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a b s t r a c t

Online social networks (OSNs), such as Twitter and Sina Weibo, have become important
platforms for generating and spreading information on the Internet. On these OSNs, the
‘‘follow model’’ has become a popular way to discover information; i.e., a user subscribes
to content generated by others by following them as information sources. The content
producers are called followees. Due to human beings’ limited attention capacity and the
constraints imposed by OSNs, a user can only follow a few followees. The question then
arises: which subset of followees shall we follow so that we can discover the most infor-
mation in an OSN in a timely fashion? To solve this problem, we present a randomized
method that does not require complete OSN data and is well suited for third parties who
do not own OSN data. Our method is based on the birthday paradox and is mathematically
tractable for analysing its solution quality and computational efficiency. Moreover, we find
that the power-law structure of real-world OSNs can further improve the solution quality
of our method. Experiments conducted on two real datasets demonstrate that our method
can create a good trade-off between solution quality and computational efficiency.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

As platforms for communicating with friends, updating
status and sharing information, online social networks
(OSNs), such as Twitter and Sina Weibo, have become
extremely popular. These platforms provide users with
near-real-time services that can be accessed across
multiple devices at any Internet-enabled venue. Due to
their large user bases and ubiquitous services, microblogs,
where users act as sensors reporting events happening
around them, become essential news sources, i.e., the
so-called social media [1,2]. In fact, social media have
attracted surveillance from conventional media outlets to

discover breaking news and from governments to detect
signals of riots. For example, the death of Osama bin Laden
was first reported on Twitter rather than traditional news
media [3], and, during the period of England riots, people
used social media to organize [4].

The emergence of social media has changed the way we
discover information. Traditional ways, such as information
retrieval, rely on user-specified queries (e.g., keywords) to
retrieve the information from indexed data [5–7].
However, specifying explicit queries might be difficult, as
keywords for time-evolving and emerging information
are highly dynamic [8] and unpredictable (e.g., the death
of bin Laden [3]). In recent years, the follow model [9]
has become a convenient way to discover information. A
microblog user, say, Alice, obtains information mainly
from her timeline, which comprises tweets generated by
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users she follows, called her followees1 in the follow model.
Once a new tweet is posted by a user, it spreads to the user’s
followers and their followers iteratively, depending on
whether users retweet the message. Finally, the tweet
appears in Alice’s timeline with a certain probability and time
delay. Such probability and time delay mainly depend on
which subset of followees Alice chooses to follow. By
choosing different followees as her information sources,
Alice can discover varied information with different time
delay from the aggregated tweets in her timeline.

In the current information era, common goals that
people want to achieve are to discover as much informa-
tion as possible, i.e., maximize information coverage, and
to obtain the information as soon as possible, i.e., minimize
time delay. To achieve this, it seems that if Alice can follow
all microblog users, then she will discover all information
with zero time delay. However, due to human beings’ lim-
ited attention capacity [11] and the constraints imposed by
OSNs (e.g., a user on Twitter and Sina Weibo can follow at
most 2000 users, in general [12,13]), Alice can only follow a
few followees (or budgeted followees). Consequently, a
problem arises: how to optimally choose these budgeted
followees as information sources to maximize information
coverage and minimize time delay?

The above problem is challenging. Selecting a subset of
items from a population to maximize some specified utility
function is a classical combinational optimization problem
that has been studied for decades, e.g., the set cover prob-
lem [14], knapsack problem [15], influence maximization
problem [16,17], and sensor placement problem [18,19].
These problems have been proven to be NP-hard, and we
can only obtain suboptimal solutions using approximate
algorithms. However, as we will see in Section 3, these
algorithms cannot be applied to our problem and they do
not scale to handle modern large-scale OSNs which have
hundreds of millions of users.

Another challenge we face is that we are constrained
to solving the problem from the perspective of a third
party. A third party does not own OSN data. OSN compa-
nies own users’ data, but there is a lack of cooperation
from OSN companies due to user privacy and business
secrecy concerns. Thus, third parties can only use the
public APIs to crawl the data. However, OSN companies
usually impose barriers to limit large-scale crawling by
third parties [20] and restrict the request rate of APIs.
For example, Twitter and Sina Weibo allow a user to issue
at most 350 and 150 requests per hour, respectively
[21,22]. As a result, it is practically impossible for third
parties to crawl the complete data, and one has to
consider the query cost (i.e., the number of API calls)
while achieving the goal of selecting budgeted followees.
We would like to note that most of the existing works
[18,19,23] have ignored this second challenge and
assumed that the complete data are available in advance.
This assumption limits the practical application of exist-
ing methods, and the goal of this work is to fill this
research gap.

In this work, we present a framework to select a subset
of users as followees to maximize the information cover-
age and minimize the time delay from incomplete data
obtained via graph sampling methods. Our method guar-
antees both solution quality and computational efficiency
(under the worst-case situation) that enable it to be used
in large-scale OSNs. (Note that the proposed approach does
not replace but instead supplements existing methods, and
we elaborate on this point in Section 8). The basic idea
behind our method is based upon the birthday paradox,
which states that with more than 50% chance, there will
be a birthday match among a handful of 23 people, and,
for merely 70 people, the chance of matching increases
to 99.9%. In our scenario, the randomized greedy algo-
rithm, which is the main component of our framework,
chooses one user in each iteration from a set of user sam-
ples, which is substantially smaller than the population,
and the user samples contain at least one optimal followee
with high probability according to the birthday paradox.
Due to the significant reduction of search space, we
achieve a major speedup in obtaining the solution. The
quality of the final solution can be proven to be lower
bounded when user samples are chosen uniformly at
random in each iteration, which actually is the worst-case
situation because we do not use any strategy in sampling
(see Section 5).

Moreover, we find that if we bias user samples toward
high degree nodes (i.e., users) in the network using graph
sampling methods such as random walk [24], we need
fewer user samples than when using uniform sampling,
thereby improving efficiency. We present an in-depth
analysis in Section 6 and reveal another important finding.
For power-law networks, information cascades are not uni-
formly dispersed among nodes, but rather, high degree
nodes are more likely to be infected by an information dif-
fusion process than low degree nodes. Therefore, if the
sampling is biased toward high degree nodes, we achieve
a higher probability of detecting information cascades. This
is related to the generalized birthday paradox, i.e., when
people’s birthdates are not uniformly distributed, the
probability of matching increases [25]. Our numerical
solutions in Section 6 and experiments in Section 7 both
demonstrate the finding.

The rest of the paper is structured as follows. We review
the related literature in Section 2 and formulate the prob-
lem in Section 3. Then, we motivate a randomized method
through empirical observations in Section 4. The detailed
analysis of our method is given in Section 5. In Section 6,
we study how the power-law structure of real-world
networks can benefit this method. We conduct
experiments on real datasets to validate the method in
Section 7 and conclude in Section 8.

