shown in Figure 6. The resellersare
indexed from the client side to the access point side by 1 to
n−1, while the access point is indexed byn. Procedures for
price negotiation are analogous to that in the two-hop case:at
each time slott, access pointn charges resellern−1 a price
pn

t , who in turn charges resellern−2 a pricepn−1
t and so on;

in the end, the client receives a pricep1
t from reseller 1. The

net payoff of the client isF (T, τ) −
∑T

t=1 p1
t for a usage of

T time slots. The net payoff for reselleri is
∑T

t=1(p
i
t−pi+1

t ),
for i = 1, . . . , n−1, and for the access point, the payoff is
∑T

t=1 pn
t .

To determine the optimal pricing and a perfect Bayesian
equilibrium for the unlimited capacity, multi-hop wireless
network, we propose theStrategy Profile 1.

It can be proven that the above strategy profile is indeed a
PBE. The proof follows naturally from the proof of the two-
hop case PBE in [3]. The complete proof is obtainable in our
technical report [18].3

To see how the PBE of the game in the multi-hop case
works, let us consider examples in which client’s per-slot

3The proof is also included in the appendix of this manuscriptfor the
completeness of presentation only.
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Strategy Profile 1 For Multi-hop Wireless Mesh Network
(1) The client follows the myopic strategy, connecting ifft ≤ τ
andp1

t ≤ U ;
(2) Reselleri, for all i ∈ {1, . . . , n−1}, picks a price mark-up
function pi∗(pi+1) that satisfies the properties:

pi∗(pi+1) ∈ argmax
pi

[(pi − pi+1)P (U ≥ mi(pi))] (2)

pi∗(pi+1′) ≥ pi∗(pi+1) ∀pi+1′ > pi+1 (3)

and charges the pricepi
t = pi∗(pi+1

t ) in time slot t;
(3) Access pointn charges a non-decreasing price sequence
{pn

t } with pn
t ∈ arg maxpn [pnP (U ≥ mn(pn))], where the

function mi(pi) is defined for alli ∈ {1, . . . , n} as follows:

mi(pi) ,

{

p1∗(p2∗(. . . (pi−1∗(pi)) . . . )) ∀i ∈ {2, . . . , n}
p1 i = 1.

(4)
The functionmi(pi) represents the price received by the client
after the pricepi set by nodei is marked up by all its
downstream resellers.

utility U is uniformly and normally distributed. At the PBE
of each of the following examples, the expressionpnP (U ≥
mn(pn)) is maximized by a singlepn and(pi − pi+1)P (U ≥
mi(pi)) is maximized by a singlepi, for all i ∈ {1, . . . , n−1}.
For convenience, we use the notationpi∗ to denote the
maximizing price of nodei, for all i ∈ {1, . . . , n}. At the PBE,
the price sequence{pi

t} of each nodei is fixed atpi
t = pi∗ for

all time slot t. Generally speaking, evaluation ofpi∗ for each
nodei involves a recursive iteration process. In the special case
that U is uniformly distributed, one can obtain a closed-form
solution ofpi∗ for each nodei.

Let us first consider the case thatU is a uniform distribution.
Theorem 1: In the multi-hop case of the unlimited capacity
model, whenU is uniformly distributed on the interval[a, b]
with a ≤ b, access pointn will charge resellern − 1 at
pn∗ = b/2 at the PBE, independent of the path lengthn
toward the client, given that the “normal case” condition
(2n−1)a − (2n−1 − 1)b ≤ b/2 is satisfied.
Proof: Reseller 1’s optimal pricep1∗ is to be paid by the
client. Hence,p1∗ must be no less thana as in the one-hop
case. Also, a price ofb yields zero payoff as will any price
greater thanb. Thus, we assumep1∗ lies on the interval[a, b].
With this assumption, we may write:

(p1 − p2)P (U ≥ m1(p1)) = (p1 − p2)(
b − p1

b − a
). (5)

Differentiating the above equation withp1 and equating the
result to zero yield:p1∗ = (p2 + b)/2. If (p2 + b)/2 > b, it
means that reseller 2 charges reseller 1 with pricep2 > b. We
assume reseller 1 picks the pricep1 = b in this case as the
client will not connect anyway. If(p2 + b)/2 < a, it happens
that Eq. (5) has no stationary point on the interval[a, b], and
hence the maximum point is at the boundary and must be at
a. We modify the optimal price of reseller 1 as follows:

p1∗ =







a if (p2 + b)/2 < a
(p2 + b)/2 if (p2 + b)/2 ∈ [a, b]
b otherwise.

Now we look at reseller 2. Reseller 1 will charge ata if
the condition(p2 + b)/2 < a is satisfied. This condition can
be re-written asp2 < 2a − b, and hence we see that reseller
2 should not pick any price lower than2a − b, as reseller 1
will charge the client at pricea anyway. In a similar fashion
as we analyze reseller 1, we assume reseller 2’s optimal price
p2∗ ∈ [2a − b, b]. With this assumption, reseller 1 will price
up p2∗ by (p2∗ + b)/2. Hence we write:

(p2 − p3)P (U ≥ m2(p2)) = (p2 − p3)(
b − (p2 + b)/2

b − a
).

Adopting the previous optimization technique, we havep2∗ =
(p3+b)/2, and as we do top1∗, we need to modify the optimal
price of reseller 2 to:

p2∗ =







2a − b if (p3 + b)/2 < 2a − b
(p3 + b)/2 if (p3 + b)/2 ∈ [2a − b, b]
b otherwise.

We can iterate this process upstream through the numerous
resellers. If, for nodei, every downstream resellerj adopts the
price mark-up strategypj∗ = (pj+1 + b)/2, we can express:

p1∗ = mi(pi) =
(2i−1 − 1)b + pi

2i−1
∀i ∈ {1, . . . , n}.

Note that this result also holds for access pointn. One can
find that for every reselleri, i ∈ {1, . . . , n− 1}. In particular,
if (pi+1 +b)/2 < (2i−1)a−(2i−1−1)b, thenpi∗ = (2i−1)a−
(2i−1 − 1)b. If (pi+1 + b)/2 ∈ [(2i−1)a− (2i−1 − 1)b, b], then
pi∗ = (pi+1 + b)/2. For other cases,pi∗ = b.

