
Dynamic Pricing and Placement for Distributed
Machine Learning Jobs
1st Xueying Zhang

School of Cyber Science and Engineering
Wuhan University

snowyzhang@whu.edu.cn

2nd Ruiting Zhou
Wuhan University

!e Chinese University of Hong Kong
ruitingzhou@whu.edu.cn

3rdJohn C.S. Lui
Department of Computer Science and Engineering

!e Chinese University of Hong Kong
cslui@cse.cuhk.edu.hk

4th Zongpeng Li
School of Computer Science

Wuhan University
zongpeng@whu.edu.cn

Abstract—Nowadays distributed machine learning (ML)
jobs usually adopt a parameter server (PS) framework to train
models over large-scale datasets. Such ML job deploys hun-
dreds of concurrent workers, and model parameter updates
are exchanged frequently between workers and PSs. Current
practice is that workers and PSs may be placed on di!erent
physical servers, bringing uncertainty in jobs’ runtime. Also,
existing cloud pricing policy o"en charges a #xed price
according to the job’s runtime. Although this pricing strategy
is simple to implement, such pricing mechanism is not
suitable for distributed ML jobs whose runtime is stochastic
and can only be estimated according to its placement a"er job
admission. To supplement existing cloud pricing schemes, we
design a dynamic pricing and placement algorithm, DPS, for
distributed ML jobs. DPS aims to maximize cloud provider’s
pro#t, which dynamically calculates unit resource price upon
a job’s arrival, and determines job’s placement to minimize
its runtime if o!ered price is accepted to users. Our design
exploits the multi-armed bandit (MAB) technique to learn
unknown information based on past sales. DPS balances
the exploration and exploitation stage, and selects the best
price based on the reward which is related to job runtime.
Our learning-based algorithm increases the provider’s pro#t,
and achieves a sub-linear regret with both the time horizon
and the total job number, compared to benchmark pricing
schemes. Extensive evaluations also validates the e$cacy of
DPS.

I. introduction
Nowadays, machine learning (ML) has become an indis-

pensable framework which trains models over large-scale
datasets. To train a large model, hundreds of concurrent
workers (typically implemented on virtual machines (VMs)
or containers) are deployed in parallel to update shared
model parameters, in particular, using the popular parameter
server (PS) architecture [1][2]. In the PS framework, one or
multiple PSs store and maintain global model parameters.
In each training iteration, the PSs pull computed gradients

1. Corresponding author: Ruiting Zhou.
2.)is work was supported by the Fundamental Research Funds for the

Central Universities (2042019kf0016) and the GRF 14201819. Part of this work
by Ruiting Zhou was done while she was visiting CUHK.

from workers and update their maintained parameters re-
spectively; and then PSs push updated parameters back to the
workers. Workers and PSs of a ML job can be distributed on
di*erent physical servers, when they cannot be completely
placed on the same server, or to maximize the utilization of
expensive cloud resources on servers [3].
Di*erent from general cloud computing jobs, distributed

ML jobs have their distinct features. First, due to the frequent
exchange of parameter updates between workers and PSs, the
parameter transmission time accounts for a large proportion
of job runtime, and if workers and PSs are deployed on
di*erent servers, then it will consume signi+cant amount
of inter-server bandwidth [4]. Furthermore, it is typically
di,cult for the job owner to estimate how long a job
may take, before the placement of the job is determined.
Second, running ML jobs that are o-en deployed on GPU
servers is time-consuming and costly. For example, training
a GoogLeNet model over the ImageNet-1k dataset takes 23.4
hours on a Titan supercomputer server with 32 NVIDIA
K20 GPUs [5], and would cost more than $172 by renting
p2.8xlarge instances from Amazon EC2 [6]. For such jobs,
preemption is not acceptable since it may further delay their
job completion time. It is also common that job owners prefer
to know the price before job admission, such that the cost is
within their budget.
In today’s cloud market, service providers o-en adopt the

pay-as-you-go pricing policy, where users pay a +xed unit
price for resource demand according to the job runtime.
Amazon EC2 [6], Google Cloud [7] and Microso- Azure
[8] all adopt the per-hour charging model for on-demand
or preemptible VM instances (e.g., spot instances). Another
preferred pricing option is an advanced purchase of VMs for
one to three years in a speci+ed region. For example, Amazon
EC2 provides signi+cant discount (up to 75%) with savings
plans and reserved instances [6]. However, existing pricing
mechanism is not suitable for distributed ML jobs, due to
following reasons. First, di*erent users have di*erent budgets
with heterogeneous demands. Fixed pricing fails to a.ract

���

������UI�*OUFSOBUJPOBM�$POGFSFODF�PO�#JH�%BUB�$PNQVUJOH�BOE�$PNNVOJDBUJPOT�	#JH$PN

����������������������������¥�����*&&&
%0*���������#JH$PN����������������

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

many customers and cannot capture the changing supply
and demand in the market. As a result, either overpricing
or underpricing would happen and this jeopardizes users’
experience as well as the provider’s pro+t. Although dynamic
pricing is o*ered by Amazon EC2 spot instances, they are
only recommended for jobs that can tolerate preemption.
Second, existing providers require job owners to estimate
job runtime, and pay in advance before the job admission.
)e job owners will be further charged if they underestimate
the runtime. However, as mentioned before, the runtime
of a distributed ML job is uncertain and depends on job
placement.
Hence, a fundamental problem for ML service providers is:

Given limited resources, how to dynamically charge and place
distributed ML jobs, such that the job runtime is minimized
and the provider’s pro"t is maximized, without knowing users’
budgets?
To supplement existing cloud pricing models, we propose

a novel dynamic pricing and placement mechanism, DPS, for
distributed ML jobs. To the best of our knowledge, this paper
is the "rst formal study that combines dynamic pricing and
placement design in a dynamic online se.ing for ML jobs.
As shown in Fig. 1, our online algorithm involves two stage
decisions: (i) A user arrives and informs the cloud service
provider of its job con+guration. It speci+es the type and
the number of workers and PSs needed, parameter size and
the number of required training epoch, but the user doesn’t
need to submit any information about the job’s runtime and
budget.)e cloud service provider posts unit resource prices
upon its arrival, and calculates the cost to complete its jobs.
)e user evaluates the price according to its budget. (ii) If the
user accepts the o*ered price, the cloud provider deploys this
job on its servers to minimize job runtime. Note that shorter
runtime has a positive impact on the provider’s pro+t, as
more resources can be released and then resold. We employ
a multi-armed bandit (MAB) framework to learn from past
sales, and select best unit price based on rewards, while the
reward is computed according to job runtime.)e detailed
technical contributions are as follows:

Timespan

 user 1 user 2 user N

1. submit job
configuration

2. inform user of charge

3. deploy job if user accepts price

cloud provider

server 1 server 2

server 3
user 1’s PS

user 1’s worker user 2’s worker

user 2’s PS

Fig. 1: An illustration of pricing and placement process.
First, We formulate the pro+t maximization problem as

a mixed integer linear program (MILP).)e program pre-
cisely models the feature of ML jobs (uncertain runtime),
and captures all factors that would in/uence the decisions
(resource capacity constraints and budget limitation). Even
in the o0ine se.ing with known information, this problem

is proven to be NP-hard.)e challenges further escalate
when both the budget and the job runtime is stochastic
and unknown. To overcome these challenges, we divided
our design into two steps: pricing strategy and placement
algorithm.
Second, the critical challenge in pricing design is that the

budget of each job is a private information and its runtime is
stochastic and hard to estimate before the job admission. To
tackle this issue, we design an online learning strategy based
on the MAB framework. Speci+cally, we +rst get the upper-
bound of pro+t related to unit resource prices as well as the
runtime of jobs. Job runtime is calculated according to the
experience and its placement, and its exact value is updated
when a job is completed.)e price interval is appropriately
discretized and we get a set of prices (arms) for selection.
Each price corresponds to a related reward contributing to
the total pro+t.)e unit price with the highest reward will
be used for the current job.)en its reward is adjusted
according to the feedback (i.e., whether the user accepts the
o*ered charge and job runtime).)erefore, the job that has a
high budget and its resources occupation (involving resources
demand and job runtime) matches its budget can be accepted,
which means the higher pro+t can be obtained.
%ird, in the placement design, to reduce the time for

parameter transmission among di*erent physical servers, we
deploy as few servers as possible to serve a job. Hence, we
place jobs on servers in a greedy manner so workers and PSs
of a job are placed as close as possible, which can reduce the
job runtime. Our online algorithm, DPS, takes both pricing
and placement into account and they work in concert with
each other.
Last but not the least, we conduct rigorous theoretical

analysis to examine our algorithm’s performance. DPS has a
polynomial time complexity. Moreover, we derive a sub-linear
upper-bound on the regret, which implies that our algorithm
has an asymptotically optimal performance.)e results show
that DPS outperforms other benchmark algorithms.)e over-
all pro+t achieved by DPS is 125%, 115%, 122% and 238% of
BFP’s, DPS-simple’s, TOP’s [9] and Random’s, respectively.
)is percentage increases over time, and the performance
of DPS in practice is be.er than the theoretical analysis.
)e rest of the paper is organized as follows. Sec. II reviews

related literature.)e system model is introduced in Sec. III.
)e learning-based algorithm is presented in Sec. IV and
evaluated in Sec. V. Sec. VI concludes the paper.

II. related work
Dynamic Pricing for Cloud Resources. Compared with

traditional cloud resource pricing methods, dynamic pricing
strategies which can enhance cloud provider pro+t have been
explored in recent years. Wang et al. [10] and Shi et al.
[11] study how to dynamically price VMs to pursue overall
pro+t or social welfare maximization in online auctions. An
auction-based online mechanism for virtual machines pricing
in clouds is proposed in [12].)ose pricing strategies either
focus on posted price mechanism [13] or request the user

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

to determine the runtime of its job. However, the runtime
of a ML job is stochastic and unknown to users before its
completion.
Multi-armed Bandit Schemes. To address the unknown

budget and runtime of jobs, we design an our pricing algo-
rithm based on MAB, which is an e*ective online learning
and optimization framework [14]. Bubeck et al. [15] has
proven that MAB is e,cacious to get a good trade-o*
between exploration and exploitation in sequential decisions.
)e basic MAB framework learns to choose an optimal arm
without considering any system constraints. Mahdavi et al.
[16] extend the study of MAB where the learner aims to
maximize total reward, given that some additional constraints
need to be satis+ed. However, it is not applicable to our
system where the resources can be reused a-er a job is
completed.

III. problem model
System Model and Job Information. Suppose the cloud

service provider provides K types of workers and M types of
parameter servers (PSs), and they are deployed on S di*erent
physical servers. Let [X] denote the integer set {1, 2, ...X }.
Ck (Cm) denotes the maximum number of available type-
k workers (type-m PSs), ∀k ∈ [K] (∀m ∈ [M]).)e system
operates in discrete time slots t = 1, 2, ...,T .)ere are N
users arriving during the timespan and each user comes
with a machine learning (ML) job to be processed. Each job
needs to train a ML model over a large input dataset, using
synchronous training method. Let ti denote the arrival time
of job i.)e con+guration of job i includes the following
information: (i) the worker type ki and the PS type mi ; (ii)
the number of type-ki workers (type-mi PSs) dik (dim); (iii)
the size of the gradients/parameters wi ; (iv) required training
epochs αi . Moreover, users usually have their budgets for
completing jobs, which are private and will not be revealed
to the cloud provider. We denote job i’s budget as vi . Let Bi
denote the information of job i:Bi = {ki ,dik ,mi ,dim,wi ,αi }.
Stochastic Assumptions.)e budgets of users are usually

related to their demands of resources. We assume that the
budget and the demand of jobs which require same type of
worker and PS follow a jointly unknown distribution. For
each resource combination (k,m), the (demand,budдet) pairs
of users who request type-k workers and type-m PSs are in-
dependently and identically distributed, namely, (dik ,dim,vi)
are i.i.d., and drawn from an unknown distribution Fk ,m .

Runtime of Jobs. In the parameter server architecture,
the runtime of an epoch for a ML job consists of the
following two parts: (i) computation time, which is the sum
of computation time at the workers (i .e ., the data training
time and gradients computation time) and at the PSs (i .e ., the
parameters updating time); (ii) transmission time, which is the
time for workers to push gradients to PSs and pull updated
parameters from PSs. According to job i’s con+guration as
well as the historical knowledge, the computation time βi
can be estimated. Next, we analyze job i’s transmission time.
If a worker is deployed on a server where there is no

PS, the data transmission time (i .e ., the worker exchanges
gradients with all PSs) in an epoch is 2wi/bi , where bi is the
bandwidth between the PS and worker. Each type-k worker
(type-m PS) reserves some bandwidth, which is denoted as
hk (Hm). Hence, bi = min(hki ,Hmi /dik). When all PSs and
workers are located on the same server, the bandwidth to
exchange gradients/parameters is abundant between them
and the transmission time is negligible. Let qi represents
whether all workers and PSs serving job i are in the same
server (1) or not (0). Hence, the runtime of job i:

τi = αiβi + αi (1 − qi)(2wi/bi). (1)
Decision Variables. A-er receiving job i’s request, the

cloud provider prices the resources and informs user the
current unit prices pik and pim for type-ki worker and type-
mi PS. When its overall payment, i .e ., pik × dik + pim × dim ,
is no larger than its budget vi , the user accepts the o*ered
price and the provider need to decide how to place this job
on available servers; otherwise, the user will leave without
purchasing anything. Suppose the number of type-ki workers
serving job i on server s is xski and the number of type-mi
PSs serving job i on server s is zsmi . Let Xski (Zsmi) denote
the number of idle type-ki workers (type-mi PSs) on server
s when job i arrives.

