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Abstract—A cloudlet is a small-scale cloud datacenter deployed

at the network edge to support mobile applications in proximity

with low latency. While an individual cloudlet operates on

moderate power, cloudlet clusters are well-suited candidates for

emergency demand response (EDR) scenarios due to substantial

electricity consumption and job elasticity: mobile workloads in

the edge often exhibit elasticity in their execution. To efficiently

carry out edge EDR via cloudlet cluster control, one fundamental

problem needs to be addressed: how to schedule and allocate

workloads in a cloudlet cluster to satisfy EDR requirements.

We propose an online task scheduling algorithm for the chosen

cluster to dispatch workloads to guarantee target EDR power

reduction. By exploiting the primal-dual optimization theory,

we prove that our control scheme runs in polynomial time

and achieves near-optimal performance. Large-scale simulation

studies based on real-world data also confirm the efficiency and

superiority of our scheme over state-of-the-art algorithms.

I. INTRODUCTION

Cloudlet, in the form of a small datacenter, is a new
computing paradigm that extends today’s cloud architecture.
As the middle tier of a 3-tier hierarchy: mobile or IoT device –
cloudlet – cloud, cloudlet is placed at the edge of the network
to provide low-latency and high bandwidth services for nearby
mobile or IoT devices [1]. The wide distribution of cloudlets
not only increases the edge network’s capacity and coverage
but also brings flexibility in workload management [2] [3].

It is quintessential for a power network to be stable and
reliable. When an emergency happens (e.g., extreme weather
conditions), supply scarcity needs to adjust immediately to
avoid involuntary service interruptions [4]. Besides clouds,
cloudlet clusters now serve as an important force in emergency
demand response (EDR). While an individual cloudlet uses a
moderate amount of electricity, a cloudlet cluster utilizes sub-
stantial electricity. Furthermore, edge computing tasks (e.g.,
video surveillance and analysis) are often elastic [5]. Hence the
task execution is flexible, which means that a task can tolerate
a certain level of delay. The above features make cloudlet
clusters well-suited to participate in EDR to stabilize the
power grid by reducing and temporally shifting peak loads. To
realize edge EDR for a chosen cloudlet cluster receiving task
execution requests from mobile users online, one fundamental
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challenge is how to make decisions on accepting/declining
tasks and schedule accepted tasks, such that the target energy
reduction is satisfied and its utility is maximized?

Many efforts have been made on incentive mechanism
design for demand response and task scheduling. However,
they cannot be applied to edge EDR directly. Previous work
either only focuses on electricity procurement [6] [7], or
does not consider the electricity consumption in scheduling
algorithm design [8] [9]. More discussions can be found in
Sec. 2. In this work, we design a scheduling algorithm, tailored
for a participant cloudlet cluster to dispatch workloads to
guarantee target EDR power consumption. It has following
goals: i) the algorithm is time efficient, making task admission
and scheduling decisions immediately upon the arrival of each
task; ii) the total power consumption in the specified EDR time
window plus the local electricity generation can satisfy the
EDR requirement; iii) the utility of the cluster, i.e., completed
tasks’ value minus the local generation cost, is maximized.
Many edge computing tasks have flexibility in both placement
and job completion time, so their workload can be distributed
across different cloudlets. In addition, they allow a certain
level of delay, and the task’s value depends on the degree of
deadline violation. Our contributions are listed as follows:

First, we design an online algorithm to determine whether a
task should be accepted or not, when and where the accepted
task should be processed, and the amount of local electric-
ity generation. The cluster’s utility maximization problem is
formulated as a convex problem. To eliminate the non-linear
constraints, we introduce a set of new variables for each task
to represent feasible schedules. Although the new formulation
has an exponential size of variables, it can be solved in
polynomial time. A primal-dual method is applied to the new
formulation and its dual problem. Two dual variables can
be interpreted as the unit workload price and the unit local
generation cost, respectively. They are used as the threshold
to compute the best schedule with the maximum utility for
each task. The proof for feasibility, efficiency and a good
competitive ratio are conducted in our theoretical analysis.

