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a b s t r a c t

Product recommendation is one of the most important services in the Internet. In this
paper, we consider a product recommendation system which recommends products to a
group of users. The recommendation system only has partial preference information on this
group of users: a user only indicates his preference to a small subset of products in the form
of ratings. This partial preference information makes it a challenge to produce an accurate
recommendation. In this work, we explore a number of fundamental questions. What is
the desired number of ratings per product so to guarantee an accurate recommendation?
What are some effective voting rules in summarizing ratings?Howusers’misbehavior such
as cheating, in product rating may affect the recommendation accuracy? What are some
efficient rating schemes? To answer these questions, we present a formal mathematical
model of a group recommendation system. We formally analyze the model. Through
this analysis we gain the insight to develop a randomized algorithm which is both
computationally efficient and asymptotically accurate in evaluating the recommendation
accuracy under a very general setting.Wepropose a novel and efficient heterogeneous rating
schemewhich requires equal or less rating workload, but can improve over a homogeneous
rating scheme by as much as 30%. We carry out experiments on both synthetic data and
real-world data from TripAdvisor. Not only we validate our model, but also we obtain a
number of interesting observations, i.e., a small of misbehaving users can decrease the
recommendation accuracy remarkably. For TripAdvisor, one hundred ratings per product
is sufficient to guarantee a high accuracy recommendation. We believe our model and
methodology are important building blocks to refine and improve applications of group
recommendation systems.

© 2014 Published by Elsevier B.V.

1. Introduction

Nowadays, we are living in the information age with information overload. To deal with such overload, recommender
systems [1] were introduced which suggest products (hotels, books, songs, etc.) to a user by taking into account the
preference of that user. Recommender systems have drawn a lot of attention from both commercial and academic
communities over the last decade. We see a number of successful commercial recommender systems like Amazon.com [2],
MovieLens [3], etc. A lot of research works have been done on investigating various algorithmic and complexity issues in
designing recommender systems [1,4–7]. This type of recommender systems aim to make recommendations to one user
and they are also called classic recommender systems.
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However, when users operate in groups, classic recommender systems are not appropriate, because the systemhas tomake
recommendations by taking into account the preferences of all users within a group instead of one user. Examples of such
contexts can be, recommending movies to a number of friends planning to watch together [8], recommending videos to
an interest group on YouTube, etc. To deal with such contexts, group recommendation systems [9] were introduced. They
aim to provide recommendations to a group of users maximizing the overall utility of that group. Recently, a number of
successful commercial products of group recommendation systems have emerged [8,10–13]. In this paper, we consider
group recommendation systems with partial preference information: there are a number of products and a number of users
operates in a group, and each user only show his preference to a small subset of products in the form of ratings. The system
applies some rating aggregation policies to summarize the ratings, and recommends a subset of products to a group users.

The partial preference information makes it a challenge to make an accurate recommendation. It is important for us to
understand the accuracy and effectiveness of a group product recommendation system. However this is a challenging work,
since a number of rating and human factors may affect the recommendation accuracy and effectiveness. Little attention
has been made to this fundamental problem. In this paper, we explore a number of fundamental questions to fill in this
void. What is the desired number of ratings per product so to guarantee an accurate recommendation? What are some effective
voting rules in summarizing ratings? How users’ misbehavior such as cheating, in product rating may affect the recommendation
accuracy?What are some efficient rating schemes? To the best of our knowledge, this is the first paperwhich provides a formal
model and analysis of such kind of systems. To summarize, our paper makes the following contributions:

• We propose a mathematical model to capture various factors which may influence the accuracy of a group product
recommendation system under partial preference information settings.

• We formally analyze the model. Through this we gain the insight to develop a randomized algorithm to evaluate the
recommendation accuracy under a general setting. We show that this algorithm is computationally efficient and also
provides theoretical performance guarantees.

• We propose an efficient two round heterogeneous rating scheme which outperforms the homogeneous rating scheme by
as much as 30% in recommendation accuracy with the same or less rating workload.

• We carry our experiments on both synthetic data and real-world data (rating data from TripAdvisor). We not only
validate our model, but also examine various factors that may affect the recommendation accuracy. We find a number
of interesting observations, for example, a small of misbehaving users can decrease the recommendation accuracy
remarkably. For TripAdvisor, one hundred ratings per product is sufficient to guarantee a high recommendation accuracy.

This is the outline of our paper. In Section 2, we present the mathematical model of a group recommendation system.
In Section 3, we present the formal analysis of the model. In Section 4, we present an efficient randomized algorithm with
theoretical performance guarantees to evaluate the recommendation accuracy. In Section 5, we present the experimental
results on synthetic data. In Section 6, we present the experimental results on a real-world dataset (from TripAdvisor).
Related work is given in Sections 7 and 8 concludes.