Problem Formulation. To pursue the maximum overall
pro+t over the system timespan, the cloud provider dynam-
ically prices resources upon user arrives, and decides the
placement for this job if the user accepts the price.)is o0ine
optimization problem can be formulated as the following
mixed integer linear program (MILP):

maximize
∑
i ∈[N]

(
∑

k ∈[K]
pikdik +

∑
m∈[M]

pimdim)fi (2)

subject to:
fi = {dik + yik ≤ Ck ,dim + y

i
m ≤ Cm,

∑
k ∈[K]

pikdik+

∑
m∈[M]

pimdim ≤ vi ,∀k,∀m}, (2a)

yim =
∑

j ∈[i−1]:
tj+τj ≥ti

djm fj ,∀m ∈ [M],∀i ∈ [N], (2b)

yik =
∑

j ∈[i−1]:
tj+τj ≥ti

djk fj ,∀k ∈ [K],∀i ∈ [N], (2c)

∑
s ∈[S]

xski = dik fi ,∀i ∈ [N], (2d)

∑
s ∈[S]

zsmi = dim fi ,∀i ∈ [N], (2e)

0 ≤ xski ≤ Xski ,∀s ∈ [S],∀i ∈ [N], (2f)
0 ≤ zsmi ≤ Zsmi ,∀s ∈ [S],∀i ∈ [N], (2g)
xski ∈ N, zsmi ∈ N,∀s ∈ [S],∀i ∈ [N], (2h)
pik ,pim ≥ 0,∀i ∈ [N],∀m ∈ [M],∀k ∈ [K]. (2i)

)e {X } is an indicator function, which equals 1 if X is true
and 0 otherwise. Variable fi in constraint (2a) indicates that
job i runs if there are enough resources and the user accepts
the price. yik (yim) in constraint (2b)/(2c) is the total number

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

of type-k workers (type-m PSs) that have been occupied at
the time of job i’s arrival. Constraints (2d) and (2e) guarantee
the number of type-k workers (type-m PSs) allocated to job
i is consistent with its request.)e resource capacity of
physical servers for running PSs and workers is formulated
by constraints (2f) and (2g).

IV. algorithm design and analysis
Our learning-based algorithm consists of two subroutines.

We introduce the pricing mechanism and placement strat-
egy in Sec. IV-A.)e theoretical analysis are presented in
Sec. IV-B.

A. Algorithm Design
1) Dynamic Pricing Mechanism
Design Rationale. In order to set prices to maximize

the pro+t, the core idea is to estimate the likelihood that
a user will accept the o*ered price without the knowledge
of the (demand,budдet) distribution as well as the runtime
of jobs, so that the best prices can be set. We propose an
online algorithm based on UCB (Upper Con+dence Bound)
to dynamically determine prices. Speci+cally, we learn the
runtime and the distribution according to past jobs, and set
prices for arriving jobs based on the learned knowledge.
Without loss of generality, we normalize pk and pm into

[0, 1], i.e., pk (pm) ∈ [0, 1]. Suppose "xed-price strategy is
adopted, i .e ., same prices pk and pm are o*ered to jobs
requesting type-k workers and type-m PSs during the system
timespan, which can be viewed as the expectation of realized
prices. Let Qk (pk) denote the expected number of type-k
workers sold at price pk to any job who requests type-k
workers, i.e., Qk (pk) = E(dik ,dim ,vi)∼Fk ,m [d̂ik], where d̂ik = dik
if vi ≥ pkdik + pmdim and d̂ik = 0 otherwise. We denote the
total number of jobs requesting type-k workers in [1,T] as
nk . Similarly, we have Qm (pm) and nm for type-m PSs.

We +rst analyze the upper-bound of the overall pro+t
under the "xed-price strategy.)e analysis can be divided into
two cases: (i) the resources are always su,cient to serve all
jobs; (ii) the resources are insu,cient, which means current
running jobs occupy all resources. In the +rst case, the total
expected pro+t of type-k workers (type-m PSs) with a +xed
price pk (pm) is nkpkQk (pk) (nmpmQm (pm)). To simplify the
description, we focus on workers in the following analysis.
In the second case, at most Ck type-k workers are available
at any time slot due to the resource capacity. In each time
slot, if type-k workers have been exhausted, the maximum
expected number of type-k workers which can be allocated
to new jobs is Ck (1 − Ei :ki=k [τi]/T) (job i runs in τi slots,
then if we average its workload over T slots, job i runs τi/T
slot in each slot).)us, the average maximum total pro+t of
type-k workers with a +xed price pk is pkCk (T − Ei :ki=k [τi]).
We denote T − τi as µi .)en, this expected pro+t can be
formulated as pkCk µk , where µk = Ei :ki=k [µi]. Let A(pK ,pM)
denote the expected overall pro+t under +xed prices pK and
pM , where pK = {p1,p2, · · · ,pK } and pM = {p1,p2, · · · ,pM }.
Under this price strategy, we have

A(pK ,pM) ≤min(
∑

k ∈[K]
pkCk µk +

∑
m∈[M]

pmCmµm,

∑
k ∈[K]

nkpkQk (pk) +
∑

m∈[M]
nmpmQm (pm)). (3)

To maximize the long-term pro+t, the prices that maximize
the upper-bound, i.e., RHS of (3), should be used. However,
it is intractable to determine such prices, because both
the budget distribution and the runtime are unknown in
the online se.ing.)erefore, we design an online learning
algorithm based on multi-armed bandit (MAB) to estimate the
uncertain distributions and set dynamic prices to maximize
the pro"t upper-bound in expectation. First, we discretize the
price interval [0, 1], and get a candidate price set Pk (Pm) for
type-k workers (type-m PSs). Upon the arrival of job i, price
pki ∈ Pki and pmi ∈ Pmi are chosen for this job. For each
price pk ∈ Pk (pm ∈ Pm), we de+ne a reward contributing to
the overall pro+t, and the prices with the highest reward are
picked. We de+ne the reward of price as follows:

R̂ik (pk) = min(nkpkQU
ik (pk),pkCk µ

U
ik) (4)

R̂im (pm) = min(nmpmQU
im (pm),pmCmµUim). (5)

Intuitively, R̂ik (pk) and R̂im (pm) are estimates of the upper-
bound of the expected pro+t of type-k workers and type-m
PSs. Here, QU

ik (pk) (Q
U
im (pm)) is the UCB of Qk (pk) (Qm (pm))

estimated before job i arrives; µUik (µUim) is the UCB of µk (µm)
estimated before job i arrives, as de+ned below:

µUik = µ̂ik + ri (µ̂ik), µUim = µ̂im + ri (µ̂im), (6)
QU
ik (pk) = Q̂ik (pk) + ri (Q̂ik (pk)), (7)

QU
im (pm) = Q̂im (pm) + ri (Q̂im (pm)), (8)

where µ̂ik , µ̂im , Q̂ik (pk) and Q̂im (pm) are the current average
values of their realizations of µk , µm , Qk (pk) and Qm (pm),
respectively.)ese parameters can be computed as follows:

Q̂ik (pk) =
total # o f type-k workers sold at pk

o f times pk has been used
, (9)

Q̂im (pm) = total # o f type-m PSs sold at pm
o f times pm has been used

, (10)

µ̂ik =

∑
i′<i :ki′=k µi′ fi′ (ti′ + τi′ < ti)∑
i′<i :ki′=k fi′ (ti′ + τi′ < ti)

, (11)

µ̂im =

∑
i′<i :mi′=m µi′ fi′ (ti′ + τi′ < ti)∑
i′<i :mi′=m fi′ (ti′ + τi′ < ti)

. (12)

And ri (X) is the con"dence radius of the random variable
X such that for XU = X̂ + ri (X̂), inequality |X − X̂ | ≤ ri (X)
holds with high probability.)erefore, suitable con+dence
radius needs to be designed, since a smaller con+dence radius
implies a more accurate estimate of the parameter X . Let
N k
i (pk) (Nm

i (pm)) be the number of times that pk (pm) has
been used to price jobs requesting type-k workers (type-m
PSs) before job i arrives. We design the con+dence radius1
as:

1Only variables ri (Q̂im (pm)) and ri (µ̂im) are presented here since
ri (Q̂ik (pk)) and ri (µ̂ik) are de+ned the same way.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

ri (Q̂im (pm)) = η

1 + Nm
i (pm) +

√
ηQ̂im (pm)
1 + Nm

i (pm) , (13)

ri (µ̂im) = η

1 +∑i′<i :mi′=m fi′ (ti′ + τi′ < ti)

+

√
ηµ̂im

1 +∑i′<i :mi′=m fi′ (ti′ + τi′ < ti)
, (14)

where η = Θ(lognm).
Algorithm 1 Dynamic Pricing Strategy (DPS)

Input: K,M,T , {Ck }k ∈[K], {Cm }m∈[M], {nk }k ∈[K], {nm }m∈[M]
Initialize: θk = (TCk lognk)

2
3 /nk , θm = (TCm lognm) 23 /nm, δk ∈

(0, 1), δm ∈ (0, 1),Pk = {δk (1 + δk)z ∩ [0, 1] : z ∈ Z},Pm =
{δm (1 + δm)z ∩ [0, 1] : z ∈ Z}
Upon: job i comes with its information Bi

1: Set k = ki ,m =mi ;
2: if ∑i

i′=1 (ki′ = k) ≤ θknk or ∑i
i′=1 (mi′ =m) ≤ θmnm then

3: pik ,pim = 0;
4: (xki , zki) = PA(Bi , {Xski }, {Zsmi });
5: Update the number of occupied resource:
6: yi+1k = yik + dik ,y

i+1
m = yim + dim ;

7: else
8: if dik + yik ≤ Ck and dim + yim ≤ Cm then
9: Pick pik ∈ argmaxpk ∈Pk R̂ik (pk);
10: Pick pim ∈ argmaxpm ∈Pm R̂im (pm);
11: Inform the user price pikdik + pimdim ;
12: if user accepts the o#ered price then
13: (xki , zki) = PA(Bi , {Xski }, {Zsmi });
14: Compute runtime τi according to (xki , zki) and (1);
15: Update the number of occupied resource:
16: yi+1k = yik + dik ,y

i+1
m = yim + dim ;

17: According to (6)-(14), update parameters:
18: QU

ik (pk),Q
U
im (pm), µUik , µ

U
im ;

19: end if
20: else
21: Reject this user’s request;
22: end if
23: end if

Upon: job j is completed
1: Release and update the resource:
2: y j+1kj

= y j+1kj
− djk ,y

j+1
mj = y

j+1
mj − djm ;

3: {Xsk (j+1) = Xsk (j+1) + xsk j }s ∈[S];
4: {Zsm(j+1) = Zsm(j+1) + zsk j }s ∈[S];
5: Reshape the estimates µ̂ik and µ̂im according to (11)(12);

Online Pricing Algorithm. Our dynamic pricing strategy
DFS is summarized in Alg.1. In the initialization phase, we
elaborately design δk and δm to discretize the prices interval
and get sets of candidate prices. Note that parameters δk and
δm have a signi+cant impact on our algorithm performance,
and we will illustrate this impact in Sec.V. Inspired by the
trade-o* between exploration and exploitation in classic MAB
framework, we set nil prices for jobs in the beginning stage
(lines 2-6), such that users can accept the price and we can
obtain some information about job’s runtime.)e smaller θk
and θm , the shorter is the exploration time. Hence, parameters

θk and θm indicate the balance between exploration and
exploitation: a shorter exploration stage means less loss of
pro+t but larger risk on the estimation error; in contrast,
a longer exploration stage means larger loss of pro+t but
smaller risk of estimation error. Here, θk and θm are derived
carefully to reach a good balance between them. A-er the
exploration phase, our algorithm starts the exploitation stage.
If there are enough available resources to serve job i, the
reward of each price in candidate sets is calculated based
on the historical knowledge and the prices with the highest
rewards are chosen (lines 7-11). If the user accepts the price,
the placement algorithm PA is invoked (line 13) to decide
how to deploy this job on servers, which is described in detail
in next subsection. According to the placement strategy and
the experiences of the computation time, job i’s runtime τi is
approximately calculated in line 14. Meanwhile, the amount
of occupied resources is updated and we update the estimated
parameters QU

ik (pk),Q
U
im (pm), µUik and µUim (lines 14-18), which

will be used to calculate the rewards of prices when the next
job arrives. Once a job is completed, the occupied resources
are released and related resource parameters as well as the
parameters (i .e ., µ̂ik and µ̂im) related to the exact runtime are
updated.
Algorithm 2 Placement Algorithm (PA)

