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Abstract. With the rising threat of smartphone malware, both academic com-

munity and commercial anti-virus companies proposed many methodologies and

products to defend against smartphone malware. Thus, how to assess the effec-

tiveness of these defense mechanisms against existing and unknown malware

becomes important. We propose ADAM, an automated and extensible system

that can evaluate, via large-scale stress tests, the effectiveness of anti-virus sys-

tems against a variety of malware samples for the Android platform. Specifically,

ADAM can automatically transform an original malware sample to different vari-

ants via repackaging and obfuscation techniques in order to evaluate the robust-

ness of different anti-virus systems against malware mutation. The transformation

and evaluation processes of ADAM are fully automatic, generic, and extensible

for different types of malware, anti-virus systems, and malware transformation

techniques. We demonstrate the efficacy of ADAM using 222 Android malware

samples that we collected in the wild. Using ADAM, we generate different vari-

ants based on our collected malware samples, and evaluate the detection of these

variants against commercial anti-virus systems.

1 Introduction

Malware (e.g., worms, viruses, and trojans) has been a well-known threat in the com-

puting and networking communities. With the proliferation of smartphones, the threat

of smartphone malware becomes more formidable. TGDaily [49] reported that there

was a 33% increase in smartphone malware over 2009. As of October 2011, Ten-

cent Mobile Security Laboratory [48] identified around 13,000 and 6,000 mobile phone

viruses in the Symbian and Android platforms respectively. Given the threat of smart-

phone malware, researchers (e.g., [10, 11, 13, 35, 42, 44, 46, 52]) have proposed various

smartphone malware detection systems, and anti-virus software companies also develop

commercial security solutions to detect smartphone malware. However, new pieces of

smartphone malware keep evolving and attacking various distributions of smartphone

platforms [36]. Thus, understanding the smartphone malware battle between the good

and evil sides is critical for the community to improve the state of the art of the smart-

phone malware detection solutions. This motivates us to design a system that can stress

test an anti-virus solution, so that one can systematically evaluate the effectiveness (or

ineffectiveness) of existing smartphone malware detection systems against the emer-

gence of smartphone malware.
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Evaluating smartphone malware detection is a non-trivial issue, especially with the

challenge that there are a wide variety of smartphone operating systems available nowa-

days. In this work, we focus on Android, a Linux-based operating system that runs

Java-based applications. Android applications can be directly self-signed and published

by application developers through the official Android Market [6] without being sub-

ject to any official security validations. This unmoderated nature of Android provides

a fertile ground for the development of both benign and malicious applications. As re-

ported by International Data Corporation [30], Android led all smartphone OSes with

38.9% of market share in 2011, and is expected to grow to more than 40% of the market

through 2015. Meanwhile, Android also becomes the most targeted operating system

for smartphone malware [36]. Note that even the Android Market applies stringent secu-

rity checks to its hosted applications, it cannot entirely resolve the malware distribution

among Android phones, since some countries may ban the access to the Android Mar-

ket (see Section 6). Thus, by focusing on the Android platform, our evaluation study

can provide representative insights into the robustness of existing smartphone malware

detection systems.

There are number of studies (e.g., [14, 15, 37, 38]) that focus on evaluating the effec-

tiveness of existing malware detection systems. Such evaluation studies employ differ-

ent obfuscation techniques to transform a malware program into different variants (with

the original malicious behavior preserved), and then check whether a malware detection

system still treats the variants as malware. Note that most of these studies (e.g., [14, 15,

38]) focus on PC-based malware only, and limited studies (e.g., [37]) consider malware

for smartphones. Given the growing popularity of smartphones, there is an urgent need

to understand the effectiveness of anti-virus systems on smartphones, as well as their

robustness against new and evolving malware. Furthermore, it remains challenging to

scale up the evaluation to a large number of malware samples, as we need to ensure the

correctness of various obfuscation techniques for each malware sample. Although we

narrow down our focus on Android, the evaluation is still overwhelmed by numerous

Android malware samples in the wild [48] as well as various malware detection solu-

tions. Thus, the key motivation of this work is to develop an evaluation system that can

automatically apply to general classes of smartphone malware and anti-virus solutions,

and ultimately, support large-scale evaluation.

In this paper, we design and implement ADAM, an automated system for evaluating

the detection of Android malware. ADAM applies different transformation techniques

to generate different variants of each Android malware sample, and evaluates the effec-

tiveness of different smartphone malware detection systems in identifying such malware

variants. ADAM is designed to be automated, generic, and extensible. It automatically

transforms an Android malware sample into different variants through various repack-

aging and obfuscation techniques, while preserving the original malicious behavior.

ADAM then evaluates the detection of these variants against different smartphone mal-

ware detection systems. Such malware transformations and detection evaluations are

generic enough to support heterogeneous malware samples and malware detection sys-

tems, respectively. Lastly, ADAM can be extensible to support new implementations of

malware transformations and detection evaluations.
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As a proof of concept, we demonstrate how ADAM can be used to assess the robust-

ness of existing anti-virus systems in practice. We collected 222 malware samples in the

wild. We use ADAM to generate different variants for each collected malware sample,

and show that ADAM has a very high success rate in the automated generation of vari-

ants. We proceed to pass the variants to different commercial anti-virus engines hosted

on the web portal VirusTotal [51]. We discuss the findings and implications based on

the detection results returned from VirusTotal, but we emphasize that ADAM can also

be integrated with other anti-virus systems.