2. Related work

Both Twitter and Sina Weibo provide the ‘‘whom-to-
follow’’ services to recommend ‘‘interesting persons’’ to users
[26]. This function is related to a large body of research on
link prediction [27]. However, algorithms in link prediction
are mainly based on common friends, shared interests, and

1 The Oxford dictionary defines a followee as a person who is being
tracked on a social media website or application [10].
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other factors [28–30], which are not directly related to our
goal.

Optimal sensing [19,31] is the problem of selecting a
subset of informative observations or sensors from a
domain to maximize some utility for environment moni-
toring [31,32] or event detection [18]. For OSNs like Twit-
ter and Sina Weibo, their ubiquitous services enable users
to report events happening around them at any Internet-
enabled venue at any time by tweeting. Because OSN users’
behaviours are exactly like physical sensors reporting mea-
surements of environments, they can be considered as
social sensors [2]. Therefore, our followee selection prob-
lem is related to this research area. Leskovec et al. [18]
studied the optimal sensing problem for city water moni-
toring (i.e., select a few locations to install sensors in order
to detect water pollutions) and blog selection (i.e., select a
subset of blogs to read to catch the most stories). They pro-
posed the Cost-Effective Lazy Forward (CELF) approach to
find the approximate solution. CELF is similar to the Accel-
erated Greedy (AG) approach posed by Minoux [33], which
exploits the submodularity of utility functions. It is impor-
tant to note the fundamental contrast between our setting
and theirs: their methods are designed based on the neces-
sity of complete data, which is impractical for third parties
on contemporary large-scale OSNs, and their methods do
not guarantee computational efficiency, which we will
analyse in detail in Section 3.

Recently, several empirical studies have leveraged the
friendship paradox to select users for the purpose of pre-
dicting contagious outbreaks in a university [34], a city
[35], and detecting events on Twitter [36]. In this method,
a user set is returned by repeatedly selecting a random
friend of a randomly sampled user, and friendship paradox
[37,38] guarantees selected users to have high degrees on
average. Intuitively, high degree nodes in a network are
easier to be infected by contagions than low degree nodes
because of higher contact rate. That is why this approach
works. However, this approach only uses topology infor-
mation of a network and does not use contagion data on
the network. For example, in Twitter, besides connections
among users, we also know from history data which user
retweeted which tweet at what time, and such information
can be used to obtain better solutions. In addition, these
empirical studies lack an analysis of bounding their solu-
tion quality with respect to the optimal solution. We fill
this gap via a randomized method that is mathematically
tractable to analyse.

It is also worth noting that our randomized method is
motivated by an optimization method called ordinal opti-
mization (OO) [39], which has been widely applied in the
optimization of discrete event dynamic systems [40],
power systems [41], and other areas [42]. OO considers
the problem of searching for an optimal strategy in a very
large strategy space (which is similar to our setting in deal-
ing with a large-scale OSN). Other than finding an optimal
strategy, OO defines a ‘‘good enough’’ subset which con-
tains acceptable good strategies, and softens the goal to
find one strategy in this good enough set. Often, a little
softening of the goal, a major speedup in search can be
achieved. We were inspired by this goal softening idea

and have designed a randomized method, which can trade
off between solution quality and computational efficiency.

3. Problem definition

In this section, we first introduce some terminology and
notations (a notation table can be found in Appendix A).
Then, we formulate the problem and analyse various
state-of-the-art methods. Finally, we introduce two real-
world datasets as our ground-truth data.

3.1. Terminology and notations

We model an OSN by a graph, GðV ; E;CÞ, with jV j ¼ n
nodes and jEj ¼ m edges. Each node represents a user,
and each edge represents a relation between two
users. We assume G is undirected for ease of presenting
our idea.

Here, C denotes a set of information cascades on the
network. Information cascades (or cascades for short) are
phenomena in which actions or ideas become widely
adopted by people due to the influence of others (typically,
people are influenced by their neighbours in the network)
[43]. For example, if a tweet is retweeted by many Twitter
users or many users tweet the same hashtag, then we say it
forms a cascade because many people have adopted the
same action. If Alice also retweets the tweet or tweets
the same hashtag, we say that Alice has joined the cascade.
Here, we simplify a cascade c 2 C by a vector of user join
times, ½tuc%u2V , where tuc denotes the time that user u joined
c, and tuc ¼1 if u never joins c. The start time of cascade c
is the earliest join time, denoted by tc , i.e., tc ¼minu2V tuc .
Then, the time delay for user u to join c is tuc & tc . In our
previous example, if Alice follows u, then she can obtain
c from her timeline with time delay tuc & tc . Hence, differ-
ent followees will experience different time delays for dis-
covering cascades. Furthermore, we define the size of a
cascade as the number of unique users that join it, i.e.,
sizeðcÞ ¼ jfu : tuc <1^ u 2 Vgj, and it will be used to indi-
cate the importance of c. In other words, the larger the size
of a cascade is, the more important it is among all cascades.

3.2. Followee selection for cascading outbreak detection

Having defined the terminology, our problem becomes
which subset of users Alice should follow so that she can
obtain as many important cascades as possible in her time-
line, and with time delays as small as possible. In other
words, if Alice chooses the right followees, she can discover
the majority of important cascades with small average
time delay in her timeline. We call this problem the cas-
cading outbreak detection problem, and formally define it
as follows.

Definition 1 (Cascading outbreak detection problem). Find
a subset S of V containing at most B nodes to maximize a
prespecified reward function FðSÞ without the complete
knowledge of G. Here, B < n is a given budget, and
F : 2V # RP0 is a non-decreasing submodular function,
such that FðSÞP 0;8S # V and Fð;Þ ¼ 0.
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If a set function F satisfies FðSÞ þ FðTÞP FðS [ TÞ
þFðS \ TÞ for all S; T # V , then F is submodular [44]. The sub-
modular objective function captures the notion of a utility
function with diminishing returns, and it arises naturally
in many applications [14,17–19]. As an example (one
which is used in our experiments), we consider

FðSÞ ¼
X

c2CðSÞ

sizeðcÞ
1þminu2Sftuc & tcg

; ð1Þ

where CðSÞ denotes the set of cascades joined by users in S.
FðSÞ yields large values when users in S join many impor-
tant cascades with small time delay. It is easy to verify that
Eq. (1) meets all of the conditions in Definition 1.

The above definition contains a major difference from
those in existing works [18,19]; i.e., here, we do not have
the complete knowledge of G, neither topology nor
cascades. In practice, we are only allowed to explore G by
querying each user by account ID one at a time through
the OSN APIs, e.g., SELECT ⁄ FROM USERS WHERE UID = ID,
equivalently.2 When a user u is queried, the cascades he has
joined and his neighbours are returned simultaneously. We
assume a query incurs one unit query cost. Therefore, exist-
ing works [18,19] actually implicitly assume that we have
collected the complete data (by traversing the
whole account ID space). As a result, their methods are
often unfeasible and suffer from drastically expensive query
costs.

