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Abstract—In the domain of conversational recommendation sys-
tems (CRSs), the development of recommenders capable of eliciting
user preferences through conversation has marked a significant
advancement. These systems have been enhanced by incorporating
conversational key-terms related to items, which streamline the
recommendation process by reducing the extensive exploration that
traditional interactive recommenders necessitate. Despite these ad-
vancements, CRSs still face significant challenges. The vast number
of users and the difficulty in accurately capturing preferences
lead to persistent inaccuracies, even when direct user interactions
are employed to refine the understanding of user preferences.
To tackle these challenges, we propose two innovative bandit
algorithms: RCLUMB (Robust Clustering of Misspecified Ban-
dits) and RSCLUMB (Robust Set-based Clustering of Misspecified
Bandits). These algorithms employ dynamic graphs and evolving
cluster sets, respectively, to represent the changing structure of
user preferences, thus leveraging collaborative user preferences
to accelerate the learning process. Our algorithms are designed
to be resilient against errors in preference modeling and the re-
sulting inaccuracies in clustering. We rigorously analyze the per-
formance of our algorithms and establish regret upper bounds of
O(ε∗T

√
md log T + d

√
mT log T ) under milder assumptions

than previous works, matching the state-of-the-art results in several
degenerate cases. Through extensive experiments on synthetic and
real-world datasets, our algorithms demonstrate superior perfor-
mance over existing algorithms.

Index Terms—Misspecified model, online learning, conversation-
al recommendation, bandit feedback, clustering of bandits.

I. INTRODUCTION

R ECOMMENDATION systems have become a cornerstone
of user experience in digital platforms, harnessing user

behavior data to predict preferences with notable success across
e-commerce and social networking services, as evidenced by
giants like Amazon and TikTok [1]. The evolution of these
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systems has been further propelled by the integration of con-
versational capabilities, enabling a more dynamic elicitation of
user preferences through conversation [2], [3]. Unlike traditional
recommendation systems that rely on a predefined set of item
attributes, conversational recommenders can query users with a
variety of key-terms related to a broad spectrum of item charac-
teristics, thereby streamlining the recommendation process [3],
[4]. For instance, by inquiring about a user’s favorite cuisine, a
system can efficiently narrow down the selection of restaurants
to recommend.

Contextual linear bandits have been instrumental in refining
the personalization of recommendations by modeling the ex-
pected reward (e.g., click-through rate) as a linear function of the
interaction between item features and user preferences [5], [6],
[7]. By leveraging contextual information about both users and
items, these bandit algorithms can tailor recommendations to in-
dividual tastes [8]. Furthermore, CRSs enhance this approach by
soliciting explicit user feedback on certain key-terms, using this
conversational data to more accurately infer user preferences [9],
[10], [11]. However, in real-world recommendation platforms,
user bases are typically very large. Classical conversational
bandit methods designed for individual users struggle to scale
effectively to such extensive user bases, significantly slowing
the learning process in practical applications.

Collaborative filtering, through clustering of bandits (CB), has
been employed to capitalize on user relationships, allowing plat-
forms to provide faster and more precise recommendations [12],
[13]. Despite the success of existing CB algorithms, they operate
under the strong assumption that users within the same cluster
share identical preferences–an assumption that often does not
hold due to the diversity of individual tastes and interests [12],
[14], [15]. Additionally, both conversational linear bandits and
CB algorithms presuppose a perfectly linear reward model.
Nevertheless, this assumption may not align with the dynamic
reality of CRSs, where user preferences and environmental
factors are subject to change and uncertainty, leading to what
is termed as a “misspecified” model. Such misspecification can
cause significant deviations in reward predictions at both the
item and key-term levels [16], [17], emphasizing the need for
accommodating the inherent unpredictability and variability of
real-world data.

Recognizing the various, dynamic, and often misspecified
nature of user preferences, we introduce a new problem frame-
work for “online learning and clustering misspecified users
(OLCMU)” within CRSs. In OLCMU, we acknowledge that
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the expected reward model for each user within large user bases
may not be a perfectly linear combination of user preferences
and item features, allowing for additive uncertainty deviations.
We posit that users within the same unknown interest cluster
share common preferences, while permitting individual devia-
tions to capture the diversity of user personalities. This nuanced
approach to linearity and reward homogeneity within clusters
presents a complex set of challenges for OLCMU. The frame-
work must manage the uncertainty stemming from unknown
user preference vectors and model misspecifications. Robust
algorithms for the OLCMU problem must strike a delicate
equilibrium: it should exhibit sufficient flexibility to accom-
modate model misspecifications, thereby ensuring that users
with analogous preferences are clustered together to capitalize
on collaborative advantages. Simultaneously, it must maintain
a discerning approach to clustering, carefully distinguishing
between users to avoid the erroneous grouping of individuals
with markedly divergent preferences under the recommendation
process.

In summary, this article presents the following four key con-
tributions to the field of CRSs.

Innovative Model Formulation: We pioneer the formulation
of the OLCMU problem for CRSs. This model is grounded in
practicality, accommodating additive uncertainties in user inter-
actions with both items and conversational key-terms, reflecting
a more realistic scenario in user-system interactions.

Cutting-edge Algorithmic Design: We introduce two inno-
vative algorithms, RCLUMB (Robust Clustering of Misspeci-
fied Bandits) and RSCLUMB (Robust Set-based Clustering of
Misspecified Bandits). These algorithms effectively learn user
clusters despite preference model misspecifications and use this
collaborative data to quickly refine preference predictions. They
incorporate a conversational query strategy, utilizing interaction
history to select key-terms for exploration, and merge recom-
mendation and conversational data streams. RCLUMB updates a
user graph to reflect evolving clusters, while RSCLUMB handles
clusters through adaptable sets that evolve with the learning
process. To comprehensively address the OLCMU problem, we
present both graph-based and set-based solutions, showcasing
their effectiveness in handling misspecified users.

To navigate the complexities of user model misspecification,
our algorithms implement: i) A more tolerant edge deletion rule,
accounting for potential misspecifications, ensuring that similar
users remain connected. ii) A discriminative filtering approach
to cluster formation, which prevents the misclustering of users
by considering only those with sufficiently similar preferences.
iii) An expanded confidence radius that encompasses both the
exploration bonus and the additional uncertainty from misspec-
ification when recommending items.

Rigorous Theoretical Analysis: We establish regret upper
bounds for our algorithms at O(ε∗T

√
md log T + d

√
mT

log T ) within the OLCMU problem, predicated on more relaxed
and realistic assumptions than those typically found in bandit
literature [12], [13], [14]. These bounds are competitive with
the best results in specific scenarios. Our analysis diverges from
conventional methods, particularly in addressing the challenge
of regret due to misclustering users with similar but distinct

preferences. A key lemma is introduced to bound this regret
component (detailed in Section V), which may have broader
implications. We also give a regret lower bound of Ω(ε∗T

√
d)

for OLCMU, showing that our upper bounds are asymptotically
tight with respect to T up to logarithmic factors.

Good Experimental Performance: Through comprehensive
experiments on both synthetic and real-world datasets, our al-
gorithms demonstrate superior performance compared to ex-
isting algorithms, showcasing their practical effectiveness in
real-world CRS applications with misspecified users.

II. RELATED WORK

Bandits utilizing User Relationships: The seminal paper by
Gentile et al. [12] introduces the clustering of bandits (CB)
problem, presenting a graph-based algorithm to address it. Sub-
sequent work [18] expands on this by utilizing collaborative
effects on items to inform user clustering strategies. Li et al. [14]
further extend the CB framework to cascading bandits with
random prefix feedback. Another work [15] differentiates users
based on their varying arrival frequencies. Liu et al. [13] recently
proposes a federated bandits clustering approach, balancing
privacy concerns with communication efficiency. In [19], we
discuss a misspecified contextual bandit model; however, we
do not address the issue of dual misspecified feedback. Besides
these CB works, a pre-defined user adjacency graph is exploited
to share context among users [20], whereas CB typically requires
the discovery of user relationships.