The rest of the paper proceeds as follows. In Section 2, we provide a brief back-

ground on how to prepare and generate an Android application. In Section 3, we present

the design of ADAM. In Section 4, we present various transformation techniques to gen-

erate different malware variants. In Section 5, we present our evaluation results against

different anti-virus systems. In Section 6, we discuss several open issues. Section 7

surveys related work, and Section 8 concludes the paper.

2 Background

Let us describe the software life cycle of building an Android application from source

code, as well as the reverse engineering process of an Android application. This lays the

foundation of how our ADAM system transforms an Android malware application into

another runnable Android malware variant while preserving the malicious behavior.

2.1 Building an Android Application

An Android application is mainly written in Java source code. The build process of an

Android application is to compile and package a Java source code project into an .apk

file that can run on a smartphone device or emulator. We now summarize the key steps

of the build process [2] as follows.

1. Preparation. An Android project contains Java source code (and possibly some

other native code), as well as metadata such as resources and programming inter-

faces. The build process first converts the metadata information into Java code or

interfaces.

2. Compilation. All Java source code files as well as the converted metadata are com-

piled together into .class files, which contain Java bytecode.

3. Bytecode conversion. All Android applications run on the Dalvik Virtual Machine

(DVM), which is a runtime environment similar to the Java Virtual Machine (JVM)

but is designed for mobile devices that generally have limited hardware resources.

The build process converts all .class files into .dex files, which contain the

Dalvik Executable bytecode.

4. Building. All resource files, including both non-compiled and compiled files, as

well as the .dex files are then packaged (i.e., zipped) into a single .apk file.

5. Signing. The .apk file needs to be digitally signed before it can be published in

well-known sites (e.g., Google Market). It is typical that the .apk file is signed

with the application developer’s private key, rather than by a centrally trusted au-

thority [4]. As described in Section 1, this type of unmoderated mechanism leads to
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proliferation of Android applications, but at the same time, allows easy penetration

of malware programs.

6. Alignment. To optimize the performance of the Android program (e.g., reducing

memory usage), the .apk file can be aligned along the byte boundaries with the

zipalign tool [5]. Note that some integrated development environment (IDE), such

as Eclipse with the ADT plugin, will automatically zipalign the .apk file after

signing the file with the developer’s private key.

2.2 Process of Reverse Engineering an Android Application

In order to stress test the effectiveness of an anti-virus system, we need to create a

library of malware variants and from existing malware. In most cases, the source code

of malware (or an Android application) is not readily available, but instead, we can

only access its .apk file and its underlying .dex files. To generate various malware

variants, one has to resort to reverse engineering. We review two approaches that can

be used to reverse-engineer an Android application.

1. Decompiling. The goal of the decompiling process is to convert a .dex file (with

the DVM bytecode) into the .java source code files. A typically approach is to

first convert the .dex file to .class files (e.g., using the dex2jar utility [20]),

which are then converted to .java files using Java decompiler (e.g., using the

Java Decompiler utility [33]). It is important to note that, the decompiling process

may generate a source code file that is significantly different from the original one.

2. Disassembling. The disassembling process is to convert a .dex file into .smali

files (e.g., using utility like apktool [9]), which contain assembly-like code for the

Android OS. The process takes the Dalvik opcodes of a .dex file and converts

them into low-level instructions. Typically, the decoded.smali files can be rebuilt

again back to a .dex file.

In this paper, we focus on using the disassembling approach to reverse-engineer an

Android malware sample. Through the disassembling approach, we can systematically

locate specific assembly-like instructions for different malware samples, and apply code

obfuscation to generate malware variants. We elaborate this in Section 4.2.

3 Design Overview of ADAM

In this section, we present an overview on the design of ADAM, an automated system

for evaluating the detection of existing Android-based malware detection systems.

3.1 Design Goals

ADAM aims for the following design goals:

– Security analysis. ADAM checks whether an Android-based malware sample in

.apk format can be detected by an existing anti-virus system. For this analysis, we

do not need the source code of the malware sample.
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– Automated transformation. ADAM automatically transforms a malware sample

into different malware variants, while preserving the original malicious behavior.

No manual modification of a malware sample is required.

– Generic application. ADAM can be applied for general classes of Android-based

malware samples and malware detection systems.

– Extensibility. ADAM provides an interface that can easily integrate new implemen-

tations of transformation techniques and detection methodologies.

3.2 Building Blocks

ADAM is composed of different building blocks. Figure 1 illustrates how different

building blocks are involved in testing malware samples against anti-virus systems. Let

us now describe how each building block works, and argue how the building blocks can

be extended for different variants of implementation.

Transformation

Malware (in .apk format)

Scanning

Analysis

Repackaging

Obfuscation

Online
Scan Engine

Local 
Scan Engine

Results and Recommendations

Fig. 1. Design flow of ADAM.

