
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024 5459

eMPTCP: A Framework to Fully Extend
Multipath TCP

Dian Shen , Member, IEEE, Bin Yang , Junxue Zhang , Fang Dong , Member, IEEE, ACM,
and John C. S. Lui , Fellow, IEEE, ACM

Abstract— MPTCP provides the basic multipath support for

network applications to deliver high throughput and robust

communication. However, the original MPTCP is designed with

limited extensibility. Various research works have tried to extend

MPTCP to attain better performance or richer functionalities.

These existing approaches either modify the kernel implementa-

tion of MPTCP, which involve considerable engineering efforts

and may accidentally introduce safety issues, or control MPTCP

via userspace tools, which suffer from restricted functionality

support. To address this issue, we propose eMPTCP, an easy-
to-use framework to fully extend MPTCP without safety risks.

Internally, eMPTCP has a modular and pluggable model which

allows operators to specify a comprehensive MPTCP extension

as a chain of sub-policies. eMPTCP further enforces the policies

through packet header manipulations. To ensure safety, eMPTCP

is implemented using eBPF. Despite the stringent constraints of

eBPF, we show that it is possible to implement an elaborated

framework for a fully extensible MPTCP. Through verifying

MPTCP in a number of real-world cases and extensive experi-

ments, we show that eMPTCP is able to support a wide range of

MPTCP extensions, while the overhead of eMPTCP operations in

the kernel is in the scale of nanosecond, and the extra processing

time accounts for only about 0.63% of flows’ transmission time.

Index Terms— Data center network, MPTCP, eBPF.

I. INTRODUCTION

M
ULTIPATH transport has become a popular option in
today’s networks. Mobile devices usually have multi-

ple wireless interfaces like Wi-Fi and cellular accesses [1],
and it has become a norm for multihoming servers to have
many parallel paths in data center networks [2]. In order to
better exploit the multipath feature of networks, Multipath
TCP (MPTCP) [3] was proposed to enable applications to

Received 18 October 2023; revised 28 May 2024; accepted 21 September
2024; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
K. Lee. Date of publication 7 October 2024; date of current version
19 December 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62272101 and Grant 62402407,
in part by the Natural Science Foundation of Jiangsu Province under Grant
BK20230083, and in part by the Collaborative Innovation Center of Novel
Software Technology and Industrialization. The work of John C. S. Lui was
supported in part by the Hong Kong Research Grants Council (RGC) under
Grant GRF-14202923. (Corresponding author: Bin Yang.)

Dian Shen, Bin Yang, and Fang Dong are with the School of Com-
puter Science and Engineering, Southeast University, Nanjing 210096, China
(e-mail: dshen@seu.edu.cn; binyang@seu.edu.cn; fdong@seu.edu.cn).

Junxue Zhang is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China
(e-mail: zjx@ust.hk).

John C. S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong, China (e-mail:
cslui@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TNET.2024.3469396

simultaneously utilize several IP-addresses/interfaces for com-
munication. With MPTCP, applications are able to use multiple
paths concurrently to increase the aggregated capacity and to
provide robustness when there is any link failure.

Despite the promising benefits of using MPTCP, the diver-
sity of network traffic workloads and increasing performance
requirements of applications significantly complicate its usage.
To provide better performance or enhanced functionalities,
there has been a wave of extensions over the native MPTCP,
covering a wide array of use cases, including traffic scheduler
[4], [5], [6], [7], [8], [9], [10], [11], path management [12],
[13], [14], [15], [16], [17], and network-application co-design
[18], [19], [20], [21], etc. For instance, as heterogeneous paths
may cause under-utilization of the fast path and the degrada-
tion of MPTCP performance, Zhang, et al, [11] extended the
traffic scheduler of MPTCP by developing an adaptive sched-
uler based on deep reinforcement learning. In order to improve
the performance for small flows, MMPTCP [13] extended the
standard MPTCP by modifying the path management module
to randomly scatter packets in the network so as to exploit
all available paths for small flows. Le and Nahum et al. [19]
co-designed MPTCP with virtual machine (VM) migration to
increase the service reachability in a cloud environment.

However, the native MPTCP1 implementation is not
designed for easy extensibility. Existing methods of imple-
menting new extensions on the native MPTCP, including
the modifications of its kernel implementation or using a
userspace control module, have several undesirable drawbacks.
First, to correctly modify the native MPTCP kernel code
usually takes considerable amount of time and efforts, and
the modification may not be compatible with new MPTCP
releases. Second, by using a userspace control module (e.g.,
mptcpd [25]), the functionality and extensibility are highly
restricted to the exposed interfaces, which is insufficient for
many emerging scenarios. Recently, Extended Berkeley Packet
Filter (eBPF) [26] emerges as a powerful technology to
inject user-defined programs into kernel space. Viet-Hoang
Tran and Olivier Bonaventure [27] have taken the first step
toward extending transport protocols with eBPF. Using eBPF
to extend MPTCP is a promising option, due to its safety guar-
antee, non-intrusiveness to the kernel, and ease of deployment.

1MPTCP currently has two versions. MPTCPv0 [RFC6824] consists of
a set of patches to the Linux kernel [22], the latest version of which is
v0.96. MPTCPv1 is standardized by RFC8684 [23] and upstreamed to the
Linux kernel recently. It is available to users using kernel version 5.6 or
newer [24]. As eMPTCP does not impose any limitation on the MPTCP
version, we will not make a distinction between MPTCPv0 and MPTCPv1 in
this paper. Instead, we refer to both of them as the native MPTCP.

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5460 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

However, it remains an open question on how to use it to
dynamically tune and fully extend MPTCP to best fit different
users’ needs. The challenges are summarized as follow:

Lack of flexibility. All existing methods to extend the
native MPTCP are to handcraft a policy as a single monolithic
program. With the increasing complexity of MPTCP control
policies, it is difficult to know which building blocks of the
policies are (in)appropriate for real-world dynamic and fluc-
tuating workloads. Such an integrated, all-in-one monolithic
model lacks the ability to fine-tune and dynamically combine
modules of advanced control policies.

Limited functionalities. Current methods to extend
MPTCP, either by userspace daemons or user-defined ker-
nel extensions, are limited by the functionalities of native
MPTCP stack. For example, current MPTCP and its extensions
only work on end-hosts, so they have insufficient knowledge
and controlability of the underlying network. Thus, current
MPTCP extensions are restrictive in supporting emerging
scenarios such as multi-tenant environment.

Simultaneously ensure safety and ease-of-use. Using
eBPF to extend MPTCP kernel with a user-defined program
can ensure safety because eBPF has a verifier to strictly
check the safety and validity of the loaded program. However,
eBPF also imposes many hard limits on the verifier-acceptable
programs. Naively applying eBPF can be too restrictive to
implement some legitimate MPTCP extensions in practice.

We believe such challenges significantly hinder experimen-
tation and innovation in exploiting the multipath capability of
networks, which motivate this research.

We propose eMPTCP, a flexible framework to extend
MPTCP. This framework enables network operators to easily
specify a chain of modular policies to dynamically control
the behaviors of MPTCP at runtime. Extending MPTCP by
eMPTCP offers the following benefits:

• Modular and pluggable. Instead of using a monolithic
programming model, eMPTCP allows a modular speci-
fication of policies as a chain. Network operators can
customize and dynamically plug their program into a chain
of policies on MPTCP, without interrupting the running
network services. These modules can be further shared and
reused among multiple chains, thereby enhancing efficiency.

• Adding new functionalities. To achieve the full exten-
sibility of MPTCP, eMPTCP extends MPTCP by a hybrid
approach of direct kernel interaction and indirect packet
manipulation. Thereby, it supports a wide range of MPTCP
operations including controllable path establishment, traffic
scheduler, etc. By allowing inspection and manipulation
of network packets, eMPTCP can utilize the information
from different layers of network protocols, yielding unique
insights and exerting control beyond the end hosts. Specif-
ically, we seek to add new functionalities to MPTCP,
by investigating and innovating the usage of MPTCP in
emerging scenarios such as the multi-tenant environment
and proactive congestion control.

• Higher pace of development. With intent-based abstrac-
tions and safety-verified helper functions provided by
eMPTCP, network operators can focus on essential policy
development without worrying about the details and safety
issues of the MPTCP kernel. Policies like traffic scheduling

in eMPTCP are written and maintained in Python and run
from userspace without safety risks.
eMPTCP delivers the above advantages by an implemen-

tation based on eBPF [26]. The key ingredients of eMPTCP
include: (1) a selector-actor style policy chain, which allows
operators to specify and plug in an advanced policy via
a flexible combination of its building blocks; (2) A pol-
icy enforcer, which utilizes both direct, indirect, and hybrid
approaches and provides a wide range of MPTCP control
operations. (3) an intent-based abstraction along with a rich
set of verifier-accepted helper functions.

We evaluate eMPTCP by implementing several representa-
tive MPTCP extensions. In particular, we seek to add proactive
congestion control for MPTCP by embedding a customized
algorithm that allocates credits for each subflow according to
the bottleneck bandwidth. Compared with the default reactive
congestion control algorithm of MPTCP, it achieves almost
zero re-transmission under network variation. Furthermore,
we investigate the usage of MPTCP in a multi-tenant cloud
environment. By enabling MPTCP traffic generated from VMs
to traverse through multiple physical links, we improve the
throughput of baseline by up to 1.32→. We also enable
some existing MPTCP extensions with eMPTCP. For path
management, we extend the default path manager of MPTCP
by using only one path for small flows and gradually adding
subflows with user-defined parameters. The path manager can
reduce the flow completion time of small flows by up to
32.1%. For the traffic scheduler, we implement an ECF-like [9]
dynamic scheduler for a network with heterogeneous paths.
Such a scheduler can be implemented easily using only tens
of LoCs by eMPTCP and improves the application throughput
by up to 1.41→. Throughout the evaluation, eMPTCP incurs
only a small overhead in the level of nanoseconds on both
servers and low-end devices such as Raspberry Pi, and the
extra processing time accounts for as low as 0.63% of flows’
transmission time. All source codes of eMPTCP and the use
cases are publicly available on GitHub.2

II. BACKGROUND AND MOTIVATION

A. Multipath TCP (MPTCP)
MPTCP is a transport layer protocol, which removes the

single path limitation of conventional TCP. It enables the appli-
cations to simultaneously utilize several network interfaces
for communication. Applications using MPTCP can benefit
from higher aggregate throughput by exploring parallel com-
munication paths, and achieve better robustness by seamlessly
switching paths when link failures occur. It is an important
protocol for critical environments like mobile communication,
data center networking, etc. MPTCP is also emerging as a
multipurpose next-generation transport protocol, which has the
potential of replacing the current single-path TCP.