Input: wi ,dik ,dim,Hmi ,hki , {Xski }s ∈[S], {Zsmi }s ∈[S]
Initialize: xki = 0, zki = 0, c = 1

1: Sort all servers in descending order of Xski and Zsmi ,
the result sequence is denoted as {s1, s2, · · · , sS };

2: for s = s1, s2, · · · , sS do
3: if Xski ≥ dik and Zsmi ≥ dim then
4: /* Deploy all workers and PSs on server s */
5: xski = dik , zsmi = dim ;
6: /* Update current idle resources */
7: Xsk (i+1) = Xski − dik ,Zsm(i+1) = Zski − dim ;
8: Return xki , zki
9: end if
10: end for
11: /* Multiple servers are used */
12: while ∑c

j=1 Xsjki < dik do
13: xscki = Xscki ,Xsck (i+1) = 0;
14: c = c + 1;
15: end while
16: xscki = dik −

∑c−1
j=1 Xsjki ,Xsck (i+1) = Xscki − xscki ;

17: c = 1;
18: while ∑c

j=1Zsjmi < dim do
19: zscmi = Zscmi ,Zscm(i+1) = 0;
20: c = c + 1;
21: end while
22: zscmi = dim −∑c−1

j=1 Zsjmi ,Zscm(i+1) = Zscmi − zscmi ;
23: Return xki , zki

2) Placement Policy
If user i accepts the o*ered price, the cloud provider needs

to decide how to place its job in physical servers so to
minimize the runtime, since shorter runtime results in larger
reward, leading to higher pro+t.)e placement problem for
job i can be formulated as:

minimize τi (15)

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

subject to: (2d) ∼ (2h),

where fi = 1. If there is a server having enough resources
to serve job i, placing this job on the server results in the
shortest runtime. We focus on another case, i.e., qi = 0. In this
case, we try to use as few servers as possible to serve a job.
As shown in Alg.2, all servers are sorted according to their
current idle resources. Lines 2-10 determine whether there is
a server on which all workers and PSs requested by job i can
be deployed. If there is no such server, workers and PSs are
deployed in a greedy manner to serve job i (lines 12-23).

B. !eoretical Analysis
Runtime. First, we analyze the runtime of DPS, which can

be completed in polynomial time.
%eorem 1. Our algorithm determines the price pik , pim and
makes placement decision in O[2(TCmax logN)1/3 + S2] time for
each job, where Cmax = max(Ck ,Cm),∀k ∈ [K],∀m ∈ [M].
Proof. See Appendix. A. *+Regret Analysis. Now we theoretically analyze the regret
of our algorithm.)e benchmark used in our work is the best
+xed-price strategy, which knows all information in advance
and o*ers +xed unit prices for resources to all jobs with the
maximal expected pro+t2.)e regret is the di*erence between
the expected overall pro+t obtained by our algorithm and that
by the best +xed-price strategy.)eorem 2 below shows that
the regret of DPS is sub-linear with both the timespan and
the total job number.
Let pK∗ and pM∗ denote the price vectors of the best +xed-

price mechanism.)erefore, the regret of our algorithm can
be de+ned as follows:
Reдret(L) = A(pK∗ ,pM∗) − E[A(L)]
=

∑
k ∈[K]

Ak (pk∗) +
∑

m∈[M]
Am (pm∗) − E(

∑
k ∈[K]

Ak (L) +
∑

m∈[M]
Am (L))

=
∑

k ∈[K]
[Ak (pk∗) − E[Ak (L)]] +

∑
m∈[M]

[Am (pm∗) − E[Am (L)]],

(16)
where A(L) is the total expected pro+t achieved by DPS.
)e regret Reдret(L) is derived in three steps: (i) we analyze
the upper bound of the di*erence between the total expected
pro+t of the best +xed candidate prices (namely, the best
prices in candidate sets Pk and Pm in Alg.1) and the pro+t
of our policy without considering resources capacity (namely,
the condition in line 7 in Alg.1 is ignored); (ii) the upper
bound of the di*erence between the best +xed candidate
prices and our policy considering the resources capacity is
derived; (iii) +nally, the upper bound of Reдret(L) (namely,
the gap between the best +xed prices and DPS) is obtained.
%eorem 2. Let δk = (TCk)−1/3(lognk)2/3 and δm

=(TCm)−1/3(lognm)2/3 in Alg.1. !en, the regret of DPS is O[(K
+M)((N logN)1/2 + (TCmax logN)2/3)].

For ease of description, we denote the overall expected
pro+t of the best +xed candidate prices as A(pcK∗ ,pcM∗) and
that of our policy without considering resources capacity is

2Such benchmark has been widely used in the regret analysis in online
learning-based algorithm.

denoted as A(L′). In the rest of the proof, we mainly focus
on PSs (the pro+t of workers can be analyzed the same way).
Lemma 1 ()e upper-bound of Am (pcm∗) − Am (L′)). Let
∆(pim) denote the discrepancy between the expected pro"t
per job requesting type-m PSs achieved by pcm∗ and that
achieved by o#ering our price pim for job i, namely, ∆(pim) =
max{Am (pcm∗)/nm−pimQm (pm), 0}. We have : Am (pcm∗)−Am (L′)

≤ θmnm +
∑

pm ∈Pm :
∆(pm)≥σm

∆(pm)N (pm) +
∑

pm ∈Pm :
∆(pm)<σm

∆(pm)N (pm)

≤ σmnm + θmnm + |Pm |O(lognm)(1 +CmµUm/(σmnm)), (17)

where σm = δmCmµm/nm , N (pm) is the number of times that
pm has been picked during the whole timespan and µUm is the
UCB of µm when price pm is picked at the last time.
Claim 1.1. With probability at least 1−n−2m holds, for each job
i with mi =m:

Am (pcm∗) ≤ pim ·min(nmQ ′
m (pm),Cm µ̄ ′m), (18)

where Q ′
m (pm) = Qm (pm) + 2ri (Q̂im (pm)), µ̄ ′m = µ̄m + 2ri (µ̂im).