Transformation. Given an input .apk malware file, ADAM transforms it into differ-

ent variants of .apk files based on various transformation techniques, such that each

output .apk file preserves the original malicious behavior of the input .apk files. We

implement two classes of transformation techniques: repackaging and code obfusca-

tion. Details of these techniques are described in Section 4. We emphasize that ADAM

is extensible in the sense that one can plug-in other transformation techniques to gener-

ate different .apk variants.

Scanning. For each malware variant that we create, we pass it to an anti-virus scan

engine. Here, we focus on the scan engines of commercial vendors, while we can also

plug-in other malware detection systems with the correct interface.
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In ADAM, we support two types of scan engines: online and local. An online scan

engine refers to a web service that provides a library of open APIs. Users can upload

an .apk file to the web service and obtain the results via the APIs. Typically, the web

service is free of charge, but rate-limit the number of samples that can be scanned. Also,

the scanning performance varies depending on the current network conditions. In our

implementation, we use the VirusTotal web portal [51], which is connected to various

commercial anti-virus systems at its backend. On the other hand, a local (or desktop)

scan engine uses the command-line interface provided by an anti-virus vendor. It simply

specifies an .apk file as an input command-line argument and obtains the scanned

results. In our implementation, we integrate the Linux desktop version of the anti-virus

engine obtained from Antiy [8]. Our evaluation study covers both online and local scan

engines (see Section 5).

Analysis. ADAM collects the results from the anti-virus scan engines of different com-

mercial vendors. One can determine if a scanned .apk file is a malware sample based

on the decisions of one or multiple anti-virus systems. Aggregating the results of mul-

tiple anti-virus systems can potentially increase the detection rate[40]. The analysis

results can be summarized and presented, so as to provide recommendations for anti-

virus vendors to evaluate the effectiveness of the state of the art of malware detection

for Android.

4 Malware Transformation

In this section, we present techniques that we use to transform a given malware sample

into different variants. The resulting variants will be used by ADAM as inputs to eval-

uate the effectiveness of different malware detection systems. Specifically, we consider

two classes of transformation techniques: repackaging and code obfuscation, both of

which take an .apk file as an input and generate a different .apk file as an output.

Furthermore, we require that the output of an .apk file preserves the same logic and

functionality as the original input .apk file.

It is important to note that by no means do we claim our transformation techniques

are new, as they have also been studied in other evaluation systems for malware de-

tection (e.g., [14, 15, 37, 38]). On the other hand, ensuring the applicability of existing

transformation techniques in general Android applications remains a challenging issue.

In the following, we consider a number of transformation techniques that can be auto-

mated (i.e., without manual intervention) for general .apk files. Hence, one can easily

generate malware variants for a large number of malware samples.

4.1 Repackaging

In ADAM, we consider different repackaging methods that work directly on an input

.apk file and regenerate a different .apk file without modifying the source code of

the input .apk file. Thus, making the transformation easily deployable and preserving

the functionality of the input .apk file. We consider three techniques that are currently

supported by ADAM. One common key feature of all such techniques is that they are
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all built on the official Android or Java development utilities, which we expect are more

robust and stable than other third-party tools.

Alignment. The alignment technique realigns the data of an .apk file, so as to gener-

ate different content but preserving the same logic for an .apk file. We use zipalign[5]

to realign the uncompressed data within an .apk file (e.g., images or raw files) on 4-

byte boundaries so that all portions can be accessed directly via mmap() function. The

zipalign utility is available in the Android SDK, and is originally designed for provid-

ing optimization for .apk files. Since the alignment optimization changes the internal

structure of the .apk file, it accordingly changes some of the signature patterns, such

as the cryptographic hash of the .apk file. If an anti-virus system directly identifies

malware based on the cryptographic hash signature (e.g., MD5), then the alignment

technique can easily evade the detection of anti-virus system.

Our system applies alignment to an .apk file as follows. It is recommended [5]

that all .apk files are aligned on 4-byte boundaries to achieve optimization. Thus, it is

possible that the original input .apk file has already been 4-byte aligned. To ensure that

the .apk file is actually transformed to a different output, our current implementation

applies zipalign with the 8-byte alignment boundaries.

Re-sign. The re-sign technique is to generate a different signature for an .apk file.

Android requires that every .apk file be digitally signed before the .apk file can be

published and run on a smartphone. According to the official documentation [4], it is

allowed and typical that an .apk file is self-signed by its application developer without

involving a trusted central authority. One of our observations (which is not officially

documented) is that an .apk file can be re-signed multiple times with different cer-

tificates and private keys, so that a different signature is generated and attached to the

.apk file. This can evade the detection of anti-virus systems that simply identifies mal-

ware by its original .apk signature.

To (re-)sign an application, we use the Keytool and Jarsigner utilities, both of which

are available in the Java SDK [41]. We first use Keytool to generate a self-signed key

and put the key in a key store. We then use Jarsigner to sign an .apk file using the key

store as the input.

Rebuild. The rebuild technique disassembles an .apk file and rebuilds the assembly

code (without being modified) into another .apk file. We use apktool [9] to disassem-

ble the Dalvik bytecode within an .apk file into Smali code [34] (see Section 2), and

rebuild the Smali code back to Dalvik bytecode using apktool. After the disassemble

process, the original .apk file and the repackaged .apk file are exactly the same, but

repackaged .apk file will have different Dalvik bytecode order from the original one

depend on the parser’s analysis. This makes the resulting Dalvik bytecode (and hence

the .apk file) different from the original one and at the same time, preseves the logic

and functionality of the original .apk file.