Conversational Recommendation: Conversational recom-
mender systems (CRSs) have evolved to interact with users
by inquiring about their preferences [21]. Enhancements in
CRSs have been achieved through deep learning and rein-
forcement learning to generate dialogues and assist in recom-
mendations, albeit without theoretical guarantees [22], [23].
Recent advancements include the utilization of conversation
on key terms to refine user preferences [9]. Further develop-
ments involve incorporating additional information sources such
as relative feedback [10], self-generated key terms [24], and
knowledge graphs [25]. Beyond the bandit-based recommenda-
tion models, [26] explores policy learning by incorporating a
meta-exploration policy and a Transformer-based state encoder.
Additionally, [27] utilizes hierarchical information modeling.
There are also works leveraging natural language processing;
for instance, [28] integrates recommendations using knowledge-
enhanced prompt learning and applies a task-specific pre-trained
language model. [29] responds to evolving user preferences with
large language models. Price is considered in [30] based on
Attention. Unlike these works, our research focuses on learn-
ing unknown user relations via potentially misspecified bandit
feedback at both the arm and key-term levels.

Misspecified Linear Bandits: The concept of misspecified
linear bandits (MLB) is first proposed by Ghosh et al. [17],
highlighting the susceptibility of linear bandit algorithms to
deviations and introducing an algorithm robust to non-sparse
deviations. Lattimore et al. [31] offer two algorithms to ad-
dress general deviations, building upon the phased elimination
algorithm [32] and LinUCB [7]. Recent studies [33], [34] have
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employed model selection techniques to manage the unknown
maximum level of model misspecification. Notably, the work by
Foster et al. [34] assumes access to an online regression oracle,
and Pacchiano et al. [33] require knowledge of an upper bound on
the model deviation level. Our work is distinct in that it explores
the collaborative effect of clustering similar users under model
misspecifications.

Collaborative Learning Paradigms: Research in multi-task
learning [35], [36], [37], [38], meta-learning [39], [40], [41], and
federated learning [42], [43] has focused on jointly solving mul-
tiple tasks and sharing information among them. Unlike these
works, we assume an underlying unknown user clustering struc-
ture that the agent must infer to accelerate learning. Multi-task
learning studies [35], [36], [37], [38] consider task-relatedness
without user clustering, and to our knowledge, do not address
model misspecifications. Meta-learning research [39], [40], [44]
has introduced Bayesian hierarchical models for cross-task
knowledge sharing and Thompson Sampling-based algorithms
for optimizing Bayes regret. Federated learning works [42], [43]
focus on privacy protection and communication among servers.

Our contribution is pioneering the study of the Online Learn-
ing and Clustering Misspecified Users (OLCMU) problem,
proposing a comprehensive framework to handle model mis-
specifications in CB problems. Future work could integrate
model selection methods [33], [34] into our framework to ad-
dress the unknown maximum level of model misspecification. It
would also be intriguing to apply our approach and insights on
model misspecifications to multi-task learning, meta-learning,
and federated learning domains.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section formulates the problem framework of “online
learning and clustering misspecified users (OLCMU)”,1 as il-
lustrated in Fig. 1.

A. User Clusters With Potentially Misspecified Preferences

In the context of OLCMU, we consider a scenario with
u users, represented by the set U = {1, 2, . . . , u}. Each user
i ∈ U has an associated preference vector θi ∈ Rd, which is
unknown and satisfies ‖θi‖2 ≤ 1. The users can be grouped
into the same cluster based on the similarity of their preferences,
which remains unknown to the agent. More precisely, the user
set U is formulated to be partitioned into m clusters, with m
being significantly smaller than u (i.e., m & u). These clus-
ters are denoted by V1, V2, . . . , Vm, satisfying the conditions
∪j∈[m]Vj = U and Vj ∩ Vj′ = ∅ for all j += j′. We refer to
these clusters as ground-truth clusters, and we use the notation
V = {V1, V2, . . . , Vm} to represent the set of these clusters.
Within this framework, users belonging to the same ground-truth
cluster share a similar preference vector. Conversely, users from
distinct ground-truth clusters have unique preference vectors.

1Notation: lowercase boldface letters denote vectors, and CAPITALIZED
boldface letters denote matrices. The cardinality of a set A is denoted by |A|,
the set of the first m positive integers is denoted by [m], and the matrix norm of
a vector x with respect to a positive semi-definite (PSD) matrix M is denoted
by ‖x‖M =

√
x,Mx.

Fig. 1. Illustration of OLCMU. The recommender platform (agent) presents
a selection of items to the served users, who in turn provide feedback on these
offerings. The agent is also capable of engaging in direct conversations with
users to gain a deeper insight into their preferences. Users exhibiting similar
tastes are clustered together to facilitate the provision of more personalized ser-
vices. However, inaccuracies from misspecification may arise from both direct
conversations and feedback on item choices, potentially leading to erroneous
assessments of user preferences and groupings.

The common preference vector for users in cluster Vj is denoted
by θj . For any user i, let j(i) ∈ [m] indicate the ground-truth
cluster to which user i belongs.

At each round t ∈ [T ], a user it ∈ U arrives to be served. The
learning agent is presented with a finite set of arms At from
which to choose (i.e., item set), where each arm a ∈ At ⊆ A
is associated with a normalized feature vector xa ∈ Rd. The
learning agent (i.e., recommender) assigns user it to an appro-
priate cluster V t and recommends an arm at ∈ At based on
the aggregated historical information from cluster V t. Upon
receiving the recommendation at, user it provides a stochas-
tic reward rt ∈ [0, 1] to the agent. To more accurately reflect
real-world recommendation scenarios, we posit that the reward
rt is generated by a misspecified linear function of the item’s
feature vector xat and the unknown user preference vector θit .
Formally,

rt = x,
at
θit + εit,tat

+ ηt , (1)

where εit,t = [εit,t1 , εit,t2 , . . . , εit,t|At|]
, ∈ R|At| represents the un-

known misspecification from the expected linearity of rewards
for the arms inAt for user it at round t, and ηt is 1-sub-Gaussian
noise. Note that even users within the same cluster can have
different misspecification vectors, providing a more detailed
representation of their preferences. Misspecifications in the user
model can be static or change over time. Unlike sub-Gaussian
noise, which typically has a zero-mean expectation, misspecifi-
cations do not have a fixed mean, allowing for perturbations in
the expected reward model away from linearity.

Let a∗t ∈ argmaxa∈At
x,
aθit + εit,ta represent the optimal

arm that yields the highest expected reward at round t. The
agent’s objective is to minimize the expected cumulative regret
defined as

R(T ) = E
[

T∑

t=1

(x,
a∗
t
θit + εit,ta∗

t
− x,

at
θit − εit,tat

)

]
, (2)

where the expectation accounts for the randomness of the al-
gorithm and the environment, including the sequence of users
i1, . . . , iT , the misspecifications, and the arm sets A1, . . . ,AT .
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B. Key-Term Feedback and User Interaction Management

In contrast to traditional recommendation systems, CRSs not
only provide recommendations but also intermittently solicit
direct feedback from users about specific “key-terms.” These
key-terms are keywords or topics linked to a subset of arms. For
instance, the key-term “cuisine” could encompass a variety of
food-related categories such as Italian, Chinese, vegetarian, etc.
We denote the finite set of key-terms as K.

The relationship between arms and key-terms is repre-
sented by a weighted bipartite graph (A,K,W ), where W !
[wa,k], a ∈ A, k ∈ K is the weight matrix. This matrix indi-
cates the strength of association between each arm a ∈ A and
key-term k ∈ K. A non-negative weight wa,k reflects the level
of association, with the stipulation that each key-term k is
positively associated with at least one arm (i.e.,

∑
a∈A wa,k > 0

for all k ∈ K), and the weights for each arm sum to 1 (i.e.,∑
k∈K wa,k = 1 for each a ∈ A). The feature vector for a

key-term k is constructed as x̃k =
∑

a∈A
wa,k∑

a′∈A wa′,k
xa. The

feedback mechanism for a key-term k at time t from a user
it ∈ U , who may be either normal or corrupted, is mathemati-
cally expressed as:

r̃k,t = x̃,
k θit + ε̃it,tk + η̃t , (3)

where ε̃it,t = [ε̃it,t1 , ε̃it,t2 , . . . , ε̃it,t|K| ]
, ∈ R|K| denotes the un-

known misspecification from expected linearity in the key-term
rewards for user it at time t, and η̃t is 1-sub-Gaussian noise. Fol-
lowing previous research [9], [10], [25], the unknown user pref-
erence vector θit is consistent across both the arm and key-term
levels. Our model, however, uniquely accounts for the potential
of misspecification in key-term feedback. In recommendation
systems, it is imperative to account for misspecifications in
key-term rewards, as a user’s genuine preferences for specific
categories, such as “desserts” or “spicy food”, may deviate from
the linear predictions due to the intricate and varied nature of
individual palates.