Finally, access pointn should charge resellern−1 at least
(2n−1)a− (2n−1 − 1)b. Assumingpn∗ ∈ [(2n−1)a− (2n−1 −
1)b, b], we may write:

pnP (U ≥ mn(pn)) = pn(
b − ((2n−1 − 1)b + pn)/2n−1

b − a
),

giving

pn∗=

{

b/2 if (2n−1)a−(2n−1−1)b≤b/2
(2n−1)a − (2n−1 − 1)b otherwise.

(6)
Due to the choice ofpn∗ by access pointn, each reseller
i, for all i ∈ {1, . . . , n − 1}, marks up upstream price by
pi∗ = (pi+1∗+b)/2, and hence we have the following explicit
form of the PBE price of reselleri, for all i ∈ {1, . . . , n−1}:

pi∗=

{

(2n−i+1 − 1)b/2n−i+1 if (2n−1)a−(2n−1−1)b≤b/2
(2i−1)a − (2i−1 − 1)b otherwise.

(7)
A case satisfying the condition(2n−1)a− (2n−1 − 1)b ≤ b/2
is classified as anormal case; else aboundary case. The
boundary case corresponds to one in which reseller 1
charges the client a fixed pricep1∗ = a, at the boundary of
the interval [a, b]. It can be observed from Eq. (6) that, in
normal cases, access pointn always charges a fixed priceb/2,
independent ofn, which is the path length toward the client.

The above results can be confirmed with numerical exam-
ples depicted in Figure 7 and 8. We define

wi(pi),

{

piP (U ≥ mi(pi)) i = n

(pi − pi+1∗)P (U ≥ mi(pi)) ∀i ∈ {1, .., n−1}.
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The function wi(pi) is the one to be maximized by node
i in the PBE, with her choice of the price she charges her
downstream hop. Furthermore,wi(pi) includes the PBE price
pi+1∗ and the PBE aggregated price mark-up functionmi(pi)
in its expression. These curves thus show how a nodei
picks the pricepi∗ to maximizewi(pi), assuming all other
nodes play their respective PBE strategies. Figure 7 plots
wi(pi) againstpi for each nodei in the four-hop case. In
particular, Figure 7(a) shows a normal case withU uniformly
distributed on[0, 10]; Figure 7(b) shows a boundary case with
U uniformly distributed on[9.5, 10]. Figure 8(a) shows the
PBE pricepi∗ of each nodei in the 2-hop, 4-hop and 8-
hop case withU uniformly distributed on[0, 10]. The curves
coincide with each other as suggested by Eq. (6) and (7).
For a client locatedn-hop away from the access point, the
probability that she accepts the pricep1∗ and connects is

P (U ≥ p1∗) =

{

1
2n ( b

b−a
) if 2n−1(a − b) + b ≤ b/2

1 otherwise.
(8)

Notice that in a boundary case, the client always accepts
the price. Another quantity of interest is the expected payoff
of each node. The expected payoff of each nodei can be
compared throughwi(pi∗), which has a physical meaning
of node i’s expected profit at the first time slot. It can be
expressed as:

wn(pn∗) = pn∗P (U ≥ mn(pn∗)) = pn∗P (U ≥ p1∗)

=

{

1
2n+1 ( b2

b−a
) if 2n−1(a−b)+b≤b/2

(2n−1)(a − b) + b otherwise,

and similarly, for alli ∈ {1, . . . , n − 1}:

wi(pi∗) = (pi∗ − pi+1∗)P (U ≥ mi(pi∗))

=

{

1
22n−i+1 ( b2

b−a
) if 2n−1(a − b) + b ≤ b/2

2i−1(b − a) otherwise.

Figure 9(a) plotswi(pi∗) of access pointn and the next two
resellersn−1 and n−2 with varying path lengthn, when
U is uniformly distributed on[0, 10]. It is observed that an
upstream node always earns more than a downstream node
does, and the expected payoff of a node falls with increasing
n, meaning that a node earns less when the client is further
away from the access point.

When U is normally distributed, one can analyze numeri-
cally to check if the economic properties still hold as when
U is uniformly distributed. Figure 7(c), 8(b) and 9(b) give
associated graphical plots whenU is normally distributed with
meanµ = 5 and standard deviationσ = 1.67. Notice that
in Figure 8(b), the curves for the different path lengthn no
longer coincide. Figure 9(b) shows that the previous claims
about expected payoff of nodes still hold in this example.

C. The Issue on Network Scaling

In the previous section, we present the analysis of pricing
dynamics in the multi-hop case when uniform and normal
distributions of U are assumed. Here, we investigate the
scalability issue of the described multi-hop wireless network.
By scalability, we mean the ability of pricing as an incentive
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Fig. 8. PBE prices in cases of different path lengths
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Fig. 9. Relative expected payoff of nodes with varying path length

system to encourage nodes to participate and grow the mesh
network in a multi-hop fashion. The quantities concerned are
the probability that a client, at an arbitrary distance, accepts
her access price and connects the network, as well as the
population distribution of clients. Letne be the radius (in terms
of number of hops) of the effective multi-hop wireless network
established by the access point, such that a client located more
than ne hops away from the access point will connect with
a probability less than a thresholdH . In the case thatU is
uniformly distributed, from Eq. (8),ne can be derived as:

ne = ⌊log2

b

H(b − a)
⌋.

For example, withU uniformly distributed on [0, 10], a
threshold of H = 0.5 yields ne = 1 while H = 0.1
yields ne = 3. The former case tells that the probability
of a successful connection will fall below half for clients
at more than one hop away; while the latter tells that the
probability even falls below ten percent for clients at more
than three hops away! This small effective network radius is
not surprising as Eq. (8) reveals the probability that a client
connects to the network decreases exponentially with path
lengthn, unless the condition for a boundary case is satisfied.
Note that the boundary case condition can be re-written as
n ≥ log2(b/(b − a)). Thus whena is close tob, meaning
that the access point and resellers are relatively sure about
client’s per-slot utility, the effective network radius islarge.
In Figure 10, we show the probability that a client is willing
to connect (P (U ≥ p1∗)) against differentn, the length of the
network path. From the figure, one can observe that a similar
conclusion can be drawn whenU is normally distributed.