We then sign the output .apk file with a randomly generated private key as de-

scribed in the re-sign technique. This rebuild technique is effective to evade anti-virus

systems that use cryptographic hash and/or .apk signature for malware identification.
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4.2 Code Obfuscation

In code obfuscation, we modify the program code of an .apk file so as to make an

anti-virus system more difficult to reverse engineer[17]. In particular, code obfuscation

changes the size and content of the .apk file, but without modifying the logical be-

havior. Our code obfuscation techniques operate on Smali code [34], an assembly-like

language based on the Dalvik executable code. The Smali syntax provides the debug

information of how the variables and methods are invoked. This enables us to easily

add obfuscated code to an .apk file.

To apply code obfuscation to an .apk file (of a malware sample), we first disas-

semble it using the apktool utility [9] into a .smali file. We modify the .smali file

according to each obfuscation technique which we will describe shortly. We then re-

build the modified .smali file into an .apk file using apktool and sign the output

.apk file, as in our previously proposed rebuild and re-sign techniques, respectively

(see Section 4.1). One can use zipalign [5] for data alignment so to generate an opti-

mized .apk file.

There are various code obfuscation techniques proposed in the literature, especially

for the Java language (e.g., see [17]) on which Android is based. Note that some code

obfuscation techniques depend on the underlying semantics of a program, and typically

require manual code modification that cannot be easily automated. For example, sub-

stitution of code with different lines of code may need to be carefully carried out so

as to preserve the original malicious behavior [37]. Also, our goal is to show that even

with simple obfuscation techniques, one can generate new malware samples that can

easily evade the detection of anti-virus systems. Thus, we consider several general code

obfuscation techniques that can be automated, while being sufficient to subvert most of

the anti-virus systems.

Inserting defunct methods (e.g., [14, 15]). We add new methods that perform defunct

functions to Smali code, and these inserted methods do not change the logic of the orig-

inal source code. The rationale of this obfuscation technique is to modify the method

table in the Dalvik bytecode, and hence change the signature that is generated based on

the method table.

There are many ways to add defunct methods. In our implementation, we implement

a Log.d debug method [3] that prints a simple string in Android (obviously, other

defunct methods can be added to ADAM). We first disassemble the method into Smali

format. We then insert the Log.d method before the constructor method of each class

in the disassembled .smali file. To locate a constructor method, we search for the

string “# direct methods” in each .smali file, because the constructor method

must follow this string. Figure 2 shows how we insert a defunct method.

Renaming methods (e.g., [37]). We obfuscate a method name with a different string,

and hence change the signature that is generated by the method name. In our implemen-

tation, we first identify all the system library method names from Android.jar in

Android SDK, so as to differentiate them from user-defined methods. Then we search

for all user-defined methods (i.e., other than the library methods) in each .smali file,

and append a randomly generated string (e.g., “abc10”) at the end of each user-defined

method that we find. We modify the method name when the method is first defined, as
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...

# direct methods

.method public OFLog(Ljava/lang/String;)V

...

.method public constructor <init>()V

...

Fig. 2. Inserting a defunct method (i.e., OFLog).

well as when it is called within the code. We point out that our system can also rename

other types of identifiers, including packages, variables, and classes, so as to make the

code more obfuscated. For example, Figure 3 shows how we rename a user-defined

method “foo” into “fooabc10”. To summarize, this type of obfuscation can evade

anti-virus system that uses method names to generate virus signatures.

.method public static fooabc10(Ljava/lang/String;)V

...

invoke-static {v1}, Lcom/test;->fooabc10(Ljava/lang/String;)

Fig. 3. Renaming a method from foo to fooabc10.

Changing control flow graphs (CFGs). Some anti-virus systems (e.g., Androguard

[1]) can use CFGs to generate signatures and detect the presence of malware. A CFG

signature can be defined based on a grammar table [12]. Here, we modify the CFG of a

.smali file and so as to change its CFG signature.

We consider one particular CFG obfuscation called the Goto-obfuscation. We insert

goto statements to each method in a .smali file. At the beginning of a method, we

insert a goto statement to jump to the end of the method; at the end of the method,

we insert another goto statement to return to the beginning of the method. We in-

sert a return statement before the second goto statement, so that the latter will not

be called again when the method is finished. Figure 4 illustrates how we insert goto

statements into a method foo.

.method public foo(Ljava/lang/String;)V

.prologue

goto :CFGGoto2

:CFGGoto1

...

return-void

:CFGGoto2

goto :CFGGoto1

.end method

Fig. 4. Goto-obfuscation.
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Encrypting constant strings. We encrypt all constant strings that we find in a .smali

file, and decrypt them when they are being processed. This modifies the signatures

that are generated by these constant strings. Here, we consider a simple symmetric

encryption method based on the Caesar cipher, in which we shift the character byte of

each alphabet letter (i.e., A-Z or a-z) by a constant integer value. For example, we can

encrypt a string “DecryptString” in a TextView control by subtracting all bytes by

10. The encrypted string will become “:[YhofjIjh d]”. We then add the decryption

method decrypt (i.e., by adding all bytes by 10) before the TextView control is called.