To ensure a positive user experience, the agent must judi-
ciously manage the frequency of conversation interactions. We
introduce a conversation frequency function bit(t) for the user
it currently being served. This function determines the number
of conversational interactions initiated by the agent. At each
round t, the system may engage in q(t) = /bit(t)− bit(t− 1)0
conversations with user it, provided bit(t)− bit(t− 1) > 0.
Consequently, over the course of the interaction, the agent will
have engaged in bit(t) conversations with user it.

Following works addressing misspecified linear bandits [31],
we postulate that the infinity norm of the misspecification vector
εi,t is bounded by ε∗ for all users i ∈ U and rounds t ∈ [T ],
across both arm and key-term levels, which is not necessarily
required to know by our algorithms. This cap is generally
predetermined based on the expectation that misspecification
will be minor [17], allowing to establish a relatively large value
as a conservative upper bound. However, in scenarios where it
is not predefined, one could potentially employ contemporary
model selection techniques [34] to address this issue. For clarity,
we do not delve into these methods.

Fig. 2. Illustration of RCLUMB and RSCLUMB. Graph-based RCLUMB
primarily clusters using a deletion strategy, whereas set-based RSCLUMB
utilizes splitting and merging strategies. Under the CRS platform, restricted user
conversations can be directly initiated. Moreover, RCLUMB and RSCLUMB
both strive to minimize the interference of misspecified user information during
clustering and recommendation, as demonstrated in the ‘red user 5’ example.

IV. ALGORITHM DESIGN

As shown in Fig. 2, this section introduces our two algorithms
called “Robust Clustering of Misspecified Bandits” (RCLUMB,
see in Algorithm 1) and “Robust Set-based Clustering of Mis-
specified Bandits”(RSCLUMB, see in Algorithm 3 to conduct
systematic research on the OLCMU problem and show the gen-
erality of our ideas and techniques in addressing issues arising
from misspecified users wthin CRSs.

To facilitate understanding, we introduce the coefficient ζ as
the theoretical minimum gap between the preference vectors of
two users that an algorithm can reliably discern their dissimilar-
ity with a high probability, which is unknown to the agent. For
clarity, we provide the following definition:

Definition IV.1 (ζ-close users and ζ-good clusters): Two
users i, i′ ∈ U are considered ζ-close if ‖θi − θi′ ‖2 ≤ ζ. At
round t, a cluster V is deemed a ζ-good cluster if, for every
user i ∈ V , user i and the incoming user it are ζ-close.

Similarly, we describe two ground-truth clusters as “ζ-close”
if the distance between their preference vectors is less than ζ.

A. Grapg-Based RCLUMB Algorithm Design

We first introduce the process and intuitions of RCLUMB
in detail (refer to Algorithm 1). This algorithm constructs an
undirected graph Gt = (U , Et) across users, connecting users
with edges when they are deemed to belong to the same cluster.
The connected component in Gt−1 that includes user it at round
t is denoted as Ṽt.

Cluster Detection: We start with a complete graph, G0, which
is updated over time based on user feedback. When a user it
arrives at round t, it is presented with a set of choicesAt. Instead
of trying to group users with exactly the same preferences, we
cluster them based on their preferences being relatively close,
within a certain distance ζ. Over time, it becomes very likely that
users connected in the graph have preferences that are within
this ζ distance from each other. Previous methods use larger
clusters which could lead to errors because the preferences of
users further away in the cluster could differ significantly from
it. To improve accuracy, a refined method is utilized where
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Algorithm 1: Robust Clustering of Misspecified Bandits
Algorithm (RCLUMB).

1: Input: Deletion parameter α1,α2 > 0,

f(T ) =
√

1+ln(1+bi(T )+T )
1+bi(T )+T , λ,β, ε∗ > 0.

2: Initialization:
• M i,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0, ∀i ∈ U ;
• A complete Graph G0 = (U , E0) over U .

3: for all t = 1, 2, . . . , T do
4: Receive the index of the current user it ∈ U , and the

current feasible arm set At;
5: Select key-terms to by running Conversation

(Algorithm 2) based on the specified key-term
selection strategy π;

6: Determine the connected component Ṽt in the
current graph Gt−1 = (U , Et−1), such that it ∈ Ṽt;

7: Filter cluster Ṽt to find the cluster V t ⊆ Ṽt which
only contains user it and users i ∈ Ṽt that are directly
connected with user it via edge (i, it) ∈ Et−1;

8: Compute the estimated statistics for cluster V t

MV t,t−1 = λI +
∑

i∈V t

M i,t−1 ,

bV t,t−1 =
∑

i∈V t

bi,t−1 , θ̂V t,t−1 = M
−1
V t,t−1bV t,t−1;

9: Recommend an arm at with the largest UCB index
as shown in (5), and receive the reward rt ∈ [0, 1];

10: Update the statistics for user it

M it,t = M it,t−1 + xatx
,
at
,

bit,t = bit,t−1 + rtxat , Tit,t = Tit,t−1 + 1 ,

θ̂it,t = (λI +M it,t)
−1bit,t;

11: Keep the statistics of other users unchanged

M !,t = M !,t−1, b!,t = b!,t−1, T!,t = T!,t−1,

θ̂!,t = θ̂!,t−1, for all & ∈ U , & += it;
12: Delete the edge (it, &) ∈ Et−1, if

∥∥∥θ̂it,t − θ̂!,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(T!,t)

)
+ α2ε

∗ ,

and get an updated graph Gt = (U , Et);

only users directly connected (1-hop away) to it are considered.
This smaller, more focused group is more likely to have similar
preferences, which helps in making better recommendations.

Cluster-based Recommendation: After identifying the appro-
priate cluster V t for user it, the agent estimates the shared user
preference using the historical data associated with cluster V t,
which is formulated as a regularized least squares problem:

θ̂V t,t−1 = argmin
θ∈Rd

∑

s∈[t−1]
is∈V t

(rs − x,
as
θ)2 + λ‖θ‖22, (4)

Algorithm 2: Conversation.
1: if bit(t)− bit(t− 1) > 0 for user it then
2: q(t) = /bit(t)− bit(t− 1)0;
3: while q(t) > 0 do
4: Select a key-term k ∈ K using the selection strategy

π (refer to (8) or (9)) to inquire about the user’s
preference.

5: Receive the user’s feedback r̃k,t;
6: M it,t = M it,t−1 + x̃kx̃

,
k ,

bit,t = bit,t−1 + x̃kr̃k,t;
7: q(t) −= 1;
8: else
9: M it,t = M it,t−1, bit,t = bit,t−1;

where λ > 0 is the regularization parameter. The closed-
form solution for this optimization problem is given
by: θ̂V t,t−1 = M

−1
V t,t−1bV t,t−1, where MV t,t−1 = λI +∑

s∈[t−1]
is∈V t

xasx
,
as
,bV t,t−1 =

∑
s∈[t−1]
is∈V t

rasxas . This estimation

is utilized in the upper confidence bound (UCB) strategy for
recommending an arm, as shown in Line 9:

at = argmaxa∈At

{
min

{
1, R̂a,t + Ca,t

}}
, (5)

where R̂a,t = x,
a θ̂V t,t−1 is the estimated reward for arm a at

time t, and Ca,t is the confidence radius for arm a at round t,
which accounts for the uncertainty in the estimation:

Ca,t = β‖xa‖M−1

V t,t−1

+ ε∗
∑

s∈[t−1]
is∈V t

∣∣∣x,
aM

−1
V t,t−1xas

∣∣∣ , (6)

where β =
√

λ +
√

2 log(T ) + d log(1 +
bit (T )+T

λd ), and ε∗ is
the pre-misspecified parameter, accounting for the additional
uncertainty due to deviations from linearity. The construction
of Ca,t is designed from our theoretical analysis, which will be
presented in Section V.

