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Abstract— Massively multiplayer game holds a huge market
in the digital entertainment industry. Companies invest heavily
in the game and graphics development since a successful online
game can attract million of users, and this translates to a huge
investment payoff. However, multiplayer online game is also
subjected to various forms of hacks and cheats. Hackers can
alter the graphic rendering to reveal information otherwise be
hidden in a normal game, or cheaters can use software robot
to play the game automatically and gain an unfair advantage.
Currently, some popular online games release software patches or
incorporate anti-cheating software to detect known cheats. This
not only creates deployment difficulty but new cheats will still be
able to breach the normal game logic until software patches are
available. Moreover, the anti-cheating software themselves are
also vulnerable to hacks. In this paper, we propose a scalable
and efficient method to detect whether a player is cheating
or not. The methodology is based on the dynamic Bayesian
network approach. The detection framework relies solely on
the game states and runs in the game server only. Therefore
it is invulnerable to hacks and it is a much more deployable
solution. To demonstrate the effectiveness of the propose method,
we implement a prototype multiplayer game system and to detect
whether a player is using the “aiming robot” for cheating or
not. Experiments show that not only we can effectively detect
cheaters, but the false positive rate is extremely low. We believe
the proposed methodology and the prototype system provide a
first step toward a systematic study of cheating detection and
security research in the area of online multiplayer games.

I. INTRODUCTION

In 2004, multiplayer online games generate billions revenue.
The Internet Research Report - Online Games 2004 [7] shows
that there are nearly 300 online game producers around the
world, with 175 online games and nearly 20 million players
in the year 2004. Up to February 2005, just the game “World
of Warcraft” on its own has reached over US $200 million rev-
enue from monthly subscription fees with more than 200,000
users playing online simultaneously.

As in all aspects in life, some players may use various
forms of cheat so as to gain an unfair advantage over honest
players. With the use of cheats, a cheating player may have an
overwhelming superiority in terms of destroying other avatars

1“The work of John C.S. Lui was supported in part by the SHIAE grant
and the Microsoft-CUHK Joint Lab Research Grant”.

(which are graphical representation of other players in an
online game) in the virtual world. As a matter of fact, cheating
in multiplayer games is becoming so common because cheats
are easily accessible on the Internet. For example, Blizzard
Entertainment once banned tens of thousand Diablo accounts
whose players are believed to be cheaters [3].

Cheating in a first-person shooter game is especially an-
noying. The fun in playing a first-person shooter game is on
the extensive and continuous interactions with other players,
playing against a cheater is definitely an unpleasant experience
since an honest player will have very little chance, if any, in
beating the cheater and the cheater will eventually gain enough
points and drive away most honest players from the game.
Rampant cheating will destroy the entertainment value of a
game, then honest players will eventually abandon the game,
which implies that the game developer who invested heavily
on the game development will suffer a significant financial
loss.

Although many first-person shooter games are now incorpo-
rated with anti-cheating software, which are essentially pattern
scanners, cheating cannot be completely prevented. Because
the computer is in the hands of the cheaters, they can always
work around with the anti-cheating software. Besides using
the software solution, online game companies also need to
employ enough people to monitor the game constantly so
as to discover potential cheaters. For example, some online
game servers have administrators and if they discover some
suspicious players, or receive sufficient number of complaints
from other players of accusing another player for foul play,
then the administrator has the right to kick out a suspicious
player from participating in the online game. Obviously, these
types of solutions are labor intensive and they are not a
scalable solution for detecting cheaters in online games that
support thousands of players.

Although cheats can be implemented in many different ways
and can perform differently to achieve the same purpose, these
forms of cheat essentially produce similar playing patterns. In
this paper, we propose an efficient and scalable solution to
automatically detect whether a player is a potential cheater
or not. In particular, we use the Dynamic Bayesian Network



(DBN) approach for our cheat detection framework. To test the
effectiveness of the proposed methodology, we also develop
a prototype multiplayer game server, and the cheat detection
engine is enabled within the game server only. Because our
framework relies solely on the ordinary game states and runs
in the server side, therefore it is not vulnerable to hacks and it
is a better deployable solution than the conventional software
patches or human monitoring schemes. We also test our cheat
detection method on a “first-person shooter” game for the
detection of a specific cheat called aiming robot. We also test
on several enhancements of the aiming robot and the results
show that our framework can detect cheats effectively.