As defined by the MPTCP protocol, a separate path between
the source and the destination is represented by a subflow.
For example, if two communicating hosts and each has two
network interfaces (and hence two IP addresses), MPTCP
can establish up to four subflows between these two hosts.
Among all the subflows, a primary subflow corresponds to the
four-tuple TCP connection requested by the application. The

2https://github.com/chonepieceyb/mptcp_ebpf_control_frame

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5461

primary subflow is established first, followed by secondary
subflows on the other paths. Subflows are said to have been
established once their TCP connections are settled and are
ready to send or receive data. If a path becomes inaccessible,
its corresponding subflow is removed by MPTCP.

B. Extending the Native MPTCP
To achieve better performance or enhanced functionalities,

there has been a number of extensions over the native MPTCP,
which cover a wide range of use cases, including traffic sched-
uler [4], [5], [6], [7], [8], [9], [10], [11], path management [12],
[13], [14], [15], [16], [17] and network-application co-
design [18], [19], [20], etc. For example, the path-manager is
the key component of MPTCP, which is responsible to decide
when and which paths (or set of paths) should be used for the
communication. The actual decisions about path establishment
are application-specific. MPTCP by default provides four types
of path-managers: default, fullmesh, ndiffports and
binder. Unfortunately, all these path-managers are reported
to be harmful to small flows in certain cases because it
introduces additional cross-interactions with packet scheduler.
Therefore, MMPTCP [13] attempted to extend native MPTCP
with more intelligent path-managers. Furthermore, the native
MPTCP suffers from performance degradation when there
are multiple heterogeneous paths. Therefore, it is natural to
extend the native MPTCP with an enhanced traffic scheduler
that reacts to the network state change. Some representative
traffic schedulers for MPTCP include ECF [9], BLEST [7] and
STFT [10]. To adapt the native MPTCP to emerging usage
scenarios, users have sought to extend MPTCP, such as in
the multi-tenant environment [19], [20], cross-layer network
design [18], [19], [20], [21], etc.

MPTCP can be extended using a userspace daemon, how-
ever, it has several drawbacks, including limited functionality,
high interaction overhead, and no safety guarantee. For exam-
ple, mptcpd [25] is a user space daemon that performs MPTCP
path-management related operations. Currently, the latest ver-
sion mptcpd v0.11 (released in August 2022) supports a set of
functionalities such as path management. It has the following
limitations. First, as a generic netlink solution, mptcpd has a
strong coupling with the MPTCP kernel stack and can only
rely on events and actions supported by the stack, limiting its
functionality to path management. Second, the overhead of the
generic netlink-based userspace solution is significantly higher.
In mptcpd, each control action involves event-triggering in the
kernel, handling in userspace, and finally calling a command
API to enforce the control back to the kernel. We implemented
a simple plugin using mptcpd to set a subflow to be a
backup subflow and measured its processing overhead. This
simple action takes at least 145µs on a high-end server,
making it difficult to implement per-packet decision-making.
Lastly, mptcpd plugins lack safety guarantees. Compared to
eBPF-based solutions, mptcpd plugins written directly in C by
users can lead to issues such as out-of-bounds memory access
or unsafe termination due to programming errors, as they have
not undergone static analysis and verification. These issues
can potentially cause the mptcpd daemon to crash, impacting
overall performance.

C. Extended Berkeley Packet Filter (eBPF)
Besides the conventional method of extending MPTCP,

eBPF [28], [29] is an emerging powerful and general

technology to extend the kernel, which allows custom pro-
grams to be safely executed within the kernel. eBPF works in
several steps. First, a standard compiler (e.g., Clang-9) is used
to turn eBPF programs into BPF bytecode, whose format is
independent of the underlying hardware architecture. Then, the
bytecodes i.e., the eBPF RISC instructions are compiled just-
in-time (JIT) into the native machine instructions and finally
attached to kernel functions.

To ensure that the attached program does not crash the
running kernel, eBPF incorporates a verifier to statically check
whether the program can be safely attached to the kernel.
The verifier is executed every time eBPF loads a program to
the kernel. The goal of the verifier is to prevent the program
from accessing unauthorized memory and to guarantee that the
execution of eBPF programs will always terminate. From our
experience, it is not easy to pass an eBPF verifier, even for a
simple program. In practice, users usually leverage restricted-C
code to develop the in-kernel eBPF program and then compile
it into eBPF bytecode. The verifier checks the validity of
program by the compiled eBPF bytecode, rather than the
original program. However, the bytecode-oriented verifying
information cannot be directly correlated with eBPF programs,
making it difficult for troubleshooting. In fact, this issue
poses significant challenges in producing a verifier-acceptable
program.

Besides, extending MPTCP by using eBPF provides a
promising solution. Viet-Hoang Tran and Bonaventure [27]
presented an enhanced MPTCP path-manager as one represen-
tative kernel extension using eBPF. Nonetheless, it remains an
open question on how to dynamically tune and fully extend
MPTCP to best fit different users’ needs.

D. Motivation of eMPTCP
We summarize the following challenges of existing methods

to extend the native MPTCP, which motivate our design.
First, all existing methods of extending MPTCP only sup-

port the monolithic model that the policy designers need to
handcraft the policy into one single program. The limitations
are: 1) Network operators are unable to easily implement,
test, and tune an advanced MPTCP extension (e.g., schedul-
ing, path management, congestion control modules, and the
combination of them), which consists of multiple components.
For example, the extension proposed by Han et al. [30] is
composed of a coupled BBR congestion control algorithm,
an adaptively redundant detector, and a predictive packet
scheduler. The components in this extension can be dynam-
ically tuned or substituted for different network conditions
and workloads. Unfortunately, under the current setting, it is
hard to know which building blocks of the extension work
improperly in real-world systems, therefore inhibiting the poli-
cies from maximizing their performance gain. 2) It lacks the
flexibility to combine and reuse the components of an existing
MPTCP extension. For example, shared bottleneck detection
modules [31] have the potential to be reused by both path
manager and traffic scheduler. However, with current methods,
developers need to implement multiple kernel modules or
modify the MPTCP stack from scratch.

Second, the existing methods to extend MPTCP, either
by kernel modules or userspace daemons using Netlink, are
limited by the functionalities of the native MPTCP stack.
In particular, the naive MPTCP struggles to support extensions

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5462 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

that require adding new MPTCP options or packet header
fields. For example, it is hard to add new congestion control
algorithms such as proactive congestion control (PCC), due
to the inability to obtain in-network “credit” information
with MPTCP. Another example is that the naive MPTCP
cannot support MPTCP-SBD [32] as it introduces a new
MPTCP timestamp option. Moreover, current MPTCP and
its extensions work on end-hosts only, hence lacking both
knowledge and controllability of the underlying network out of
the host. With the presence of some bottleneck links, the users
of MPTCP can not take advantage of efficient communication
over multiple paths, even though the end-hosts are multi-
interfaced. Especially in the multi-tenant environment, all
existing MPTCP extensions work only in the guest VMs and
can not utilize the aggregated network bandwidth of hypervi-
sors. Therefore, current MPTCP extensions are restrictive in
supporting emerging scenarios.

In this paper, we utilize eBPF technology instead of
intruding into the kernel code-base to address the above
two challenges. The reasons are: 1) In production environ-
ments, standardized kernels are commonly employed, with the
deployment of modified kernels generally discouraged. 2) It
takes a long time for an extension (e.g., MPTCP-SBD) to be
standardized and implemented into the mainstream kernel [33].
3) The eBPF technology facilitates non-intrusive kernel exten-
sion. Compared to kernel modules, eBPF’s verifiability ensures
safety, accelerating the development, testing, and deployment
cycles of new extensions. However, utilizing eBPF technology
to extend MPTCP also presents a new challenge as follows.

Third, although the emerging eBPF technique provides an
effective mean to inject a user-defined program into the kernel
with a safety guarantee, it is still very restrictive to implement
an MPTCP control policy with eBPF due to its safety val-
idation. From our experience, there are many verifier-related
issues that may hinder the development of MPTCP extensions.
In fact, even some simple yet valid pseudo-C code might be
rejected by the verifier after compiling into bytecode due to
the implicit compiler optimization. The error information is
bytecode-oriented and with poor readability, which further
aggravates the difficulty of troubleshooting. For example,
Listing 1 demonstrates a simple and correct code, but it fails
to pass the eBPF verifier when compiled into bytecode. The
verifier only provides the obscure error message: “dereference
of modified ctx ptr R1 off=8 disallowed.”. Considering that
developing MPTCP extension programs from scratch using
eBPF requires significant effort to address various validation
issues for users, we aim to encapsulate our experience in
tackling these issues, by providing intent-based abstractions
and a rich set of easy-to-use MPTCP-related helper functions.

III. EMPTCP DESIGN

Addressing the above challenges, eMPTCP aims to achieve
the following goals:

First, eMPTCP needs to enable users to easily implement an
MPTCP control mechanism in a modular and pluggable man-
ner. eMPTCP allows network operators to divide complicated
MPTCP extensions into some basic and reusable components.
Together with the pluggable feature, network operators can
dynamically tune and combine these components on the fly,
without interrupting the running network services.

Listing 1. Example of code that fails to pass the verifier.

Second, eMPTCP needs to support the extension of a
wide range of MPTCP operations, including controllable path
establishment, dynamic traffic scheduling, etc. Beyond that,
eMPTCP should allow an operator to define new options and
add new functionalities for emerging usage scenarios.

Third, eMPTCP needs to be user-friendly to network opera-
tors, so that they can focus on the essential policy development
without safety concerns. Although eMPTCP is supposed to
automatically guarantee the correctness of the execution by
the eBPF verifier, it needs to hide the verification issues from
users as much as possible.