Update User Preference Statistics: Upon receiving feedback
rt from user it regarding armat, the agent updates the preference
statistics for user it in Lines 10 and 11, while the statistics for
other users remain unaltered. Specifically, the agent refines the
estimate of the preference vector θit by solving the following
regularized least squares problem:

θ̂it,t = argmin
θ∈Rd

∑

s∈[t]
is=it

(rs − x,
as
θ)2 + λ ‖θ‖22 , (7)

which yields the closed-form solution: θ̂it,t =
(λI +M it,t)

−1bit,t , where M it,t and bit,t are defined
as: M it,t =

∑
s∈[t]
is=it

xasx
,
as

, bit,t =
∑

s∈[t]
is=it

rasxas .

Conversation on Key-terms: The agent engages with users at
the key-term level to refine its understanding of their preferences,
as outlined in Algorithm 2. At each round t, the agent assesses
the possibility of initiating conversations based on the function
bit(t) for the current user it. Should the conditions allow, the
agent solicits the user’s input on q(t) key-terms. This input
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is then utilized to adjust the system’s parameters, following a
predefined selection strategy π. The strategy π bifurcates into
two distinct approaches. The first approach aims to maximize
the confidence radius with uncertainty considered, as defined
by:

k ∈ argmax
k∈K

β ‖x̃k‖M−1
it,t

+ ε∗
q(t)∑

j=1

∣∣x,
kM

−1
it,txkj

∣∣ , (8)

where kj ∈ K represents the key-term selected between the
number of conversation. The rationale behind this approach is
that a key-term with a larger confidence radius suggests that the
recommendation system has yet to thoroughly probe the user’s
preferences concerning the items associated with that key-term.
Consequently, such key-terms are prime candidates for further
exploration. The second strategic option also takes into account
the information already exploited, targeting key-terms associ-
ated with less explored areas:

k ∈ argmax
k∈Kt

x̃,
k θ̂it,t + β ‖x̃k‖M−1

t
+ ε∗

q(t)∑

j=1

∣∣x,
kM

−1
it,txkj

∣∣ ,

(9)
where the first term x̃,

k θ̂it,t represents the estimated reward for
key-term k, and the later two terms accounts for the uncertainty
in the estimate, thus encouraging a balance between exploiting
known preferences and exploring new potential interests.

Update the Graph Gt: Subsequently, in Line 12, the agent
assesses the persisting similarity between user it and other
connected users based on the newly estimated θ̂it,t. For each
user & ∈ U linked to user it by an edge (it, &) ∈ Et−1, the agent
examines if the discrepancy between their estimated preference
vectors θ̂!,t and θ̂it,t exceeds a certain threshold. The threshold
is carefully designed, taking both estimation uncertainty in a
linear model and deviations from linearity into consideration. As
delineated in the proof analysis in the supplementary material,
employing this threshold ensures that, with high probability,
edges within the same ground-truth clusters remain intact, while
those connecting users who are not ζ-close are pruned. This
process, with the filtering mechanism in Line 7, allows the
algorithm to effectively harness the collaborative information
of similar users and eschew the data of those who are dissimilar.
The refined graph Gt = (U , Et) is carried forward to the next
round.

B. Set-Based RSCLUMB Algorithm Design

We then present the “Robust Set-based Clustering of Mis-
specified Bandits Algorithm” (RSCLUMB, see in Algorithm 3).
RSCLUMB diverges from RCLUMB, by adopting a set-based
clustering structure. Furthermore, while RCLUMB is limited
to partitioning clusters, RSCLUMB is designed to dynamically
adjust its clustering by both splitting and merging sets. Specif-
ically, the agent will excise a user from its current set (cluster)
upon detecting a discrepancy between the user’s behavior and
the set’s profile. Conversely, should the agent ascertain that two
clusters exhibit sufficiently similar estimated preferences, it will
amalgamate them into a single set. For an in-depth exploration

Algorithm 3: Robust Set-Based Clustering of Misspecified
Bandits Algorithm (RSCLUMB).

1: Input: Deletion parameter α1,α2 > 0,

f(T ) =
√

1+ln(1+bi(T )+T )
1+bi(T )+T , λ,β, ε∗ > 0.

2: Initialization:
• M i,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0, ∀i ∈ U ;
• Initialize the set of cluster indexes by J = {1} and the

single cluster S1 by M1 = 0d×d, b1 = 0d×1, T1 = 0,
C1 = U , j(i) = 1, ∀i, s=1;

3: for all t = 1, 2, . . . , T do
4: if t = 2s − 1 then
5: Mark every user unchecked for each cluster;
6: For each cluster Vj , compute T̃Vj = TVj ,

θ̂Vj = (λI +MVj )
−1bVj , θ̃Vj =

∑
i∈Vj

θ̂i

[Vj ]
; s=s+1;

7: Receive the user it and the decision set Dt;
8: Select key-terms to by Conversation (Algorithm 2)

based on the specified key-term selection strategy π;
9: Determine the cluster index j = j(it);
10: Recommend item at with the largest UCB index as

shown in (5);
11: Received the feedback rt;
12: Update the information:

M it,t = M it,t−1 + xatx
T
at
, bit,t = bit,t−1 + rtxat ,

Tit,t = Tit,t−1 + 1, θ̂it,t = (λI +M it,t)
−1bit,t

MVj ,t = MVj ,t−1 + xatx
T
at
, bVj ,t = bVj ,t−1 + rtxt,

TVj ,t = TVj ,t−1 + 1, θ̂Vj ,t = (λI +MVj ,t)
−1bVj ,t,

θ̃Vj ,t =

∑
i∈Vj

θ̂i, t

[Vj ]

13: if it is unchecked then
14: Run Split (Algorithm 4);
15: Mark user it has been checked
16: Run Merge (Algorithm 5);

of the relationship between the graph and set structures within
this context, the reader is referred to [15].

Initialization and Phase Structure: RSCLUMB commences
by forming a universal set S1 that encapsulates all users. This
set is dynamically refined throughout the learning process. The
algorithm operates in distinct phases (see Algorithm 3 Line 3),
with each phase s spanning 2s rounds. At the onset of a phase,
all users are labeled as “unchecked.” As users are active on
the recommendation system, they transition to “checked” status.
Once all its constituent users are inspected, a cluster achieves
a “checked” status, signifying its validity for that phase. This
stratagem ensures that each phase upholds a certain accuracy
standard, allowing the agent to concentrate on refining clusters
that have not yet reached this benchmark. Subsequently, akin to
RCLUMB, for the received user it ∈ U Algorithm 2 is executed
for conducting conversation interactions.
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Algorithm 4: Split.

1: if ‖θ̂it,t − θ̃Vj ,t‖ > α1(f(Tit,t) + f(TVj ,t)) + α2ε∗

then
2: Split user it from cluster Vj and form a new cluster V ′

j

MVj ,t = MVj ,t −M it,t, bVj = bVj − bit,t,

TVj ,t = TVj ,t − Tit,t, Cj,t = Cj,t − {it},

MV ′
j ,t

= M it,t, bV ′
j ,t

= bit,t,

TV ′
j ,t

= Tit,t, Cj′,t = {it};

Algorithm 5: Merge.
1: for any two checked clusters Vj1 , Vj2 satisfying

∥∥∥θ̃j1 − θ̃j2

∥∥∥ <
α1

2
(f(TVj1

) + f(TVj2
)) +

α2

2
ε∗

do
2: Merge them:

MVj1
= M j1 +M j2 , bVj1

= bVj1
+ bVj2

,

TVj1
= TVj1

+ TVj2
, CVj1

= CVj1
∪ CVj2

;

3: Set j(i) = j1, ∀i ∈ j2, delete Vj2 ;

Cluster Maintenance and User Interaction: Similar to
RCLUMB, RSCLUMB employs two distinct vectors for each
cluster Vj : the recommendation vector θ̂Vj and the cluster in-
tegrity vector θ̃Vj . The former, akin to θ̂V j

in RCLUMB, is
utilized for generating recommendations. The latter represents
the centroid of user preference estimates within the cluster and
is instrumental in assessing the need for cluster modification.
At each time step t within phase s, upon the arrival of user it
with their corresponding item set Dt (where t indexes total time
steps), RSCLUMB ascertains the user’s cluster and proceeds
with a cluster-based recommendation. Post-recommendation,
the algorithm updates its information (Algorithm 3 Line 12)
and evaluates the potential for cluster modification (Algorithm 3
Lines 13-17). A cluster is deemed “good” if all user estimates
are proximal to its integrity vector. Users are considered “con-
sistent” with a cluster if their preference estimate aligns closely
with the cluster’s integrity vector. Conversely, “inconsistent”
users are candidates for cluster separation. Similarly, clusters
with closely aligned integrity vectors may be merged.