The remaining of this paper is organized as follows. In
Section 2, related work on cheat detection or cheat prevention
for multiplayer game is presented. In Section 3, we provide
the necessary background for Dynamic Bayesian Network. In
Section 4, we present the architecture of our prototype, as
well as our cheat detection mechanism. We also quantify the
computational complexity of our cheat detection algorithm.
Experiments for showing the effectiveness and scalability of
the proposed method is presented in Section 5. Section 6
concludes.

II. RELATED WORKS

There are works about cheat-controlled protocol that prevent
look-ahead cheats. [1] proposed a lock-step protocol on a
distributed game model wherein players will announce their
decisions in cryptographically secure one-way hash as a com-
mitment. Only when all players have announced their commit-
ments, players then reveal their decision in plaintext. Thus a
cheater cannot gain any advantage by being the last player to
make decision. The authors also proposed some optimizations
to overcome the synchronization problems caused. In [2],
authors proposed a scheme that enforces the fair-ordering of
the message delivery so that cheat will be restricted to a certain
level or may even be detected. In [4], author extended the idea
so that the cheat-proof protocol can be used in game with
dead reckoning. In [5], authors proposed the use of runtime
verification to verify game codes. This approach mainly targets
on cheats that exploit implementation bugs such as trade-hack
in MMORPG, but is not applicable to cheats that involve
modification of client code that are loaded into memory at
runtime.

III. DESIGN AND IMPLEMENTATION

In this paper, we present our framework of cheating de-
tection with a real multiplayer online game. To demonstrate
the effectiveness of the proposed method, we built a prototype
multiplayer game system. In particular, we use the open source
first-person shooter game Cube [8] as our testbed. We choose a
specific type of cheat called aiming robot (or aimbot for short).
This type of cheat is frequently used by various players to gain
unfair advantages.

A. Dynamic Bayesian Network (DBN)

The overview of the DBN we used for our experiments is
illustrated in Figure 1. In this section, we explain the details of

our dynamic Bayesian network and discuss how the network
can be used to detect the use of an aimbot.
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Fig. 1. The DBN used for aimbot behavior detection.

In a first-person shooter game, several state information will
certainly influence the aiming accuracy of a player directly. For
example, when the player is closer to the target, the higher the
chance the player can hit the target. Also, it is easier to aim
at a static target than a high speed moving target. Likewise, a
player should have a higher aiming accuracy when that player
is stationary, as compare to a player who is aiming while
moving at the same time. Certainly, the use of an aimbot
will affect the aiming accuracy of a player. Therefore, the
probability distribution of a player’s aiming accuracy, P (A),
is dependent on the following random variables:

1) whether the player is cheating or not, which is denoted
by the random variable C,

2) whether the player is moving or not, which is denoted
by the random variable Mp,

3) whether the player’s aiming target is moving or not,
which is denoted by the random variable M t,

4) whether the player is changing the aiming direction,
which is denoted by the random variable 4D, and

5) the distance between the player and the aiming target,
which is denoted by the random variable D.

Note that these random variables themselves are not depen-
dent on any other random variables. This is because the habit
and the skill of the player and also the environment of the
virtual world, such as the location of some special items, will
dominate the activities of a player. It means that the input
of a player is normally not dependent on other outcomes in a
game session. For this reason, we model the above parameters
themselves as independent random variables.

Moreover, we model the aiming process as a first order
Markov process. Because aiming is a fine tunning process,
once a player aimed accurately, probably only small adjust-
ments are required to keep the accuracy. It means that the
probability distribution of a player’s accuracy on a certain time
slice t is dependent on the player’s accuracy on the previous
time slice t − 1.

Also, the change in probability of whether the player is
cheating or not is also modelled as a first order Markov



process. We make this dependency because a cheater may want
to enable the aimbot in a time slice but disable the aimbot in
the following time slice.

B. Training and Inference

All of the random variables we need to infer the probability
of cheating, i.e., C, Mp, M t, 4D and D, can be obtained
directly, or derived from the game states contained in the
update packets by various players. Usually, there will be more
than one visible target a player can aim. We define a player’s
current target as the latest target the player aimed accurately,
to illustrate, let player A aimed at player B accurately, then
for player A, ˜TargetA = B until player A aimed at another
player accurately or player B becomes invisible to player A.
The variables Distance (D) and Accruacy (A) are both derived
against this current target. Also, for those random variables
having continuous values, i.e. Distance (D) and Accuracy
(A), we discretize them into finite elements. Therefore, in
training the dynamic Bayesian network, we need to consider
the following random variables which take on the following
values:

1) Cheating (C), with C ∈ [true, false],
2) Player Moving (Mp) with Mp ∈ [true, false],
3) Target moving (M t) with M t ∈ [true, false],
4) Changing aiming direction (4D), with 4D ∈

[true, false],
5) Distance from aiming target (D), with D ∈ [0, 1, 2, 3]

in which larger the value implies further away is the
distance and,

6) Aiming accuracy (A) with A ∈ [0, 1, 2, 3] in which the
lower the value implies higher is the aiming accuracy.