Proof. See Appendix. B. *+
In view of Claim 1.1, we have a straightforward corollary

as shown in Claim 1.2.
Claim 1.2. Let pim denote the price for job i designed by our
algorithm without considering the resources capacity. We have

Pr[pim ≥ Am (pcm∗)/(Cm µ̄ ′m)] ≥ 1 − n−2m ,∀i :mi =m. (19)

As mentioned in Lemma 1, ∆(pm) is de+ned at any can-
didate price pim = pk and equals zero if price pm has never
been chosen.)en, we have

Am (pcm∗) −Am (L′) ≤
∑

pm ∈Pm
∆(pm)N (pm). (20)

Intuitively, if the distribution Qm (pm) is accurately known
for all pim ∈ Pm,∀i : mi = m, we can accurately estimate the
term nmpmQU

im (pm) in (5).)en, pimnmQm (pm) can be used
to upper bound Am (pcm∗) (as shown in (18)). Hence, such an
upper bound exactly equals pimQm (pm). Namely, ∆(pim) will
equal zero if Qm (pm) is known to us, which means that the
existence of non-zero ∆(pim) results from Qm (pm)’s incorrect
estimate.)erefore, ∆(pim) is actually upper bounded by
ri (Q̂im (pm)). Next, we upper bound ∆(pim) to further upper
bound ∆(pm)N (pm) in the RHS of (20).
Claim 1.3. For each job i, we have ∆(pim) ≤ pim ·O(ri (Q̂im (pm))).
Furthermore, we have

∆(pm)N (pm) ≤ O(pm lognm)(1 +CmµUm/(nm∆(pm))). (21)

Proof. See Appendix. C. *+
Since the pro+t loss caused by DPS compared to Am (pcm∗)

consists of two parts: (i) ∑
pm ∈Pm ∆(pm)N (pm) calculated by

(21); (ii) prices are set to nil, in the exploration stage where
the loss of pro+t can be upper bounded by θmnm . Combining
them with Claim 1.2 and Claim 1.3, Lemma 1 is proofed. *+
Lemma 2 ()e upper-bound of Am (pcm∗) − E[Am (L)]). Let
dmmax denote the maximum number of type-m workers requested
per job and rmax (X) denote the maximum con"dence radius on
X a$er the exploration stage. We have Am (pcm∗) − E[Am (L)]

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

≤ σmnm + θmnm + |Pm |O(lognm)(1 +CmµUm/(σmnm))

+O[
√
nm lognm +Cmµm (2rmax (µm)

µm + 2rmax (µm) +
dmmax
Cm

)].

Proof. See Appendix. D. *+
Lemma 3 (the upper-bound of ∑m∈[M][Am (pm∗)−E[Am (L)]]).
For each σm > 0, we have∑
m∈[M]

[Am (pm∗) − E[Am (L)]]

≤
∑

m∈[M]
[σmnm + θmnm + |Pm |O(lognm)(1 +CmµUm/(σmnm))+

O(
√
nm lognm +Cmµm/(1 + µm

O(rmax (µm))) + d
m
max µm + δmCmµm)].

Proof. See Appendix. E. *+
Finally, we prove)eorem 2 based on Lemma3 , as shown

in Appendix. F.
*+

V. performance evaluation
Simulation Setup. We evaluate our algorithm over a

timespan of 10000 time slots (i.e., T = 10000) and each time slot
is 5 minutes.)e numbers of worker types and PS types are
15 and 10 respectively.)e bandwidth of each type worker
ranges between 100 Mbps and 5 Gbps and that of each type
PS ranges between 5 Gbps and 20 Gbps. We assume there
are 50 physical servers.)e number of each type workers
(PSs) deployed on each server is in [0, 30] ([0, 18]).)en, the
total resource capacity (i.e., Ck and Cm) can be calculated.)e
arrival time, resource demand and other information of jobs
are set according to the real-world traces [17]. In particular,
we analyze the users’ preference of resources and their prices
in the real-world traces to estimate and simulate budgets of
users.)e total number of arrived jobs is around 10000. We
set the price of each type worker (PS) according to Amazon
EC2 pricing [6] and normalize it into [0, 1].
Performance of Our Complete Algorithm DPS. We

compare DPS with four alternatives:
• Best "xed-price strategy (BFP):)e optimal +xed unit
price of each resource is set with the priori knowledge
of all jobs’ full information.

• DPS-simple:)is is a variant of DPS, where the explo-
ration stage (lines 2-6 in Alg.1) is omi.ed.

• TOP: It is adapted from an online pricing algorithm for
cloud jobs [9]. Since this algorithm only involves pricing
virtual instances, we slightly modify it to +t our system
model and add placement module for it.

• Random:)is algorithm randomly picks unit price from
interval [0, 1] upon each job’s arrival, and making place-
ment decision according to PA.

Fig. 2 shows that DPS outperforms other algorithms. In
the +rst few time slots (t < 1120), the regret of DPS increases
since the price is set nil in the exploration stage and the
relation between users’ budget and demands is unknown.
A-er this, the regret of DPS decreases and equals zero at t =

3140, i.e., the pro+t achieved by DPS is comparable to BFP’s.
)e negative regret means our algorithm exceeds BFP and
this superiority grows over time.)e regret of DPS-simple
shows that the exploration stage plays an import role, which
makes the estimation of job runtime accurate.)e overall
pro+ts of algorithms are presented in Fig. 3. At the end of
timespan, total pro+t achieved by DPS is 125%, 115%, 122% and
238% of BFP’s, DPS-simple’s, TOP’s and Random’s, respectively.
The Impact of Parameters.)e regret of DPS under

di*erent total job numbers (at di*erent ratios, 0.1, 5 and 10 of
the default N) is drawn in Fig. 4. At the beginning, the regret
is smaller when N is smaller. As time goes on, the larger
N , the faster the regret decreases. Fig. 5 shows the e*ect
of the value of δ (i.e., δk and δm) on DPS’s regret. When δ ’s
value is too small, the number of candidate prices in Pk (Pm)
becomes larger. Hence, learning period gets longer. When δ
is too large, the regret is growing. It is shown that the regret
obtained by our choice of δ is the smallest.)en, we analyze
the impact of θ ’s value on the performance of DPS. As shown
in Fig. 6, when θ gets smaller, the regret is smaller at the
beginning stage but it decreases more slowly in the later. A
larger θ makes the exploration phase longer and leads to a
larger regret in this phase. Our choice of θ shows a good
trade-o* between the exploration and exploitation.
Performance of Placement Algorithm (PA). We compare

our placement strategy with random placement (RS) algorithm
to show its e,ciency.)e pricing mechanism in Alg.1 with
random placement method (instead of PA) is used for com-
parison, which is denoted as DPS-RS. As shown in Fig. 7, the
overall pro+t obtained by DPS is larger than that by DPS-
RS and BFP when T = 4000, and the di*erence increases
over time.)e total runtime of all completed jobs under
PA is always shorter than that under RS. Furthermore, the
discrepancy between them become signi+cantly larger as the
number of completed jobs increases.