2. Mathematical model

We consider a group product recommendation system which recommends k products from a finite set of N candidates
denoted by P1, . . . , PN , to a group ofM users U = {U1, . . . ,UM}, taking into account the collective preference of the whole
user population with that group. Note that 1  k  N . Users show their preferences in the form of product rating.
More concretely, a user only expresses ratings to a small subset of products on an m-level cardinal metric denoted by
{1, . . . ,m}. Higher rating implies higher preference. For example, a 2-level (or binary) cardinal metric could be: {1 =
dislike, 2 = like}. Ratings from different users are independent. We use the notation ri = {ri,1, . . . , ri,M} to denote a
set of ratings for product Pi, where ri,j 2 {1, . . . ,m} if user Uj rates product Pi, otherwise ri,j = 0 denotes a missing
rating. Let ni = |{ri,j 2 {1, . . . ,m}, 8j}| denote the number of observed ratings for product Pi. We treat the observed
ratings, say ri,j 2 {1, . . . ,m}, 8i, j, as partial preference information. To decide whether a product should be recommended,
the systems infers the collective preference of the user group U via evaluating ratings. The partial preference information
makes it challenge to infer the collective preference accurately. There are a number of interesting questions to explore, i.e.,
how will the number of ratings per product affect the accuracy of the overall recommendation? To guarantee an accurate
recommendation, what is the minimum number ratings per product? How users’ misbehavior (such as cheating) in product
rating may affect the final recommendation? The objective of this work is to examine how various factors can influence the
recommendation accuracy.

To make a recommendation, the system applies a voting rule V to summarize ratings of a product. Many voting rules
are possible. A simple and widely used voting rule is the average score rule. Let �i = V(ri) denote the aggregate rating of
product Pi. For the average score rule, we compute the aggregate rating as �i = P

j ri,j/ni. There are a number of interesting
questions to explore, i.e., what are some effective voting rules? Can one voting rule be more accurate than others?

However, specifying the voting rule is not enough. Recall that the system can only recommend k products. Suppose we
rank products based on their aggregate ratings. It may happen that the aggregate rating of the kth ranked product, equals
to that of the (k + 1)th ranked product. In this case, we need to specify a tie-breaking rule to decide which product should
be recommended. Let T denote a tie-breaking rule. In this work, we also explore whether the recommendation accuracy is
sensitive to a particular tie-breaking rule.
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To answer the above questions, we present the recommendation accuracymeasure, the probabilistic model in describing
collective preference as well as the product quality, in the following.

2.1. Recommendation accuracy measure

We use the notation Qi 2 (1,m) to represent the overall quality of product Pi in the view of the user group U. The value
of Qi reflects the true collective preference of the user group U. We formally define it as follows.

Definition 1 (Product Quality).Wedefine the quality of a product in the view of the user groupU as its average rating under
full preference information, i.e., all users within the group U express ratings to it, mathematically

Qi ,
X

j

ri,j/M,

where all ratings are observed, say ri,j 2 {1, . . . ,m}, 8j.

Remark. In the presence of full information, we could have access to the quality of a product, say the true collective
preference of a group of users. But in reality, it is costly or impossible to achieve that ideal place, instead we only have
access partial preference information on ratings. Thus the system and users do not have knowledge on product quality Qi, 8i
in general.

In the following of this work, we call Qi the product quality, for simplicity. We use the term full information to denote the
ideal scenario where for each product, all users express ratings to it.

Higher value of Qi implies higher collective preference. In other words Qi > Qj implies that the user group U prefers
product Pi over Pj. Without loss of any generality, let us assume Q1 > Q2 > · · · > QN . It is important to emphasize that
users and the system do not have any a-prior knowledge of Qi, 8i. Let RI(k) and R(k) denote two sets of k recommended
products according to the product quality, say Qi, 8i, or according to the system’s recommendation criteria respectively
(i.e., applying a voting rule and a tie breaking rule to ratings, etc.). It is clear that RI(k) = {P1, P2, . . . , Pk}, and if a group
recommendation system is perfect, we should have RI(k) = R(k). But in general, many human factors may influence the
final recommendation, hence RI(k) 6= R(k). To measure the accuracy of a group product recommendation system, we
aim to determine howmany products in R(k) are also in RI(k). Formally, we seek to derive the following probability mass
function (pmf):

Pr
⇥

|RI(k) \R(k)| = i
⇤

, for i = 0, 1, . . . , k.