3.3. Submodularity and greedy algorithm (GA)

Even when the complete data are available, maximizing
a submodular function is proven to be NP-complete
[44,14]. The non-decreasing submodular property of F
allows us to use a greedy algorithm (GA) to obtain an
approximate solution that is at least 1& 1=e ( 63% of the
optimal solution [44]. GA is well studied and it can be sta-
ted as follows. It runs for at most B rounds to obtain a set S
of size jSj 6 B. In each round, it selects a node s 2 V n S that
maximizes the reward gain, dsðSÞ , FðS [ fsgÞ & FðSÞ, and
inserts s into S in this round. This process repeats for at
most B rounds until jSj ¼ B or dsðSÞ ¼ 0.3 The computational
complexity of this algorithm is OðnBÞ. However, for a very
large population n, even GA is still inefficient.

To improve its efficiency, Minoux [33] proposed the
Accelerated Greedy (AG) approach to reduce the calcula-
tions of dsðSÞ in each round by further utilizing the sub-
modularity of F (also called the Cost-Effective Lazy
Forward approach, or CELF, in [18]). The basic idea is that
the reward gain of a node in the current round cannot be
higher than its gain in previous rounds, i.e., if k > l, then
dsðSkÞ 6 dsðSlÞ; 8s 2 V n Sk (where Sk is the set of selected
nodes after round k). Unfortunately, AG and CELF do not
guarantee an improvement in computational efficiency,
and, in the worst case, it is as inefficient as the naive
greedy approach [33]. To make matters even worse, GA is
not suitable for our setting, as it requires complete

knowledge of G, which is practically impossible to acquire
for real-world OSNs.

3.4. Two ground-truth datasets as testbeds

Before we move forward, we introduce two real-world
datasets that will be used as ground-truth data in this work
(see Table 1). Sina Weibo (http://weibo.com), which is sim-
ilar to Twitter, is one of the most popular microblogging
sites in China. We collect a small portion of the Weibo
network using the breath-first-search method along the
follow relationships. We store the tweets of each user that
were tweeted between January 1, 2012 and September 1,
2012. URL links and hashtags contained in these tweets
are extracted and considered the representation of
cascades. In other words, if two tweets tweeted by two
users contain the same hashtag or URL link, then the two
users have joined the same cascade. Another dataset is
from Twitter. This dataset contains a large fraction of
network and tweet data from Twitter in June 2009, which
are from [1,45] respectively. Similar to our handling of
Weibo, URL links and hashtags contained in tweets are
extracted to form cascades.

4. Motivation for a randomized framework and
empirical evidence

In this section, we first discuss the motivation behind a
randomized framework, which is simple at this stage and
will be enriched in the following sections. Later, we con-
duct measurements on two real-world datasets to support
our claim.

4.1. A randomized framework

We consider a simple randomized framework compris-
ing the following two steps:

Step 1: A set of nodes is randomly sampled from the
network.
Step 2: Followees are chosen from these sampled nodes.

If we sample all of the nodes in the network in Step 1,
the above framework becomes solving the original prob-
lem with complete data. Therefore, this framework is gen-
eral. Here, we are interested in how Step 1 impacts the
quality of solutions obtained in Step 2. Suppose the opti-
mal followees are uniformly distributed in the network;
then, after Step 1, these optimal nodes are included in sam-
ples (uniformly sampled) with the same probability. As we
will show in the next section, we can prove that the final
solution quality is lower bounded for this case. However,
if we are able to sample the optimal nodes with higher
probability than that of uniform sampling, then the quality
of samples obtained during Step 1 will be improved, and
we can obtain a much-improved solution in Step 2.

Here, we claim that good followees are correlated with
nodes of high centrality in networks. Therefore, they can be
sampled with higher probability if we prefer to sample
high centrality nodes. The reason for this is that high

2 In Sina Weibo, given a user ID, we obtain his tweets and neighbours via
accessing http://weibo.com/u/ID.

3 Once dsðSÞ ¼ 0, GA obtains the optimal solution [44].
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centrality nodes are located at important positions of the
network and they are more likely to participate in cas-
cades. Although there are many node centrality measures
[46], we use the degree centrality due to its simplicity.
To support our claim, we conduct measurements on two
real-world datasets in the follow subsection.

4.2. Empirical observations on Sina Weibo and Twitter

We first show that high degree nodes can detect many
cascades. We measure the probability of a node with
degree d joining a cascade, which can be expressed as
follows

ProbabilityðdÞ ¼ 1
ndjC 0j

X

c2C0 ;u2V

1 tuc <1^ du ¼ df g:

Here, 1 )f g is the indicator function, nd is the number of
nodes with degree d; du denotes the degree of node u,
and C0 # C. We set C0 to be the top 0:1% largest cascades,
top 1% largest cascades and all cascades. Fig. 1 shows the
probability with respect to degree d. From the figure, it is
clear that higher degree nodes are more likely to join
cascades than smaller degree nodes. Therefore, choosing
higher degree nodes as followees can result in the discov-
ery of more cascades.

We next show that high degree nodes can discover
cascades in a timely fashion. We measure the probability
of a node with degree d joining a cascade within some time
delay Dt. That is

ProbabilityðdÞ ¼ 1
ndjCj

X

c2C;u2V

1 tuc & tc 6 Dt ^ du ¼ df g:

We set Dt to be 1 day, 1 h, and 30 min. Fig. 2 shows the
results. Generally speaking, high degree nodes are more
likely to join cascades earlier than small degree nodes

(although with a large variance). Therefore, high degree
nodes can discover cascades in a timely manner.

In conclusion, empirical evidence indicates that there
does exist a correlation between good information sources
and high centrality nodes in OSNs; therefore, our previous
claim is supported. Now, we are ready to show that such a
simple randomized framework can guarantee both
solution quality and computational efficiency due to sub-
modularity of the reward function and the birthday para-
dox. The detailed analysis will be covered in the next
section.

5. Analysing the randomized framework under the
worst-case situation

In this section, we study the solution quality and com-
putational efficiency of the randomized framework intro-
duced in the previous section. Our purpose is to
demonstrate that this simple randomized framework can
lower bound the solution quality and guarantee computa-
tional efficiency. We analyse its solution quality lower
bound by randomizing a well-studied greedy algorithm
(GA) and show its computational efficiency by exploiting
the birthday paradox.

5.1. Randomizing the greedy algorithm

Because we are allowed to query nodes in an OSN
through their account IDs, if we know the scope of the
account ID range,4 we can randomly generate test IDs in this
range and easily test their validity by polling them on OSNs.
This way, we can construct a set of node samples X # V with

Table 1
Ground-truth datasets.