Second, we conduct large-scale simulations based on the
real-world circumstances. We obtain several noticeable results:
i) our algorithm achieves a low competitive ratio (< 1.6); ii)
our algorithm beats two benchmark algorithms, a greedy algo-
rithm based on the idea of [10] and a first-come, first-served
algorithm applying the scheme in [11], in terms of cluster
utility, either in different problem scales or time slots; iii) our
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algorithm can control the peak usage of electricity and save
up to 49.8%, 22.4% of the local generation, compared with
other two algorithms respectively; iv) the execution time of our
algorithm grows mildly as problem scale increases, proving
that our algorithm runs in polynomial time. Through extensive
simulations, the superiority of our method is demonstrated.

In the rest paper, we discuss related work in Sec. II and
introduce the system model in Sec. III.Algorithm designs are
presented in Sec. IV. Sec. V evaluates the performance of
proposed algorithms and Sec. VI concludes the paper.

II. RELATED WORK

Demand Response and Edge EDR. A series of recent studies
exist on the reduction goal and social welfare maximization
in demand response. For instance, in [12], a storage-assisted
system is considered, with batteries and plug-in vehicles
helping balance between supply and user demand. Chen et al.
[13] argue that edge computing represents a natural subject
of EDR. Their work differs from ours in that they fix the
execution time slot of each workload and assume a simplified
linear cost for deadline violation; our model is comparatively
more practical. There are also several studies on online task
allocation in EDR, including [14] and [15]. The former only
maximizes the operator’s cost while the latter ignores local
generator consumption. Our work presents a general scenario
in edge computing where scheduling takes place, targeting
EDR in scheduling tasks online with more flexibility.
Online Scheduling. Online scheduling is fundamental in
cloud computing. [8] proposes a primal-dual style auction to
dynamically allocate tasks into different VMs, in which the
time windows of users’ bids are fixed. Subsequently, Zhou et
al. [9] develop the compact exponential method to handle hard
and soft deadline constraints for job execution, showing more
elastic than [8]. Scheduling jobs online is also studied in a
general way to suit every aspect of daily life. Specifically, [16]
and [17] study online scheduling jobs on unrelated machines,
with the first paying attention to weighted flow time and the
latter considering arbitrary power functions of the machine.
Their researches share a primal-dual based framework with
our model, but their problems are different from ours. Agrawal
et al. [18] introduce a general version to solve online problems
with a concave objective and convex constraints. But they
assume the inputs are independent and identically distributed.
We study edge computing, targeting not only truthfulness and
efficiency for the online mechanism in cloud computing, but
also the flexibility to schedule tasks in heterogeneous clusters.

III. SYSTEM MODEL

A. System Overview
We consider a community where a smart grid provisions

electricity to L heterogeneous cloudlets in a cluster. The
cluster purchases D units of electricity for T time slots from
the grid. While the grid is only in charge of power supply,
the cloudlet cluster is responsible for its own operation, i.e.
considering how to schedule computing tasks, such that its
utility is maximized under limited energy. Let [X] denote the
integer set {1, 2, . . . , X}. A set of tasks [J ] = {1, 2, . . . , J} runs

in the cluster where they reside, receiving their workloads
at end users via access points and transmitting them to the
particular service providers. According to an agreement signed
by the cluster operator and the smart grid, when an emergency
event takes place, the cloudlet cluster needs to reduce E units
of electricity in the following T time slots.
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Fig. 1: Task scheduling in the cluster.

B. Scheduling in Cloudlet Cluster
Computing Task Information. Assume that each cloudlet

l 2 [L] can process at most Rl workloads. Let [J ] denote
the task set. Each task j 2 [J ] is expressed by a tuple: �j =

{bj , aj , dj , wj ,�j , fj(⌧j)}, where bj is the value of task j if it
completes before its deadline. aj and dj are the arrival time
and the deadline for task j, wj is the total number of time slots
required to complete the task. The workload in one time slot
is �j , so the total workload of task j is wj�j . ⌧j refers to the
level of deadline violation, whose penalty function is denoted
by fj(⌧j), with fcj (⌧j) non-decreasing and fcj (0) = 0:

fj(⌧j) =

⇢
fcj (⌧j), ⌧j 2 [0, T � dj ]

+1, otherwise.
(1)

Decision Variable. As shown in Fig. 1, the cloudlet cluster
schedules computing tasks to satisfy EDR energy consump-
tion. We introduce two additional binaries, xj and yjl(t), to
indicate whether task j is scheduled and whether task j is
scheduled at cloudlet l at time slot t.