Intuitively, if Pr[|RI(k) \ R(k)| = k] occurs with a high probability, then the group product recommendation system is
accurate and at the same time, robust against different rating and human factors.

2.2. Model for collective preference

When makes a recommendation, the system extracts the collective preferences of a group of users. We consider one
most important factor that may affect the collective preference, say degree of homophyly among users. Homophyly degree
measures the similarity of users. More specifically, the higher the homophyly degree, the more likely that users express
similar product ratings. Under the ideal scenario of full information, for product Pi, we have access to ratings from all users,
which form a distribution Pi = {pi,1, . . . , pi,m}, over the space of rating points {1, . . . ,m}. Specifically, we express this
distribution as

pi,` , fraction of users that assign a rating ` to the product Pi.

Note that users and the system do not have any a-prior knowledge on Pi. One can vary the variance of Pi to
reflect the homophyly degree. Specifically, the higher the homophyly degree, the lower the variance of Pi. We use
the notation h 2 [0, 1] to represent the homophyly degree among users within the user group U. With the usual
convention, higher value of h represents higher homophyly degree. The distribution Pi should have the following two
properties:

Property 1. Its mean equals to Qi. This captures that all users rate honestly.

Property 2. Its variance reflects the degree of homophyly h. Specifically, the higher the value of h, the lower the variance.

In our study, we capture the above characteristics of the collective preference by discretizing normal distributions.
More concretely, we obtain the probability distribution Pi by mapping a normal distribution N

�

Qi, �
2(h)

�

to a discrete
distribution on {1, . . . ,m}. Note that the standard variance � (h) is a monotonic decreasing function of h andwewill specify
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it later. The probability distribution mapping process can be described by the following two steps:
Discretization: We transform the normal distribution N

�

Qi, �
2(h)

�

into a discrete probability distribution eN
�

Qi, �
2(h)

�

on
{1, . . . ,m}, whose pmf is expressed as:

Pr[L = `] = Pr[`� 0.5  X  ` + 0.5]/ Pr[0.5  X  m + 0.5]

= � ((` + 0.5� Qi)/� (h))� � ((`� 0.5� Qi)/� (h))
� ((m + 0.5� Qi)/� (h))� � ((0.5� Qi)/� (h))

, for ` = 1, . . . ,m (1)

where �(x) =
R x
�1 exp(�t2/2)/

p
2⇡dt and X and L are two random variables with probability distribution N

�

Qi, �
2(h)

�

and eN
�

Qi, �
2(h)

�

respectively. Observe that this discrete distribution satisfies Property 2 but not Property 1. In the following
step, we adjust the distribution so that it satisfies Property 1 also.
Adjustment: Adjust the distribution eN

�

Qi, �
2(h)

�

such that its mean equals to Qi. The idea is that if its mean is smaller than
Qi, then we increase its mean by scaling up the probability:

Pr[L = `], for all ` = bQic+ 1, . . . ,m,
with the same portion. Otherwise, we decrease its mean by scaling the above probability down. Applying this idea to adjust
the mean of eN

�

Qi, �
2(h)

�

, we obtain the probability distribution Pi = {pi,1, . . . , pi,m}, namely:

pi,` =
⇢

[1� �(Qi, h)] Pr[L = `], ` = 1, . . . , bQic
[1 + ↵(Qi, h)] Pr[L = `], ` = bQic+ 1, . . . ,m,

(2)

where ↵(Qi, h) and �(Qi, h) are:

↵(Qi, h) =

bQic
P

`=1
Pr[L = `](Qi � E[L])

bQic
P

`=1
Pr[L = `](E[L]� `)

, (3)

�(Qi, h) =

m
P

`=bQic+1
Pr[L = `](Qi � E[L])

bQic
P

`=1
Pr[L = `](E[L]� `)

, (4)

and L is a discrete random variable with probability distribution eN
�

Qi, �
2(h)

�

. Note that probability distribution Pi now
satisfies both Properties 1 and 2.

Remark. In our study we treat each observed rating as a random sample from the probability distribution Pi.

2.3. Model for product quality via preference matching

We model product quality via preference matching. Specifically, we classify products into types. For example, films can
be classified into romantic films, science fiction films, etc. And users can be of many types also, for example prefer romantic
films, or prefer science fiction films, etc. If a product–user pairing is of the same type, then the user is likely to express a
high rating, otherwise a low rating is likely to be assigned. Collectively, if users within group U and a product match in
the same type, then that product trend to receive high ratings, which result in high quality of that product (in the view of
user group U), otherwise, result in low quality. The product quality Q1, . . . ,QN can be treated as N independent random
samples generated from distributionQ, and one can vary themean or variance ofQ to reflect the collectivematching degree
between users and products. Specifically, a high value of mean and a small value of variance imply that products are of high
quality (in the view of user group U) and these products have small variation in quality. On the other hand, a low value of
mean and a large value of variance imply that products have low quality and have high variability.