Figure 5 shows how the example works. In summary, this type of obfuscation can evade

anti-virus system that uses constant string to generate virus signature.

#direct methods

.method public static DecryptString\

(Ljava/lang/String;)Ljava/lang/String;

...

const-string v1, ":[YhofjIjh d]"

...

invoke-static { v1},\
Lcom/test;->DecryptString\

(Ljava/lang/String;)Ljava/lang/String;

move-result-object v1

invoke-virtual {v0, v1}, Landroid/\

widget/TextView;->setText\

(Ljava/lang/CharSequence;)V

Fig. 5. Encrypting a constant string.

5 Evaluation of Anti-Virus Systems

In this section, we use ADAM to evaluate the effectiveness of current commercial anti-

virus systems in the detection of Android smartphone malware, and examine their ro-

bustness of dealing with malware variants as stated in our previous section. We conduct

large-scale analysis using ADAM as follows. We collect a total of 222 Android mal-

ware samples in the wild, and generate different variants for each collected malware

sample based on our transformation techniques (see Section 4). We feed these malware

variants into different commercial anti-virus systems, and test if these variants are diag-

nosed as malware. Our analysis provides us a comprehensive picture of the effectiveness

of current commercial anti-virus systems. Most notably, it enables us to validate the au-

tomated and generic properties of ADAM in experimenting with large-scale malware

samples and anti-virus systems.

5.1 Malware Dataset

We collect a total of 222 distinct Android malware samples (with unique MD5 hashes)

from three different sources, including:
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– Old public samples. We download 57 Android malware samples from [18], a well-

known blog website that maintains a collection of mobile malware. The blog author

frequently updates the blog and shares the most recent malware samples to the

public. The 57 samples are the public Android malware samples that are published

from March 2011 to September 2011. Given the well-publicized blog, current anti-

virus systems should have a very high detection rate on these malware samples.

– New public samples. On Oct. 22, 2011, the blog [18] published 96 new Android

samples from an anonymous source. We believe it is interesting to study how fast

the anti-virus systems add the signature of these new malware samples to their

databases.

– Private samples. On Oct. 20, 2011, we obtained 69 Android malware samples from

Antiy [8], an anti-virus company based in China. These samples are unpublished,

so other anti-virus companies may not have enough signatures to detect these mal-

ware samples. Our hypothesis is that existing anti-virus systems will have a lower

detection rate on these samples.

We carefully investigate the malicious logic of each of the 222 malware samples.

We group the malware samples that have the same logic into a family. After our investi-

gation, we group the 222 malware samples into 38 different families. Furthermore, we

can classify the malware families into four categories, as we briefly describe below.

Repackaging malware. All malware samples in this category are transformed from

legitimate applications via the disassembling approach (see Section 2.2). Briefly speak-

ing, an attacker adds extra permissions and malicious services to a legitimate applica-

tion, and repackages everything into a new (malicious) application. When a user installs

the repackaged application, the application will perform malicious activities such as col-

lecting the user’s personal information and sending it to a remote server, or sending pay-

ment short messages to some premium SMS numbers. In our malware dataset, we have

138 malware samples from 12 families that fall into this category. For example, there

are 32 samples of a family called Geinimi. All the Geinimi samples are transformed

from different legitimate applications. Each of these malware samples has a common

Java package called Geinimi, which contains a service called Adservice that performs

malicious activities as listed above. This service modifies AndroidManifest.xml

in the .apk file and starts automatically when the system boots up. In this category,

there are also some well-known malware families such as DroidKungFu, BaseBridge,

and Hongtoutou that have been studied in the literature [25].

Display-modification malware: This type of malware has a feature that all malware

samples have the same application structure and same malicious behavior, but they have

different icons, names, wallpapers, themes, or pictures. We have 46 malware samples of

two families in our malware dataset that belong to this category. For example, the Kmin

family is a wallpaper changer application, and contains 42 samples in our dataset.

Camouflage malware. This category of malware has a key feature that they imitate the

same user interface of some original application in order to steal a user’s account cre-

dentials. We have a total of 13 samples of six families in our malware database. For ex-

ample, one family is called FakeNetflix, whose package name is “com.netflix.mediaclient”
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and is the same as that of the legitimate application Netflix. This family of malware dis-

plays a login screen to the user so as to steal the user’s password and send it to a remote

server.

Generic malware. This type of malware is just a plain malicious application without

being camouflaged as any legitimate application. An attacker may simply physically

access a smartphone and install the malware there. We have 25 malware samples of 18

families in our malware dataset under this category. For example, one family is called

NickiSpy, whose package name is called “com.nicky.lyyws.xmall”. It can steal users’

credentials and wiretap users’ phone calls in the background. It can also record any

phone conversation and store it under the directory named “shangzhou/callrecord” in

the SD card.

5.2 Anti-Virus Systems

We conduct our evaluation against the commercial anti-virus products hosted on the

web portal VirusTotal [51] (see Section 3.2) in October and November 2011. Note that

VirusTotal hosts over 40 anti-virus products, and our study only focuses on the top 10

products that give the highest detection rates for our 222 original malware samples (i.e.,

without transformations) in November 2011.