Robust Clustering Mechanism: RSCLUMB maintains two
sets of estimated cluster vectors: i) cluster-level estimation with
integrated user information, which is for recommendations (Line
12 and Line 10 in Algorithm 3); ii) the average of estimated user
vectors, which is used for robust clustering (Line 2 in Algorithm
4 and Line 2 in Algorithm 5). This dual-vector approach is
a departure from previous set-based CB methodologies [15],
which relied solely on the former for both recommendations
and clustering. Such a singular approach is prone to clustering

inaccuracies in the presence of model misspecifications, poten-
tially leading to non-trivial regret bounds in the OLCMU.

V. THEORETICAL ANALYSIS

In this section, we theoretically analyze the performance of
our proposed RCLUMB and RSCLUMB algorithms by giving
an upper bound of the expected regret defined in (2). Due to the
space limitation, we only show the main results, and a sketched
proof. Detailed proofs and other technical lemmas can be found
in the appendix of the supplementary material. Consistent with
previous CB literature [12], [13], [14], we operate under the
following assumptions, with ε∗ equal to ε∗.

Assumption V.1 (Gap between different clusters): The gap
between any two preference vectors for different ground-truth
clusters is at least an unknown positive constant γ

∥∥∥θj − θj′
∥∥∥
2
≥ γ > 0 , ∀j, j′ ∈ [m] , j += j ′ .

Assumption V.2 (Uniform arrival of users): At each round t,
a user it comes uniformly at random from U with probability
1/u, independent of the past rounds.

Assumption V.3 (Item regularity): The feature vector xa of
each arm a ∈ At at round t is drawn independently from a
fixed but unknown distribution ρ over {x ∈ Rd : ‖x‖2 ≤ 1},
where Ex∼ρ[xx,] is full rank with minimal eigenvalue λx > 0.
Additionally, for any fixed unit vector θ ∈ Rd, (θ,x)2 has
sub-Gaussian tail with variance upper bounded by σ2.

Definition V.1 (Minimum separable gap γ1): The minimum
separable gap constant γ1 of the OLCMU problem instance is
the minimum gap over the gaps among users that are greater
than ζ. Formally, for ∀i, & ∈ U ,

γ1 = min{‖θi − θ!‖2 : ‖θi − θ!‖2 > ζ},min ∅ = ∞.

Remark 1: Our approach relaxes the assumption in earlier
studies, particularly those concerning the upper bound variance
σ2. We start by introducing two key definitions. The first pertains
to the minimum separable gap constant γ1 for the OLCMU
problem instance, and the second relates to the number of “hard-
to-cluster users” ũ. The coefficient in this context is detailed
in the proof of Lemma V.1 in the supplementary material. In
the OLCMU setting, the term γ1 − ζ measures the clustering
difficulty of the problem instance. A larger γ1 generally implies
easier clustering. The subtraction of ζ represents the increased
difficulty arising from model misspecifications. When there are
no misspecifications, that is, ζ = 0, γ1 equals γ, as specified in
Assumption V.1. This equivalence aligns our results with those
found in prior research [13], [14].

Definition V.2 (number of “hard-to-cluster users” ũ): The
number of “hard-to-cluster users” ũ in U is the number of users
in the ground-truth clusters which are ζ-close to at least one
another ground-truth cluster in V , i.e.,

ũ =
∑

j∈[m]

|Vj |× I{∃j ′ ∈ [m], j ′ += j :
∥∥∥θj′ − θj

∥∥∥
2
≤ ζ} ,

where I{·} denotes the indicator function of the argument, |Vj |
denotes the number of users contained in Vj .

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:47:21 UTC from IEEE Xplore.  Restrictions apply. 



7832 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Remark 2: ũ represents the number of “hard to cluster” users
from different clusters with separation gaps less than ζ. These
users are prone to being incorrectly merged into a single cluster,
leading to potential errors in the clustering process. This occurs
because if two clusters are within ζ of each other, the uncertainty
from model misspecifications might cause the algorithm to
mistakenly combine them, resulting in clustering challenges for
users in these close proximity clusters.

Denoting λ̃x !
∫ λx

0 (1− e−
(λx−x)2

2σ2 )Cdx, the following
lemma establishes the time rounds required for the algorithms
to achieve a “good partition.”

Lemma V.1: Employing the meticulously devised clustering
methods, it is guaranteed that after

t ≥ O

(
u

(
d

λ̃x(γ1 − ζ)2
+

1

λ̃2
x

)
log

1

δ

)

rounds, with a high probability, both RCLUMB and RSCLUMB
will have obtained a “good partition”.

Assuming the conditions outlined in Section III hold true, the
subsequent theorem delineates an upper bound for the expected
cumulative regret incurred by RCLUMB and RSCLUMB.

Theorem V.1 (Regret upper bound): The expected regret of
the RCLUMB and RSCLUMB algorithms for T rounds satisfies

R(T ) ≤ O(ε∗T
√

md log T + d
√
mT log T ) . (10)

Remark 3: The derived upper bound is composed of four
main components. The first term indicates the number of rounds
needed to gather enough data for accurate user clustering, cru-
cial for successful outcomes in later rounds. The second term
measures the regret from misclustering users who are closely
related (ζ-close) due to inevitable model inaccuracies. The third
term reflects errors in estimating user preferences resulting from
model deviations. The final term, a standard component in bandit
clustering, assumes perfect linearity, as discussed in prior stud-
ies [14], [15]. Notably, both the second and third terms increase
linearly with T , aligning with the linear trends noted in earlier
research [17], [31]. These trends underscore that linear terms
are typical in scenarios with misspecified linear bandits, caused
by unforeseen deviations. Let’s explore how these parameters
influence the overall regret bound.! When γ1 − ζ is substantial, indicating that the separation

between clusters not “ζ-close” is significantly larger than
the minimum discernible gap ζ, the first term of the regret is
minimized. This is because the algorithm can more readily
detect dissimilarities between clusters. In the OLCMU
context, γ1 − ζ plays a role analogous to γ in classical
CB models.! If the count of “hard-to-cluster” users, denoted by ũ, is
minimal, suggesting that few ground-truth clusters are
“ζ-close”, the likelihood of the algorithm misclustering
distinct ground-truth clusters is reduced.! Finally, if the model deviation level ε∗ is small, meaning
the user models are close to linear models and the misspec-
ification will not affect the estimations much.

The following theorem gives a regret lower bound of the
OLCMU problem (The proof is in the supplementary material).

Theorem V.2 (Regret lower bound): For the OLCMU prob-
lem, there exists at least one problem instance where the regret
R(T ) for any algorithm is bounded from below as follows:
R(T ) ≥ Ω(ε∗T

√
d) .

Remark 4: The upper bounds in Theorem V.1 asymptotically
align with this lower bound with respect to T , accounting for
logarithmic factors and a constant factor of

√
m (where m

is generally small in real-world applications), illustrating the
robustness of our theoretical findings. We speculate that the gap
for the m factor might stem from the stringent assumption of
known cluster structures used to establish this lower bound,
leaving room to explore a potentially tighter lower bound in
future research. Moreover, we also compare our results with
several special cases, as our work is pioneering in addressing
the OLCMU problem. First, for m = 1 (implying ũ = 0), our
framework simplifies to the misspecified linear bandits (MLB)
problem, where all users share a common preference vector,
achieving a regret bound of O(ε∗T

√
d log T + d

√
T log T ),

which aligns with the best current bound for MLB [31]. Second,
when ε∗ = 0, our framework corresponds to the online clustering
bandits (CB) problem with perfectly linear user models, achiev-
ing a bound of O(d

√
mT log T ), matching the best existing

bound for CB [14], [15]. These comparisons affirm the precision
of the regret bounds for our proposed RCLUMB and RSCLUMB
algorithms.