In this study, the probability distribution Q is a truncated normal distribution. More concretely, Q is obtained by
truncating the normal distribution N (q, � 2

q ) to keep those values in (1,m) and scaling up the kept values by 1/ Pr[1 <

X < m], where X is a random variable with probability distribution N (q, � 2
q ). It should be clear that after this truncation,

themean q and the variance � 2
q can still reflect the collectivematching degree. In this study,we use the following parameters

to reflect three representative types of collective matching degree:
High collective matching degree: The mean q and variance � 2

q are:

q = m, � 2
q = 1. (5)

This indicates that products tend to have high quality (or highmean), andmost of the probability mass concentrates around
high quality.
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Medium collective matching degree: The mean q and variance � 2
q are:

q = (m + 1)/2, � 2
q = 1. (6)

This reflects that products tend to have an medium quality and most of the probability mass concentrates around the
medium quality.
Low collective matching degree: The mean q and variance � 2

q are:

q = 1, � 2
q = 1. (7)

This indicates that products tend to have low quality (or low mean), and most of the probability mass concentrates around
low quality.

3. Theoretical analysis

We first derive the following probability mass function (pmf):
Pr

⇥

|RI(k) \R(k)| = i
⇤

, for i = 0, 1, . . . , k.

With this pmf, we can then derive the expectation E[|RI(k) \ R(k)|] and variance Var[|RI(k) \ R(k)|]. The above
probability measures can provide us with a lot of insights, e.g., if Pr[|RI(k) \ R(k)| = k] occurs with a high probability
or E[|RI(k) \ R(k)|] ⇡ k, then the group product recommendation system is very accurate and robust against different
human factors. To derive this pmf, we first consider the following special case. The purpose of deriving the special case is to
show the general idea of derivation, and more importantly, illustrate the underlying computational complexity.

3.1. Derivation of the special case

Let us consider a group product recommendation system which has only one type of products and one type of users
(e.g., all products are romantic films and all users prefer romantic films). To simplify the case, we specify the quality of each
product as follows:

Qi = m� i(m� 1)/(N + 1), for i = 1, . . . ,N . (8)
Each product will have the same number of ratings, or ni = n, 8i. The voting rule V is the average score rule and we use
a random rule, which randomly pick some products from a tie, to tie-break any products whose aggregate scores are the
same.

Recall that the score set for product Pi is ri = {ri,1, . . . , ri,M} where ri,j 2 {1, . . . ,m}, 8j, are observed ratings, and
ri,j = 0, 8j, are missing ratings. For convenience, we use the notation roi = {roi,1, . . . , roi,n} to represent a set of all the
observed ratings for product Pi. Recall that observed ratings roi,1, . . . , r

o
i,n are independent random samples from probability

distribution Pi. We can then express the probability mass function (pmf) for these observed ratings in the following lemma.

Lemma 1. The pmf of observed ratings roi,1, . . . , r
o
i,n, can be expressed as

Pr[roi,j = `] =

8

>

>

>

>

<

>

>

>

>

:



1� �

✓

m� i(m� 1)
N + 1

, h
◆�

Pr[L = `], 8` = 1, . . . , bQic


1 + ↵

✓

m� i(m� 1)
N + 1

, h
◆�

Pr[L = `], 8` = bQic+ 1, . . . ,m

0, otherwise

(9)

where L is a discrete random variable with probability distribution eN
�

m� i(m� 1)/(N + 1), � 2(h)
�

whose pmf is derived by
Eq. (1), and ↵(m� i(m� 1)/(N + 1), h), �(m� i(m� 1)/(N + 1), h) are derived by Eqs. (3) and (4) respectively.

The average rating for product Pi is �i = P

j r
o
i,j/n, 8i. By applying the above lemma, we express the probability mass

function (pmf) for �i.

Lemma 2. The pmf for the averages rating �i, 8i, can be expressed as

Pr


�i = `

n

�

=
X

Pn
j=1 sj=`

n
Y

j=1

Pr[roi,j = sj], for all ` = n, . . . , nm, (10)

and its cumulative distribution function (CDF) is

Pr


�i 
`

n

�

=
X

Pn
j=1 sj`

n
Y

j=1

Pr[roi,j = sj], for all ` = n, . . . , nm, (11)

where Pr[roi,j = sj] is specified in Eq. (9).
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Table 1
Examples of the analytical expression of Pr[R(1) = {Pi1 }] (n = 1,m = 2,N = 3, k = 1).