Though the probability that a client who isn-hop away
from the access point and is willing to connect to the network
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Fig. 7. A measure of expected profit per slot per client (wi(pi)) vs. pricepi for different nodes in the four-hop case
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Fig. 11. A simple client population model

decreases with increasingn, should the access point and
resellers think that they can still make a profit with distant
clients since a larger value ofn implies a larger coverage
of potential clients? One can show that this argument isnot
true. Consider a simple client population model, in which
clients are evenly populated geographically, the arrival rate
of clients in a particular region is proportional to its area, and
the wireless signal results in a mesh network where clients at
different hop distances locate in areas formed by concentric
circular boundaries, as in Figure 11, with the access point at
the center. The following expression approximates the arrival
rate of clients, who aren-hop away the access point and accept
price p1∗, whenU is uniformly distributed and constitutes a
normal case:

L(n) = (πn2−π(n−1)2)λ·P (U ≥p1∗) =
2n− 1

2n

(

bπλ

b − a

)

,

where λ is the arrival rate of clients per unit area. The
connection rate as a function of hop distance,L(n), tends

to 0 asn approaches infinity, hence shows that the intuition
is incorrect.

The poor scaling performance of the pricing mechanism
is related to the tree-like topology of the network under
analysis. The multi-hop case of the unlimited capacity model
describes a situation in which the client has a single route
toward the access point. This constitutes a monopoly market
between each node on the path and its downstream hop. The
monopoly market gives each upstream node the price setting
ability to maximize her profit and this introduces economic
inefficiency. With pricing competition, economic scalability
improves. Consider the network in Figure 12(a). The client
has two paths toward the access point. Reseller A and B are
under pricing competition against each other. A brief look at
the case shows that the two resellers will lower their prices
for the client until their costs to provide the connection service
are reached, which are identical and equal to the price that the
access point charges them. Thus, the access point effectively
sees the client as a first-hop client and the client enjoys a price
reduced to the normal first-hop price. The pricing structureof
this network can be obtained by a simple extension of the
one-hop case in a tree-like network. The network in Figure
12(b) shows similar properties. All resellers except the central
one are under pricing competition. Only the central reseller
has an opportunity to mark up the price from her upstream.
The access point thus effectively sees the client as a second-
hop client and the client enjoys a reduced price. This network
degenerates to the two-hop case in a tree-like network. Similar
arguments can be applied to the case in which a clientn-hop
away has more than one path to the access point. The important
lesson of the above analysis is that economic scalability ofa
wireless mesh network is linked with the density of nodes.
Sparseness introduces a large number of monopolized links
in clients’ selectable paths to the access point, resultingin
low economic scalability; denseness introduces pricing com-
petitions among nodes, apparently results in higher economic
scalability. Moreover, our results in pricing structure intree-
like networks may serve as building blocks for the general
pricing structure in networks of other topologies. In particular,
nodes under pricing competition may not have an opportunity
to mark up the price from the upstream. After taking out
those nodes, the pricing structure may resemble that in a tree-
like network. Pricing and scaling for networks with pricing
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Fig. 12. Two networks with pricing competition involved

competition involved remain as our future work.
Remark: In a multi-hop wireless mesh network in which the
network has an unlimited capacity, clients will be charged at
a fixed rate. However, if the network is sparse and each client
has only one single route to the access point, the access price
will not be affordable to most distant clients. It is concluded
that sparseness of nodes in a wireless mesh network reduces
its economic scalability.

IV. Limited Capacity Model

The formulation of the unlimited capacity model relies
on the assumption that the wireless network channel and
the access point’s uplink have an unlimited capacity, or the
access point provides no bandwidth guarantee to clients. In
this section, we consider a more realistic scenario and inspect
the pricing and purchasing strategies of nodes in wireless
networks with a limited network capacity. Similar to the
previous section, we begin with a one-hop network and show
why the previous one-hop case PBE is not applicable under
this new setting. A substitute for the access service provision
model named “fixed-rate, non-interrupted service” is hence
proposed and we provide an algorithm to obtain the optimal
strategy of the access point in its defined strategy space.
The analysis is finished with an extension to the multi-hop
case, and some observations on the network scaling issue of
networks with a limited capacity.

A. One-hop Case

Limited bandwidth Limited capacity

ISP

Access point Client

Fig. 13. Network diagram with channel capacity for the one-hop case

Here, we first present the necessary modifications to the
original unlimited capacity model and transform it into the
limited capacity version. The one-hop case of the limited
capacity model still describes a wireless network consisting
of an access point, plus clients who reach the access point
directly. The distinction between the two models is that the
wireless network and the access point’s uplink here have a
limited capacity, and the access point has to assure clientsthat
they will have a certain amount of dedicated bandwidth, which
is the premise of clients having the bandwidth independent
web browsing utility function. This imposes the access point

a bandwidth constraint on its profit maximization problem.
Figure 13 depicts this scenario. In our model, we limit the
access point to admit at mostm > 0 clients at a time. The
capacitym is a design knob of the access point. She has to
evaluate stochastically the bandwidth demand of clients and
the effect of multiplexing clients’ traffic so as to set the right
m to provide to clients the bandwidth guarantee. Any client
who arrives at the access point not being immediately served
due to this capacity limit will be dropped.

Another addition to the original model is an explicit client
arrival process at the access point. This is necessary as
the interactions between the access point and a client are
now complicated by the removal of the unlimited capacity
assumption—they cannot be summarized by one simple two-
player game; the access point must decide its strategy on each
occasion, based on its system condition at the time, such as the
remaining capacity for admission. We model the client arrival
behavior using a Poisson input process with a finite population
of clients. Each client arrives with a rateλ at the access point,
and there is a total ofM clients in the population.