Using these data, one can obtain the following prior proba-
bility distributions by counting frequencies and then normalize
the values:

1) P (Ct|Ct−1), and
2) P (At|At−1, Ct, M

p
t , M t

t ,4Dt, Dt),

Inferring the probability of cheating for any particular player
follows the following steps. At the very first time slice where
t = 0, we initialize P (C̃0 = true) to 0.5 (i.e., a player is
equally likely to be a cheater or an honest player). For each
time slice t, the inference carries out in two stages:
Stage 1: estimate the outcome of C̃t based on ˜Ct−1, this
estimation can be carried out by the following equation:

P (C1 = T ) = P (Ct = T |Ct−1 = T )P (Ct−1 = T )

+P (Ct = T |Ct−1 = F )P (Ct−1 = F ) (1)

Stage 2: updates C̃t with all of the evidences at time slice t.
This computation can be carried out by the following equation:

P (Ct = true|At, At−1, M
p
t , M t

t ,4Dt, Dt)

=
P (at|at−1, Ct, m

p
t , m

t
t,4dt, dt)P (Ct = true)

∑false

c=true P (at|at−1, Ct = c, mp
t , m

t
t,4dt, dt)P (Ct = c)

.

(2)

IV. EXPERIMENTAL EVALUATION

We have implemented three different aimbots for Cube.
When the aimbot is enabled, it will find the nearest target
and aim at it accurately. The aimbot will keep on aiming
to the current target even there is a nearer target, until the
distance between the player and the current target is larger
than a certain threshold. If there is only one visible target, the
aimbot will then keep on aiming this target until the target is
invisible to the player.

The three aimbots perform similarly to the most common
aimbots for first-person shooter games. The first one is the
most popular and basic one, when enabled, it will aim at its
target continuously. The second aimbot we built will automati-
cally switch itself on and off for a random time interval which
vary from 0.5 seconds to 2 seconds. The human player will
temporary take over the control during the off periods. The
justification for this feature is to reduce the aiming accuracy
so that it is difficult to detect the cheater. The third aimbot we
built is the most advanced one, it will create intensional misses
for some random time intervals which vary from 0.5 seconds to
2 seconds. The aimbot pretends to miss like a human player
by exhibits a smooth fluctuation of the crosshair around its
target.

We carried out ten separate game sessions and then arrange
the data into three data sets. These data sets are:

• Data set A, there are three honest players and three
cheaters using the basic aimbot. Note that the data set
A is used for training the dynamic Bayesian network.

• Data set B, there are three honest players and three
cheaters using the basic aimbot.

• Data set C, there are three honest players, three cheaters
using the auto-switching aimbot (the type II aimbot men-
tioned above) and three cheaters using the most advanced
aimbot (type III aimbot mentioned above).

Experiment 1 – Effectiveness to Detect Cheating: In this
experiment, we investigate the ability to detect cheaters while
produce no false positive for honest players. We use the data
set A as the training data and then infer the data set B. Figure 2
shows the probability of cheating over time for each of the six
players in the data set B. Note that Figure 2(a)-(c) correspond
to cheaters while (d)-(f) correspond to honest players. A pre-
defined threshold is set to decide whether a player is a cheater
or not.

The game sessions actually lasted for 10 minutes, but the
figures are zoomed into the first 500 frames of the plays, i.e.
20 seconds, so that more details can be observed from the
figures. For most of the time, the probability of an honest
player keeps well below the threshold. On the other hand,
the probability of a cheater can fluctuate above the threshold
quite frequently, which indicates that the methodology is quite
effective in detecting the use of aimbot.

There exists some time periods where a cheater is having
a low probability of cheating, this probably occurs when the
cheater does not have any visible target to aim at. It is common
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(a) a cheater
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(d) an honest player
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(b) a cheater
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(e) an honest player
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(c) a cheater
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(f) an honest player

Fig. 2. Result of Experiment 1. Cheaters have probabilities fluctu-
ating around the threshold, as illustrated in the sub-figures (a)-(c),
while honest players have probabilities well below the threshold, as
illustrated in sub-figures (d)-(f).

that only half of the time a player will have a visible target
nearby, and this effect is magnify when the virtual world is a
large one.