Problem Formulation. The cluster aims to maximize its
own utility, i.e., the sum of task value minus the sum of the
delay penalty, and local generation cost. p is the per-unit local
generation cost and ug is the amount of local generation. The
optimization problem is formulated as follows:

maximize
X

j2[J]

bjxj �
X

j2[J]

fj(⌧j)� pug (2)

subject to:
X

j2[J]

�jyjl(t)  Rl, 8t 2 [T ], 8l 2 [L], (2a)

X

t2[T ]

X

l2[L]

etl  D � E + ug, (2b)

t
X

l2[L]

yjl(t) dj + ⌧j , 8t 2 [T ], 8j 2 [J ] : aj  t, (2c)

X

l2[L]

yjl(t) 1, 8j 2 [J ], 8t 2 [T ], (2d)

wjxj =

X

l2[L]

X

t2[T ]

yjl(t), 8j 2 [J ], (2e)

yjl(t),xj 2 {0, 1},
8j 2[J ], 8l 2 [L], 8t 2 [T ], (2f)

ug � 0, ⌧j �0, 8j 2 [J ]. (2g)
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In the above problem, et
l

denotes the electricity consumption
of cloudlet l at time slot t. An empirical study on cloudlet [19]
formulates the energy consumption through a linear function:
etl = (NlP

l

idle+(P l

peak�P l

idle)
P

j2J
�jyjl(t)) ·PUEl, where Nl

represents the number of running servers in cloudlet l. Pidle is
the power consumption when the server is idle and Ppeak is the
sever power when the cloudlet is fully utilized.

P
j2J

�jyjl(t)
is the amount of workload. PUEl, the power usage efficiency
ratio, is determined by statistical records of the ratio between
the datacenter facility power and computational consumption.
Next, since the EDR requires the cloudlet cluster to reduce
E electricity, its expected power consumption is the original
demand minus the EDR requirement, D � E. Important
notations are summarized in Table I.

Constraint (2a) guarantees that in each time slot, the cloudlet
l has enough computing resource to execute tasks. Constraint
(2b) ensures that the total power consumption does not exceed
the sum of the EDR requirement and local generation. For
any possible tasks to be scheduled, they should run between
the arrival time and the deadline, which is described by (2c).
Additionally, in (2d), we assume that each task runs on one
cloudlet at most. Constraint (2e) connects two binary variables,
xj and yjl(t), to guarantee sufficient execution.

Challenges. We notice that if we let ug = 0 and ⌧j =
0, 8j 2 J , as well as ignore (2c), it becomes a knapsack
problem. It is known to be NP-hard, let alone the difficulties
concerning online scheduling. Next, we propose an online
algorithm to schedule tasks while satisfying EDR requirement.

TABLE I. Notation
L # of cloudlets in the cluster
T # of time slots
J # of tasks in the cluster
D amount of electricity that the cloudlet purchased
E electricity reduction of the cluster
bj value of task j
aj the arrival time of task j
dj the deadline of task j
wj # of time slots required for task j
�j the workload of task j in one slot
⌧j # of slots that pass the deadline for task j
Zl(t) marginal price of unit workload in cloudlet l at t
Rl(t) the amount of allocated resources in cloudlet l at t
p local generation cost per unit
ug total local generation
xj task j is accepted (1) or not (0)
yjl(t) task j is allocated in l at t (1) or not (0)

IV. ONLINE TASK SCHEDULING

In this section, a primal-dual algorithm is proposed to sched-
ule tasks in Sec. IV-A. The theoretical analysis is presented in
Sec. IV-B.