Before we give the sketched proof for Theorem V.1, we define
the following “good partition” for ease of interpretation.

Definition V.3 (Good partition): We say that RCLUMB or
RSCLUMB does a “good partition” at t, if the cluster V t

assigned to user it is a ζ-good cluster, and it contains all the
users in the same ground-truth cluster as it, i.e.,

Vj(it) ⊆ V t , ‖θit − θ!‖2 ≤ ζ, ∀& ∈ V t . (11)

Remark 5: One can notice that when the algorithm does a
“good partition” at t, V t will contain all the users in the same
ground-truth cluster as it and may only contain some other
ζ-close users with respect to it, which means the information
gathered associated with V t can be used to infer user it’s
preference with high accuracy. Also, it is obvious that under
a “good partition”, if V t ∈ V , then V t = Vj(it) by definition.

Next, we give a sketched proof for Theorem V.1. For the sake
of our analysis, we posit a linear relationship of the form bi(t) =
bi · t, where bi is a constant residing within the open interval
(0, 1) and more basic strategy in (8) is discussed here. We focus
on RCLUMB for this specific analysis, with RSCLUMB based
on a similar conceptual framework. Comprehensive proofs are
in the supplementary material.

Sketch for Theorem V.1: The proof is structured into two pri-
mary segments. Initially, we establish the existence of a sufficient
time frame, denoted as T0, within which RCLUMB is capable
of obtaining a “good partition.” The regret incurred during the
initial T0 rounds can be straightforwardly capped by T0, given
that rt ∈ [0, 1] for all t. Subsequently, the more intricate aspect
of the proof involves formulating an upper bound for the regret
attributable to the misclustering of ζ-close users, even after a
“good partition” has been achieved. As shown in Lemma V.1,
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we can prove that after t ≥ O(u( d
λ̃x(γ1−ζ)2

+ 1
λ̃2
x
) log T ), for

any user i ∈ U , the gap between the estimated θ̂i,t and the
ground-truth θj(i) is less than γ1

4 with high probability. With
this, we can get the following results. For any two users i
and &, if their gap is greater than ζ, it will trigger the dele-
tion of the edge (i, &) (Line 12 of Algorithm 1). On the other
hand, when the deletion condition of the edge (i, &) is satisfied,
then ‖θj(i) − θj(!)‖2 > 0, which means user i and & belong to
different ground-truth clusters by Assumption V.1. Therefore,
all those users in the same ground-truth cluster as it can be
partitioned into the connected component Ṽt, and users in Ṽt

will be directly connected with it if and only if they are ζ-close
to it. By the extraction method of V t from Ṽt and the definition
of “good partition”, we can ensure that RCLUMB will keep a
“good partition” afterward. After obtaining a “good partition”,
at round t, if: i) V t ∈ V , meaning that the cluster assigned for
user it is the same as her ground-truth cluster, i.e., V t = Vj(it),
the instantaneous regret Rt can be bounded by 2Cat,t + 2ε∗. ii)
V t /∈ V , which means that the algorithm has misclustered user
it, i.e., V t += Vj(it), but all the users in V t are ζ-close to it (by
definition of “good partition”), then Rt is added by the extra
term ε∗

√
2d/λ̃1.5

x due to the misclustering, which causes the
algorithm to use the information of it’s ζ-close users in V t lying
in different ground-truth clusters from it to estimate θit . The
expected number of occurrences of case (ii) is bounded by ũ

uT
according to Assumption V.2, Definition V.2 and Definition V.3.
The result then follows by bounding the expected summation of
the bounds for Rt, which is similar to the proof for CB [14], but
with a more subtle analysis due to the time-varying clustering
structure kept by our proposed algorithms. "

VI. SIMULATIONS

To evaluate the adaptability of our proposed algorithms, we
designed two distinct simulation setups: one that excludes con-
versational feedback to verify the algorithms’ applicability in
the effectiveness of misspecified user clustering, and another
that incorporates various types of conversational feedback for
comparative analysis of conversational interactions.

A. Baseline Comparisons

1) User Clustering Efficacy Comparisons: To evaluate the
effectiveness of our proposed algorithms in clustering users with
similar preferences under misspecified models, we conduct a
comparative analysis against a suite of established benchmark
algorithms. Our comparison includes the following baselines:! LinUCB: A method uses a single estimated preference

vector shared across all users [5].! LinUCB-Ind: An approach maintains separate estimated
preference vectors for each user based on LinUCB [5].! RLinUCB and RLinUCB-Ind: Two refined versions of Lin-
UCB targeted at misspecification models in [31], which we
denote as RLinUCB and RLinUCB-Ind, respectively.! CLUB: Introduced by [12], this algorithm employs a graph-
based approach to cluster multiple users.! SCLUB: An improved set-based clustering algorithm for
bandits with multiple users [15].

2) Conversational Interaction Comparisons: To provide a
comprehensive comparison within the context of CRSs and
to highlight the capability of our algorithm with potentially
misspecified conversational feedback, we include the following
baseline algorithms that also facilitate direct user interactions:! Arm-Con: A conversational bandit algorithm that engages

users in discussions about arms without considering key-
terms, using LinUCB for arm selection [21].! ConUCB: A fundamental conversational bandit algorithm
that chooses a key-term to minimize the estimation error
when conversational interaction is possible [9].! ConLinUCB: A suite of algorithms with varying key-
term selection strategies [11], including: ConLinUCB-BS,
which selects key-terms based on the barycentric spanner
for exploration, and ConLinUCB-MCR, which utilizes his-
torical key-term selection data to identify terms with the
largest confidence radius.

Regarding the strategy π to select key terms in conversation,
for both RCLUMB and RSCLUMB, we employ (8) during the
first half of the user’s turns to encourage as much exploration
as possible. After accumulating a certain amount of feedback
information, we adopt (9) to balance the existing information
with potential exploration.

B. Simulation Settings

To gauge user satisfaction in cases where feedback may be
misspecified, we employ the metric of average rewards over
time t for randomly selected users, averaging the results across
ten independent runs [14]. Moreover, for assessing the recom-
mendation efficacy of RCLUMB and RSCLUMB, we rely on
cumulative regret (defined in (2)), which is a widely recognized
measure in bandit literature [6], [7], [32]. These evaluations are
carried out on computers that are configured with an Intel(R)
Xeon(R) Gold 6240 C CPU @ 2.60 GHz and an AMD Ryzen 7
4800H with Radeon Graphics @ 2.90 GHz.

C. Simulation Without Conversational Feedback

1) Data Generation: We consider a setting with u = 1, 000
users and m = 10 clusters, where each cluster contains 100
users. The preference and feature vectors’ dimension is set
as d = 50. The preference and feature vectors are drawn in d
dimension with each entry a standard Gaussian variable and
then normalized to vectors with ‖.‖2 = 1 [15]. We fix an arm
set with |A| = 1000 items, at each round t, 20 items are ran-
domly selected to compose a set At for the agent to choose
from. We construct a matrix ε ∈ R1,000×1,000 in which each
element ε(i, j) is drawn uniformly from the range (−0.2, 0.2)
to represent the misspecification according to [17]. At round t,
for user it and the item at selected, ε(it, at) will be added to the
feedback as the misspecification, which corresponds to the εit,tat

defined in (1).
2) Performance Insights: The averaged reward results de-

picted in Fig. 3 underscore the superior performance of our al-
gorithms compared to established baselines. Specifically, RLin-
UCB outshines LinUCB, and RLinUCB-Ind outperforms both
LinUCB-Ind and CLUB. SCLUB’s distinct cluster separation
mechanism confers an early advantage by accelerating cluster
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Fig. 3. Averaged reward without conversation feedback.

differentiation. However, its performance is eventually eclipsed
by RLinUCB-Ind, which more adeptly accounts for model mis-
specification. Our proposed RCLUMB outperforms CLUB by
21.9%, LinUCB by 194.8%, LinUCB-Ind by 20.1%, SCLUB
by 12.0%, RLinUCB by 185.2%, and RLinUCB-Ind by 10.6%.
In general, RSCLUMB performs slightly better than RCLUMB,
which is consistent with previous CB works [14].