Dataset Nodes Edges Cascades Time

Sina Weibo 339,130 1,697,888 11,439,756 January–August 2012
Twitter 1,705,243 21,639,326 7,077,596 June 2009
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(a) SinaWeibo (b) Twitter

Fig. 1. Probability of a user joining a cascade, in the top 0.1%, 1% largest and all cascades, respectively.

4 For example, a valid Weibo user has an identity code of 10 digits
ranging from ‘‘1000000000’’ to ‘‘5058913818’’ by March 25, 2014.
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sufficient size. To imitate GA, we consider executing Steps 1
and 2 iteratively, and this forms our randomized greedy algo-
rithm (RG), which is described in Algorithm 1.

Algorithm 1. Randomized greedy algorithm (RG)

In the original GA, at round k, one selects a node s*k from
V n Sk&1 to maximize the reward gain dsðSk&1Þ. In RG, at each
round k, we generate a set of node samples Xk # V n Sk&1

and select s*k from Xk to maximize dsðSk&1Þ. As X ! V n S
in each round,5 the performance of RG can be arbitrarily
close to that of GA.6 RG has two advantages over GA: (1) it
does not require complete knowledge of G; and (2) it is
n=jXj times faster than GA.

It is known that GA has an approximation factor
1& 1=e, i.e., the value of the GA solution is at least
1& 1=e ( 0:63 times the optimal value. The following the-
orem states that RG has a similar performance bound.

Theorem 1 (Lower bound on solution quality of RG). Let OPT
denote K 6 B optimal nodes of the problem, and
Sk ¼ fs*1; . . . ; s*kg be the set of nodes obtained by RG after k
rounds, 1 6 k 6 B. Suppose X is uniformly sampled from V;
then, there exists a constant k P jXj=n, s.t.

E FðSBÞ½ %P E FðSKÞ½ %P 1& 1
ek

! "
FðOPTÞ:

Proof. By utilizing the non-decreasing property of reward
function F, we have

FðOPTÞ & FðSk&1Þ 6 FðOPT [ Sk&1Þ & FðSk&1Þ
¼ FðOPT n Sk&1 [ Sk&1Þ & FðSk&1Þ: ð2Þ

Assume OPT n Sk&1 ¼ fz1; . . . ; zJg; J 6 K , let j ¼ 1; . . . ; J, and
define

Zj , FðSk&1 [ fz1; . . . ; zjgÞ & FðSk&1 [ fz1; . . . ; zj&1gÞ: ð3Þ

Then Ineq. (2) becomes

FðOPTÞ & FðSk&1Þ 6
XJ

j¼1

Zj: ð4Þ

In order to obtain the expectation of FðSk&1Þ, we require the
expectation of Zj. According to Eq. (3) and the submodular-
ity of F, we have

E Zj
# $
6 E FðSk&1 [ fzjgÞ & FðSk&1Þ

# $
¼ E dzj ðSk&1Þ

h i
: ð5Þ

In fact, E dzj ðSk&1Þ
h i

is upper bounded by E ds*
k
ðSk&1Þ

h i
=k

where 0 < k 6 1 is a constant. To see this, we define two
sets C1 and C2 by

C1 , fX : 9x 2 X ^ dxðSk&1ÞP dzj ðSk&1Þg 8j;

C2 , fX : 8x 2 X ^ dxðSk&1Þ < dzj ðSk&1Þg 8j:

Let k , PðX 2 C1Þ, and note that

k ¼ PðX 2 C1ÞP Pðzj 2 XÞ ¼ jXj
n& kþ 1

P
jXj
n
: ð6Þ

Now,

E ds*
k
ðSk&1Þ

h i
¼ E FðSk&1 [ fs*kgÞ & FðSk&1Þ

# $

¼ PðX 2 C1ÞE FðSk&1 [ fs*kgÞjX 2 C1
# $

þ PðX 2 C2ÞE FðSk&1 [ fs*kgÞjX 2 C2
# $

& E FðSk&1Þ½ %

¼ PðX 2 C1ÞE ds*
k
ðSk&1ÞjX 2 C1

h i

þ PðX 2 C2ÞE ds*
k
ðSk&1ÞjX 2 C2

h i

P PðX 2 C1ÞE ds*
k
ðSk&1ÞjX 2 C1

h i

P kE dzj ðSk&1Þ
h i

:

Finally, from Eq. (5) we get

E Zj
# $
6 E dzj ðSk&1Þ

h i
6 1

k
E ds*

k
ðSk&1Þ

h i
:
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Fig. 2. Probability of a user joining a cascade within 1 day, 1 h and 30 min, respectively.

5 We sometimes omit subscript k if there is no ambiguity.
6 However, we cannot guarantee whether RG is better or worse than GA

due to the approximation nature of GA.
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Combining with Eq. (4), we get the following iterative
formula,

FðOPTÞ & E FðSk&1Þ½ % 6
XJ

j¼1

E Zj
# $
6 K

k
E FðSkÞ & FðSk&1Þ½ %;

from which we can derive the following relationship,

E FðSkÞ½ %P 1& 1& k
K

! "k
" #

FðOPTÞ:

Finally, letting k ¼ K , and using the non-decreasing prop-
erty of F, we have

E FðSBÞ½ %P E FðSKÞ½ %P 1& 1& k
K

! "K
" #

FðOPTÞ

P 1& 1
ek

! "
FðOPTÞ: !

Theorem 1 exploits the non-decreasing submodular
property of the reward function and illustrates that the
proposed randomized framework can obtain quality guar-
anteed solutions when samples are uniformly picked from
the OSN. Due to the lack of complete data, the solution
quality lower bound for RG is smaller than that of GA,
and, more importantly, Theorem 1 describes the method
to improve the solution quality of RG. The performance
lower bound is related to the parameter k, which relates
to the probability of including an optimal node in the
sample set X (see Ineq. (6)). Therefore, if we can increase
this probability, we can obtain better solutions. As dis-
cussed in Section 4, this can be achieved by including
high centrality nodes (e.g., high degree nodes) in samples
because high centrality nodes are more likely to be opti-
mal nodes; then, the solution quality lower bound of RG
increases.

Because RG is n=jXj times faster than the naive GA, a
too-large sample size will harm RG’s computational
efficiency. In the following, we show that the sample size
needs not be very large according to the birthday paradox
argument.