A. Online Scheduling Design
Reformulation. We consider how to schedule tasks in the

cloudlet cluster. To deal with non-conventional scheduling
constraints in (2c) and (2e), we replace (2) with an equivalent
convex problem. The new problem is formulated as follows:

maximize
X

j2J

X

h2⇣j

b0jh�jh � g(u) (3)

subject to:
X

j2[J]

X

h:t2T (h),l2L(h)

�j�jh  Rl, 8l 2 [L],8t 2 [T ], (3a)

X

l2[L]

X

j2[J]

X

h:l2L(h)

X

t:t2T (h)

�l�j�jh  u, (3b)

X

h2⇣j

�jh  1, 8j 2 [J ], (3c)

�jh 2 {0, 1}, 8j 2 [J ], 8h 2⇣j , (3d)
u � 0. (3e)

In the above program, ⇣j is the set of all feasible sched-
ules for task j. A feasible schedule is a vector h =
(xj , {yjl(t)}8l2[L],8t2[T ], ⌧j) that satisfies constraints (2c) and
(2e). Binary variable, �jh, indicates whether task j is accepted
and scheduled according to schedule h (�jh = 1) or not
(�jh = 0). b0

jh
is the task value based on schedule h, i.e.,

b0
jh

= bj�fj(⌧j). T (h) and L(h) are the set of time slots and
cloudlets indicating when and where task j is running based
on schedule h. g(u) is the local generation cost of cluster i.
We let D0 = D�E�T (

P
l2[L] NlP l

idle
)·PUEl and u = D0+

ug . g(u) can be defined as a piecewise function as follows:

g(u) =

(
0, u  D0

p(u�D0
), u > D0.

g(u) indicates the energy consumption either below or
above the EDR cap. We simplify the LHS of (2b), and let
�l = (P l

peak
� P l

idle
) · PUEl. Constraints (3a) and (3b) are

equivalent to (2a) and (2b).
Though we reformulate the problem into a packing struc-

ture, many challenges are still ahead of us. A primal-dual
technique can be applied to solve the problem in polynomial
time. By introducing dual variables Zl(t), C and �j , as well
as relaxing �jh 2 {0, 1} to �jh � 0, the dual program is:

minimize
X

l2[L]

X

t2[T ]

Zl(t)Rl +

X

j2[J]

�j + g⇤(C) (4)

subject to:

�j � b0jh �
X

l2L(h)

X

t2T (h)

Zl(t)�j �
X

l2L(h)

X

t2T (h)

C�l�j ,

8j 2 [J ], 8h 2⇣j , (4a)
Zl(t), C,�j � 0, 8j 2 [J ], 8l 2 L(h), 8t 2 T (h) (4b)

where g⇤(C) is the Fenchel conjugate [20] of g(u):

g⇤(C) = sup
u�0

{Cu� g(u)} =

(
+1, u > D0

and C > p.

CD0. otherwise

Allocation and Scheduling. Due to complementary slack-
ness [21], each �jh has a corresponding constraint in (4a).
Only when the constraint goes tight, can �jh be updated
to 1. In that case, we automatically assign 1 to xj and
{yjl(t)}l2L(h),t2T (h) before we renew dual variables �j , Zl(t)
and C. Since �j in dual constraint is non-negative, we assign
�j as the maximum value between 0 and the RHS of (4a):
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�j = max
�
0,max

h2⇣j

{b0
jh

�
X

l2L(h)

X

t2T (h)

Zl(t)�j �
X

l2L(h)

X

t2T (h)

C�l�j}
 
.