The last modification to the unlimited capacity model is
to transform it from a discrete-slot process into a continuous-
time process so as to ease our analysis when matched with the
client arrival model. In the continuous-time version, the access
point charges a particular client a price per unit time, or rate,
p(t) at time t. The variablesT , τ and U are converted, in
the continuous-time sense, to represent the amount of time
the client connects, the amount of time the client intends
to connect, and the client’s utility of the service per unit
time respectively. The continuous-time web browsing utility
function of the client thus remains the same as its previous
form of F (T, τ) = U · min(T, τ). The access point still
only knows the probability distributions ofU and τ . Here,
we further assume that the access point takesτ to be expo-
nentially distributed with mean1/µ.4 Our formulation of the
limited capacity model is now complete. It should be clear to
see the correspondence between our model and the classical
M/M/m/m/M queuing system [19].

Let us give a simple scenario to show that under the limited
capacity model, the access point, on some occasions, will
choose either to charge clients witha variable rate, or to
deliberately disconnect clients, rather than adopting a fixed-
rate, non-interrupting strategy for the one-hop case PBE with
unlimited capacity model proposed in [3].
Lemma 1: A fixed-rate, non-interrupting strategy is not at all
time optimal to the access point under the limited capacity

4This assumption allows us to conduct a “mean analysis” of thesystem.
The analysis can be extended and made more realistic by usingtechniques
such as the “Method of Stages”.
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model.
Proof: Consider the case that a new client arrives at the
access point, when it is at its full capacity. Letp0 be the
price of one of them connected clients is paying. The access
point may announce a pricep0

′ > p0 to the new client. If
the new client accepts, the access point’s best response is to
disconnect the old client payingp0 and admit the new one,
unless the old client accepts a raise of price fromp0 to p0

′.
Thus, a fixed-rate, non-interrupting strategy is not the best
response of the access point.

Although the access point wishes to cease service to clients
or increase the price over time to obtain higher profit, it is rea-
sonable to believe that clients will be discouraged from buying
such a kind of service since it is unrealistic to require clients to
monitor the varying price continuously. Thus, we investigate a
service model named the “fixed-rate, non-interrupted service”,
which is more likely to be adopted in practice.

The fixed-rate, non-interrupted service model requires a
contract to be enforced between the access point and a
particular client as follows:

• The access point provides connection service to the client
until the client voluntarily disconnects;

• The client pays a fixed ratep for the service. The total
payment isp times the duration of the service.

Note that the access point is still allowed to announce different
“fixed rates” (or prices) to different clients under this scheme,
but once announced, this fixed rate cannot be changed during
the course of service for a particular client.

The fixed-rate, non-interrupted service contract can be en-
forced in numerous ways. A common approach is to establish a
third party contract enforcement agent in the system. Clients
will report to the enforcement agent on misbehavior of the
access point, seeking the offender to be punished. The penalty
is to be set heavy enough such that the access point will not go
for short-term benefit of disconnecting clients or raising their
rates. Another approach is to distribute standardized software
to nodes participating in the wireless mesh network, which
conforms to the service contract. The owner of the access
point will not have the knowledge to tweak the software so
as to avoid contract enforcement, just like that most Internet
users will not change the transmission control protocol (TCP)
in their operating systems so as to obtain a higher throughput.

Compared to the pricing model in [3], the fixed-rate, non-
interrupted service model has the disadvantage that it requires
contract enforcement, i.e. it is not self-enforcing. Thereis a
wide variety of pricing models which are not self-enforcing.
Among them, we pick and investigate the fixed-rate, non-
interrupted service model for two reasons. First, the fixed-
rate, non-interrupted service model is driven by the fair
expectation of customers on Internet access service, and is
one in its category which deviates the least from the original
self-enforcing pricing model. This implies that there willbe
minimal incentives for the access point to break the service
contract and use a floating rate, which is against the will
of customers. For comparison, consider a pricing model in
a multi-hop network which requires revenue be split evenly
among the access point and the relaying nodes. In such a

model, it is tempting for the nodes to break the contract for
a higher profit, as how the revenue is shared has nothing to
do with customer satisfaction. To enforce this contract, the
overhead will be high, while for the fixed-rate, non-interrupted
service model, it is not. Secondly, the slight deviation of the
fixed-rate, non-interrupted service model from the original
version also means that it is a harder problem to solve in
comparison to those which put even more restrictions on the
pricing scheme, such as requiring a common fixed rate to all
clients. With the methodology to analyze the fixed-rate, non-
interrupted service model, we can also solve simpler problem
instances using the same approach.

A strategy of the access point under the fixed-rate, non-
interrupted service model involves setting the charging rate to
clients who want to be connected. The access point can make
her decision based on a single parameter, namely, the number
of connected clients in the system. Adopting queuing system
notations, the number of connected clients in the system
is represented by the current “state”. For the M/M/m/m/M
queuing system, it hasm + 1 states, from state 0 to state
m. At statek, for all k ∈ {0, . . . , m − 1}, the access point
has to decide the ratepk to charge the next “to-be-admitted”
client. No decision has to be made at statem as the access
point is at its full capacity. Thus, a policy of the access
point is completely characterized by the price or rate vector
~p = (p0, p1, . . . , pm−1).

With the fixed-rate, non-interrupted service contract, we see
that clients will play the following strategy to maximize her
payoff, (a) connect the access point iffU ≥ p, (b) disconnect
from the access point at timet = τ , with the assumption
that clients withU ≥ p, utility per unit time not less than
charged rate, will not deliberately reject the first presented rate
and wait until she receives a lower rate at a later time when
the access point is less congested. Also, for clients rejecting
the first presented rate, our Poisson client arrival processmay
not accurately model their possible behavior of re-probingthe
access rate afterward.

We now derive an expression of the expected profit per
unit time, or the gain, of the access point in the long run
as a function of the rate vector~p. The general equilibrium
solution for birth-death queuing systems [19] is employed.
Note that a transition from statek to statek + 1, for all
k ∈ {0, . . . , m−1}, requires not only an arrival of a client, but
also her willingness to accept the charged pricepk, therefore,
the “arrival rate” of our model is different from that of the
conventional M/M/m/m/M queuing system by a factor of
P (U ≥ pk) for each statek, k ∈ {0, . . . , m−1}. The transition
rates of our model are:

λk =

{

λ(M − k)P (U ≥ pk) k < m
0 otherwise

µk = kµ k = 1, 2, . . . , m.