A. Design Choices
Overall, eMPTCP utilizes eBPF by developing all policies

as eBPF programs executed within the kernel, which enables
eMPTCP to securely extend MPTCP. The eBPF program needs
to be attached to a specific in-kernel hook to run. Different
hooks offer distinct functionalities, which correspond to design
choices of eMPTCP. The design choices are described as
follows.

Indirect approach by packet manipulation. At present,
the Linux kernel has incorporated hooks along the data path
for packet processing and redirection, including XDP [28]
for ingress path and TC [34] for egress/ingress path. With
these mechanisms, MPTCP can be extended indirectly by
manipulating MPTCP options in packets, as the MPTCP pro-
tocol design is built upon TCP by incorporating the MPTCP
option set (type equals 30) into the TCP option field (III-C).
This approach provides several advantages, such as increased
deployment flexibility beyond end-hosts and the capability
to inspect packets for extracting detailed low-level protocol
and in-network information. However, the indirect approach
cannot support functionalities that require direct interaction
with the protocol stack, such as congestion control and traffic
scheduling.

Direct approach by in-stack kernel interaction.

Currently, the Linux kernel supports a set of hooks
called STRUCT_OP [35] which enables implementing
kernel structure with a set of eBPF programs rather
than the kernel module. For example, with STRUCT_OP,
tcp_congestion_ops can be implemented with eBPF
programs, which enables eBPF-based congestion control algo-
rithms. Additionally, the MPTCP development branch utilizes
STRUCT_OP to facilitate eBPF-based traffic scheduling. Tak-
ing advantage of this mechanism, MPTCP can be extended
directly to accommodate user-defined congestion control algo-
rithms and traffic scheduling strategies (III-D). Nevertheless,
this direct approach has functional and flexible limitations.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5463

Fig. 1. eMPTCP and the networking stack.

Initially, its functionality is confined to the kernel structure
exposed by the kernel through STRUCT_OP. The restricted
decision context accessible to eBPF-based algorithms hampers
access to in-network information for integrating new func-
tionalities. For instance, both eBPF-based congestion control
and traffic scheduling algorithms lack access to sk_buff

for extracting in-network credits (III-E). Furthermore, eBPF-
based algorithms, once attached, behave akin to a monolithic
kernel module, making division into discrete building blocks
challenging for fine-tuning and configuration at varying gran-
ularities.

The hybrid approach of eMPTCP. To achieve the men-
tioned design goals, eMPTCP adopts both direct and indirect
approaches. Notably, eMPTCP designs a hybrid mechanism
to enable the collaborative integration of these approaches
when designing extensions to enhance MPTCP with new
functionalities. eMPTCP attaches eBPF programs to both
packet processing hooks and in-stack kernel structure hooks.
According to the locations and functionality of eBPF hooks
used by eMPTCP, eMPTCP is divided into in-stack and off-
stack parts. As depicted in Fig. 1, from the network layering
perspective, the off-stack is attached to the XDP/TC hook
and lies between the driver and the network stack. Thus, the
off-stack part of eMPTCP can oversee and manipulate the
whole IP packets before they are processed in the network
stack and operate MPTCP operations indirectly. On the other
hand, the in-stack part is attached to the STRUCT_OP hook
and is located in the MPTCP stack to directly control it.
Additionally, the two parts collaborate with each other through
the BPF MAP mechanism. It should be noted that eBPF is not
the only method for implementing in-stack actors. We choose
it due to its superior safety and programmability compared to
other approaches, such as netfilter or netlink, which is crucial
for implementing new MPTCP features.

The design overview of eMPTCP is shown in Fig. 2.
eMPTCP delivers its desirable features through the following
key designs:

• Selector-actor style policy chain. In order to facilitate
the modular development of MPTCP extensions, eMPTCP
employs a policy chain abstraction for MPTCP extensions.

The policy chain is composed of sub-policies and two
types of sub-policies are supported, including selectors for
inspecting and filtering packets and actors for performing
MPTCP operations. Furthermore, network operators could
compose arbitrary numbers and types of selectors and actors
at runtime to achieve flexibility.

• Policy enforcer based on a hybrid approach. To ensure
comprehensive support for MPTCP operations, eMPTCP
employs a hybrid approach. In this design, eMPTCP
deploys policies prior to the network stack for packet
manipulation (indirect approach). Additionally, eMPTCP
integrates policies into the stable extension interfaces pro-
vided by the kernel, allowing direct control over the
MPTCP (direct approach). Moreover, eMPTCP introduces
a data-sharing mechanism to facilitate collaboration among
policies located at off-stack and in-stack, thereby facilitating
the emerging new functionalities of MPTCP.

• Intent-based abstraction. eMPTCP encapsulates and
provides a rich set of APIs and helper functions for the
ease of policy chain manipulation and policy development
while ensuring safety.

B. Selector-Actor Style Policy Chains
In order to support the modular implementation of MPTCP

policies, two factors need to be considered.
Flexibility. Dividing a complex policy into several

sub-policies provides flexibility. By modifying and configuring
an arbitrary component of a complicated policy at runtime,
network operators can perform fine-tuning on the designed
MPTCP extension. Furthermore, the modular design allows the
sharing and reuse of the sub-policies for different extensions.
For example, an MPTCP traffic scheduler can utilize the
implementation of the “shared bottleneck detection module”
component in the path-manager extension. Furthermore, using
a subset of the existing policies or a combination of them can
generate a variety of new MPTCP extensions easily.

Granularity. The second question is how to and in what
granularity to select the relevant MPTCP connections and on
which the policies are enforced. The control policy can be
enforced on various granularity, including connection level,
sub-flow level, or even packet level. For example, a path
manager works on each subflow of an MPTCP connection;
the traffic scheduler works for specific packets or subflows.

Considering both flexibility and granularity, eMPTCP uses
a selector-actor style policy chain for designing MPTCP
extensions. As Fig. 2 shows, this design decouples the policy
chain into two functionally independent components: (1) a
selector chain and (2) an actor chain. And they are com-
posed of sub-policies implemented as an eBPF program called
selectors and actors respectively. The selector chain filters
unrelated events, and forwards the related ones to specific
action chains. In terms of functional design, a typical selector
is a Connection selector which checks the 4-tuple and MPTCP
token to handle only the desired MPTCP connections. Table I
shows a list of supported selectors of eMPTCP. Note that
selectors are also chainable. The network operator can specify
an arbitrary number of selectors with logic operators like AND
or OR to combine them. This multiple expression combiner
is an efficient way to select different granularities of inputs.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

Fig. 2. eMPTCP overview.

TABLE I
SELECTORS SUPPORTED BY EMPTCP

For example, by combining the Port selector and Connec-
tion selector, operators can identify the MPTCP connections
belonging to the same server. Then the actor chain performs
operations that should be taken on the selected events. The
implementation of selectors and actors is modular and can be
chained with arbitrary numbers and all the sub-policies can
be added or removed from chains at run-time, without inter-
rupting the running services. Note that combining selectors
and actors in a chain can form a sophisticated mechanism
with high flexibility and various levels of granularity. Such a
selector-actor model further benefits eMPTCP with improved
performance by filtering irrelevant events as soon as possible,
and forwarding the relevant ones to the suitable actor chain.
The filtered events can be ignored or dispatched to the default
handler, such as kernel stack.

With the general architecture of the policy chain, another
important problem that needs to be solved is how to deploy
the policy chain. Conventionally, different eBPF programs can
be chained through tailcall mechanism as a complete eBPF
program, which overcomes the limitation that a hook can only
be attached by a single eBPF program at any given time.
However, this direct approach is not suitable for the design
of eMPTCP, and it introduces two significant challenges.
Firstly, the tailcall mechanism cannot be directly used to
chain policies between the off-stack and in-stack parts. This
limitation arises because the tailcall mechanism only works
for eBPF programs attached to the same hook. Secondly, the

selector-actor architecture cannot be deployed in the in-stack
part due to the absence of tailcall support in the hook used
by the in-stack part, resulting in the lack of flexibility and
granularity in the in-stack part.

Taking into account the two challenges, eMPTCP employs
a combination of direct and indirect approaches to deploy
the policy chain. In general, the main components of the
selector-actor policy chain are deployed in the off-stack part.
The off-stack part establishes connections between all the
selectors and the majority of actors using the tailcall mecha-
nism. Additionally, several actors are deployed in the in-stack
part to directly control the MPTCP stack and they establish
indirect connections with the off-stack part through BPF MAP.
In this design, the policy chain is triggered by packets. The
selector chain filters relevant packets and redirects them to
the off-stack actor chain, which performs MPTCP opera-
tions indirectly through packet manipulation. Additionally,
the actors within the off-stack actor chain develop strate-
gies and store them in the BPF MAP. Subsequently, the
in-stack actors retrieve these strategies from the BPF MAP
and directly control the MPTCP stack. This design allows
eMPTCP to compose sub-policies that are distributed across
different locations as a policy chain. It is worth mentioning that
the selector-actor policy chain is a general structure. It can
be utilized to extend other protocols as required. eMPTCP
supports users to develop their own selectors/actors easily and
provides pre-defined, MPTCP-specific, and verifier-acceptable
selectors/actors.

C. Indirect Packet Manipulation
The off-stack part of eMPTCP utilizes packet manipulation

to support a wide range of MPTCP operations. Such a design is
based on the rationale that MPTCP adds a new set of options to
the TCP option field, which are exchanged between MPTCP-
enabled end-hosts. Therefore, modifying the MPTCP-specific
options in the packet header can alter the MPTCP behaviors.

Defined by the standard MPTCP protocol, the main MPTCP
options include MP_CAPABLE, MP_JOIN, MP_DSS,3

3Currently, we do not modify MP_DSS in existing extensions. We name it
here for its potential usage and eMPTCP’s ability to manipulate it.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5465

TABLE II
ACTORS SUPPORTED BY OFF-STACK PART OF EMPTCP

ADD_ADDR, REMOVE_ADDR, MP_PRIO, MP_FAIL,
MP_FASTCLOSE and etc. Through manipulation on these
options, eMPTCP can provide control on the subflow-level
behaviors of MPTCP. For example, removing the ADD_ADDR
packets from the communication peer will inhibit MPTCP
from establishing new subflows, and re-inject that packet
would automatically trigger MPTCP to establish new
subflows.4 Beyond that, rate-limiting of MPTCP subflows is
implemented by modifying the receive window (RWND) on
incoming ACKs. The rationale behind this design is that the
protocol stack uses min(CWND, RWND) to limit how many
packets it can send. This enforcement of RWND provides an
upper bound to rate limit a flow in networks. This is feasible
because, as RFC6824 and RFC8684 have mentioned, a host
should maintain the connection-level receive window as well
as all subflow-level windows.