(5)

When �j > 0, dual constraint (4a) holds tight so that the related
primal variable �jh > 0. In this case, task j is accepted, and h
is the corresponding schedule for j. Otherwise, if 8h 2 ⇣j ,�j =

0, b0jh�
P

l2L(h)

P
t2T (h) Zl(t)�j�

P
l2L(h)

P
t2T (h) C�l�j  0,

this task is rejected.
The reason can be explained as follows: If we interpret Zl(t)

as the per unit workload per unit time slot price for cloudlet
l, and C as the per unit local generation cost, then the RHS
of (4a) is the utility of task j. Therefore, when �j > 0, the
utility of task j becomes positive so that the cluster is willing
to process it. Note here C = 0 when the task does not exceed
the EDR cap; otherwise C = p. p is the local generation cost
per unit. If there is a delay in the task completion, b0

jh
should

contain the penalty expense; otherwise b0
jh

= bj . When the
value of the RHS of (5) is 0, the task is rejected. Equality (5)
determines the cloudlets and slots to schedule tasks for the
maximum utility, which is a key to the utility maximization.

We next discuss the update of of Zl(t). It is natural to think
that as computing resource in a cloudlet decreases, the cluster
may be reluctant to allocate more workload to this cloudlet.
We develop a cost function for the cloudlet to reduce the
possibility of accepting a task when it is almost fully occupied.
The cost function is:

Zl(t) = Zl(Rl(t)) =
N

e�

✓
e�M

N

◆Rl(t)
Rl

.

N and M refers to the minimum value per unit workload per
unit slot, and � = T

minj{wj} . By the time l is fully utilized,
Zl(t) is close to M , the maximum value per unit workload
per unit slot. More specifically, N = minj2[J]

bj

wj�j
,M =

maxj2[J]
bj

wj�j
.

Algorithm 1 Primal-Dual Based Online Allocation PD
Input: {�l, Rl}{l2L}, C,N,M,D0.

1: Initialize xj = 0, yjl(t) = 0, ⌧j = 0,�j = 0, Rl(t) = 0, u =

0, 8j 2 [J ], 8l 2 [L], 8t 2 [T ], by default.
2: On the arrival of task j
3: Run CORE({Rl(t), Zl(t)}{l2[L],t2[aj ,T ]}, p,�j , u).
4: if xj = 1 then

5: Schedule the jth task according to yjl(t).
6: else

7: Reject the jth task.
8: end if

For task j, given Zl(t) and C, the key step is to find the
best schedule that maximizes task j’s utility. The scheduling
algorithm works as follows: upon the arrival of task j, we
firstly fix the schedule between [aj , T ]. Since the original value
of each task before the deadline is constant, we manage to
calculate the resource consumption and energy expense in each
plausible cloudlet and time slot. Then in every situation, we
fix the last time slot in order to find the minimal cost of the
former (wj � 1) slots. After adding the sum to the cost of

the last time slot, we calculate the RHS of constraint (4a),
and select the most economical one. Finally, we figure out the
utility of task j according to (5) in each slot. We reject j if
�j = 0; otherwise, j is accepted and we output the optimal
schedule of task j.

Algorithm 2 One-Round Task Scheduling: CORE
Input: {Rl(t), Zl(t)}{l2[L],t2[aj ,T ]}, p,�j , u.

1: Initialize H = ;, eH = ;, ht = {t};xj = 0, yjl(t) = 0,�j =

0, 8l 2 [L], 8t 2 [T ], by default.
2: Add (t, l), t 2 [aj , T ], l 2 [L] to H if Rl(t) + �j  Rl, 8t 2

[T ], 8l 2 [L].
3: for all (t, l) 2 H do

4: Calculate q(t, l) = Zl(t)�j .
5: if u > D0

then

6: q(t, l) = q(t, l) + C�l�j .
7: end if

8: end for

9: Find lt = argmin
l:(t,l)2H

q(t, l), 8t. Add (t, lt), 8t to eH .
10: Arrange time slots by sequence, and denote the wj th slot as t0.
11: for all t0 2 eH : t0  t0  T do

12: Select wj � 1 slots in eH with minimum q(t, l), t < t0 and
add them to ht0 .

13: Calculate Q(t0) =
P

t2ht0
q(t, lt).

14: if t0 > dj then

15: Calculate bj = bj � fj(t
0 � dj).

16: end if

17: end for

18: �j(t
0
) = bj �Q(t0), 8t0 2 eH.