Attentive readers may observe an initial performance drop
in Fig. 3, attributed to the misclustering of ζ-close users de-
scribed in Section V. In our analysis, each user’s unique item
misspecifications yield varied feedback, even within the same
cluster. Initially, this leads algorithms like RCLUMB, SCLUB,
and CLUB to mistakenly cluster users based on potentially
inaccurate feedback. For example, users with a preference for
romantic movies might be grouped with action movie fans, fur-
ther complicating the clustering. However, as more recommen-
dation data accumulates, these inaccuracies lessen, enhancing
the clustering accuracy. Over time, these algorithms refine their
user clusters, affecting performance rates; SCLUB initially leads
due to its cluster merging strategy. Nevertheless, as algorithms
prune non-representative edges, a temporary dip in average
rewards occurs until all misleading connections are eliminated.
RCLUMB’s conservative approach to information sharing soft-
ens this performance dip. Initially, RSCLUMB and SCLUB can
separate clusters more quickly, benefiting early performance, but
ultimately RCLUMB surpasses RSCLUMB, and SCLUB lags
due to its inadequate handling of misspecifications. In contrast,
RCLUMB’s design to counteract these issues shows a significant
performance advantage.

We further assess the robustness of RSCLUMB, RCLUMB,
RLinUCB-Ind, SCLUB, and CLUB under different levels
of model misspecification. We examine the performance of
RCLUMB and RSCLUMB by varying the actual misspecifica-
tion value ε∗, testing at 0.05, 0.1, 0.2, 0.3, and 0.4, in scenarios
where the degree of misspecification is both known and unknown
to the agent. In cases where the misspecification level is known,
we align the pre-set misspecification parameter ε∗ with the actual
level and compare our algorithms against other baselines with
relatively better performance. In the unknown misspecification
scenario, we fix ε∗ at 0.2 and benchmark our algorithms solely
against RLinUCB-Ind, as it is the only baseline with a pre-
specified parameter ε∗. The outcomes are depicted in Fig. 5,
where we plot the final cumulative regret for each algorithm
across the various misspecification levels. As anticipated, all
algorithms exhibit degraded performance as misspecification
increases. Notably, our algorithms consistently outperform the

baselines. Moreover, the regret observed in the unknown mis-
specification cases is marginally higher than that in the known
cases. These empirical findings confirm our algorithm’s capa-
bility to effectively manage unknown levels of misspecification.
Furthermore, our algorithm can exhibit similar learning curves
across different misspecification levels ε∗ (please refer to the
supplementary material).

D. Simulation With Conversational Feedback

1) Data Generation: The generation of synthetic data ad-
heres to a process similar to the above described. Our emphasis,
therefore, is on elaborating the process of generating key-terms
at the conversational level. This approach is following [9], [11],
[45], but with potential key-terms subject to misspecification in
our adaptation. Specifically, we independently sample each user
preference vector θi and each arm feature vectorxa from a stan-
dard normal distribution N (−1, 1), followed by normalization
to ensure consistency in scale. The construction of the weight
matrix W ! [wa,k] proceeds as follows: For each key-term k,
we randomly select an integer nk from the set {1, 2, . . . , 5},
which determines the number of arms associated with key-term
k. A corresponding subset of arms Ak is randomly chosen
to represent the arms linked to key-term k. For each arm a
associated withna key-terms, denoted byKa, we assign uniform
weights such that wa,k = 1

na
for all k ∈ Ka. This ensures that

the influence of each arm is equitably distributed across its
associated key-terms. The feature vector for each key-term k is
computed as x̃k =

∑
a∈A

wa,k∑
a′∈A wa′,k

xa, encapsulating the ag-
gregate characteristics of the arms related to key-term k. As our
experiments consistently employ the method for constructing
conversational key terms as described in [9], [11], [45], we do
not include comparisons with approaches like [10] that incorpo-
rate additional information sources for conversational feedback.
Finally, the feedback at the key-term level is synthesized in
alignment with (3), capturing user’s response to the key-term
based on their preferences and the noise under misspecification
level ε∗ = ε∗ = 0.25.

2) Performance Insights: Similar to scenarios without con-
versational interaction, we calculate the average regret for each
algorithm across all users. However, to highlight the effective-
ness of the clustering concept among real user groups, we do not
artificially specify the number of clusters m, but rather naturally
generate user feature preference vectors randomly. As shown
in Fig. 7(a), first, all other algorithms outperform LinUCB-Ind,
demonstrating the advantage of conversational interaction. Arm-
Con, which only follows LinUCB-Ind in selecting arms, does not
show a significant difference from LinUCB-Ind in large-scale
user scenarios. Within our proposed OLCMU framework, the
graph-based RCLUMB and the set-based RSCLUMB demon-
strate significant advantages over traditional conversational al-
gorithms ConUCB, ConLinUCB-BS, and ConLinUCB-MCR.
Specifically, their regrets decrease by 91.5% and 95.3%, respec-
tively, compared to the best-performing ConLinUCB-MCR,
showing their effectiveness in dealing with potentially misspec-
ified users. Regarding the impact of exploratory conversational
functions and the poolsize of the arm sets, we will provide
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Fig. 4. Statistics of real-world recommendation datasets.

Fig. 5. Regret under different misspecification values ε∗.

a detailed discussion based on real recommendation system
datasets in the following sections.

VII. EXPERIMENTS

We now turn our attention to evaluating the performance of our
algorithm on real-world recommendation datasets. Comprehen-
sive experiments have been designed to assess the effectiveness
of our proposed algorithms and to answer the following research
questions:! RQ1: How effectively can our algorithms learn and utilize

user preferences and relationships to deliver personalized
online recommendations with misspecified users?! RQ2: For real-world recommendation datasets, do our
algorithms outperform existing state-of-the-art algorithms
for better recommendation quality under the CRS?! RQ3: How do the misspecification settings, the various
conversation functions, and the arm set ploosize affect the
performance of RCLUMB and RSCLUMB?

Fig. 4 provides detailed information about the publicly
available real-world datasets used in our article: 1) Movielens
dataset [46] is sourced from the MovieLens2 movie recommen-
dation service; 2) Yelp dataset [47] is collected from Yelp,3 a
platform where users post reviews for a wide range of businesses,
including restaurants and stores; 3) Last.fm dataset [48] is gath-
ered from Last.fm,4 an online music platform. To assess user
experience in situations where feedback may be misspecified,
we calculate a metric based on the aggregate ratings from the
above dataset. Similar to Section VI, we divide the analysis into
two parts: one with conversational feedback and one without,
and discuss each separately.

2[Online]. Available: https://movielens.org/
3[Online]. Available: https://www.yelp.com/dataset
4[Online]. Available: https://www.last.fm

A. Assessment in the Absence of Conversational Feedback

In this section, our investigation is centered on scenar-
ios devoid of conversational feedback, characterized by the
condition bi(t) ≡ 0, ∀i ∈ U . This setting allows us to isolate and
directly assess the performance of RSCLUMU and RCLUMU
on clustering users under misspecification models within the
context of real-world recommendation datasets. By excluding
conversational feedback, we can address RQ1 more clearly.

1) Dataset Preprocessing: For each dataset, we have two
cases due to the different methods for generating feedback.
For case 1, we extract 1,000 items with the most ratings and
1,000 users who rate most; then we construct a binary matrix
H1,000×1,000 based on the user rating: if the user rating is greater
than 3, the feedback is 1; otherwise, the feedback is 0. Then we
use this binary matrix to generate the preference and feature
vectors by singular-value decomposition (SVD). Similar to the
synthetic experiment, we construct a matrix ε ∈ R1,000×1,000

in which each element is drawn uniformly from the range
(−0.2, 0.2). For case 2, we extract 1,100 users who rate the most
and 1000 items with the most ratings. We construct a binary
feedback matrix H1,100×1,000 based on the same rule as case
1. Then we select the first 100 rows H100×1,000

1 to generate the
feature vectors by SVD. The remaining 1,000 rowsF 1,000×1,000

is used as the feedback matrix, meaning user i will receive
F (i, j) as feedback while choosing item j. In both cases, at
time t, we randomly select 20 items for the algorithms to choose
from. In case 1, the feedback is computed by the preference
and feature vector with misspecification ε∗ = 0.2, in case 2, the
feedback is from the feedback matrix.