{Pi1 } Pr[R(1) = {Pi1 }]
{P1} Pr[�1 = 2] Pr[�2 = 1] Pr[�3 = 1] + Pr[�1 = 2] Pr[�2 = 2] Pr[�3 = 1]/2 + Pr[�1 = 2]

Pr[�3 = 2] Pr[�2 = 1]/2+ Pr[�1 = 1] Pr[�3 = 1] Pr[�2 = 1]/3 Pr[�1 = 2] Pr[�3 = 2] Pr[�2 = 2]/3
{P2} Pr[�2 = 2] Pr[�1 = 1] Pr[�3 = 1] + Pr[�2 = 2] Pr[�1 = 2] Pr[�3 = 1]/2 + Pr[�2 = 2]

Pr[�3 = 2] Pr[�1 = 1]/2+ Pr[�2 = 1] Pr[�3 = 1] Pr[�1 = 1]/3 Pr[�2 = 2] Pr[�3 = 2] Pr[�1 = 2]/3
{P3} Pr[�3 = 2] Pr[�2 = 1] Pr[�1 = 1] + Pr[�3 = 2] Pr[�2 = 2] Pr[�1 = 1]/2 + Pr[�3 = 2]

Pr[�1 = 2] Pr[�2 = 1]/2+ Pr[�3 = 1] Pr[�1 = 1] Pr[�2 = 1]/3 Pr[�3 = 2] Pr[�1 = 2] Pr[�2 = 2]/3

Proof. Note that, the ratings of each product are independent random variables. The probability mass function (pmf) of
each rating has been derived in Lemma 1. Since �i = Pn

j=1 r
o
i,j/n, thus by enumerating all the cases satisfying the condition

Pn
j=1 r

o
i,j = `, we could obtain the pmf of �i, or

Pr


�i = `

n

�

= Pr

"

n
X

j=1

roi,j = `

#

=
X

Pn
j=1 sj=`

n
Y

j=1

Pr[roi,j = sj].

Similarly, by enumerating all the cases satisfying the condition
Pn

j=1 r
o
i,j  `, we could obtain the CDF of �i, or

Pr


�i 
`

n

�

= Pr

"

n
X

j=1

roi,j  `

#

=
X

Pn
j=1 sj`

n
Y

j=1

Pr[roi,j = sj],

which completes the proof. ⇤

We now apply Lemmas 1 and 2, to derive the probability that a specific set of products is recommended as follows.

Lemma 3. Let {Pi1 , . . . , Pik} be a set of k products. The probability that this set of products is recommended can be expressed as:

Pr[R(k) = {Pi1 , . . . , Pik}]

=
nm
X

`=n

 

Y

i2I
Pr



�i 
`

n

�

�
Y

i2I
Pr



�i 
`� 1
n

�

!

Y

j2I
Pr



�j 
`� 1
n

�

+
X

F✓I,G✓I,F ,G6=;

✓ |F [ G|
|F |

◆�1 nm
X

`=n

Y

i2I\F

✓

1� Pr


�i 
`

n

�◆

⇥
Y

j2F [G

Pr


�j = `

n

�

Y

2I\G

Pr


� 
`� 1
n

�

, (12)

where I = {i1, . . . , ik} is the index set of {Pi1 , . . . , Pik}, and I = {1, . . . ,N} \ I is the complement of I. And Pr[�i = `/n] is
specified in Eq. (10), and Pr[�i  `/n] is specified in Eq. (11).

Proof. Please refer to the Appendix in this paper for derivation. ⇤

To illustrate, let us consider a simple example where n = 1, m = 2, N = 3 and k = 1. Table 1 shows some analytical
expressions of Pr[R(1) = {Pi1}]. One can observe that, the analytical expression is quite complicated.

We now apply Lemma 3 to derive the pmf for |RI(k) \R(k)| in the following theorem.

Theorem 1. The pmf of |RI(k) \R(k)| can be expressed as:

Pr
⇥

|RI(k) \R(k)| = i
⇤

=
X

F✓RI (k),
|F |=i

X

G✓RI (k),
|G|=k�i

Pr[R(k) = F [ G], for all i = 0, 1, . . . , k, (13)

where RI(k) = {P1, . . . , PN}/RI(k) is the complement of RI(k) and Pr[R(k) = F [ G] is derived in Eq. (12).