5.2. Quantifying the sample size via cover ratio analysis

To determine the sample size, we need a relation
between FðSÞ and jXj. However, establishing such a relation
is non-trivial. Here, we determine jXj by quantifying the
overlap between samples

SK
k¼1Xk and OPT. Let g denote

the ratio of nodes in OPT covered by samples
SK

k¼1Xk, i.e.,
g , 1

K j
SK

k¼1Xk \ OPTj. Intuitively, if the samples used in
RG can cover a large fraction of nodes in OPT, we can find
a good solution with high probability. To show that RG
does guarantee a lower bound for the cover ratio g using
only moderate-sized samples, we first study the probabil-
ity that at least x nodes in the set OPT fall into set X in
one round of RG. Remember that jV j ¼ n and jOPTj ¼ K;
therefore,

ProbfjX \ OPTjP xg ¼
XK

i¼x

K
i

! "
n& K
jXj& i

! "

n
jXj

! " :

Let x ¼ 1 and the expression above becomes

ProbfjX \ OPTjP 1g ¼ 1& ð1& K=nÞjXj:

If we want to guarantee that the above probability is at
least p, i.e., that X can cover at least one node in OPT with
probability at least p, we finally obtain

jXjP lnð1& pÞ
lnð1& K=nÞ

% &
:

Fig. 3 shows the relation between the smallest sample
size jXj and K=n with p ¼ 0:90;0:95 and 0:99. One interest-
ing observation is that sample size drops quickly when K=n
varies from 0 to 0.01; this shows that we do not need very
large samples if OPT is moderate in size. For example, if we
want to make sure that at least one node in OPT falls in X
when K=n ¼ 0:01, then one only needs to generate 458
samples, and the resulting success probability is greater
than 0.99. This is a counter-intuitive result that is related
to the birthday paradox.

The above result can be generalized to the situation of
covering at least one node in a subset of a set of size n,
where the subset contains a fraction a of the nodes of
the set. To guarantee that this event occurs with probabil-
ity at least p, we can use nXða; pÞ samples, where

nXða; pÞ ¼
lnð1& pÞ
lnð1& aÞ

% &
:

Now we show that RG can bound the cover ratio g with
only moderate-sized samples in each round. It is important
to note that as the RG algorithm proceeds, the fraction of
uncovered nodes in OPT shrinks, and therefore one needs
more samples to guarantee the cover probability p. Never-
theless, the following theorem shows that even if we use
fixed size samples in each round, the cover ratio g after K
rounds is still bounded.

Theorem 2 (Lower bound on the cover ratio). Given a and p,
if we use nXða; pÞ samples in each round of RG to cover K
optimal nodes, then, after K rounds in RG, we have

E g½ %P
1& 1

epb ; b 6 1;
1& 1

be1&ð1&pÞb ; b > 1;

(

whereb ¼ K
an
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Fig. 3. The smallest sample size. Inset shows the same plot ranging from
0:001 to 0:01.
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Proof. Let yk denote the number of nodes in OPT that have
been covered after the k-th round and !yk be its expectation.
Further, let qk denote the probability that an uncovered
node in OPT will be covered in the k-th round. Then !yk

satisfies
!yk ¼ !yk&1 þ qk: ð7Þ

+ Case 1: b 6 1
In this case, an P K , it means that using nXða; pÞ sam-
ples can only guarantee that the probability of covering
a larger set of size an P K is larger than or equal to p.
At round k, an uncovered node in OPT belongs to a
set of size an ¼ K=b with probability ðK & !yk&1Þ=an ¼
bðK & !yk&1Þ=K . Therefore,

qk P pb
K & !yk&1

K
:

Substituting this into Eq. (7), yields

!yk P !yk&1 þ pb
K & !yk&1

K
;

which can be solved to yield

!yk P 1& pb
K

! "k

!y0 þ K 1& 1& pb
K

! "k
" #

¼ K 1& 1& pb
K

! "k
" #

P K 1& 1
ekpb=K

! "
: ð8Þ

Setting k ¼ K , yields

E g½ % ¼
!yK

K
P 1& 1

epb
:

+ Case 2: b > 1
In this case, using nXða; pÞ samples can guarantee the prob-
ability of covering a set of size an < K. Since jOPTj ¼ K , for
the first few rounds in RG, we are always able to cover at
least one node in OPT with probability greater than or
equal to p, until jOPT n Sk* j ¼ an, where k* can be deter-
mined by

k* ¼ K & an
p

¼ Kðb& 1Þ
bp

:

Hence, in the first k* rounds, we have covered K & an
nodes in OPT with probability at least p. After k*, we
can use only K & k* rounds to cover the remaining
an ¼ K=b nodes with sample size nXða; pÞ. This situation
has been discussed in Case 1 (replacing K by K=b and k
by K & k* in (8)). Therefore,

!yk P K & K
b
þ K

b
1& 1

e1&ð1&pÞb

! "
¼ K & K

be1&ð1&pÞb :

Hence,

E g½ % ¼
!yK

K
P 1& 1

be1&ð1&pÞb : !

We depict the relation between E g½ % and b in Fig. 4.
When b increases (or a decreases and, therefore, sample
size increases), we observe that the cover ratio increases.
As an illustration, to cover a set containing K nodes, if we

set a ¼ K=n and p ( 1, we can obtain a cover ratio of
63%; if we reduce a to K=ð2nÞ, the cover ratio increases
to 82%. In practice, we can use Theorem 2 to determine
the sample size guaranteeing a proper coverage on OPT,
and the sample size needs not be too large. Therefore,
our randomized framework is computationally efficient.

In conclusion, our analysis in this section demonstrates
that the randomized framework can guarantee both solu-
tion quality and computational efficiency under the condi-
tion that user samples are sampled uniformly at random.
Note that this condition actually is the worst-case situation
because we do not use any strategy in sampling nodes. In
fact, we can explore structural properties of OSNs to obtain
high quality samples, which we discuss in the next section.

6. Benefiting from power-law networks

Power-law networks (i.e., the fraction of degree-d
nodes in the graph is proportional to d&c, where c is a
constant) are very common in real world such as online
social networks, biological networks, citation networks
and communication networks. In this section, our goal is
to show that power-law structures can bring extra bene-
fits to the randomized framework by investigating the
patterns of cascading diffusion processes on power-law
networks. Our result reveals that power-law networks
can easily cause collisions between diffusion processes
and a simple random walk sampler when the network
structure satisfies some mild conditions, i.e., the network
has high degree moments. Therefore, the result indicates
that the randomized framework in conjunction with a
random walk sampler can detect information cascades
effectively in such networks.

6.1. Diffusion models

Our analysis is focused on three diffusing models for
they generalize a large variety of diffusion processes in real
world. We briefly describe them here.