One may think that the detection can be improved by
only counting the data when a player has any visible target.
Unfortunately, for most of the first-person shooter game, the
game server does not contain the information of static objects
inside the virtual world, and this information is required to
determine the visibility between any two players. Even if
we include those information, the computation will be very
expensive and thus it is not a scalable method.

Experiment 2 – Adaptiveness to Auto-switching and Inten-
sional Misses: In this experiment, we investigate the ability to
detect cheaters who use either one of the two more advanced
aimbots, that is, they either perform auto-switching (turn on
and turn off the aimbot alternately), or by intensionally missing
some target. We still use the data set A as the training data
and then infer the data set C. Figure 3 shows the probability
of cheating over time for each player in data set C.

For the same reason that there is no visible target, there
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(a) auto-switching
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(d) intensional misses
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(b) auto-switching
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(e) intensional misses
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(c) auto-switching
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(f) intensional misses

Fig. 3. Result of Experiment 2. Probability of cheaters using
an aimbot that automatically switching on and off occasionally in
random intervals (a)-(c), and the probability of cheaters using an
aimbot that creates intensional misses in random intervals (d)-(f).

exists time periods that the probability drops far below the
threshold. However, we look into the time frame from 100
to 350 in Figure 3a. During this period, the probability keeps
beyond the threshold for 250 timeframes, or 250/25 = 10
seconds, while the aimbot is switching on and off at about
one second intervals. The probability does not drop even the
aimbot is switched off, this is because the aimbot helps the
player in aiming the target. We also look into the time frame
from 250 to 400 in Figure 3d. During this period, the prob-
ability fluctuates around the threshold for 150 timeframes, or
150/25 = 6 seconds, while the aimbot is creating intensional
misses at about one second intervals. The probability drops
when the aimbot misses its target, however, it rises again when
the aimbot aims at its target in later time frames. This suggests
that our methodology can effectively detect the use of aimbot
even when the aimbot has the advanced feature to switching
or missing intentionally.

Experiment 3 – Cross Validation: In this experiment, we



validate our results by training and inferring with different
combinations of data sets. We first train with data set B and
infer with data set C, then train with data set B and infer
with data set A, and so on. Figure 4 shows the probability
of cheating over time for each test case. We use the same
threshold for all of the test cases in determining whether
the player is a cheater or not. From Figure 4, we see that
even when we use different data set for the training, the
methodology is still effective in determining whether a player
is using the aimbot or not. The inferred probability of a cheater
fluctuates above the threshold while the inferred probability of
an honest player is below the threshold.

Scalability Analysis: We have carried out experiment on the
scalability of our system. Due to the lack of space, we refer
our readers to the technical report [6] for the experiment on
investigating the scalability of our cheat detection framework.

V. CONCLUSIONS

Our work is the first attempt of using statistical inference in
cheat detection. Experimental results show that the Dynamic
Bayesian Network is an effective and scalable solution in the
detection of the aiming robot cheat for a first person shooter
multiplayer online game. Our framework only relies on the
ordinary game states observed in the server side, therefore,
cheaters cannot hack the detection system like hacking a cheat
scanner software on the client side. The statistical approach has
the advantage that one does not require to perform software
update on the client side so as to detect new cheat, and
the same methodology can be used to detect other kinds of
cheat within the same category, because these cheats exhibit
similar behavior (i.e., high aiming accuracy in all situations).
We believe the proposed methodology and the prototype
system provide a first step towards a systematic study of
cheat detection and security research in the area of multiplayer
online games.
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(a) cheater
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(b) honest player
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(c) cheater

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

timeframe (25 frames per sec)

pr
ob

ab
ili

ty
 o

f c
he

at
in

g

raw data
average curve
threshold

(d) honest player
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(e) cheater
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(f) honest player

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

timeframe (25 frames per sec)

pr
ob

ab
ili

ty
 o

f c
he

at
in

g

raw data
average curve
threshold

(g) cheater

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

timeframe (25 frames per sec)

pr
ob

ab
ili

ty
 o

f c
he

at
in

g

raw data
average curve
threshold

(h) honest player
Fig. 4. Result of Experiment 3. Use different combinations of data set for
training and inference. Learn session B and infer session C: cheater (a) and
honest player (b). Learn session B and infer session A: cheater (c) and honest
player (d). Learn session C and infer session A: cheater (e) and honest player
(f). Learn session C and infer session B: cheater (g) and honest player (h).