With πk denoting the limiting probability that the system is
in statek, for all k ∈ {0, . . . , m}, we have

πk =

(

M
k

)

(

λ
µ

)k
∏k−1

i=0 P (U ≥ pi)

∑m
j=0

(

(

M
j

)

(

λ
µ

)j
∏j−1

i=0 P (U ≥ pi)

) ,
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where empty product is unity by convention. For simplifica-
tion, consider that the access point earns an expected profitof
pk/µ immediately when a client connects at statek.5 Hence,
the gain of the access point is

G(~p)=

m−1
∑

k=0

πkλk

(

pk

µ

)

=

∑m−1
k=0

[

pk(M− k)
(

M
k

)

(

λ
µ

)k+1
∏k

i=0 P (U ≥pi)

]

∑m
k=0

[

(

M
k

)

(

λ
µ

)k
∏k−1

i=0 P (U ≥ pi)

] .(9)

The optimal policy of the access point can be obtained
by maximizing Eq.(9) over the rate vector~p. However, us-
ing classical optimization techniques to derive a closed-form
solution of the optimal policy requires solving simultaneous
non-linear equations, which is complicated. Instead, we use the
policy-iteration methodin the Markovian decision theory [20]
to determine the pricing for the above optimization problem.

The policy-iteration method is given in Algorithm 2. It in-
volves an iteration cycle of two parts: thepolicy-improvement
routine and the value-determination operation. It uses the
notationg to denote the gain of the system, and introduces
a set of relative valuesvk, for all k ∈ {0, 1, . . . , m}, which
has the physical meaning of whichvi − vj is the increase in
the gain caused by starting the system in statei rather than
in statej. The algorithm is started in the policy-improvement
routine with all relative valuesvk set to 0.

The policy-improvement routine is to improve the current
policy by considering alternatives in each state, based on the
relative valuesvk, either set to 0 initially, or obtained in
the value-determination operation for the current policy~p. It
requires solving a separable optimization problem where the
design variables arep0, p1, . . . , pm−1, as shown in Algorithm
2. The solution to this optimization then forms a new policy.If
the difference between this new policy and the previous policy
in the iteration cycle is smaller than a pre-defined threshold,
the iteration process has converged and the (near-)optimal
policy is found. Otherwise, the algorithm goes into the value-
determination operation and the new policy is evaluated.

The value-determination operation evaluates a policy~p gen-
erated by the policy-improvement routine. It requires solving
a set of equations, given in Algorithm 2, forg and all
relative valuesvk by settingvm to zero. With the solution,
the algorithm loops back into the policy-improvement routine.

It is worth noticing that when the client’s utility rateU
has a uniform distribution on the interval[a, b], there exists
a closed-form solution for the optimization problem in the
policy-improvement routine, i.e. the optimal ratepk

∗ for each
statek. As an optimal state ratepk

∗ must lie on the interval
[a, b], we may substituteP (U ≥ pk) with (b − pk)/(b − a).
Differentiation followed by root finding yields the optimalpk

∗

5This simplification helps reduce the state space of the modeland is an
approximation of the original problem. An exact solution can be obtained by
including in the state space the information on the rate eachclient in the
system is paying, and the use of “in-state reward” instead ofthe immediate
expected profit “state transition reward” [20].

Algorithm 2 The policy-iteration method
Require: λ > 0, µ > 0, m > 0 andM > 0
Ensure: optimal pricing policy~p

1: ~p ⇐ arbitrary value
2: for all k such that0 ≤ k ≤ m do
3: vk ⇐ 0
4: end for
5: loop
6: ~q ⇐ ~p
7: {The policy-improvement routine}
8: solve the following optimization problem with design

variablesp0, p1, . . . , pm−1:

max λMP (U ≥p0)v1−λMP (U ≥p0)v0+λMP (U ≥p0)(
p0

µ
),

max λ(M − k)P (U ≥ pk)vk+1 − (λ(M − k)P (U ≥ pk) +

kµ)vk + kµvk−1λ(M − k)P (U ≥ pk)(
pk

µ
)

for k = 1, . . . , m − 1.

9: if not the first iteration and~q−~p < predefined threshold
then

10: return ~p
11: end if
12: {The value-determination operation}
13: vm ⇐ 0
14: solve the following set of equations for

v0, v1, . . . , vm−1 andg:

g=λMP (U ≥p0)v1−λMP (U ≥p0)v0+λMP (U ≥p0)(
p0

µ
),

g=λ(M−k)P (U ≥ pk)vk+1 − (λ(M−k)P (U ≥ pk)+kµ)vk

+kµvk−1+λ(M−k)P (U ≥pk)(
pk

µ
) for k = 1, ..., m−1,

g = −mµvm + mµvm−1.

15: end loop

for each statek:

pk
∗ =

b − µ(vk+1 − vk)

2
k = 0, 1, . . . , m − 1.

The policy-iteration method reduces the profit maximization
problem of the access point to solving sets ofm+1 simultane-
ous linear equations in the value-determination operation, and
sets ofm independent one-dimensional optimization problems
in the policy-improvement routine. The computational com-
plexity is reduced (as compared with the standard numerical
optimization method), and it is shown in [20] that the above
procedures guarantee the convergence to the best policy.

Here we show some numerical results obtained using the
policy-iteration method. Cases in which client’s utility rateU
is uniformly distributed on[0, 10], or normally distributed with
a mean of 5 and a standard deviation of 1.67 are studied. We
illustrate the state rates given by the policy-iteration method
when the access point can supportm = 5 clients, and there
are totallyM = 10 potential clients who want to receive the
connection service. We fix the departure rate of clientµ to 1
and vary the arrival rateλ from 0.2 to 10. Figure 14 shows
the results. It can be observed that the state-dependent price
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Fig. 14. State-dependent price with varying arrival rate
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Fig. 15. Probability that a client is willing to connect withvarying arrival
rate and different client population sizes

rises with the number of clients in the access point system:
pi ≥ pj , for all i > j. This agrees with the economic sense that
when the remaining resource, or supply, of service decreases,
the price increases. Also, the state-dependent price riseswith
increasingλ, and this is logical as the arrival rateλ represents
demand. Figure 15 gives the probability that a client is willing
to accept the offered price and connects to the system. It is
given by the following expression:

P (An arrived client connects) =

m−1
∑

k=0

πkP (U ≥ pk).