19: Find t⇤ = argmax
t02 eH:t0t0T

Q(t0).
20: if �j > 0 then

21: Rlt(t) = Rl(t) + �j , 8t 2 ht⇤ .

22: Zl(t) = N

e�

�
e�M

N

�Rl(t)
Rl , 8l 2 [L], 8t 2 [T ].

23: xj = 1; yjlt(t) = 1, 8t 2 ht⇤ .
24: u = u+

P
l:(t,l)2H,t2ht⇤

�l�j .
25: end if

26: Output {xj , {yjl(t), Rl(t)}{8l2[L],8t2[T ]}, u}.

Online Scheduling Algorithm. The online schedule algo-
rithm PD for workload allocation in EDR is demonstrated in
Algorithm 1. Initially, in line 1, all binary variables should
be 0. Lines 2-8 call CORE in algorithm 2 and schedule each
arriving task in the cluster. CORE computes xj and yjl(t)
for each task while also updating dual variables Zl(t), with
estimated M , N values by former data. In CORE, upon the
arrival of task j, we make initialization in line 1 and add all
possible tuple (t, l) in line 2. Lines 3-8 compute the cost per
time slot in the feasible set. Local generation cost is added if
and only if the processing task j exceeds the EDR cap. Then
we choose the cloudlets with minimum costs in each time slot
to be the candidates for the schedule in line 9. In line 10 we
mark the wj th slot. Lines 11-17 work as follows: by fixing the
last slot for processing the task, the minimum cost of previous
wj�1 slots should be picked up. When the completion time t0

violates the deadline, value for the task is diminished. Line 18
computes each possible utility and line 19 finds the max one.
Lines 20-25 update binary and dual variables. If the previously
selected utility is larger than 0, we accept the task and update
cloudlet costs, amount of allocated resource, xj and {yjl(t)};
otherwise no change is made.
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(a) Comparison of competitive ratio be-
tween different M/N scales with vary-
ing number of tasks J

(b) Comparison of cluster utility be-
tween different online algorithms as
problem scale increases.

(c) Comparison of cluster utility between
different online algorithms with varying
time slots T .

(d) Comparison of cluster utility be-
tween different online algorithms as
energy-cutting rate increases.

(e) Comparison of acceptance rate be-
tween different penalty weights as prob-
lem scale increases.

(f) Comparison of electricity usage be-
tween different algorithms in default
problem scale.

Fig. 2: Performance evaluation on PD

B. Theoretical Analysis

Theorem 1: The Algorithm PD computes a feasible solution
for problems in (2) (3) and (4).

All missing proofs can be found in our technical report

[22].
Theorem 2: PD runs in polynomial time.
The Competitive Ratio is defined as the upper bound ratio

of the optimal objective value of (2) to the objective value
achieved by PD. In reality, the ratio is always larger than 1.

Theorem 3: With ↵ = maxj2[J]{ 1
�j

�
ln
�
�M

N

�
+ 1

�
}, the

competitve ratio of the task scheduling algorithm PD is e

e�1↵.
V. PERFORMANCE EVALUATION

A. Experiment Setup
To simulate the whole edge system, we utilize a real EDR

event happening in New York on August 28, 2018, which
lasted for 6 hours [23]. Besides, the real field tests show that
the EDR energy reduction rate under 25% would be tolerable
for a data center to sustain the normal operation [24]. As for
the cloudlet, it is a small-scale cloud data center with 1-40
servers [25]. In this case, the typical PUE value is around 2.1
[26]. As for the strike price for the EDR event, mostly it is
around $1100 to $1800 per MWh [27]. The EDR dispatch
rate (i.e. the percentage of the number of clusters to engage
in EDR event) is around 58% [28]. The idle power for each
server is 60w, and the peak power is 180w [29]. The diesel
price for local generation is set to 0.32$/kWh[30].