Proof. The recommended product set R(k) can be divided into two disjoint subsets of which one is R(k) \RI(k) and the
other one isR(k)\RI(k). Note thatwe have derived the pmf that a specific set of recommended products in Eq. (12). Then by
enumerating subsets ofR(k)with cardinality i and all the subsets ofRI(k)with cardinality k� iwe complete this proof. ⇤
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Table 2
Examples of the analytical expression of Pr[RI (1) \R(1) = i], where i = 0, 1.

i Pr[RI (1) \R(1) = i]
1 Pr[�1 = 2] Pr[�2 = 1] Pr[�3 = 1] + Pr[�1 = 2] Pr[�2 = 2] Pr[�3 = 1]/2 + Pr[�1 = 2]

Pr[�3 = 2] Pr[�2 = 1]/2+Pr[�1 = 1] Pr[�3 = 1] Pr[�2 = 1]/3 Pr[�1 = 2] Pr[�3 = 2] Pr[�2 = 2]/3
0 Pr[�2 = 2] Pr[�1 = 1] Pr[�3 = 1] + Pr[�3 = 2] Pr[�2 = 1] Pr[�1 = 1] + Pr[�2 = 2]

Pr[�1 = 2] Pr[�3 = 1]/2 + Pr[�3 = 2] Pr[�1 = 2] Pr[�2 = 1]/2 Pr[�2 = 2] Pr[�3 = 2]
Pr[�1 = 1] + Pr[�2 = 1] Pr[�3 = 1] Pr[�1 = 1]⇥ 2/3 Pr[�2 = 2] Pr[�3 = 2] Pr[�1 = 2]⇥ 2/3

To illustrate, let us consider a simple example with n = 1, m = 2, N = 3 and k = 1. Table 2 shows some analytical
expressions for Pr[RI(1)\R(1) = i], where i = 0, 1. One can observe that the analytical expressions are quite complicated.

Examining Eq. (13), one can observe that Pr[R(k) = F [ G] is an essential part. The analytical expression of Pr[R(k) =
F [G] is derived in Eq. (12), which is quite complicated and cannot be reduced to a simple form. Thismake it difficult to gain
some insight of a group product recommendation system by directly examining this analytical expression. An alternative
way is to compute numerical results for Eq. (13). After we obtain the numerical results for the pmf of |RI(k) \ R(k)|, we
can then compute its expectation and variance. By analyzing these numerical results we may gain some important insights.
Unfortunately, computing the numerical results for Eq. (13) is computationally expensive, which is shown in the following
theorem.

Theorem 2. The computational complexity in calculating the numerical results for Eq. (13) is exponential, or ⇥(2N).

Proof. Examining Eq. (13), we can see that the calculation of Pr[R(k) = F [ G] is the core part on the calculation of the
pmf of |RI(k)\R(k)|. Assume the running time of calculating Pr[R(k) = F [ G] is t , then by Eq. (13), the running time of
calculating the pmf is
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In the following we analyze the running time of calculating the numerical result of Pr[R(k) = F [ G] based on its
analytical expression derived by Eq. (12). Examining Eq. (12), we can see that there are two basic computations of Eq. (12), of
which the first one is
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this basic part is t1. The second basic computation is
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,
let us assume the running time of calculating this basic part is t2. The running time of computing Pr[R(k) = F [ G] by
Eq. (12) is

t = ⇥(npt1 + (2k � 1)(2N�k � 1)npt2) = ⇥(npt1 + 2k�12N�k�1npt2)
= ⇥(npt1 + 2N�2npt2) = ⇥(2Nnpt2/4).

By letting t = ⇥(2Nnpt2/4) in Eq. (14), we can obtain the result stated in this theorem. ⇤

Summary. Let us summarize our findings for the analysis of the above group product recommendation system: (1) We can
analytically derive the pmf of |RI(k)\R(k)|, with which it is easy to derive the analytical expression for E[|RI(k)\R(k)|]
and Var[|RI(k) \ R(k)|]; (2) the analytical expression is quite complicated and it is not easy to obtain insights of the
underlying recommendation system by examining this analytical expression; (3) computing the numerical results based
on these analytical results is computational expensive.

3.2. Derivation for the general case

For the general case, we can derive the analytical expressions of the pmf, expectation and variance of |RI(k) \ R(k)|
with similar methods as above. It is reasonable to expect that for the general case, there can be different types of products
and that users are not homogeneous (e.g., they may have different types of preferences). The tie breaking rules will
be more complicated than the random rule. As one can imagine the analytical expressions for the general case will
be more complicated. This negative result makes it more difficult to gain some insights by examining the analytical
expressions. Furthermore, computing the numerical results for these analytical expressionswould bemore computationally
expensive.