+ Random Walk (RW) model. Petition letter delivering
[47] and drug smuggling [48] are examples of diffu-
sions that the total amount of the diffusible objects
does not change over time (e.g., there is always one
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Fig. 4. Cover ratio lower bound.
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letter or one package of drug on the network while
diffusing). We model this kind of diffusion, called con-
servative diffusion [49], by a simple random walk. That
is, a diffusible object starts from an initial infected
node, and recursively, it infects a randomly chosen
neighbour and moves to that node at the next step.
+ Independent Cascade (IC) model. The IC model is widely

used to model information cascades in social net-
works [17,43], such as tweets retweeting and videos
sharing in OSNs. In the IC model, each cascade starts
from an initial seed. When node u first becomes
active at step t, it is given only one chance to activate
its neighbours NbðuÞ with success probability puv
where v 2 NbðuÞ. If u succeeds in activating v, then
v will become active at step t þ 1; but whether u suc-
ceeds, it cannot make any further attempts to activate
its neighbours.
+ Susceptible-Infective (SI) model. The SI model is widely

used in epidemiology [50, Chapter 9]. In the network
scenario, we consider a variation of the common SI
model. In this model, at each time step, an edge
ðu;vÞ 2 E, that connects an infective node u and a sus-
ceptible node v, is chosen uniformly at random; then,
node v becomes infected at this time step. This process
repeats until all nodes are infected. The difference
between the SI model and the IC model is that, an
infected node in the SI model can keep on infecting its
susceptible neighbours.

6.2. Observations from diffusion models

To motivate our further analysis, we first simulate
these models on the HEPTH citation network (refer to
Table 2). The fractions of infected nodes by diffusions
are controlled: for the RW and SI model, we stop the dif-
fusions after having infected 1%, 5% and 10% nodes; for
the IC model, we set puv ¼ 0:01; 0:012 and 0:015 on each
edge. We depict the degree distribution of the original
graph, and compare it with the degrees of the uninfected
nodes after diffusions in Fig. 5. We observe that when
more nodes are infected, the tails of CCDF curves drop
more quickly than the heads. This indicates that large
degree nodes are easier to be infected than small degree
nodes, which is consistent with our claims in Section 4.
Therefore, if a sampler can sample large degree nodes
with higher probability, it has higher chance to discover
a cascading diffusion. Random walk (RW) is such a sam-
pler that prefers to visit large degree nodes in networks.
In the following discussion, we theoretically show why
a RW sampler can effectively discover diffusions in
power-law networks, and one condition that the network
should satisfy.

6.3. Using A RW sampler to probe diffusions

Let I denote the set of infected nodes, and Id # I is the set
of infected nodes of degree d. Let R denote the set of nodes
visited by a RW sampler, and Rd # R is the set of visited
nodes of degree d by RW. Let i; id; r and rd denote their
cardinalities respectively. Then the probability that a RW
sampler fails to discover the diffusion is

PðR \ I ¼ ;Þ ¼
Y

d

PðRd \ Id ¼ ;Þ: ð9Þ

Furthermore, remember that nd is the number of nodes
of degree d in the graph. We obtain

PðRd \ Id ¼ ;Þ ¼

0 rd þ id > nd;

nd & id

rd

! "

nd

rd

! " otherwise:

8
>>>>><

>>>>>:

Substituting it to Eq. (9), we have

PðR \ I ¼ ;Þ 6
Y

d

nd & id

rd

! "

nd

rd

! " 6
Y

d

1& id

nd

! "rd

: ð10Þ

A RW sampler visits a node of degree d with probability
dhd=hdi in G, where hd is the fraction of nodes of degree d
in the graph, and hdi denotes the average degree of nodes
in G. For an l-length random walk, it contains ldhd=hdi
samples of degree d. Note that these samples may have
duplicates because a node may be visited more than one
time by the random walker. Nevertheless, it can be proven
that the number of duplicated nodes can be ignored when l
is small [51], i.e., l ( r. Therefore, rd ( ldhd=hdi, and Eq. (10)
becomes

PðR \ I ¼ ;Þ 6
Y

d

1& id

nd

! "ldhd=hdi

:

If we want to guarantee that the above probability is smal-
ler than !, we have

l P
log !

P
d

dhd
hdi log 1& id

nd

' ( ¼ log !
P

d
dhd
hdi log 1& iqd

nhd

' ( , llow; ð11Þ

where qd ¼ id=i, is the fraction of infected nodes of degree
d.

Consequently, llow is the minimum number of steps a
walker should walk. If llow is small, we can conclude that
the RW sampler is effective to discover the cascading diffu-
sions. Note that several factors will impact llow: (a) the
degree distribution of G, i.e., fhdgd>0; (b) the fraction of
infected nodes i=n; and (c) fqdgd>0. Among them, we are
most interested in (c). qd ¼ id=i describes the fraction of
infected nodes of degree d, and it is closely related to the
nature of a diffusion model. We refer fqdgd>0 as the diffu-
sion profile of a diffusion model. In order to understand
the value of llow, we need to calculate the diffusion profiles
for different models.

Table 2
Summary statistics of networks.

Network HEPTH Enron Slashdot Gnutella

Nodes 27,400 33,696 77,360 62,586
Edges 352,040 180,811 507,833 147,892
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6.3.1. Diffusion profile for the RW model
The RW model has a very simple diffusion profile, i.e.,

qðRWÞ
d ¼ dhd=hdi. Using the Taylor series logð1& xÞ ¼
&
P1

j¼1xj=j, for 0 6 x < 1, Eq. (11) becomes

lðRWÞ
low ¼ & log !

P1
j¼1

1
j

i
n

) *jP
d

dhd
hdi

qðRWÞ
d
hd

! "j ¼
& log !

P1
j¼1

1
j

i
n

) *j hdjþ1i
hdijþ1

:

For power-law networks, we know that hdji converges
only when scaling exponent c P jþ 1. Empirically, it is
known that 2 6 c < 3 in real-world networks [52,53]. This
indicates that hdjþ1i; j P 1, will increase drastically as the
maximum degree of the network increases, and causes
lðRWÞ
low to be small in real-world networks.

6.3.2. Diffusion profile for the IC model
Next we provide a mean-field analysis for fqðICÞd gd to

facilitate numerical calculation on a given network since
there is no closed form solution for qðICÞd and lðICÞlow in the case
of IC model.

For the IC model, uninfected nodes can only be infected
by active nodes (i.e., nodes become infected at last step).
Let pdðtÞ be the fraction of active nodes of degree d at step
t. By definition, we have pdðtÞ ¼ ½idðtÞ & idðt & 1Þ%=nd. Under
the configuration model [54], the probability, that a node
of degree d is connected to a node of degree h, is
pdh ¼ dh=ð2mÞ. Then a node of degree d will have nhpdh

neighbours of degree h on average. (It is easy to verify thatP
hnhpdh ¼ d.) Since a node of degree h got infected at step t

has probability phðtÞ, a node of degree d will have on aver-
age nhpdhphðtÞ active neighbours of degree h at step t. Thus,
a node of degree d becomes infected at step t þ 1 with
probability 1&

Q
hð1& pÞnhpdhphðtÞ (assume puv ¼ p;8u;v).