2) Performance Analysis: Similar to what is shown in Fig. 3,
the early-stage performance dip observed in both the Yelp
and Movielens datasets, followed by subsequent improvement,
represents a trade-off between the effects of misspecification
and the gradual accumulation of interaction data. Specifically,
the Yelp dataset’s results are illustrated in Fig. 6(a) and (b).
In the first case, where the misspecification level ε∗ is known,
RCLUMB outperforms CLUB by 45.1%, SCLUB by 53.4%,
LinUCB-One by 170.1%, LinUCB-Ind by 46.2%, RLinUCB
by 171.0%, and RLinUCB-Ind by 21.5%. In the second case
of an unknown misspecification level, with ε∗ set to 0.2 as per
our synthetic dataset, RCLUMB still surpasses other algorithms.
Here, RCLUMB’s gains over CLUB are 13.9%, SCLUB 5.1%,
LinUCB-One 135.6%, LinUCB-Ind 10.1%, RLinUCB 138.6%,
and RLinUCB-Ind 8.5%. The robust clustering mechanism of
RCLUMB is pivotal in its outperformance, highlighting the
importance of addressing misspecification and implementing a
strategic clustering framework.

Mirroring the Yelp dataset’s configuration, the Movielens
dataset results, presented in Fig. 6(c) and (d), show that in
the first case, RCLUMB’s improvement margins over CLUB
are 58.8%, SCLUB 92.1%, LinUCB-One 107.7%, LinUCB-Ind
61.5%, RLinUCB 109.5%, and RLinUCB-Ind 21.3%. In the
second case, the improvements are 5.5% over CLUB, 2.9%
over SCLUB, 28.5% over LinUCB-One, 6.1% over LinUCB-
Ind, 29.3% over RLinUCB, and 5.8% over RLinUCB-Ind. The
Movielens dataset corroborates the Yelp dataset’s findings, re-
inforcing the efficacy of the RCLUMB algorithm.
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Fig. 6. Comparison of RCLUMB and RSCLUMB with baseline algorithms, excluding conversational feedback. Figs (a) and (b) present results from the Yelp
dataset, while (c) and (d) feature the Movielens dataset. Experiments involve 1,000 users, 10 clusters, and a 50-dimensional feature space, averaged over 10 random
trials. Error bars represent the standard deviation divided by

√
10 for consistent and reliable interpretation. For the setting of the unknown misspecification level,

ε∗ = 0.2.

Additionally, the differing performances of both algorithms
under known and unknown true misspecification levels in the
Yelp and Movielens datasets address RQ3 regarding the impact
of misspecification settings. Moreover, both the graph-based
RCLUMB and the set-based RSCLUMB algorithms theoret-
ically show similar regret upper bounds. However, in practi-
cal evaluations, the set-based RSCLUMB outperforms due to
its more efficient clustering method. Unlike the graph-based
RCLUMB, which forms clusters based on connected compo-
nents and requires cutting all connections between dissimilar
users to separate them, the set-based RSCLUMB quickly splits
dissimilar users into different clusters, resulting in faster and
more effective clustering.

B. Assessment in the Presence of Conversational Feedback

1) Dataset Preprocessing: Key-terms are derived from the
MovieLens, Yelp, and Last.fm datasets, indicating movie genres,
business categories, or tag IDs, respectively. We select the top
2, 000 arms (|A| = 2, 000) with the highest frequency of user-
assigned tags and the 500most active users (Nu = 500) in terms
of tag assignment. For each arm, a maximum of 20 tags associ-
ated with the most arms are retained as key-terms, forming the
key-term setK, with sizes of 2, 726, 5, 585, and 805 for Last.FM,
MovieLens, and Yelp datasets respectively. The weights of all
key-terms related to an arm are equal. Following [9], key-term
feature vectors are computed as x̃k =

∑
a∈A

wa,k∑
a′∈A wa′,k

xa. For
user feedback, with a probability of 0.5, a misspecification of
0.25 is added, and with a probability of 0.5, it remains unaltered,
addressing both known and unknown misspecification levels of
two cases in Section VI. Algorithms RCLUMB and RSCLUMB
apply a consistent misspecification value ε∗ of 0.25.

2) Performance Analysis: The results of the average cumu-
lative regret for all algorithms across three real-world recom-
mendation system datasets are depicted in Fig. 7. Notably, even
without a mechanism for direct conversation on user preferences,
our algorithms significantly outperform existing online user
clustering methods, which do not incorporate CRS architecture.
For fair comparison and visual clarity, including these methods
is deemed unnecessary. It is evident across all datasets that
our proposed RCLUMB and RSCLUMB algorithms demon-
strate the best performance, highlighting the robustness of our
algorithms even in scenarios where both user arms and feedback

Fig. 7. Cumulative regret in synthetic and real-world datasets with potentially
misspecified conversational feedback.

might be misspecified. Taking the Yelp dataset, which includes
the largest user base, as an example, compared to the traditionally
best-performing conversational algorithm ConLinUCB-MCR,
RCLUMB, and RSCLUMB reduced the cumulative regret by
59.7% and 92.8%, respectively. Furthermore, RSCLUMB is
1.4 times more time-consuming than RCLUMB. In terms of
performance and time efficiency, our two designed algorithms
offer different options. The above analysis on real-world recom-
mendation datasets thus addresses RQ2 effectively under CRSs.

Next, we assess the impact of the various conversation
functions and arm set poolsize as outlined in RQ3. To
examine the effect of conversation frequency on all algorithms,
given the random arrival of users, we apply a uniform
conversational function across all algorithms, defined as
{5/log(t)0, 50/log(t)0, 200/log(t)0, 300/log(t)0, 400/log(t)0}
respectively. The cumulative ratings of items recommended to
users arriving randomly by round T = 100, 000 are evaluated,
with results averaged over five random trials. A higher b(t)
value enables more extensive engagement in conversations.
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Fig. 8. Ratings with varied conversational functions.

Fig. 9. User rating performance across different arm poolsizes.

The findings in Fig. 8 for the largest dataset Yelp, indicate that
as b(t) increases, there is a notable improvement in ratings,
affirming the positive influence of more frequent conversations.
In every tested scenario, RCLUMB and RSCLUMB surpass
ConUCB, Arm-Con, ConLinUCB-MCR, and ConLinUCB-BS
in performance, demonstrating their robustness across various
conversation frequency functions b(t). This also attests to the
effectiveness of their key-term selection strategy π.

We then evaluate the impact of the arm set poolsize on
algorithm effectiveness by adjusting the size of |At| to include
{50, 100, 200, 600, 800} options within the Yelp dataset, which
has the largest user base. An increase in |At| generally poses
a greater challenge in identifying the optimal arm. However,
as demonstrated in Fig. 9, our proposed algorithm, RCLUCB-
WCU, exhibits increasingly significant advantages as |At| ex-
pands. Although the growth in arm size complicates the selection
process, it also offers a broader range of potentially high-reward
options, leading to an increase in cumulative ratings with the
expansion of the arm poolsize. This observation aligns with
intuitive expectations in real-world recommendation systems,
where, for example, a music platform with the most extensive
copyright portfolio can more likely attract users.

VIII. CONCLUSION

In this article, we have addressed the challenges posed by the
extensive user base and the inherent complexity of accurately
discerning user preferences, which often result in persistent
recommendation inaccuracies. To mitigate these issues, we
introduced two novel algorithms, RCLUMB and RSCLUMB,
designed to robustly cluster users with potentially misspecified

preferences. These algorithms aim to expedite the recommen-
dation process and enhance the quality of recommendations,
even in the face of potential misspecifications in direct user
interactions. We establish regret bounds for our algorithms under
less restrictive assumptions than previous works. These bounds
are shown to be asymptotically optimal in terms of the time
horizon T , up to logarithmic factors, and they align with the
best-known results in several special cases. Through extensive
testing on both synthetic and real-world datasets, we have
demonstrated the superior performance of our algorithms. They
exhibit remarkable robustness to errors in preference modeling,
maintaining accurate clustering and recommendation quality
where traditional methods may falter.
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