We do not follow the above analysis paradigm, but rather, let us focus on finding a practical approach to solve the
general case, which should be computational inexpensive to obtain numerical results for the pmf, expectation and variance
of |RI(k) \ R(k)|. In the following section, we present this practical approach, and show that not only we can have
a computational efficient approach to compute these probability measures, but more importantly, provides theoretical
performance guarantees on our operations.
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Table 3
Execution steps of Algorithm 1. The settings are: N = 3, k = 2, ni = 2,m = 5, average score
rule, random pick (tie breaking rule), high collective matching degree, and � (h) = 1.

Step Round 1 Round 2

1 `0 = 0, `1 = 0, `2 = 0
4 Q1 = 4.24,Q2 = 4.20,Q3 = 3.99 Q1 = 4.94,Q2 = 4.89,Q3 = 4.67
5 [0.070, 0.078, 0.083, 0.086, 0.683]Q1 [0.006, 0.006, 0.007, 0.008, 0.973]Q1

[0.073, 0.081, 0.087, 0.089, 0.671]Q2 [0.010, 0.011, 0.012, 0.013, 0.954]Q2
[0.073, 0.080, 0.085, 0.039, 0.373]Q3 [0.029, 0.033, 0.036, 0.038, 0.863]Q3

6 [5, 3]Q1 , [5, 5]Q2 , [4, 1]Q3 [5, 5]Q1 , [5, 5]Q2 , [5, 5]Q3
8 RI (2) = {Q1,Q2} RI (2) = {Q1,Q2}
9 �1 = 4, �2 = 5, �3 = 2.5 �1 = 5, �2 = 5, �3 = 5

No tie breaking Tie breaking: random pick
10 R(2) = {Q1,Q2}, |R(2) \RI (2)| = 2 R(2) = {Q1,Q3}, |R(2)\RI (2)| = 1

`2 = 0 + 1 = 1 `1 = 0 + 1 = 1
12 bPr[I(2) = 0] = `0

2 = 0, bPr[I(2) = 1] = `1
2 = 0.5, bPr[I(2) = 2] = `2

2 = 0.5
13 bE[I(k)] = 0⇥ 0 + 1⇥ 0.5 + 2⇥ 0.5 = 1.5
14 bVar[I(k)] = 02 ⇥ 0 + 12 ⇥ 0.5 + 22 ⇥ 0.5� (1.5)2 = 0.25

4. General methodology for evaluating group recommendation systems

As stated in the last section, it is computationally expensive to evaluate the accuracy of a group product recommendation
system. To address this challenge, we present a general methodology which is computationally efficient and at the same
time, provides error bounds. More concretely, we present an efficient randomized algorithm with theoretical performance
guarantees to evaluate the pmf, expectation and variance of |RI(k) \R(k)|.

4.1. Randomized algorithm

Weseek to approximate the pmf, expectation and variance of |RI(k)\R(k)|with a randomized algorithm.Our idea is that
we simulate the group product recommendation process with our model for K rounds. In each round we record the number
of top-k products getting recommended. After all K rounds finished, we approximate the value of Pr[|RI(k) \ R(k)| = i]
by the fraction of rounds, where exact i top-k products get recommended. Then we apply this approximate value of pmf
to compute the approximate value for the expectation and variance of |RI(k) \R(k)|. More specifically, in each round we
first draw N products from distribution Q. We input them into the group recommendation system model and we generate
a set of ratings for each product via simulating the model. By performing a voting rule and a tie breaking rule on these
ratings, the system output k products as the final recommendation. Comparing this output with the input, we obtain the
number of top-k products getting recommended, or the value of |RI(k)\R(k)| for one round. Based on this idea, we outline
our randomized algorithm in Algorithm 1. This randomized algorithm is actually a Monte Carlo algorithm. For this type of
randomized algorithm, the law of large number guarantees that as the number of simulation rounds goes to infinity, the
approximate value converges to the true pmf expectation and variance of |RI(k) \R(k)|. But this is not practical, instead
wewill state a practical bound on the desired number of simulation rounds to guarantee an accurate approximation. For the
ease of presentation, we use the notation I(k) = |RI(k)\R(k)| to denote the number of top-k products get recommended.
Let bPr[I(k) = i],bE[I(k)] andbVar[I(k)] denote the approximate value of Pr[I(k) = i], E[I(k)] and Var[I(k)] respectively.