Table I demonstrates the selectors supported by eMPTCP
and their selection granularity. Table II summarizes the actors
supported by eMPTCP and the corresponding packet manip-
ulation. The selectors and actors listed in the tables are
independent eBPF programs designed to perform specific
actions within a policy chain. Table II also lists tem-
plates for creating new actors or selectors, such as the
sched_template, which acts as a template for actors
developing scheduling strategies in the off-stack policy chain.
It should be noted that the actors listed in Table II can
be triggered from either the sender (i.e., egress path) or
receiver (i.e., ingress path) side, affecting the protocol stack of
the receiver. For instance, regardless of the triggering location,
the blk_subflow actor blocks the sender’s address from the
receiver, preventing subflow establishment, while the add_

subflow actor enables the receiver to rediscover the sender’s
address. The method of packet manipulation enables eMPTCP
to support a rich set of functionalities. For example, it enables
MPTCP to interact with other cross-layer network protocols.

Note that MPTCPv0 and MPTCPv1 have some differences
in the protocol design and eMPTCP is expected to han-
dle the difference automatically. One representative example
is to work around ADD_ADDR. Specifically, MPTCP uti-
lizes the ADD_ADDR option to announce additional addresses
(and, optionally, ports) on which a host can be reached.
The mechanism of the ADD_ADDR option is quite different
between MPTCPv0 and v1. In MPTCPv1, there are some
additional mechanisms: 1) MPTCPv1 introduces ADD_ADDR
ack for reliable transmission of this option. 2) MPTCPv1 adds

4The behavior of establishing subflows is based on the assumption that both
ends use fullmesh as path management algorithm.

additional information (8 octets of truncated HMAC) with the
ADD_ADDR option for authentication. eMPTCP handles the
additional mechanisms. First, to block the ADD_ADDR Option,
in MPTCPv1, after filtering the ADD_ADDR option, the peer
won’t send ADD_ADDR ack back because the ADD_ADDR

was not received. The sender will keep retransmitting the
ADD_ADDR if the ADD_ADDR ack is not received within a
specified timeout (configurable with sysctl).

There are two methods to solve this issue:
1) Filtering subsequent retransmitted ADD_ADDR. To keep

the extra remote addresses invisible to the host, a direct way
is to filter the subsequent retransmitted ADD_ADDR. This
approach is easy to implement and suitable for short-term
blocking. It is also convenient for recovering the ADD_ADDR.
We can just remove such blocking, and the retransmitted
ADD_ADDR can be received by the peer.

2) Constructing the ADD_ADDR ack. The second method
is that, when blocking the ADD_ADDR, we also construct
the corresponding ADD_ADDR ack and send it to the peer.
Constructing ADD_ADDR ack can be implemented through the
eMPTCP actor. In detail, the actor attached to the XDP/TC
hook constructs the ADD_ADDR ack based on the origi-
nally received ADD_ADDR. It swaps MAP PORT, sets the
Echo-Flag, removes the truncated HMAC, and recalculates
the checksum. After that, the actor sends the ADD_ADDR

ack back to the sender through XDP/TC packet redirecting.
Although this method prevents the ADD_ADDR retransmission,
it requires an additional mechanism to recover the blocked
addresses. The trick is to reconstruct the ADD_ADDR packet.
To achieve this goal, we duplicate the latest ACK and inject
the previously blocked ADD_ADDR information (including the
authentication information). In this manner, the constructed
packet will be accepted by the kernel stack. Note that the
duplicated acks won’t affect the congestion window. This is
because MPTCP treats duplicated acks carrying any MPTCP
option except for DSS options as control packets rather than
congestion signals, according to RFC 8684.

It is worth noting that supporting path management through
packet manipulation without modifying the kernel relies on
the existing path management algorithm to obtain manageable
paths. In this paper, we build eMPTCP’s path management
upon the fullmesh. Although this approach seems hacky,
it has three advantages. Firstly, from a deployment perspective,
it allows us to deploy eMPTCP as a middlebox, such as within
a hypervisor. Secondly, from a compatibility perspective, this
method does not depend on the specific implementation of
the protocol stack or the particular hooks within the protocol
stack. Finally, this approach has zero intrusion into the kernel.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

D. Direct Kernel Stack Interaction
The ability to directly interact with the kernel stack is

necessary to extend traffic scheduling and congestion control
of MPTCP. Currently, this direct control can be achieved
by attaching eBPF programs to the STRUCT_OP hooks
which are extension interfaces exposed by the kernel includ-
ing mptcp_sched_ops for MPTCP traffic scheduling and
tcp_congestion_ops for TCP congestion control. Take
MPTCP traffic scheduling as an example, an eBPF-based
traffic scheduler can be attached to the STRUCT_OP of
mptcp_sched_ops. Once attached, when MPTCP starts to
send a segment, the associated eBPF programs are invoked and
make decisions on selecting one or multiple subflows for trans-
mitting the segment or potentially deferring the transmission.
A straightforward use of this technique is to directly integrate
traffic scheduling algorithms like min-RTT, BLEST [7], and
ECF [9] into the eBPF programs. However, as described in
Section III-B, this approach fails to leverage the design of the
policy chain and lacks flexibility and granularity because of
the failure of deploying the policy chain in the STRUCT_OP
hook.

eMPTCP approach: eMPTCP adopts a strategy formu-
lation and execution separation approach where the eBPF
programs attached to the STRUCT_OP hooks are regarded
as in-stack actors. The whole approach consists of three
steps. Firstly, the in-stack actors collect metrics from the
MPTCP stack and store them in BPF MAP. Secondly, the
off-stack actors formulate strategies, such as traffic scheduling
strategies, for the specific algorithm based on the collected
metrics. The strategies are then stored in BPF MAP by the
off-stack actors. Finally, the in-stack actors execute actions
directly based on strategies retrieved from the BPF MAP. This
design empowers eMPTCP to have direct control over the
MPTCP stack as a straightforward approach while providing
two benefits. First, it provides flexibility and granularity by
leveraging the policy chain design of eMPTCP. For example,
it is possible to specify and fine-tune traffic scheduling exten-
sions at runtime for different MPTCP connections on demand.
Second, compared with collecting metrics by optional tracing
technologies like kprobe, it eliminates redundant computations
and function calls by integrating metric collecting logic and
taking action logic in one place.

E. Hybrid Policy Enforcer
The native MPTCP reveals limitations in emerging sce-

narios. For example, Xu et al. [20] demonstrate that in a
multi-tenant scenario, MPTCP deployed in virtual machines
(VMs) fails to detect the presence of multiple underlying
physical links. Consequently, there is a need to redesign
the MPTCP stack to effectively detect this information and
respond accordingly. Another example is proactive conges-
tion control [36]. Proactive congestion aims to anticipate
and prevent congestion in advance by taking preemptive
measures, for example, pre-allocating bandwidth to network
flows in the form of credit. This approach yields improved
performance, especially in data-center networks. However, the
current MPTCP stack in the Linux kernel adopts traditional
reactive congestion control architecture, which responds to
congestion after it has already occurred, based on acknowl-
edgments (ack clock). To enable proactive congestion control

for MPTCP, modifications to the Linux kernel implementation
are necessary, as the current extension interfaces exposed are
designed for reactive congestion control.

We argue that supporting the addition of new functionalities
to MPTCP with minimal engineering effort, particularly with-
out modifying the kernel, is crucial for the advancement of the
protocol. To achieve this kernel-modification-free extension
manner, two necessary conditions need to be met. First,
it requires the ability to control the protocol stack, such
as controlling the scheduling procedure of MPTCP. Second,
it requires the ability to perceive information beyond the
existing protocol stack, such as the additional data added to
packets by in-network switches. However, neither the indirect
approach nor the direct approach fulfills both requirements.
The indirect approach of packet manipulation fails to con-
trol the procedure of congestion control and traffic scheduling.
The direct approaches of the eBPF module lack information
for these new functionalities in the control block and deci-
sion context. For instance, without the necessary codes in
the MPTCP stack to extract credit information, user-defined
traffic scheduling, and congestion control extensions using
direct approaches are unable to effectively perform proactive
transportation.

eMPTCP approach: eMPTCP employs a hybrid policy
enforcer, utilizing the policy chain design of itself, which
combines both indirect and direct approaches to add new
functionalities to MPTCP without modifying the kernel. In the
policy chain of eMPTCP, the off-stack actors based on packet
manipulation of indirect approach are capable of extract-
ing beyond-stack information through packet inspection, for
example inspecting “credit” information added by in-network
switches. Subsequently, other off-stack actors can develop
strategies based on this extracted information. Finally, the
in-stack actors directly control the stack according to the
strategies. By coordinating the off-stack and in-stack actors
in the policy chain, which integrates both indirect and direct
approaches, eMPTCP is able to effectively meet the afore-
mentioned two requirements. To illustrate how adding new
functionalities of MPTCP benefits from eMPTCP, we take
proactive congestion control as an example. The policy chain
enabling proactive congestion control consists of the following
components: (1) MPTCP selector. An off-stack selector selects
target MPTCP connections. (2) Subflow selector. An off-stack
selector selects subflows belonging to the same target MPTCP
connection (3) Credit auditor. An off-stack actor inspects the
packet and extracts credits. (4) Traffic Scheduler. An off-stack
actor that devises the traffic scheduling strategy depends on
the credits and stores the strategy to BPF MAP (5) Congestion
Controller. An in-stack actor that sets the congestion window
to a fixed value. (6) Traffic strategy executor. An in-stack
actor directly selects subflows to send a segment or defers
the transmission according to the strategy. This policy chain
enables proactive congestion control for MPTCP by extracting
credits in the off-stack part and controlling the MPTCP stack
in the in-stack part.