VI. Conclusion
)is paper is the +rst paper that addresses the dynamic

pricing problem for distributed machine learning jobs, while
jointly taking the placement into consideration. Our algo-
rithm consists of two subroutines: (i) a dynamic pricing
mechanism that determines the best price upon the arrival
of each job, with a goal of maximizing provider’s pro+t;
(ii) a placement strategy that minimizes the runtime of
accepted jobs.)rough theoretical analysis, we show that our
algorithm achieves a sub-linear regret with both the timespan
and the total job number. Large-scaled simulation study based
on real world data also veri+es good performance of our
algorithm, compared to state-of-the-art pricing mechanisms.

Appendix
A. Proof of !eorem 1
Proof. Lines 1-6 in Alg.1 can be done in a constant time.
In Lines 9-10, our algorithm computes the reward over all
the candidate prices in Pki and Pmi . Now, we focus on Pki .
Since Pk is initialized as {δk (1+δk)z ∩ [0, 1] : z ∈ Z} for type-k

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12000

R
eg

re
t

DPS
DPS-simple
TOP
Random

Fig. 2:)e regret comparison with
other algorithms .

2000 4000 6000 8000 10000

Time Slot

0

0.5

1

1.5

2

2.5

3

O
v

er
al

l
P

ro
fi

t

10
4

DPS
BFP
DPS-simple
TOP
Random

Fig. 3: Overall pro+t comparison with
other algorithms.

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

R
eg

re
t

N
0.1N
5N
10N

Fig. 4: Regret (varying N).

0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

R
eg

re
t

0.1
1.5
5

Fig. 5: Regret (varying δk and δm).
0 2000 4000 6000 8000 10000

Time Slot

-6000

-4000

-2000

0

2000

4000

6000

R
eg

re
t

0.1
3
5

Fig. 6: Regret (varying θk and θm).
1000 2000 3000 4000 5000 6000 7000

Number of Completed Jobs

0

2000

4000

6000

8000

T
o

ta
l

R
u

n
ti

m
e PA

RS

2000 4000 6000 8000 10000

Time Slot

0

1

2

3

O
v

er
al

l
P

ro
fi

t

10
4

DPS
DPS-RS
BFP

Fig. 7:)e performance of PA.

worker, we have δk (1 + δk) |Pk | ≥ 1 and δk (1 + δk) |Pk |−1 < 1,
which means |Pk | = -log1+δk δ−1k .. Let δk = (TCk)−1/3(lognk)2/3,
then we have |Pk | ≤ δ−1k lognk .)us, Line 9 in Alg.1 can
be done in O((TCk lognk)1/3) time. Similarly, Line 10 can be
done in O((TCm lognm)1/3) time. Next, we analyze the runtime
of placement algorithm PA in Alg.2. In the worst case, the
sorting time (line 1) is O(S2).)erefore, for each job, the
runtime of our algorithm is O[2(TCmax logN)1/3 + S2].

B. Proof of Claim 1.1
Proof. As shown in Line 10 in Alg.1, the price with the highest
reward R̂im (pm) in the candidate price set Pm is chosen in
each round. Hence, for each user i with mi = m, we know
R̂im (pim) = maxpim ∈Pm R̂im (pm), which implies

R̂im (pim) ≥ R̂im (pcm∗),∀pim,pcm∗ ∈ Pm . (22)

Morever, we know that the probability of inequalities µUim ≥
µmi

and Qim (pmi)U ≥ Qmi (pmi) holding is at least 1−n−2m based
on the result in [18].)erefore, we have R̂im (pcm∗) ≥ Am (pcm∗)
with high probability at least 1 − n−2m .)en, we have

Pr[R̂im (pim) ≥ Am (pcm∗)] ≥ 1 − n−2m ,∀pim,pcm∗ ∈ Pm . (23)

According to the de+nition of R̂im (pim), we have that
R̂im (pim) ≤ pim ·min{nmQ ′

m (pm),Cm µ̄ ′m } (24)

with probability at least 1−n−2m . Combining (23) and (24), the
Claim 1.1 follows.

C. Proof of Claim 1.3
Proof. According to ∆(pim)’s de+nition, if there is esti-
mate error (namely, ∆(pim) > 0), we knowAm (pcm∗) >

nmpimQm (pim),∀m ∈ [M]. Combining this inequality with the
property of (19), we obtain

Qm (pim) < Cm µ̄ ′m/nm,∀m ∈ [M]. (25)

Let Jm denote the set of jobs requesting type-m PSs. Accord-
ing to Claim 1.1, we know

Am (pcm∗) ≤ pimnmT (Qm (pim) + 2ri (Q̂im (pm))),∀i ∈ Jm .

Combining it with the de+nition of ∆(pim), we obtain
∆(pim) ≤ 2pimri (Q̂im (pm)), namely,

∆(pim) ≤ pim ·O(ri (Q̂im (pm))). (26)

)en, we upper bound the con+dence radii ri (Q̂im (pm)) and
ri (µ̂im). According to the result in [18], when η = Θ(lognm), we
know ri (X̂) ≤ 3η/(1+Ni (X))+3

√
ηE[X]/(1 + Ni (X)) holding with

probability at least 1 − n−2m .)erefore, with high probability
at least 1 − n−2m , we have

ri (Q̂im (pm)) ≤ max{ O(lognm)
1 + Nm

i (pm) ,
√
Qm (pm)O(lognm)

1 + Nm
i (pm) }, (27)

ri (µ̂im) ≤ max{ O(lognm)
1 +∑i′<i :mi′=m fi′ (ti′ + τi′ < ti)

,

√
µmO(lognm)

1 +∑i′<i :mi′=m fi′ (ti′ + τi′ < ti)
}. (28)

Combining (26) (27) with (25), for all job i ∈ Jm , we get

∆(pim) ≤ O(pim ·max(lognm
1 + Ni (pim) ,

√
lognmQm (pim)
1 + Ni (pim))). (29)

Removing its dependency on i and rearranging this inequal-
ity, the Claim 1.3 follows.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