The setting is the same as in the previous case, except that we
repeat with different client population, settingM to 5, 10 and
15. We see that the probability drops with the arrival rate. In
addition, its value is always lower for a larger population.The
result agrees with the intuition that with higher demand for
the service, the probability for a successful purchase drops.

Lastly, we find in our experiments that the policy-iteration
method takes on average four iterations to converge to the opti-
mal pricing policy, for various problem sizem (the number of
state prices to be determined) from 1 to 100. The convergence
condition is that policies in two consecutive iterations differ by
less than 0.001 for every state price. A detailed evaluationis
documented in our technical report [18]. The algorithm proves
to be efficient in our access point profit maximization problem.

B. Multi-hop Case

We now extend the limited capacity model to the multi-hop
case. We make the assumption that the bandwidth bottleneck
is at the wireless channel one-hop around the access point, or
at the access point’s uplink to the Internet, where traffic from

Limited bandwidth

ISP

Access point ClientReseller

Limited capacity

Bandwidth bottleneck

Fig. 16. Network diagram with channel capacity for the multi-hop case

all clients in the wireless mesh network merges. Hence, any
reseller who has purchased Internet access service from her
upstream will have adequate bandwidth for her downstream.
This situation is depicted in Figure 16. In comparison with
the multi-hop case in the unlimited capacity model, we see
that the bandwidth constraint only affects the access point; for
the resellers, their strategies only depend on the prices their
respective upstream hops charge them. Thus, any node apart
from the access point will follow her strategy in the unlimited
capacity model here.

The focus of the multi-hop case is to devise the optimal
pricing strategy of the access point, which involves determin-
ing the respective optimal prices for clients from different
distances at each state. Thus, for an access point with capacity
m, and with the assumption that the most distant clients
arriving at the access point are fromn hops away, a policy
of the access point can be characterized by the price matrix
P = [pki], k ∈ {0, . . . , m − 1}, i ∈ {1, . . . , n}, in which pki

represents the price at statek for a client i-hop away.
To ease analysis, we modify the client arrival process

by removing the feature of finite client population. This is
necessary, as an arrival process with finite population requires
keeping track of the numbers of admitted clients at different
distances, which highly complicates state information. We
roll back to an arrival model originated from the M/M/m/m
queuing system [19]. Assuming the most distant clients arrive
from a distance ofn hops, we use an arrival rate vector
~λ = (λ1, λ2, . . . , λn) to denote the arrival rates of clients
from different distances, in whichλi denotes the arrival rate
of clients i-hop away. Withµ denoting the departure rate of
a client in the system, we have the following state transition
rates:

λk =

{
∑n

i=1 λiP (U ≥ mi(pki)) k < m
0 otherwise

µk = kµ k = 1, 2, . . . , m.

The factor moderatingλi, the pure arrival rate of clientsi-hop
away, is nowP (U ≥ mi(pki)), which is a simple reflection
from the multi-hop case in the unlimited capacity model that
any state ratepki charged by the access point will be marked
up by all i − 1 downstream resellers, as expressed by the
function mi(pki) in Eq. (4).

Further taking the simplification that the access point earns
an expected profit ofpki/µ immediately when a clienti-hop
away connects at statek6, we can again use the policy-iteration
method to solve for the optimal pricing policy of the access

6This simplification is again an approximation technique to reduce the state
space as in the one-hop case.
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point, but with the following changes. The set of equations to
be solved in the value-determination operation is updated as:

g =

[

n
∑

i=1

λiP (U ≥mi(p0i))

]

v1−

[

n
∑

i=1

λiP (U ≥mi(p0i))

]

v0

+

n
∑

i=1

λiP (U ≥ mi(p0i))(
p0i

µ
),

g =

[

n
∑

i=1

λiP (U ≥ mi(pki))

]

vk+1

−

[

n
∑

i=1

λiP (U ≥ mi(pki)) + kµ

]

vk + kµvk−1

+

n
∑

i=1

λiP (U ≥ mi(pki))(
pki

µ
) for k = 1, . . . , m − 1,

g = −mµvm + mµvm−1.

The set of optimization problems in the policy-improvement
routine is updated as:

max

[

n
∑

i=1

λiP (U ≥mi(p0i))

]

v1−

[

n
∑

i=1

λiP (U ≥mi(p0i))

]

v0

+

n
∑

i=1

λiP (U ≥ mi(p0i))(
p0i

µ
),

max

[

n
∑

i=1

λiP (U ≥mi(pki))

]

vk+1−

[

n
∑

i=1

λiP (U ≥mi(pki))+kµ

]

vk

+kµvk−1 +
n

∑

i=1

λiP (U ≥ mi(pki))(
pki

µ
) for k = 1, .., m−1.

where the design variables are nowpki, k ∈ {0, . . . , m − 1},
i ∈ {1, . . . , n}. When client’s utility rateU has a uniform
distribution on the interval[a, b], we again has a closed-form
solution for the optimal ratepki

∗ for clients i-hop away for
each statek:

pki
∗=

b − µ(vk+1 − vk)

2
k = 0, .., m− 1 and i = 1, .., n.

One can observed that whenU has a uniform distribution,
optimal prices for clients at different distances are the same
for each state.

The following shows some numerical results of the multi-
hop case obtained by using the policy-iteration method. Figure
17 essentially plots the resulting optimal price matrices for two
cases. The first case has the client’s utility rateU uniformly
distributed on[0, 10]; the second case hasU normally dis-
tributed with a mean of 5 and a standard deviation of 1.67. For
both cases, the arrival rate vector~λ is (4, 2, 1), the departure
rateµ is 1, and the capacity of the access pointm is 5. It can be
shown that whenU is uniformly distributed, the optimal prices
for clients at different distances at each state are identical;
while whenU is normally distributed, the access point tends
to charge a lower price for clients further away. As in the
one-hop case, prices rise with the number of admitted clients.