F. Intent-Based Abstraction
In order to accelerate the development of MPTCP exten-

sions, eMPTCP provides a rich set of intent-based abstractions.
First of all, eMPTCP incorporates a set of helper functions

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5467

Fig. 3. eMPTCP implementation.

to customize the combination of policy chains, e.g., adding,
removing, or inserting a selector or an actor to an arbitrary
chain. With the provided interfaces, operators can specify
their desired control policy as a chain of user-defined pro-
grams. eMPTCP also provides a rich set of easy-to-use
MPTCP-related helper functions to encapsulate the policy
enforcers. The underlying implementation details of these
helper functions are transparent to users and they have all
passed the strict eBPF verifier. This design greatly eases the
adoption of eMPTCP, and it decouples the policy design from
underlying kernel execution. Network operators can focus on
the policy essentials without worrying about the details and
safety issues of the MPTCP kernel.

IV. EMPTCP IMPLEMENTATION

As shown in Fig. 3, the implementation of eMPTCP is
primarily based on eBPF technology. In this section, we dis-
cuss the details of how to implement eMPTCP and share
our experience in tackling various verifier-related issues when
using eBPF to implement a complicated framework.

A. Policy Chaining Using eBPF Tail Calls and BPF MAP
The functional logic of eMPTCP is to disseminate the

user-defined MPTCP control policy into multiple small build-
ing blocks locating in off-stack part and in-stack part. eMPTCP
chains the building blocks in the off-stack part using the
eBPF tailcall mechanism and connects the off-stack chain
and building blocks in the in-stack part using BPF MAP.
More specifically, first, Each building block of the policy is
implemented by an eBPF program and they are analyzed and
loaded independently which reduces the analysis complexity
of the verifier and helps to pass the eBPF restrictions on
program sizes. An eMPTCP program in off-stack part supports
controlling both directions of egress and ingress network
traffic. For ingress traffic, we attach eBPF programs to eXpress
Data Path (XDP) [28], and for ingress traffic, we attach them
to Traffic Control (TC) [34]. Second, to support the run-time
combination of building blocks in off-stack parts, operators
need to describe how and in what order these sub-policies
are to be chained. The description of policy chaining is

Fig. 4. Definition of the chain context. The chain context is implemented
using packet metadata, xdp_md for XDP hook and tc_cb for TC hook.
Next Policy is used to identify the next actor/selector. P denotes the type of
parameter, which can be either Immediate (directly embedded in the context)
or Address (parameters that need to be read from the BPF map).

defined in the data structure called chain context as depicted
in Fig. 4. In eMPTCP implementation, the chain context is
an array of 4-byte data. The first byte represents the next
sub-policy to be called. The second to fourth bytes represent
the parameters of the current sub-policy. Furthermore, the
context is stored as the metadata (xdp_md for XDP, and
cb for TC, respectively) of packet data structure in the
kernel. The entrance of the chain, either a selector or an
actor, parses the metadata, acquires the index of the next
sub-policy, and then queries the prog_array of eBPF tail
calls to locate the next sub-policy. The sub-policies can be
reused and combined dynamically by customizing the context
metadata. Third, we attach a pre-defined eBPF program as an
actor to STRUCT_OP hooks in the in-stack part. The actors
implement the interfaces exposed by the kernel stack includ-
ing tcp_congestion_ops and mptcp_sched_ops for
congestion control and traffic scheduling respectively. Addi-
tionally, the behavior of in-stack actors is affected by the chain
in the off-stack part using BPF MAP. For example, a traffic
scheduler strategy maker in an off-stack chain develops a
traffic scheduling strategy by every ack and stores the strategy
in BPF MAP. The actor attached to mptcp_sched_ops

performs actual traffic scheduling by retrieving the strategy for
BPF MAP. eMPTCP also supports user-defined in-stack actors
by encapsulating such connection mechanisms into ease-of-use
APIs. The details of how to share data between the in-stack
part and the off-stack part will be described in the next part.

It is worth noting that policy chains introduce additional
overhead while facilitating modularity and scalability. The
overheads are caused by storing and processing the chain
context information. However, the overhead is quite small,
because of the full use of existing data structures (XDP and
TC’s packet metadata) and the carefully designed policy chain
context data structure.

B. Data Sharing Among Different Sub-Policies
Data sharing servers for three purposes. First, it avoids

redundant computation after dividing a sophisticated extension
into multiple sub-policies in a chain. Second, it enables the
combination and connection between the off-stack part and the
in-stack part of eMPTCP. Third, it enables the communication
between userspace programs and the kernel functions. The
promote challenge of data sharing lies in the coordination
of multiple access to the same data from different programs
running in different contexts. Specifically, the eBPF programs
in off-stack part execute in softirq context while the eBPF
programs in in-stack part execute within the protocol stack

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

context. Addressing this issue, eMPTCP utilizes different
mechanisms to share intermediate results or control parameters
among sub-policies in different scenarios.

In the off-stack part, the sub-policies within the same chain
are invoked and executed sequentially on the same CPU,
because the eBPF programs connected by the tailcall still
execute in the same softirq context. Thus, ensuring the inde-
pendence of data between different CPUs becomes a primary
concern. eMPTCP employs two mechanisms to achieve this
objective. First, if the shared data is small enough, e.g., less
than 2 bytes, it can be stored inline in the last two bytes of the
chain context which is stored in per-packet metadata. Such a
method is cost-efficient and avoids extra storage or memory
access. Alternatively, if the shared data is large, we use per-
cpu BPF MAPs to realize the data sharing. The per-cpu BPF
MAPs are specific types of BPF MAP including per-cpu hash
and per-cpu array which maintains data in each CPU indepen-
dently. Using per-cpu BPF MAPs, sub-policies in the same
policy chain operating on each packet can share data without
concurrency issues. It should be noted that the data sharing
through BPF MAP requires the reuse of MAP file descriptor of
the same map among eBPF programs. To do so, we use eBPF
bpf_obj_get() system call to obtain a file descriptor of
BPF MAP and then use bpf_map_reuse_fd() function
to replace where the same BPF MAP is used in different
programs.

Unfortunately, when it comes to the connections between
the off-stack part and the in-stack part, the eBPF programs
in these different parts are not invoked within the same
context and may run on different CPUs. This necessitates
additional concurrency control mechanisms to avoid data
races, as the solutions involving packet meta and per-CPU
BPF MAPs are not applicable in this scenario. Commonly,
BPF MAP provides common data structures such as HASH
and ARRAY that can be used by eBPF programs run-
ning on different CPUs. These maps, unlike per-CPU BPF
MAPs, maintain a single copy of the data that is accessed
by eBPF programs across different CPUs. The HASH and
ARRAY can be accessed in two patterns without data con-
currency issues. Firstly, different eBPF programs access the
map through the atomic replacement or deletion of the
entire element using the bpf_map_update_elem() or
bpf_map_delete_elem() helper functions. However, the
overhead of constructing the entire elements each time is
significant. Thus, the eBPF programs prefer to adopt the
second approach. That is, they first retrieve the address of
the target element by calling bpf_map_lookup_elem()

helper function and then access the element directly with
the address. However, multiple accesses to the same BPF
MAP element by address are not directly protected by eBPF.
Therefore, eBPF provides bpf_spin_lock mechanism.
To use bpf_spin_lock, a lock field can be integrated
into the element and the lock can be locked and unlocked
on an element-wise basis using the bpf_spin_lock()

and bpf_spin_unlock() helper functions, respectively.
However, when using spin locks, it is advisable to avoid overly
complex critical sections to prevent significant performance
degradation.

eMPTCP approach: Considering the above factors,
eMPTCP employs a flag-based competition mechanism. This

mechanism aims to maintain a simple critical section, min-
imizing the time of blocking eBPF programs, particularly
the packet processing program in the off-stack part. Initially,
eMPTCP integrates a flag field as well as the lock into each
element. And the spinlock is exclusively utilized to protect
this flag field rather than the whole element. eMPTCP regards
the off-stack actors as the consumers and in-stack actors as
the producers. In a data-sharing procedure, multiple consumer
programs contend for the flags, with only one program being
successful in acquiring the flag. The winner of the contention
then unsets the flag, exits the critical section, and proceeds
with the remaining operations of formulating strategies. On the
other hand, the consumer programs that fail to obtain the
flag just abort the operation. The operation can be performed
only if the flag is set by the producer program after it takes
action according to the strategies. The competition for the
flag is protected by the bpf_spin_lock. Take the traffic
scheduling extension as an example, the sub-policy of traffic
schedule making the traffic scheduling strategy is the consumer
and the in-stack actor of traffic strategy executor performing
actual traffic scheduling is the producer.

When it comes to communication between userspace pro-
grams and in-kernel eBPF programs, eMPTCP uses different
mechanisms including per-cpu BPF MAPs, spinlock, and raw
bpf system calls depending on the required level of concur-
rency control. For example, in certain scenarios where the
userspace program solely updates the entire element while the
eBPF program in the kernel only reads it, the default usage
of bpf system call which provides concurrency control based
on Read-Copy-Update (RCU), is sufficient. It is important to
note that the MAP might be automatically destroyed if no
program in the kernel is using it. To prevent the MAP from
unintentionally being deallocated, we pin the BPF MAP to the
BPF Virtual File System (VFS). BPF VFS is actually not a real
file system, it only keeps the MAP alive by always referring
it, incurring a small overhead.

C. Different Kinds of Packet Manipulation
The off-stack part of eMPTCP exerts a fine-grained control

on MPTCP through packet manipulation. Some representative
manipulations are:

(1) Modifying an existing MPTCP option. This kind of
operation requires no change in the length of the header space.
eMPTCP provides a set of inline helper functions to obtain
pointers to header options of different protocols, such that
the user-defined program can access the packet directly and
modify the desired header field. To ensure consistency, a helper
function is evoked to update the checksum.

(2) Removal of an MPTCP option. eMPTCP performs the
removal of an option by overriding the option with NOP rather
than shrinking the length of header space which introduces
additional overhead. Thus, the removal operation reuses the
packet modification helper functions, with the difference that
the specific option is always modified by value NOP.