We use the data stated above to construct our simulations.
We assume that on average, a cloudlet should have a PUE of
2.2 and contain 20 servers. And the overall energy-cutting rate
(i.e., the demand for energy reduction in the EDR event) is

25% with a 6-hour duration. We randomly scale the number
of servers for each cloudlet from 16 to 20 and the PUE
value form 1.9 to 2.5. In the experiment setting, one cluster
contains 15 distributed cloudlets and is capable of executing
40 tasks. We set the length of one time slot into 10 minutes
and divide the whole EDR process into 36 time slots. We
randomly generate each cluster’s bidding price based on the
cutting energy amount and the unit price. The original power
for one cluster is estimated to be 600kWh according to the
number and power of servers and cloudlets. In the aspect of
tasks, we randomly generate the workload from 0.4x to 1.0x
toward normalized 20 servers. We use the Poisson distribution
to randomly set each task’s arriving time and deadline. The
value of a task is proportional to its workload and the number
of time slots required. we set M to be the upper bound of
unit price, and N to be the lower bound because we randomly
generate the unit price of each task from 0.01$ to 0.04$.

We use the MINLP solver SCIP to obtain the offline optimal
solution for integer programming (2). We find the average
acceptance rate is higher than 95% without using any local
power generation, indicating that our experiment setting is
suitable to simulate the real-world scenario.

B. Data Analysis
Firstly, we have to consider the influence of setting different

M and N , the maximum and the minimum value per unit
workload per unit slot. In Fig. 2(a), suppose we already know
all the task information and try to vary this ratio to 0.5x, 1.0x
and 1.5x. The simulation result indicates that this ratio only
slightly influences the optimal value. Besides, this figure also
reflects that the competitive ratio is likely to increase as the
number of tasks rises.
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Fig. 2(b) is the comparison between three online algo-
rithms. We implement two benchmark algorithms: i) a greedy
algorithm [10], which always executes the maximum value
task first in order to get optimal value; and ii) a first-come,
first-served (FCFS) algorithm, which always lets the early-
arriving task schedules first and cannot be preempted by a
later task [11]. Fig. 2(c) modifies the EDR duration time.
We can find that the performance of PD is better than the
other two algorithms. Both algorithms do not take the task’s
elastic deadline into consideration, so they will reject some
of the tasks. PD performs better because it looks for flexible
scheduling.

We change the energy-cutting rate to evaluate our algorithm
in a relatively extreme situation. In Fig. 2(c), the cluster’s
utility decreases because we do not have enough power to
execute all the tasks, or we have to pay the local generation
cost for power replenishment. However, PD still beats the other
two algorithms as well, because PD includes local generation
cost if we have to replenish electricity and compare this cost
with the task’s utility. This utility measurement can avoid
consuming power to execute low-value tasks.

In Fig. 2(e), we assign different weights to the penalty
function and analyze sensitivity. We find the weight of the
penalty function can influence the acceptance rate. This means
PD rejects the task if the delay penalty is too heavy. As for the
greedy algorithm or the FCFS algorithm, they do not consider
this condition but finish the task before the deadline. However,
this attribute is useful in an extreme condition with substantial
worthless tasks to execute. Assume there are enough cloudlets
to finish all the tasks, so the differences are slight in the figure.

Fig. 2(f) shows the electricity usage of different algorithms
at each slot. Here we add the offline optimum and the online
Mixed-integer Programming (MIP) which gets the optimal
solution until current slot. We find that all algorithms perform
well at low computation time, but PD can schedule tasks
more efficiently at peak computation time. The local electricity
usage of PD is 49.8%, 22.4% lower than the greedy algorithm,
FCFS algorithm respectively, nearly close to the optimum. PD
is more eco-friendly, compared with other algorithms.

VI. CONCLUSION
In this work, we study how to enable edge emergency

demand response via cloudlet clusters control. To address
challenges in task scheduling at a cloudlet cluster, we propose
a control mechanism to facilitate edge EDR. We design an
online primal-dual algorithm, PD, for the cluster to schedule
and allocate its workload while satisfying EDR energy reduc-
tion requirement. PD runs in polynomial time and achieves
a provable competitive ratio. Large-scale simulations verify
the efficiency and advantages of our method over existing
methods.
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