When U is normally distributed, prices for distant clients
are lower than prices for clients closer to the access point;
however, the prices tend to converge when the arrival rate
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Fig. 17. Price matrix with different utility rate distributions
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Fig. 18. Prices converge with increasing arrival rate of first-hop clients

of proximate clients increases. This is illustrated in Figure 18.
The arrival rate of first-hop clients increases from 1 to 90. The
remaining clients are from two hops away and arrive with a
rate of 10. Departure rateµ is fixed at 1. The access point
has a capacitym of 5. U is normally distributed with a mean
of 5 and a standard deviation of 1.67. It can be observed that
prices for first-hop and second-hop clients at state 4 converge
with increasingλ1.

C. Scalability of Networks with a Limited Capacity

In the limited capacity model, we derive the optimal pricing
policy of the access point using the policy-iteration method,
which provides numerical results but not closed-form state
prices. Though the lack of closed-form results hinders us
from analytically deducing the scalability of networks with
a limited capacity, we can observe that when the access point
has a capacity constraint to fulfill, the access (state) prices she
sets are always higher than those when she has an unlimited
capacity. In short, as the network capacity increases, the state
prices the access point sets decrease, and approach the flat
rate in a network with an unlimited capacity. Hence, we can
conclude that the scalability of a network with a limited
capacity is upper bound by the scalability of a network of
the same topology but with an unlimited capacity.
Remark: In a wireless mesh network with a limited capacity,
clients will not be charged at a fixed rate without contract
enforcement. With the “fixed-rate, non-interrupted service”
contract, the access point will charge according to the amount
of remaining network capacity. The “state price” can be
obtained by the efficient policy-iteration method and is found
that it grows with a decrease in remaining admission quota.
The scalability of a network with a limited capacity is always
lower than that of a network of the same topology but with
an unlimited capacity.
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V. Conclusion

We have conducted a mathematical analysis of the economic
behavior of nodes in a wireless mesh network, when they
are making a decision to establish an Internet connection
service. Two scenarios are investigated: either the network
has an unlimited or limited channel capacity. First we present
specific examples of the one-hop case of the unlimited capacity
model, with various distributions of client’s per-slot utility. We
then extend the analysis to the multi-hop case and show that
the price of the access service grows quickly as the service
path length increases. The implication is that it becomes
unaffordable for distant clients (i.e., many hops away from
the access point) and the wireless mesh network may not be
economically scalable. In the limited capacity case, we have
proved that a fixed-rate pricing scheme similar to the one
proposed in [3] is not optimal, or economically beneficial,
to the access point. We further investigate a more practical
“fixed-rate, non-interrupted service” model for charging.To
determine the optimal price for this charging scheme, we
model the problem as a Markovian decision process and use
the efficient policy-iteration method to solve for the optimal
pricing strategy of the access point. Numerical results show
that the state price follows with supply and demand, and the
economic scalability of a network with a limited capacity is
lower than one with an unlimited capacity.
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APPENDIX

A Proof of the Strategy Profile for Multi-hop Wireless
Mesh Network being a PBE

To show the strategy profile for multi-hop wireless mesh
network is a PBE, we first need the following lemma.
Lemma 2: There exists a functionpi∗(pi+1), for all i ∈
{1, . . . , n − 1} that satisfies properties of Eq. (2) and (3).
Proof: The proof is generic for alli ∈ {1, . . . , n− 1}. Define

ypi+1(pi) , (pi − pi+1)P (U ≥ mi(pi)).

We find pi∗(pi+1) by construction. Set

pi∗(pi+1) = min

(

arg max
pi

ypi+1(pi)

)

,

which agrees with property (2). It remains to showpi∗(pi+1) is
monotonically non-decreasing. We prove this by contradiction.
Supposepi∗(pi+1) is not monotonically non-decreasing. Then
there exists(pi+1l

, pi+1h
) : pi+1l

< pi+1h
with pi∗(pi+1h

) <

pi∗(pi+1l
). For convenience, definepil , pi∗(pi+1h

) and
pih , pi∗(pi+1l

) so thatpil < pih. For pih to be the lowest
valued maximizer ofypi+1l(pi), it is necessary that

(pih−pi+1l
)P (U ≥ mi(pih)) > (pil−pi+1l

)P (U ≥ mi(pil)).
(10)

For pil to be the lowest valued maximizer ofypi+1h(pi), it is
necessary that

(pil−pi+1h
)P (U ≥ mi(pil)) ≥ (pih−pi+1h

)P (U ≥ mi(pih)).
(11)

Combining (10) and (11), we have

pil − pi+1h

pih − pi+1h
>

pil − pi+1l

pih − pi+1l
. (12)

But Eq. (12) impliespih(pi+1h
−pi+1l

) < pil(pi+1h
−pi+1l

),
which is a contradiction. Thus thepi∗(pi+1) we construct is
monotonically non-decreasing, and we have found a function
which satisfies properties (2) and (3).

Theorem 2: The strategy profile for multi-hop wireless mesh
network is a perfect Bayesian equilibrium.
Proof: First we prove that access pointn’s strategy is optimal
given that all other players play their respective strategies in
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the PBE. At the beginning of time slot 1, the expected payoff
of access pointn adopting a price sequence{pn

t } is

Jn
1 ({pn

t }) =

∞
∑

t=1

pn
t P (U ≥ max

u∈{1,...,t}
mn(pn

u))P (τ ≥ t).

(13)
In the notationJn

1 ({pn
t }), the superscriptn denotes the node

index of access pointn, and the subscript 1 denotes the
time slot index at which the expected payoff is evaluated.
Access pointn’s objective is to choose a price sequence
{pn

t } which maximizes Eq. (13). We see that such sequence
must be a non-decreasing sequence. The reason is two-fold.
First, the functionmn(pn) is monotonically non-decreasing,
since the price mark-up functionspi∗(pi+1) for all reseller
i, i ∈ {1, . . . , n − 1}, are monotonically non-decreasing.
Hence, for any sequence{p̃n

t } in which there exists au
such thatp̃n

u < ˜pn
u−1, we can define a new non-decreasing

sequence{pn
t } with pn

t = max(p̃n
1 , . . . , p̃n

t ) and we would
haveJn

1 ({pn
t }) > Jn

1 ({p̃n
t }). Define S+ be the set of non-

decreasing price sequences. The expected payoff of access
pointn under non-decreasing price sequences can be expressed
as

Jn
1 |{pn

t
}∈S+({pn

t }) =

∞
∑

t=1

pn
t P (U ≥ mn(pn

t ))P (τ ≥ t).