In addition, in February 2012, we also evaluate a commercial anti-virus product that

we obtained from Antiy [8], and the product is known to run the same engine as that

being deployed in smartphone platforms.

We note that some anti-virus systems, such as Androguard [1], can detect malware

based on control-flow-graph signatures (see Section 4.2). However, our evaluation does

not consider Androguard, whose latest version is released in September 2011 at the time

of this paper being written, while our malware samples are collected since October

2011. We think that it is unfair to evaluate Androguard using the malware samples

collected after its latest release.

5.3 Analysis

For the 222 malware samples we collected, we apply our transformation techniques

stated in Section 4, including three repackaging techniques and four code transforma-

tion techniques, to each malware sample. All samples can be successfully transformed

by the Re-sign technique. However, two of the samples can be transformed by the Align-

ment technique, but cannot be transformed by the Rebuild and the four code transforma-

tion techniques because of the re-compilation errors. Also, 10 of the samples cannot be

transformed by all techniques except Resign, mainly because they just contain .dex

files that cannot be rebuilt into .apk files. Therefore, we can only generate a total

of 1484 variants. Nevertheless, our transformation techniques have a success rate of

95.5%, showing the robustness of ADAM.

5.4 Results

We evaluate all malware samples and their transformation variants against different

anti-virus systems.
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AV Products Original Alignment Re-sign Rebuild

Kaspersky 95.95% 94.34% 94.59% 94.76%

F-Secure 95.50% 95.75% 95.05% 91.90%

Emsisoft 94.59% 93.87% 93.69% 75.24%

Ikarus 94.59% 94.34% 93.69% 75.24%

GData 94.14% 93.87% 93.69% 90.95%

TrendMicro 94.14% 91.98% 92.79% 77.62%

NOD32 92.79% 88.68% 88.29% 95.24%

Sophos 92.79% 94.81% 94.14% 78.10%

Antiy-AVL 92.34% 91.98% 89.19% 72.38%

Fortinet 90.99% 89.15% 88.74% 71.43%

Overall Average 93.78% 92.88% 92.39% 82.29%

(a) Detection of original malware samples and their variants generated by repackaging.

AV Products Insert Rename Change CFG Str. Encrypt

Kaspersky 93.81% 73.33% 94.76% 90.95%

F-Secure 90.00% 90.00% 90.48% 68.57%

Emsisoft 83.81% 26.67% 82.86% 25.24%

Ikarus 83.81% 26.67% 83.33% 25.24%

GData 90.95% 90.48% 91.43% 88.10%

TrendMicro 61.90% 61.90% 63.81% 35.71%

NOD32 95.24% 91.90% 95.24% 90.48%

Sophos 54.29% 54.29% 54.76% 49.05%

Antiy-AVL 70.00% 19.05% 67.14% 19.52%

Fortinet 48.57% 15.71% 42.86% 16.67%

Overall Average 77.24% 55.00% 76.67% 50.95%

(b) Detection of malware variants generated by code obfuscation.

Table 1. Detection rates for various anti-virus systems: Time: November 2011.

(1) Analysis of all transformation techniques. Table 1 shows the experimental results

of the detection rates of each of the top 10 anti-virus systems that we choose, while the

evaluation was conducted on November 21, 2011. We discuss our findings below.

• Original malware samples. We first test the original malware samples that we col-

lected (without applying any transformation). The top 10 anti-virus systems we consider

performed well in the original sample detection, they all have over 90% of detection

rates. The average detection rate is 93.78%. This indicates that anti-virus companies

have already begun to value the security of Android systems, and responded quickly

to the emergence of new Android malware. In the following, we analyze the detection

rates due to different transformation techniques when compared to the detection of the

original malware samples.
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• Alignment. As mentioned in Section 4, alignment via zipalign only changes the cryp-

tographic hash signature of an .apk file. After alignment, there are only slight drops

of the detection rates for all anti-virus systems (by at most 4%).

• Re-sign. We re-sign the .apk file of each malware with a random key. We observe

that the detection rates of all the 10 anti-virus systems that we consider are not much

different from the results for the original samples and the alignment transformation.

We believe the reason is that most anti-virus products apply the unzipping process to

deal with the .apk files before scanning. The re-signed .apk file will be no different

from the original .apk file after the unzipping process because the signature process

is based on the whole .apk file, and does not change the content of an .apk file.

Note that after being re-signed, each .apk file has a different cryptographic hash. This

may reduce the detection rate if an anti-virus system relies on cryptographic hashes as

signatures, similar to the observations in the alignment transformation.

• Rebuild. After the rebuild process, the average detection rate of the 10 anti-virus

products drops from 93.78% (in the original sample detection) to 82.29%. To under-

stand this phenomenon, we used Dedexer [50] and UltraCompare [31] to analyze the

original samples and the rebuilt variants. Dedexer is a disassembler tool for .dex files.

Unlike apktool, the Dedexer tool can be used as a .dex parser to generate a detailed

log file on the internal structure of a .dex file. UltraCompare is a comparison utility

that can handle binary file comparison, text comparison and folder comparison.

After rebuilding a .dex file, the result shows that the .dex file has changed. We

use UltraCompare to compare the detailed log files of these .dex files. We find out

that the checksum, the signature, some offsets, and some size values have changed. In

addition, although the strings or method names do not change, their index orders are

different from the original .dex file. These changes imply that just using fragments of

a .dex binary file as the malware signature may not be effective, and it may reduce the

detection rate.