D. Proof of Lemma 2

Proof.)e total pro+t of type-m PSs (i .e ., Am (pim)) achieved
by our DPS in expectation is E(∑i ∈Jm pimdim fi) if the re-
source is always su,cient (namely, without considering
the resources capacity). Taking the resources capacity into
account, our DPS will stop o*ering resources when type-m
PSs are not enough to serve the job, even if the price for
job i is within the user’s budget. Based on Azuma-Hoe*ding
inequality, we know that ∑

i ∈Jm |pimdim fi − pimQm (pim)| ≤
O(nm lognm) holds with high probability at least 1−n−2m . Hence,
we have
E(

∑
i ∈Jm

pimdim fi) ≥
∑
i ∈Jm

pimQm (pim) −O(nm lognm). (30)

Moreover, there exists such a case where the workload is
high so that E(∑i ∈Jm dim fi) ≥ µm (Cm − dmmax). We denote the
set of jobs accepting the deal in the cases where the resource
is su,cient as J ′

m .)en, we obtain
E[

∑
i ∈J′

m

pimdim fi |
∑
i ∈J′

m

dim fi ≥ µm (Cm − dmmax)]

≥ Am (pcm∗)(1 −O(2rmax (µm)
µm + 2rmax (µm) +

dmmax
Cm

)) − θmnm, (31)

where the last inequality holds due to Claim 1.2 and the
de+nition of µUm . Combining (30) and (31), we can get the
lower-bound of the expected pro+t obtained by our DPS for
selling type-m PSs:

E[Am (L)] ≥ min{Am (pcm∗)(1 −O(2rmax (µm)
µm + 2rmax (µm) +

dmmax
Cm

))

− θmnm,Am (L′) −O(
√
nm lognm)}.

Combining this inequality and Lemma 1, we have Lemma 2.

E. Proof of Lemma 3

Proof. As shown in the initialization in Alg.1, the prices of
type-m PSs in the candidate set Pm are within the interval
[δm, 1], i .e ., pm ∈ [δm, 1],∀pm ∈ Pm . If pm∗ ≤ δm , then we know
Am (pm∗) − Am (pcm∗) ≤ δmCmµm . Let p′m denote the highest
price in Pm that is no higher than the best +xed price pm∗ ,
which indicates p′m ≥ pm∗ /(1 + δm). Hence, we have∑

m∈[M]
Am (pcm∗) ≥

∑
m∈[M]

Am (p′m) ≥
∑

m∈[M]
Am (pm∗ /(1 + δm))

≥
∑

m∈[M]
Am (pm∗)(1 − δm) ≥

∑
m∈[M]

Am (pm∗) −
∑

m∈[M]
δmCmµm,

where the last inequality holds because Qm (pm) is a non-
increasing function towards pm . Combining the above in-
equality with Lemma 2, Lemma 3 is derived.

F. Proof of !eorem 2

Proof. In the exploration stage in Alg.1, if the expected
number of jobs requesting type-m workers is denoted as
Φ(θmnm), then we have Φ(θmnm) ≥ θmnm − nmτmax /T . Fur-
ther, we have rmax (µm) ≤ O(lognm/(τmaxΦ(θmnm))). Due
to τmax ≤ (T 5C2

m log2 nm)1/3/(2nm), we obtain Φ(θmnm) ≥
(T 5C2

m log2 nm)1/3/2. Moreover, we know |P |m ≤ (lognm)/δm .

)erefore, when δm = (TCm)−1/3(lognm)2/3 and σm =

δmCmµm/nm , according to Lemma 3, we have∑
m∈[M]

[Am (pm∗) − E[Am (L)]]

≤
∑

m∈[M]
O(

√
nm lognm +

µUm(TCm lognm) 23
µm

+Cmrmax (µm))

(32)
≤ O(

∑
m∈[M]

√
nm lognm + (TCm lognm)2/3). (33)

Inequality (32) holds since we assume dmmax ≤
T−1/3(Cm lognm)2/3. Due to rmax (µm) ≤ O((1+µm) lognm

1+Φ(θmnm)),
we know Cmrmax (µm) ≤ (TCm)2/3(lognm)1/3. Moreover,
µUm/µm asymptotically approaches O(1). Pu.ing them
together, the last inequality (33) can be established.
Similarly, ∑

m∈[M][Ak (pk∗) − E[Ak (L)]] is derived.
)us, the regret Reдret(L) of our DPS algorithm is
O[(K +M)((N logN)1/2 + (TCmax logN)2/3)].

References
[1] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B. Su, “Scaling distributed machine learning
with the parameter server,” in Proc. of USENIX OSDI, 2014.

[2] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More e*ective distributed ML via a stale
synchronous parallel parameter server,” in Proc. of NIPS, 2013.

[3] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in Proc. of IEEE INFOCOM, 2019.

[4] L. Mai, C. Hong, and P. Costa, “Optimizing network performance in
distributed machine learning,” in Proc. of USENIX HotCloud, 2015.

[5] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Fireca*e:
near-linear acceleration of deep neural network training on compute
clusters,” in Proc. of IEEE CVPR, 2016.

[6] Amazon EC2 Pricing, 2019, h.ps://aws.amazon.com/ec2/pricing/.
[7] Google Cloud Pricing, 2019, h.ps://cloud.google.com/pricing/.
[8] Linux Virtual Machines Pricing, 2019, h.ps://azure.microso-.com/en-us/

pricing/details/virtual-machines/linux/.
[9] X. Zhang, C. Wu, Z. Huang, and Z. Li, “Occupation-oblivious pricing

of cloud jobs via online learning,” in Proc. of IEEE INFOCOM, 2018.
[10] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic

auctions in iaas cloud markets,” in Proc. of IEEE/ACM IWQoS, 2013.
[11] W. Shi, C. Wu, and Z. Li, “RSMOA: A revenue and social welfare

maximizing online auction for dynamic cloud resource provisioning,”
in Proc. of IEEE/ACM IWQoS, 2014.

[12] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An online
mechanism for resource allocation and pricing in clouds,” IEEE Trans.
Computers, vol. 65, no. 4, pp. 1172–1184, 2016.

[13] J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld,
“Posted price mechanisms for a random stream of customers,” in Proc.
of ACM EC, 2017.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[15] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[16] M. Mahdavi, T. Yang, and R. Jin, “E,cient constrained regret mini-
mization,” CoRR, vol. abs/1205.2265, 2012.

[17] P. Minet, E. Renault, I. Khou+, and S. Boumerdassi, “Analyzing traces
from a google data center,” in Proc. of IEEE IWCMC, 2018.

[18] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric
spaces,” in Proc. of ACM STOC, 2008.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2020 at 03:31:26 UTC from IEEE Xplore. Restrictions apply.