(14)
Each term in the summation of Eq. (14) is a function of
a different pricepn

t , so the entire sum can be maximized
by independently maximizing each term. Thus, the optimal
strategy of access pointn at the start of time slot 1 is to
choose eachpn

t in the setarg maxpn [pnP (U ≥ mn(pn))] and
form a price sequence{pn

t } ∈ S+.
It remains to show that access pointn’s strategy is optimal

in any continuation game beginning at an arbitrary time slots.
At slot s, access pointn chooses a subsequent price sequence
{pn

t }
∞
t=s to maximize her expected payoff from slots onward:

Jn
s ({pn

t }
∞
t=s)=

∞
∑

t=s

[

pn
t P (U ≥max

u∈{s,...,t}
mn(pn

u)|U ≥mn(pn
s−1))

P (τ ≥ t|τ ≥ s)
]

.

For any price sequence{p̃n
t }

∞

t=s which has prices less than
pn

s−1, Jn
s ({max(p̃n

t , pn
s−1)}

∞
t=s) ≥ Jn

s ({p̃n
t }

∞

t=s). Thus access
point n should select on-going slot prices no less thanpn

s−1.
Assumingpn

u ≥ pn
s−1 for all u ≥ s, we may write

Jn
s ({pn

t }
∞
t=s) =

1

P (U ≥ mn(pn
s−1))P (τ ≥ s)

∞
∑

t=s

[

pn
t P (U ≥ max

u∈{s,...,t}
mn(pn

u))P (τ ≥ t)
]

.(15)

Eq. (15) has a structure that parallels to Eq. (13), with the
exception of scaling factor

1

P (U ≥ mn(pn
s−1))P (τ ≥ s)

,

which is unrelated to the optimality of prices chosen for slot
s onward. Thus the argument which is used to show that a
non-decreasing price sequence with elements chosen in the

set arg maxpn [pnP (U ≥ mn(pn))] maximizes Eq. (13), can
be re-used here to show such sequence also maximizes Eq.
(15). Thus it is proved that access pointn’s strategy remains
optimal in any continuation game.

We now prove the strategy of reselleri is the best response
against the PBE strategies of other players. The proof is
generic for all i ∈ {1, . . . , n − 1}, and is similar to that
for access pointn. At the beginning of time slot 1, reseller
i wishes to choose a price sequence{pi

t} to maximize her
expected payoff:

J i
1({p

i
t}; {p

i+1
t }) =

∞
∑

t=1

[

(pi
t − pi+1

t )

P (U ≥ max
u∈{1,...,t}

mi(pi
u))P (τ ≥ t)

]

,(16)

which is also dependent on the price sequence{pi+1
t } her

upstream reselleri + 1 charges her. Consider a modified
objective:

J̃ i
1({p

i
t}; {p

i+1
t }) ,

∞
∑

t=1

(pi
t − pi+1

t )P (U ≥ mi(pi
t))P (τ ≥ t).

(17)
We see that the functionpi∗(pi+1), which satisfies property
(2), maximizes Eq. (17) because the sum is separable and can
be maximized term by term. Further check the relationship
between the original objective and the modified one:

J i
1({p

i
t}; {p

i+1
t }) ≤ J̃ i

1({p
i
t}; {p

i+1
t }) (18)

and

J i
1|{pi

t
}∈S+({pi

t}; {p
i+1
t }) = J̃ i

1|{pi

t
}∈S+({pi

t}; {p
i+1
t }), (19)

where S+ is the set of non-decreasing price sequences.
Eq. (18) and (19) imply that a non-decreasing price se-
quence maximizingJ̃ i

1({p
i
t}; {p

i+1
t }) would also maximize

J i
1({p

i
t}; {p

i+1
t }). As access pointn charges a non-decreasing

price sequence, and each upstream reselleri, for all i ∈ {i +
1, . . . , n−1}, uses a monotonically non-decreasing price mark-
up function, the price sequence{pi+1

t } received by reselleri
is a non-decreasing sequence. Thus the functionpi∗(pi+1),
which satisfies property (3), yields a non-decreasing price
sequence{pi

t}, maximizing the original expected payoff Eq.
(16).

Next we show that reselleri’s strategy remains the best
response in all continuation games. At an arbitrary slots,
reselleri’s expected payoff from slots onward with a price
sequence{pi

t}
∞
t=s is:

J i
s({p

i
t}

∞

t=s; {p
i+1
t }

∞

t=s) =

∞
∑

t=s

[

(pi
t − pi+1

t )P (U ≥

max
u∈{s,...,t}

mi(pi
u)|U ≥ mi(pi

s−1))P (τ ≥ t|τ ≥ s)
]

. (20)

Eq. (20) suggests that reselleri should only consider charging
prices no less thanpi

s−1 onward. Assumingpi
u ≥ pi

s−1 for all
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u ≥ s, we may write

J i
s({p

i
t}

∞

t=s; {p
i+1
t }

∞

t=s) =
1

P (U ≥ mi(pi
s−1))P (τ ≥ s)

∞
∑

t=s

[

(pi
t − pi+1

t )P (U ≥ max
u∈{s,...,t}

mi(pi
u))P (τ ≥ t)

]

.(21)

Eq. (21) has a structure that parallels to Eq. (16) with the
exception of scaling factor

1

P (U ≥ mi(pi
s−1))P (τ ≥ s)

,

which is unrelated to the optimality of prices chosen from slot
s onward. Thus the argument used to show the PBE strategy
of reselleri is optimal at slot 1 can be re-used here to show
it remains optimal in any continuation game.

Lastly, the client receives a non-decreasing price sequence
{p1

t}, resulted from access pointn’s choice of non-decreasing
prices, and monotonically non-decreasing price mark-up
functions of all resellers. Hence, her best response at any
time of the game is the myopic strategy.