• Insert defunct methods. After the insert defunct methods transformation, the average

detection rate of the 10 anti-virus systems has decreased from 93.78% down to 77.24%.

Then we use UltraCompare to compare the detailed log files of the original samples and

malware variants. The most distinctive difference between the rebuilt variant and the

insert-defunct-methods variant is the method table. In the method table, the total number

of methods has changed and the size of the method table becomes bigger because we

insert additional defunct method implementations. Therefore, if an anti-virus system

uses the hash value of all of the method names as the signature, then adding defunct

methods will make the detection ineffective. For example, we insert defunct methods

process to one of our malware samples called snake. Then we compare the variant

with its original sample. We find that the total number of methods increases from 239

to 259, and the file size is only increased by 4%. Again, these changes are due to the

insertions of defunct code.

• Renaming methods. After the renaming methods transformation, the average detec-

tion rate has decreased from 93.78% down to 55.00%. In particular, the detection rates

of some anti-virus products drop significantly, for example, from 92.34% to 19.05% for

Antiy-AVL. In addition to the changes in the rebuild process, the method table has also
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AV Products Original Alignment Re-sign Rebuild

F-Secure 93.24% 95.28% 94.59% 89.05%

Kaspersky 93.24% 90.09% 89.64% 62.38%

Emsisoft 90.99% 90.09% 87.84% 61.90%

Ikarus 90.99% 90.09% 87.84% 61.43%

GData 88.74% 92.45% 91.44% 86.67%

Sophos 88.74% 86.32% 86.49% 68.10%

Antiy-AVL 86.04% 75.00% 73.42% 54.76%

TrendMicro 85.59% 75.94% 74.32% 53.81%

Fortinet 79.28% 68.87% 68.47% 43.33%

NOD32 77.93% 55.66% 52.25% 35.24%

Overall Average 87.48% 81.98% 80.63% 61.67%

Table 2. Detection rates for various anti-virus systems using original malware samples and their

variants generated by the repackaging techniques: October 2011.

changed significantly. Also, the implementation of methods has also changed because

the methods now invoke different method names. This indicates that if anti-virus sys-

tems use method names to generate signatures, then they may fail in the detection. We

observe that the renaming method transformation is more effective in evading malware

detection compared to inserting defunct methods.

• Changing control flow graphs. We used the Goto obfuscation technique so that every

method implementation has been added with 4 lines of Goto statement while other

changes are the same as the rebuild process. We find out that the result is similar to that

of the insert-defunct-methods transformation. The average detection rate has decreased

from 93.78% down to 76.67%.

• String encryption. After this transformation process, the string table and method ta-

ble will change because of the string encryption and the insertion of decryption meth-

ods. The average detection rate of all anti-virus systems has decreased from 93.78%

to 50.95%. This indicates that a lot of anti-virus systems that we consider use constant

strings as the signature to detect the presence of malware.

(2) Evolution of malware detection. We used ADAM to carry out the first stress test

on all anti-virus systems in October 2011 right after we collected all malware samples.

Here, we only focus on the detection of original malware samples and their variants

generated by the repackaging techniques. Table 2 shows the detection rates of the top

10 anti-virus systems that we consider in Table 1. Compared with the detection rates on

Table 1, which we carried out the experiment in November 2011, we see that most of

the anti-virus systems improve in the malware detection, in particular, on the original

malware samples. This shows that anti-virus systems are rigorously updating their sig-

nature databases. However, there are still a number of anti-virus systems which are not

robust against simple malware transformations based on repackaging.

In February 2012, we obtained from Antiy [8] an anti-virus engine that runs atop a

desktop PC with the Linux operating system and is known to have the same detection
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Original Alignment Re-sign Rebuild

94.59% 96.69% 94.59% 95.23%

Insert Rename Change CFG Str. Encrypt

94.28% 93.80% 98.57% 94.28%

Table 3. Detection rates of the Antiy’s anti-virus product in February 2012.

logic as that being deployed in smartphone platforms. We conduct evaluation against

it in February 2012 using the same set of variants. Table 3 shows the results. We ob-

serve that the detection rates for the original malware samples and all their variants can

achieve over 90%. This shows that commercial anti-virus products evolve to become

more robust against malware transformations.

6 Discussion

In this section, we describe several open issues that we have not addressed in this work,

and suggest the future directions.

Signature coverage. While we show that our transformation techniques can make a

malware application evade the detection of a number of commercial anti-virus systems,

it is non-trivial to accurately infer the underlying signatures being used by such systems.

Also, although we confirm that some companies use the same anti-virus engine for both

desktop and mobile versions (see Section 5.2), we cannot verify if all anti-virus systems

that we tested on VirusTotal apply the same detection logic as in their mobile versions,

as the latter can be better. One future work is to apply ADAM to evaluate both desktop

and mobile versions of an anti-virus product and compare their detection performance.

Distribution model. We point out that it is generally difficult to distribute malicious

applications through the official Android Market because of strict application checking.

However, we believe that hackers can upload any malware to the third-party markets,

given that the Android Market may be banned by some countries such as China [53].