(3) Injection of a new MPTCP option. Since eBPF does not
provide a native API to increase the length of a packet header,
we implement the operation in three steps. First, increase
the length of the packet by eBPF adjust-header-room

helper functions. Second, move the original packet header data
forward and reserve the space for injection of the new options.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5469

Finally, write the MPTCP option into the reserved space and
update the checksum. Similarly, we provide this functionality
as an inline helper function to simplify the usage and expand
the original eBPF helper functions.

It is worth noting that reinjecting options need to consider
the MTU (Maximum Transmission Unit). Currently, there are
several situations where MPTCP options may need to be
injected. First, when the receiver gets a packet and needs to
inject new MPTCP options into it, such as the ADD_ADDR
option to restore a subflow. In this case, MTU does not need to
be considered. Second, when adding new MPTCP options at
the sender side, such as implementing the MPTCP-SBD [32]
and including a new MPTCP timestamp option, this situation
is similar to packet encapsulation and does require MTU
considerations. The solution involves slightly adjusting the
connection’s MSS (Maximum Segment Size). Lastly, due to
the limited TCP option space, a completely new packet may
be needed to inject MPTCP options. The trick here is that
eMPTCP leverages or duplicates the latest packets or ACKs
to piggyback the option values. With correct timestamp and
checksum, the packets will be accepted by the MPTCP stack.
Moreover, the duplicated MPTCP Data ACKs won’t affect the
congestion window, according to RFC 8684.

D. Verifier Acceptable Helper Functions
eMPTCP accepts standard user-defined eBPF programs as

customized policies (actors or selectors). Beyond the basic
eBPF helper functions, eMPTCP has provided a wide range of
helper functions such as increasing the MPTCP header space,
acquiring the specific MPTCP option, adding a new MPTCP
option, and, most importantly, a set of functions to manipulate
the policy chain. These helper functions are all intent-based
and eBPF verifier acceptable. Thus, it significantly simplifies
the development of customized policies, allowing operators to
focus on designing the policy essentials.

V. EVALUATION

In this section, we first evaluate the performance overhead of
using eMPTCP in practice. Then we present several real-world
MPTCP extensions implemented by eMPTCP and evaluate
their performance.

Testbed. The testbed we use in the experiments consists
of 7 servers, each of which is equipped with two Intel(R)
Xeon(R) E5-2630 v4 CPUs (12 cores) and 128GB of memory.
Each server is equipped with 3 10Gbps Broadcom Network
Interface Card, and are connected through a Mellanox 40Gb
switch. The internal network is considered to be non-blocking,
and a similar setup is used by existing research [37]. Beyond
high-end servers, we also deploy and test eMPTCP on low-
end devices. In the test cases, we use Raspberry Pi 4B as
the representative device. The Raspberry Pi 4B we use in the
experiment is equipped with a Cortex-A72 (ARM v8) 1.5GHz
CPU (4 cores), and 8GB memory. We use its WiFi and wire
Ethernet interfaces under 300Mbps speed.

MPTCP setup. The different parts of eMPTCP have vary-
ing requirements for the kernel and the implementation of the
MPTCP protocol stack. Specifically, the off-stack part needs
the kernel to support XDP and TC hooks, along with corre-
sponding helper functions. The off-stack part does not impose

Fig. 5. Performance evaluation on server.

additional requirements on the protocol stack. For the in-stack
part, eMPTCP relies on the STRUCT_OP hook to implement
the in-stack actor. Therefore, the kernel’s eBPF must sup-
port STRUCT_OP, and the protocol stack must accommodate
STRUCT_OP hooks. Unless otherwise stated, the subsequent
experiments are conducted based on MPTCP V0.96. For
baseline MPTCP, we turn off MPTCP header checksumming
to reduce unnecessary CPU overhead and use min-RTT as
traffic scheduler, fullmesh as path management, and cubic
as congestion control. We set receive buffers according to
RFC6182 [38] as 256MB. The experiments are conducted five
times each and the evaluation results are derived from their
average values.

Workloads. In the experiments, we generate a large number
of flows, representing network traffic of varying characteristics
(e.g., packet sizes, network bandwidth usage) by Traffic Gen-
erator [37] which is widely used in many recent researches.

A. Overhead
We conduct several experiments on both high-end servers

and Raspberry Pi to evaluate the overhead introduced by
eMPTCP. We evaluate the time of several representative oper-
ators to process one packet using high-resolution timestamps.
First, we evaluate eMPTCP on servers.

As shown in Fig. 5a, the processing time of all eMPTCP
operations is at the level of nanosecond. The operation with
the largest cost is set_flow_prio because this operator
conducts packet header space adjustment. The total overhead
of a policy chain is composed of all selectors and actors. It
should be noted that selector_entry acts as the entry point
for the selector chain, facilitating the retrieval of the selector
chain context from the BPF MAP associated with a packet.
The functionality of actor_entry is similar.

Further, we perform two evaluations by controlling the
selection granularity and the length of the policy chain, respec-
tively. We utilize the ratio of policy chain execution time to
flow completion time as a performance metric for assessing the
impact of eMPTCP on end-to-end transmission. Additionally,
we use the traffic generator to generate a specified number of
flows to simulating real-world scenarios. In the first evaluation,
the coarsest granularity represents the worst situation when all

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

Fig. 6. Performance evaluation on Raspberry Pi.

packets are processed by the policy chain. The length of the
policy chain was set to 2 (1 selector and 1 actor), 4 (1 selector
and 3 actors), and 8 (4 selectors and 4 actors), respectively.
As Fig. 5b shows, the extra operation time of eMPTCP
contributes to less than 2% of the total transmission time of
flows, for all lengths of the policy chain. Moreover, the cost
is stable even with the number of concurrent flows increasing
to 10,000, demonstrating the scalability of eMPTCP. In the
second evaluation, the length of the policy chain was fixed to
4 and the selection granularity is varied from coarse-grained
to fine-grained with different selectors. Fig. 5c shows that
the average overhead of eMPTCP is around 0.63% of the
total packet transmission time. The result reveals that the
finer the granularity is, the fewer packets will be selected
for actors, thus incurring less overhead. It also demonstrates
the effectiveness of the selector chain to reduce additional
overhead by filtering the most irrelevant packets.

eMPTCP also costs a few extra CPU cycles. We measure
the extra CPU usage under heavy traffic by switching on/off
eMPTCP. Furthermore, we evluate CPU usage under different
numbers of parallel connections. Fig. 5 demonstrates the
results that eMPTCP costs less than 0.35% extra CPU usage
on average.

Then, we test eMPTCP on Raspberry Pi, and the method-
ology is the same as server’s. As shown in Fig. 6a, the
processing time of the representative eMPTCP operations is
just a little higher than that on servers by an average of 1.8→.
It still remains around a few hundred nanoseconds, ranging
from 95ns to 859ns. Further, we observe from Fig. 6b that
although the absolute value of the processing time is higher,
the percentage that accounts for the total packet processing
time is lower. On Raspberry Pi, the performance cost ranges
only from 0.52% to 0.85%. The reason is that, on low-end
devices, the network throughput is much lower, such that the
processing time for each packet prolongs. In this case, the
performance cost, in terms of the amount of time compared to
the packet processing time, decreases. For the aspects of extra
CPU usage, we can see from Fig. 6d that, even on low-end
devices, eMPTCP takes very little extra CPU usage of less
than 3%. This is because all eMPTCP functions run within
the kernel, eliminating the overhead associated with context

Listing 2. Example of use case 1.

switches, and their complexity is limited, as ensured by the
verifier

B. Use Cases
Building on top of eMPTCP, we can implement various

user-defined control policies for the multipath environment
with a modest size of code and zero changes to the native
kernel implementation of MPTCP. Generally, there are two
approaches to developing new extensions based on eMPTCP.
The first is to combine eMPTCP’s pre-defined actors and
selectors into a policy chain, which can be implemented
directly in userspace. For example, both use case 3 and use
case 4 can be achieved this way. The policy chain can be
easily configured using the Python interface, as shown in lines
4-5 of Listing 4 and lines 12-13 of Listing 5. The second
method allows users to create new selectors or actors using the
helpers and macros provided by eMPTCP. This applies to use
case 1 and use case 2. To implement new helpers, users only
need to use the macros provided by eMPTCP at the beginning
and end of the eBPF program, as shown in lines 3 and 10 of
Listing 2 and lines 3 and 8 of Listing 3.

Use case 1: Proactive congestion control for MPTCP.

One promising feature of eMPTCP is to enable new func-
tionalities of MPTCP. In this case, we investigate adding
functionality of proactive congestion control for MPTCP with
eMPTCP. To do so, we develop a policy chain as described
in section III-E at the sender host as a simple proactive
congestion control algorithm. Additionally, we develop a naive
credit generator that generates credit uniformly regarding the
bandwidth of the bottleneck link and allocates credit to all
flows according to their arrival order. We implement the credit

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5471

Listing 3. Example of use case 2.

Listing 4. Example of use case 3.

Listing 5. Example of use case 4.

generator as an XDP program which modifies the packet by
adding allocated credit information to the packet header and
attaches it to the receiver host. The credit information will
be inspected by an actor in the policy chain of the sender.
We compare the performance including the total number of
re-transmission and aggregate throughput between this exten-
sion (eMPTCP) with the default MPTCP congestion control
algorithm (i.e. cubic) used in Linux kernel (MPTCP). The rest
of MPTCP configuration for both is the same which includes
setting fullmesh as the path management algorithm and setting
BLEST as the traffic scheduler. We conduct experiments, using
the MPTCP V1 maintained in mptcpnet-next, specifically
with the kernel version 6.4.0. This is because the use case
necessitates the sched_ops STRUCT_OP hook.

As Fig. 7 shows, we can observe that as the number of par-
allel MPTCP connections increases, there is a noticeable rise
in the total number of re-transmissions and a slight decrease
in the aggregate throughput when using the default MPTCP.In

Fig. 7. Effectiveness of eMPTCP enabled Proactive congestion control.

Fig. 8. Effectiveness of eMPTCP enabled scheduler for the multi-tenant
environment.

contrast, eMPTCP stands out by achieving nearly zero retrans-
missions while ensuring that the aggregate throughput remains
equal to or slightly better than that of the default MPTCP.
The reason for this is that the default congestion control
algorithm of MPTCP reacts to congestion after it has already
occurred. On the other hand, the eMPTCP extension allows
for controlling the sending of packets based on credit, thereby
preventing congestion.