Finally, we obtain the probability that a randomly chosen
node of degree d becomes active at step t þ 1 by

pdðt þ 1Þ ¼ 1& idðtÞ
nd

! "
1&

Y

h

ð1& pÞnhpdhphðtÞ

 !
; ð12Þ

where the first item 1& idðtÞ=nd is the probability that a
randomly chosen node of degree d is not infected at
previous steps. Thus far, we obtain the total infected nodes
till step t þ 1 by

idðt þ 1Þ ¼ idðtÞ þ ndpdðt þ 1Þ: ð13Þ

The fraction of nodes of degree d in the infected nodes at
step t, i.e., the diffusion profile, can be readily obtained by

qðICÞd ðtÞ ¼
idðtÞP
didðtÞ

: ð14Þ

Combining Eqs. (12)–(14), we can numerically calculate
qðICÞd for a given graph with initial condition pdðtÞjt¼0 given,
and lðICÞlow is obtained by Eq. (11).

6.3.3. Diffusion profile for the SI model
In the SI model, because an infectious node can keep on

infecting the susceptible neighbours at every time step,
then the probability, that a node of degree d is infected
at step t, is pdðtÞ ¼ idðtÞ=nd. At time step t þ 1, an edge
ðu;vÞ 2 E s.t. u 2 IðtÞ and v 2 V n IðtÞ is chosen uniformly
at random. According to the inspection paradox [55], the
probability that node v has degree d is

qdðt þ 1Þ ¼ dhdð1& pdðtÞÞP
hhhhð1& phðtÞÞ

: ð15Þ

Then, the fraction of infected nodes of degree d after
step t þ 1 is

pdðt þ 1Þ ¼ pdðtÞ þ
qdðt þ 1Þ

nd
: ð16Þ

Finally, the diffusion profile of SI model is

qðSIÞ
d ðtÞ ¼

ndpdðtÞP
hnhphðtÞ

: ð17Þ

Combining Eqs. (15)–(17), we can numerically calculate
qðSIÞ

d for a given graph with given initial condition pdðtÞjt¼0,
and lðSIÞ

low will be obtained by Eq. (11) thereafter.

6.4. Numerical solutions for the minimum number of steps

We consider different networks such as citation net-
work HEPTH, communication network Enron, social net-
work Slashdot, and P2P technology network Gnutella,
and we numerically calculate llow on these networks. A
brief summary of these networks is given in Table 2. All
the four networks reveal power-law degree distributions
(Fig. 6(a)), but with different moment distributions
(Fig. 6(b)). Note that Gnutella has smaller moments than
the others.

For each network and diffusion model, Fig. 7 depicts llow

with respect to the fraction of infected nodes i=n under
three different !’s. We can observe that when more nodes
become infected (i.e., i=n increases), RW sampler is easier
to discover the diffusion process (i.e., llow drops quickly).
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Fig. 5. An example on the HEPTH network. Degree distributions of the original graph, and uninfected nodes in the graph under different diffusion models
(averaged over 50 runs).
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Comparing the Gnutella network with the other networks,
we find that the sampler needs relatively longer steps to
discover the diffusion process because the Gnutella net-
work has smaller moments than the others (as shown in
Fig. 6(b)).

In summary, we demonstrate that the RW sampler can
easily discover cascading diffusion processes in power-law
networks with large degree moments, and actually, this
condition is easily satisfied in real-world OSNs due to the
divergences of hdji; j P 2 when 2 6 c < 3. Therefore, the
randomized framework in conjunction with a RW sampler
can detect information cascades effectively in real-world
OSNs.

7. Experiments

In this section, we conduct experiments to verify the
previous analysis. The goal is to demonstrate the efficiency
of the randomized method and the trade-off between

solution quality and computational efficiency. We first
introduce our evaluation methods, and then analyze the
experimental results based on the two ground-truth
datasets which we have introduced in Section 3.

7.1. Evaluation methods

7.1.1. Solution quality evaluation method
Because it is difficult to obtain an optimal solution OPT,

we compare our solution quality with the solution
obtained by GA on complete ground-truth data. Since our
method only uses incomplete data, its solution quality is
usually worse than that of GA. Thus, we mainly evaluate
how close our method can approximate GA, e.g., within
90% or 95% to GA.

7.1.2. Computational efficiency evaluation method
We use the number of times of calculating reward gains

to measure the time complexity of a method. The naive GA
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requires OðnBÞ calculations, and hence we can evaluate the
speed-up of a method A in terms of the reduction of reward
gain calculations with respect to naive GA, by

Speed-upðAÞ¼ #of calculationsof rewardgainbynaiveGA
#of calculationsof rewardgainbymethodA

:

We will compare RG with two state-of-the-art methods AG
and CELF, which are two most efficient implementations of
GA. Note that AG and CELF are actually the same, so we
only compare RG with AG.

7.2. Experiments on Sina Weibo and Twitter

7.2.1. Evaluating RG under the worst-case situation
In the first experiment, we implement RG as described

in Algorithm 1. In each round of RG, we use a smaller sam-
ple size nXðK=n;0:9Þ at each round that guarantees about
59% of coverage on OPT, and a larger sample size
nXðK=ð2nÞ;0:9Þ at each round that guarantees about 78%
of coverage on OPT, respectively. We compare the solution
quality and computational efficiency, and these results are
shown in Fig. 8.

In Fig. 8(a) and (c), because AG uses the complete data,
it achieves the highest reward. RGs in fact also perform
very well, which are within 95% to AG, and if we increase
the sample size with guaranteed cover ratio changing from
59% to 78%, the performance of RG also improves
significantly.

The main appeal of the randomized framework is that it
is more computationally efficient than the other state-of-
the-art methods. In Fig. 8(b) and (d), we compare the
speed-up of RG and AG with naive GA. Firstly, we observe
that RGs are faster than AG. Secondly, it is much faster than
naive GA on both datasets. If we increase the sample size
used in each round (and cover ratio increases accordingly),
RG becomes slower. Therefore, cover ratio can be used to
trade off between the solution quality and computational
efficiency in RG.

In fact, the superiority of RG’s efficiency is not obvious
from Fig. 8(b) and (d); i.e., RG is only about two times fas-
ter than AG. This is because we do not implement RG in an
efficient manner. RG can also be implemented more effi-
ciently by exploiting the submodularity of reward function
as AG and CELF do. So what we observe here is actually the
worst-case performance of RG, and it is still more efficient
than state-of-the-art methods. We will see RG’s true power
of efficiency in the following experiments.

7.2.2. A more efficient implementation of RG and using node’s
attributes

In here, we explore a more efficient implementation of
RG. In particular, we mimic the AG and CELF in having a
lazy update in reward gains. Moreover, instead of sampling
in each round, we conduct the sampling procedure at the
very beginning and choose final nodes from enough sam-
ples. We call such a form of sampling as batch sampling,
and it is easy to prove that this modification will improve
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Fig. 8. Performance of RG with respect to different sample size (averaged over 50 runs).