Thus, users may have to use third-party markets to access mobile applications. In addi-

tion, “rooted” smartphones can install any applications and bypass any strict checking

imposed by the Android OS, thereby making the spread of malware more feasible. It is

interesting to further study the impact of the distribution model of mobile applications

on the spread of malware.

Defense solutions. We propose several solutions that can defend against obfuscation

and repackaging techniques we discussed. First, one can use a .dex parser to extract

signatures from a .dex file to counter common obfuscation methods, because the logic

and functionality of the .dex file does not change. Second, a good optimizer can handle

the insertion of defunct methods and changing control flow graph methods, because all

redundant code can be eliminated after the code optimization method. Third, using

fuzzy hashing [29] to detect unknown malware appears to be a promising approach, but

how to find the optimized parameters to control the anchor points remains a challenging

research problem.
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7 Related Work

Smartphone malware (e.g., viruses, worms, and trojans) presents a critical security

threat to smartphones. A piece of malware can reside in smartphones, perform ma-

licious activities, and compromise the trusts of smartphones. As the first smartphone

worm Cabir appeared in 2004 [47], the research community has been alerted about the

severity of smartphone malware [19, 26, 32]. While smartphone malware first appeared

in Symbian OS, Schmidt et al. [45] implemented the first malware for Android. Since

then, there has been a rapid spread of malware in different mobile platforms including

Android and iOS (see the survey of [25]). Recently, Schlegel et al. [43] demonstrated

an Android malware called Soundcomber that can steal voice data with only limited

permission privileges.

Existing commercial anti-virus solutions identify smartphone malware mainly based

on static signature-based detection, which aims to identify any malicious patterns of the

source code of an application without executing it. However, smartphones typically

have scarce computational and bandwidth resources, and so it is ineffective to have

smartphones deploy anti-virus solutions and update the latest signatures in a timely

manner. SmartSiren [13] is a proxy-based, collaborative detection system that collects

the activities from various smartphones in order to detect the existence of malware.

Bose et al. [10] propose a machine-learning-based framework that detects the presence

of smartphone malware by looking into malicious behavior signatures, and show that

behavioral detection gives higher detection accuracy and is more resilient to code trans-

formation than conventional signature-based detection. Schmidt et al. [44] consider a

similar collaborative system as in [13] and use behavioral detection, with the emphasis

on Android systems. Paranoid Android [42] uses remote servers to examine the repli-

cas of Android phones and identify security threats. Crowdroid [11] is a behavioral

detection malware system for Android, and collects the system-call traces of various

real Android users to identify malware. In summary, the above approaches mainly use

a network-based system that remotely runs the malware detection.

There are host-based malware detection systems that directly run on smartphones.

Xie et al. [52] propose access-control defense to limit the accesses of malware to crit-

ical system resources. VirusMeter[35] identifies malware that causes excessive battery

power consumption on mobile devices. Andromaly[46] is an Android-based malware

detection system that applies machine learning to identify anomalous behavior.

A number of researchers (e.g., [27, 39]) motivate the needs and challenges of test-

ing security software, and AMTSO [7] is one major organization that propose different

standards for testing anti-virus systems. There have been research studies that focus

on testing the resilience of existing malware detection systems. Christodorescu and Jha

[14, 15] show that simple code obfuscation techniques suffice to evade the detection of

commercial anti-virus systems, which are mainly built on static signature-based detec-

tion. Moser et al. [38] show that obfuscation techniques based on opaque constants can

evade static detection systems that consider instruction semantics (e.g., [16]). Note that

these studies mainly consider malware on PCs but not on mobile devices. Morales et

al. [37] evaluate the resilience of commercial anti-virus systems for the Windows Mo-

bile OS, and consider it only with two virus samples and four commercial anti-virus
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systems. Our work, on the other hand, targets the Android OS and covers significantly

larger sets of virus samples and commercial anti-virus systems.

There are studies that investigate the security issues in Android smartphones, such

as privacy leakage and permission usage. Enck et al. [23] analyze the security of ex-

isting Android applications, by decompiling and recovering the Java source code of

Android applications in Google’s Android Market. Taintdroid [22] uses dynamic taint

tracking to identify any privacy leakage in Android applications (a similar privacy leak-

age detection system PiOS [21] is designed for Apple iOS). AppFence [28] extends

Taintdroid by controlling how private data can enter or leave an Android application.

Stowaway [24] uses static analysis to identify the permission usage of the API calls in

Android applications. Our work mainly focus on generating malware threats and exam-

ine the effectiveness of malware detection in Android smartphones.

8 Conclusions

We present ADAM, an automated, generic, and extensible platform that evaluates the

detection of Android malware detection systems. ADAM applies different transforma-

tion techniques, including repackaging and code obfuscation, to an Android malware

sample to generate different variants. Then it applies these variants to stress test the

robustness of a wide range of anti-virus systems. ADAM is designed to be automatic,

generic, and extensible for assessing the state of the art of Android malware detection.

We conduct large-scale studies based on 222 Android malware samples against various

commercial anti-virus systems, so as to demonstrate how ADAM provides recommen-

dations to improve current detection mechanisms. Our ADAM prototype is available

for download at: http://ansrlab.cse.cuhk.edu.hk/software/adam.
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