Use case 2: MPTCP in the multi-tenant environment.

One promising feature of eMPTCP is to enable new function-
alities of MPTCP. In this test case, we investigate the usage of
MPTCP in the multi-tenant environment. With the increasing
demands of VM-VM communication, there is an urge to
utilize multiple paths in data center networks to improve
network performance. Intuitively, the multipath transmission
functionality can be added to VMs by deploying and enabling
MPTCP in VMs. However, such a naive method will face
two challenges. First, MPTCP is an end-host solution and
the traffic of MPTCP-enabled VMs is not guaranteed to
send through different physical links. Second, VMs belong
to customers and we do not assume the network operators
have all authority over guests’ VMs. Thus, current methods
to extend MPTCP by kernel modification or mptcpd are not
applicable in the multi-tenant environment. Addressing this
issue, we deploy eMPTCP on the hypervisors, and implement
a simple traffic management policy that different subflows are
sent through multiple physical interfaces.

By enabling different subflows to send through multi-
ple physical interfaces, eMPTCP delivers higher aggregate
throughput for VMs. We measure the throughput of traffic
between one pair of VMs with varying amounts of background
traffic. Fig. 8a demonstrates that eMPTCP can improve the
aggregate throughput for VMs by 23.03% when there is no
background traffic. The improvement is more obvious when
there is intensive background traffic. As is shown in Fig. 8b,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

Fig. 9. Effectiveness of eMPTCP enabled path-manager.

when the background traffic reaches 3Gbps, the improvement
can be as large as 32.3%. The reason is that, with eMPTCP
and the congestion control algorithms of MPTCP, VMs can
better utilize multiple paths in the multi-tenant environment
while sharing the network with other tenants.

Use case 3: Path management. bottleneck shared path
management Path management is a key component in the
connection establishment of MPTCP. It controls when and
how to establish subflows between two hosts. We design a
simple path-manager, which works as follows. First, for an
arbitrary flow, MPTCP uses only one path to transmit it at first
and incrementally adds subflows with the number of bits this
flow has sent. Second, when adding new subflows, only those
sharing no common links with the existing subflows will be
added. Such a simple path-manager benefits small flows with
small latency and large flows with higher throughput. It should
be noted that while shared bottleneck links can be detected
through algorithms [31], [32], the primary purpose of this use
case is to verify the effectiveness of path management, not to
design a new algorithm. Therefore, we assume that information
about shared bottleneck links is already known.

Fig. 9a demonstrates the effectiveness of the eMPTCP
implemented path-manager in improving the Flow Completion
Time (FCT) for small flows (less than 220KB). Through
disabling subflows establishment at the beginning of the con-
nection, eMPTCP provides the performance near native TCP
and significantly reduces the overhead of MPTCP.

For large flows, eMPTCP further improves the capability of
MPTCP by increasing the throughput of MPTCP. As shown
in Fig. 9b, eMPTCP improves the throughput of MPTCP by
23.1% on average. This improvement is realized by removing
the redundant paths which potentially cause congestion on the
bottleneck link.

Use case 4: Traffic scheduling. Traffic scheduling is
known to significantly impact the MPTCP performance,
especially in the heterogeneous network environment. When
MPTCP sends the packets on paths with different throughputs
and delays, packets arriving at the receiver could be out-
of-order. In such a case, packets sent from the fast paths
have to wait for packets sent from the slow paths. Further,
the re-ordering of packets also incurs extra costs. Addressing
this issue, many traffic schedulers for MPTCP have been
proposed. Among many of them, we implement a simple
version based on the design of ECF [9], which allows for
determining the sending rate on all subflows periodically at
the interval of 100ms. The rate decision is defined by a vector
< r1, r2, . . . , ri >, where ri represents the rate of ith subflow.

In this test case, we establish two paths, one of which
is set with a latency of 20ms, and the other is set with a

Fig. 10. Effectiveness of eMPTCP enabled traffic-scheduler.

latency of 50ms, corresponding to a fast subflow and a slow
subflow, respectively. At each decision interval, the scheduler
calculates the rates on each path. Fig. 10a shows that such a
traffic scheduler can improve the throughput by at most 41.6%
and on average 30.9%. We further evaluate the effectiveness
of this scheduler with a large number of concurrent flows.
As Figure 10b shows, the scheduler can improve the average
throughput by 16.8% in this case.

VI. RELATED WORK

Currently, there are a lot of efforts to enhance MPTCP,
such as path management, traffic scheduler, etc. For example,
as traffic scheduling has a significant impact on the perfor-
mance of MPTCP, Frömmgen et al. [8] proposed a high-level
programming model for MPTCP scheduler and built a cor-
responding runtime environment in the kernel, which enables
application-aware scheduling. Zhang et al. [11] developed an
adaptive scheduler based on deep reinforcement learning to
schedule multi-path traffic for different scenarios. Cai and
Lui [15] presented an online learning-based method to select
multiple paths by learning the stochastic metrics of the paths.
ECF scheduler [9] was developed which makes a predic-
tion about transfer time through subflows and sends packets
through the path with an earlier completion time. Xing et al.
[39] developed an online-learning assisted scheduler tailored
to accommodate diverse network conditions for mobile users.
For path management, Hesmans et al. developed MPTCP
path management Netlink [12] and Socket [14] API, which
enables userspace and application-oriented path management.
Zongor et al. [16] pointed out that when the subflows of
MPTCP are not fully disjoint, the throughput will be limited by
bottleneck links. Gao et al. [17] calculated the optimal path set
and chose the optimal number and subflow-path assignment
for MPTCP connections. Many existing works have tried to
extend MPTCP in various scenarios, Le and Nahum et al. [19]
utilized MPTCP to seamlessly migrate live VMs across WAN
boundaries. Xu et al. [20] developed a congestion control
algorithm that detects path-sharing by comparing RTT and
ECN of different subflows.

Despite the promising usage of MPTCP, extending MPTCP
is not easy. Existing methods either modify the kernel imple-
mentation of MPTCP, which involves considerable engineering
efforts and may introduce security flaws, or control MPTCP
via userspace tools such as mptcpd [25], which suffers from
highly-restricted functionalities. Based on eBPF, Viet-Hoang
Tran and Olivier Bonaventure [27] take the first step toward
extending network protocols with eBPF. However, they only
reveal the implementing details of an enhanced MPTCP path

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: eMPTCP: A FRAMEWORK TO FULLY EXTEND MULTIPATH TCP 5473

management, challenges still remain to fully extend MPTCP
for more real use cases.

Beyond MPTCP, there are also many works that exploit
the multipath feature of networks. For example, Gurtov and
Polishchuk [40] developed a multipath scheduler called mHIP
laying between IP and HIP layer which avoids many common
issues in multipath environments, such as address hijacking,
and vulnerability to address changing. Nikravesh et al. [41]
designed a userspace multipath system called MPFlex which
runs as a transport layer proxy and provides multipath services
for TCP and UDP traffic. Coninck and Bonaventure [21]
proposed Multipath QUIC which enables QUIC with the
multipath transmission. Although these works are not directly
based on MPTCP, their designs can inspire the extensions of
MPTCP and can be further facilitated by eMPTCP.

VII. FUTURE WORK

Extending eMPTCP in the mobile environment. MPTCP
has been most widely used on mobile devices to aggregate
the bandwidth of heterogeneous paths or realize seamless
handovers between networks. Therefore, extending MPTCP in
the mobile environment is a potentially significant scenario.
Since eMPTCP is implemented based on eBPF which has
been supported since kernel version 4.9 and Android 9 [42],
we believe that eMPTCP is also feasible to deploy on mobile
devices. A future plan of eMPTCP is to evaluate the feasibility
and robustness when deploying on mobile devices.

Extending to support more transport protocols. While the
design of eMPTCP mainly targets at MPTCP, we believe that
it is capable of supporting more general transport protocols
with the help of XDP and TC. By enabling inspection on
network packets, eMPTCP combines the view from the differ-
ent layers of protocols, yielding more insights into cross-layer
innovations. The implementation of eMPTCP also encourages
a practical way to encapsulate more verifier acceptable, robust
eBPF helper functions.

Support extensions from different developers. eMPTCP was
initially designed for use by a single trusted developer, without
taking into account potential conflicts that may arise from
multiple developers. Ensuring compatibility among diverse
extensions is a pivotal concern in numerous protocol designs,
such as the concern in PQUIC [43]. Thus, we believe this as
a promising direction for future exploration.

VIII. CONCLUSION

In this paper, we have presented eMPTCP, a framework that
enables to extend MPTCP with customized control policies.
eMPTCP is highly flexible and pluggable. Implemented based
on eBPF, eMPTCP benefits from the security and robust-
ness of the kernel development. We have demonstrated that
several representative MPTCP extensions can be easily imple-
mented with eMPTCP. Extensive experiments have shown that
eMPTCP incurs little overhead at the level of nanosecond with
negligible packet processing overhead.

REFERENCES

[1] O. Bonaventure and S. Seo, “Multipath TCP deployments,” IETF J.,
vol. 12, no. 2, pp. 24–27, 2016.

[2] G. Chen et al., “FUSO: Fast multi-path loss recovery for data center
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1376–1389,
Jun. 2018.

[3] C. Paasch and O. Bonaventure, “Multipath TCP,” Commun. ACM,
vol. 57, no. 4, pp. 51–57, Apr. 2014.

[4] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops,
Mar. 2013, pp. 1119–1124.

[5] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimen-
tal evaluation of multipath TCP schedulers,” in Proc. ACM SIG-
COMM Workshop Capacity Sharing Workshop. New York, NY, USA:
Association for Computing Machinery, Aug. 2014, pp. 27–32, doi:
10.1145/2630088.2631977.

[6] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in Proc. 28th Int. Conf. Adv.
Inf. Netw. Appl. Workshops, 2014, pp. 749–752.

[7] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in
Proc. IFIP Netw. Workshops, 2016, pp. 431–439.