J. Zhao et al. / Computer Networks 75 (2014) 544–559 555



1.0

1.5

2.0

2.5

3.0

3.5

 200  400  600  800  1000  1200  1400

F 
(S

)

Query costs

95%
90%

x105

AG with complete data
RG (uniform)
RG (degree)
RG (activity)

(a) Reward (Weibo S 100)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 200  400  600  800  1000  1200  1400

Sp
ee

d-
up

Query costs

x104
AG with complete data

RG (uniform)
RG (degree)
RG (activity)

(b) Speed-up (Weibo)

0

2

4

6

8

10

 200  400  600  800  1000  1200  1400

F 
(S

)

Query costs

95%
90%

x103

AG with complete data
RG (uniform)
RG (degree)
RG (activity)

(c) Reward (Twitter S 100)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

 200  400  600  800  1000  1200  1400

Sp
ee

d-
up

Query costs

x106
AG with complete data

RG (uniform)
RG (degree)
RG (activity)

(d) Speed-up (Twitter)

Fig. 9. Improving sample quality by using node’s attributes (B ¼ 100, averaged over 50 runs).
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Fig. 10. Improving sample quality by exploring structure of networks (B ¼ 100, averaged over 50 runs).
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the solution quality lower bound because the probability of
including an optimal node increases in each round.

In this experiment, we fix B ¼ 100 and evaluate the per-
formance of RG with respect to query costs, i.e., sample
size. We consider three sampling strategies: (1) select a
node uniformly at random; (2) select a node with probabil-
ity proportional to its degree; and (3) select the node with
probability proportional to its activity (#posts). Fig. 9
shows the results.

In Fig. 9(a) and (c), we can see that the solution quality
increases as sample size increases, and sampling by degree
is the best strategy follows by sampling by activity, and
uniform sampling is the worst. From the speed-up curves
in Fig. 9(b) and (d), we can see that uniform node sampling
is the most efficient among the three strategies. All these
strategies are in general much more efficient than that of
AG, e.g., with 1000 query costs, RG is about 40 to 187 times
faster than AG.

7.2.3. Improving sample quality by random walk
We now evaluate the benefits of exploiting network

structures by using RW samplers. We set B ¼ 100 and con-
duct three RW samplers: (1) select a neighbour uniformly
at random; (2) select a neighbour with probability propor-
tional to its degree; and (3) select a neighbour with prob-
ability proportional to its activity. Fig. 10 shows the results.

Both the reward curves in Fig. 10(a) and (c) speed-up
curves in Fig. 10(b) and (d) shows similar results as in pre-
vious experiment: RW biased by degree generates the best
solution but at a higher computational cost, then follows
by activity, and uniform RW is the worst but the most effi-
cient. If we compare the reward curves in Fig. 9(a) and (c)
with Fig. 10(a) and (c), respectively, we can find that the
RW can obtain better reward than node sampling, which
coincides with our analysis in Section 6.

8. Summary and discussion

We summarize the paper in this section.
As the follow model is adopted by many OSNs, which

subset of followees one should follow is a practical prob-
lem for OSN users. In this work, we study the followee
selection problem for the purpose of maximizing informa-
tion coverage and minimizing time delay. In other words,
we want to detect important information in an OSN as
much as possible and as soon as possible by following a
few followees. However, this problem is NP-complete,
and we lack the complete OSN data. To solve these chal-
lenges, we design a randomized method that guarantees
both solution quality and computational efficiency.

The solution quality is guaranteed by exploiting the
non-decreasing submodular property of the reward func-
tion as stated in Theorem 1. The importance of Theorem 1
lies not only in its statements on the existence of a

solution quality lower bound of RG, but also in that it
describes the method to obtain better solutions, i.e., by
increasing the probability of including optimal followees
in samples.

The computational efficiency lies in the fact that RG can
leverage the birthday paradox to reduce the search space
significantly. Although we lose solution quality lightly, a
major speedup of computational efficiency can be
achieved. We also find that the power-law structure of
real-world networks can facilitate a random walk to detect
information cascades efficiently.

It is interesting to see how RG behaves when K=n! 0
(or B=n! 0). From Fig. 3, we observe that when K=n! 0,
the number of samples required in each round increases
drastically. Because a large sample size hurts RG’s compu-
tational efficiency, RG is not suitable for very small budget
B. For example, to select B ¼ 103 users from an OSN having
n ¼ 108 users, or B=n ¼ 10&5, we need to generate as many
as 105 samples in each round of RG.

Thus, we hasten to give an explanation. The aim of
introducing RG is not to replace but supplement existing
methods. The main contribution of RG is in significantly
reducing the search space, and it assists existing methods
to obtain the final solution from a reduced search space.
In practice, we should use the randomized method to
choose a small fraction of OSN users as candidates and then
use existing methods to choose final information sources
from candidates (because they guarantee better solution
quality), as illustrated in Fig. 11. In the previous example,
we can use RG to choose 0:1% of the population, or 105

users, as candidates, and then use existing methods to
choose 103 users from these candidates. A conservative
estimation of the computational efficiency reveals that this
approach is at least 103 faster than applying GA over the
entire OSN directly, without considering the expensive
query cost of GA.

One limitation of this work is that we assume every
user has the same cost of being followed, and thus we only
consider the optimization problem with a cardinality
constraint, i.e., jSj 6 B. In fact, different users usually have
different costs of being followed. For example, if a user
posts too many tweets, we need to spend much more time
or attention to read them if we choose to follow that user,
i.e., the cost is large. Therefore, a more general problem is
to consider that each user u has a cost cu, and the cardinal-
ity constraint is generalized to a knapsack constraint, i.e.,P

u2Scu 6 B. How to design a randomized method for such
a constraint offers an opportunity for future work.
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Appendix A. Notations and abbreviations

See Table A.3.
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tuc The time user u joins cascade c
tc Start time of cascade c
sizeðcÞ Size of cascade c; sizeðcÞ ¼ jfu : tuc <1gj
S; Sk Sets of selected nodes (after round k)
X;Xk Sets of node samples (in round k)
OPT An optimal node set
F A non-decreasing submodular function, Fð;Þ ¼ 0
dsðSÞ Reward gain, i.e., dsðSÞ ¼ FðS [ fsgÞ & FðSÞ
B Budget, i.e., jSj < B
K Number of nodes in OPT;K 6 B
g Cover ratio
a A subset contains a fraction items of a set
c The scaling exponent of power-law distribution
p Confidence probability
nXða; pÞ Number of samples to guarantee a cover ratio
du Degree of node u
nd Number of nodes of degree d in G
I; Id Sets of infected nodes (of degree d) by diffusions
R;Rd Sets of sampled nodes (of degree d) by random walk
i; id ; r; rd Cardinalities of sets I; Id;R, and Rd

GA Greedy algorithm
AG Accelerated greedy [33]
CELF Cost-effective lazy forward approach [18]
RG Randomized greedy
RW Random walk
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