[8] A. Frömmgen et al., “A programming model for application-defined
multipath TCP scheduling,” in Proc. 18th ACM/IFIP/USENIX Middle-
ware Conf. New York, NY, USA: Association for Computing Machinery,
Dec. 2017, pp. 134–146, doi: 10.1145/3135974.3135979.

[9] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF:
An MPTCP path scheduler to manage heterogeneous paths,” in Proc.
13th Int. Conf. Emerg. Netw. Exp. Technol. New York, NY, USA:
Association for Computing Machinery, Nov. 2017, pp. 147–159, doi:
10.1145/3143361.3143376.

[10] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, Ö. Alay, and
N. Kuhn, “Low-latency scheduling in MPTCP,” IEEE/ACM Trans. Netw.,
vol. 27, no. 1, pp. 302–315, Feb. 2019.

[11] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A neural adaptive
multipath scheduler based on deep reinforcement learning,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2019, pp. 1648–1656.

[12] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and O. Bonaventure,
“SMAPP: Towards smart multipath TCP-enabled applications,” in
Proc. 11th ACM Conf. Emerg. Netw. Exp. Technol. New York, NY,
USA: Association for Computing Machinery, Dec. 2015, pp. 1–7, doi:
10.1145/2716281.2836113.

[13] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A multipath
transport protocol for data centers,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun., Apr. 2016, pp. 1–9.

[14] B. Hesmans and O. Bonaventure, “An enhanced socket API for mul-
tipath TCP,” in Proc. Appl. Netw. Res. Workshop. New York, NY,
USA: Association for Computing Machinery, Jul. 2016, pp. 1–6, doi:
10.1145/2959424.2959433.

[15] K. Cai and J. C. S. Lui, “An online learning multi-path selection
framework for multi-path transmission protocols,” in Proc. 53rd Annu.
Conf. Inf. Sci. Syst. (CISS), Mar. 2019, pp. 1–2.

[16] L. Zongor, Z. Heszberger, A. Pa!ić, and J. Tapolcai, “The performance
of multi-path TCP with overlapping paths,” in Proc. ACM SIGCOMM
Conf. Posters Demos. New York, NY, USA: Association for Computing
Machinery, Aug. 2019, pp. 116–118, doi: 10.1145/3342280.3342328.

[17] K. Gao, C. Xu, J. Qin, S. Yang, L. Zhong, and G.-M. Muntean, “QoS-
driven path selection for MPTCP: A scalable SDN-assisted approach,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[18] F. Duchene and O. Bonaventure, “Making multipath TCP friendlier
to load balancers and anycast,” in Proc. IEEE 25th Int. Conf. Netw.
Protocols (ICNP), Oct. 2017, pp. 1–10.

[19] F. Le and E. M. Nahum, “Experiences implementing live VM migration
over the WAN with multi-path TCP,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), May 2019, pp. 1090–1098.

[20] C. Xu, J. Zhao, J. Liu, and F. Chen, “Revisiting multipath congestion
control for virtualized cloud environments,” in Proc. IEEE/ACM 28th
Int. Symp. Quality Service (IWQoS), Jun. 2020, pp. 1–10.

[21] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol.
New York, NY, USA: Association for Computing Machinery, Nov. 2017,
pp. 160–166, doi: 10.1145/3143361.3143370.

[22] C. Paasch and S. Barre. MultiPath TCP (MPTCP)—Linux Ker-
nel Implementation. Accessed: May 6, 2022. [Online]. Available:
http://www.multipath-tcp.org

[23] RFC 8684 TCP Extensions for Multipath Operation With Multiple
Addresses. Accessed: May 6, 2022. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc8684.html

[24] Netdev Group. (2020). MPTCP Linux Kernel Upstream. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/netdev

[25] Multipath TCP Daemon. Accessed: May 6, 2022. [Online]. Available:
https://github.com/intel/mptcpd

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

5474 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

[26] Extened Berkeley Packet Filter (eBPF). Accessed: May 6, 2022.
[Online]. Available: http://ebpf.io

[27] V. H. Tran, “Measuring and extending multipath TCP,” Ph.D. thesis,
Louvain School Eng. (EPL), UCLouvain, Louvain-la-Neuve, Belgium,
2019.

[28] T. Hoiland-Jorgensen et al., “The express data path: Fast pro-
grammable packet processing in the operating system kernel,” in Proc.
14th Int. Conf. Emerg. Netw. Exp. Technol. New York, NY, USA:
Association for Computing Machinery, Dec. 2018, pp. 54–66, doi:
10.1145/3281411.3281443.

[29] S. McCanne and V. Jacobson, “The BSD packet filter: A new archi-
tecture for user-level packet capture,” in Proc. USENIX Winter Conf.
(USENIX Winter Conf.) San Diego, CA, USA: USENIX Association,
Jan. 1993, pp. 259–270. [Online]. Available: https://www.usenix.org/
conference/usenix-winter-1993-conference/bsd-packet-filter-new-archite
cture-user-level-packet

[30] J. Han et al., “Leveraging coupled BBR and adaptive packet scheduling
to boost MPTCP,” IEEE Trans. Wireless Commun., vol. 20, no. 11,
pp. 7555–7567, Nov. 2021.

[31] Shared Bottleneck Detection for Coupled Congestion Control for RTP
Media. Accessed: May 11, 2024. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc8382.html

[32] S. Ferlin, Ö. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
congestion control for multipath TCP with shared bottleneck detection,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016,
pp. 1–9.

[33] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “Revisiting the open
vSwitch dataplane ten years later,” in Proc. ACM SIGCOMM Conf.
New York, NY, USA: Association for Computing Machinery, Aug. 2021,
pp. 245–257, doi: 10.1145/3452296.3472914.

[34] Linux Programmer’s Manual. tc-bpf(8)—Linux Manual Page. Accessed:
May 6, 2022. [Online]. Available: https://man7.org/linux/man-pages/
man8/tc.8.html

[35] M. K. Lau. (2020). Introduce BPF STRUCT_OPS. Accessed: Oct. 9,
2023. [Online]. Available: https://lwn.net/Articles/809092/

[36] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Com-
put. Commun. (SIGCOMM). New York, NY, USA: Association for Com-
puting Machinery, 2018, pp. 221–235, doi: 10.1145/3230543.3230564.

[37] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-
service multi-queue data centers,” in Proc. 13th USENIX Symp. Netw.
Syst. Design Implement. Santa Clara, CA, USA: USENIX Association,
Mar. 2016, pp. 537–549. [Online]. Available: https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/bai

[38] RFC 6182: Architectural Guidelines for Multipath TCP Development.
Accessed: May 6, 2022. [Online]. Available: https://datatracker.ietf.
org/doc/html/rfc6182

[39] Y. Xing, K. Xue, Y. Zhang, J. Han, J. Li, and D. S. L. WeiMember,
“An online learning assisted packet scheduler for MPTCP in mobile
networks,” IEEE/ACM Trans. Netw., vol. 31, no. 5, pp. 2297–2312,
Oct. 2023.

[40] A. Gurtov and T. Polishchuk, “Secure multipath transport for legacy
internet applications,” in Proc. 6th Int. Conf. Broadband Commun.,
Netw., Syst., Sep. 2009, pp. 1–8.

[41] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen, “An in-depth
understanding of multipath TCP on mobile devices: Measurement and
system design,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw.
New York, NY, USA: Association for Computing Machinery, Oct. 2016,
pp. 189–201, doi: 10.1145/2973750.2973769.

[42] Android Open Source Project: Using EBPF Extensions. Accessed:
May 6, 2022. [Online]. Available: https://source.android.com/devices/
architecture/kernel/bpf

[43] Q. De Coninck et al., “Pluginizing QUIC,” in Proc. ACM Special Interest
Group Data Commun. New York, NY, USA: Association for Computing
Machinery, Aug. 2019, pp. 59–74, doi: 10.1145/3341302.3342078.

Dian Shen (Member, IEEE) received the bachelor’s,
master’s, and Ph.D. degrees from Southeast Univer-
sity, China, in 2010, 2012, and 2018, respectively.
He was a Visiting Researcher with The Chinese
University of Hong Kong from 2021 to 2022. He is
currently an Associate Professor with the School
of Computer Science and Engineering, Southeast
University. His research interests include cloud com-
puting, virtualization, and data center networks.

Bin Yang is currently pursuing the integrated
master’s and Ph.D. degree with the School of Com-
puter Science and Engineering, Southeast University.
His research interests include data center networks,
OS kernel design, and implementation.

Junxue Zhang received the Ph.D. degree in com-
puter science and engineering from iSINGLab,
The Hong Kong University of Science and Tech-
nology (HKUST), supervised by Prof. Kai Chen.
He is currently a Research Assistant Professor
with the Department of Computer and Engineering,
HKUST. His research work has been published
in many top venues, such as SIGCOMM, NSDI,
CoNEXT, and IEEE/ACM TRANSACTIONS ON
NETWORKING. His research interests include data
center networking, machine learning systems, and
privacy-preserving computation.

Fang Dong (Member, IEEE) received the B.S. and
M.S. degrees in computer science from Nanjing
University of Science and Technology, China, in
2004 and 2006, respectively, and the Ph.D. degree in
computer science from Southeast University, China,
in 2011. He is currently a Professor with Southeast
University and also the Director of the Big Data
Computing Center, Southeast University. His current
research interests include edge intelligence, cloud
computing, and industrial internet. He is a member
of ACM. He serves as the Co-Chair for the ACM
Nanjing Chapter, China.

John C. S. Lui (Fellow, IEEE) received the Ph.D.
degree in computer science from the University
of California at Los Angeles. He is currently the
Choh-Ming Li Chair Professor with the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). His
current research interests include quantum networks,
machine learning, online learning (e.g., multi-armed
bandit and reinforcement learning), network science,
future internet architectures and protocols, network
economics, network/system security, and large-scale

storage systems. He is elected as a member of the IFIP WG 7.3, a Fellow of
ACM, and a Senior Research Fellow of the Croucher Foundation. He received
various departmental teaching and research awards, including the CUHK Vice
Chancellor’s Exemplary Teaching Award and the Research Excellence Award
from CUHK.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 17,2025 at 07:53:40 UTC from IEEE Xplore. Restrictions apply.