To illustrate, consider a simple case of recommending two products from a set of three candidates, i.e., N = 3, k = 2.
We show some detail execution steps of Algorithm 1 in Table 3, where the simulation rounds is set to K = 2. To make
this example, we set the voting rule as the average score rule, and set the tie breaking rule as the random pick rule, which
randomly pick some products to recommend from a tie. In Table 3, [0.070, 0.078, 0.083, 0.086, 0.683]Q1 represents a rating
distribution for product P1, where 0.070 represents the probability of receiving a rating 1, while 0.683 represents the
probability of receiving a rating 5. And [5, 3]Q1 represents a set of two ratings for product P1.

We can state two properties for this algorithm. The first one is its running time complexity and the other one is its
theoretical performance guarantees. The following theorem states its running time complexity.

Theorem 3. The computational complexity of our algorithm is ⇥(KN logN), where K is the number of simulation rounds and N
is the number of products.

Proof. We prove this theorem by examining the complexity of each step of our Algorithm 1. The complexity of steps 10–12
and 1 are the same, say ⇥(k). The complexity of steps 3–8 are ⇥(N), ⇥(N logN), ⇥(

PN
i=1 ni), ⇥(

PN
i=1 ni), ⇥(N logN), and

⇥(1) respectively. Since each user only rates a small subset of products, namely ni ⌧ N , thus we have⇥(
PN

i=1 ni) = ⇥(N).
By adding the complexity of steps 1–12 up we could obtain the theorem. ⇤

The remaining technical issue is how to set the parameter K . Specifically, what is the desired number of simulation
rounds K to guarantee good approximations for the pmf, expectation and variance? Let us proceed to answer this question
by deriving the theoretical performance guarantees for Algorithm 1.
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Algorithm 1 : Evaluating the pmf, expectation, and variance of I(k)
Input: Homophyly degree h, product quality distribution Q.
Output: bPr[I(k) = i],bE[I(k)] andbVar[I(k)]
1: for all i = 0, . . . , k, `i  0
2: for j = 1 to K do
3: for i = 1 to N do
4: generate the quality for product Pi with probability distribution Q, or Qi ⇠ Q. Rank products such that Q1 � Q2 �

· · · � QN
5: Generate probability distribution Pi based on the product quality Qi and homophyly degree hwith Eq. (2).
6: Draw ni random samples from probability distribution Pi, as the rating set ri for product Pi.
7: end for
8: pick k products with the highest value of Qi as the true top-k products set, say RI(k).
9: simulate the decision making process, i.e., applying the voting rule V and the tie breaking rule T to produce the set

R(k) based on the score sets {r1, . . . , rN}
10: if the cardinality of the intersection of RI(k) and R(k) is equal to i, then `i  `i + 1.
11: end for
12: for all i = 0, . . . , k, bPr[I(k) = i] `i/K
13: bE[I(k)] Pk

i=0 ibPr[I(k) = i]
14: bVar[I(k)] Pk

i=0 i
2
bPr[I(k) = i]� (bE[I(k)])2

4.2. Deriving theoretical performance guarantees

We derive the theoretical performance guarantees for Algorithm 1. More concretely, we quantify the tradeoff between
the simulation rounds K and the approximation accuracy of the Algorithm 1. Through this we identify a practical bound on
the desired number of simulation rounds to guarantee a high approximation accuracy.

A conventional measure to characterize the accuracy of a randomized algorithm is the ✏-approximation [14].We formally
state its definition as follows.

Definition 2 (✏-Approximation). SupposebX is an approximation of X . We say thatbX is an ✏-approximation, if |bX � X |  ✏X ,
where ✏ � 0, X � 0.

One can vary the value of ✏ in the above definition to attain different level of accuracy. Specifically, the smaller the value
of ✏, the higher the accuracy. We say Algorithm 1 produce an ✏-approximation for the pmf of I(k), if bPr[I(k) = i] gives
an ✏-approximation of Pr[I(k) = i] for all i = 0, 1, . . . , k. The following theorem states that Algorithm 1 produces this
approximation with sufficiently large number of simulation rounds.

Theorem 4. Suppose the following condition holds

K � max
i=0,1,...,k,
Pr[I(k)=i]6=0

3 ln(2(k + 1)/�)
Pr[I(k) = i]✏2 . (15)

Algorithm 1 guarantees an ✏-approximation for the pmf of I(k) with probability at least 1� �, or Pr[|bPr[I(k) = i]� Pr[I(k) =
i]|  ✏ Pr[I(k) = i], 8i] � 1� �.

Proof. Please refer to the Appendix in this paper for derivation. ⇤

Roughly speaking, an ✏-approximation for the pmf of I(k) implies thatbE[I(k)] andbVar[I(k)] are ✏-approximations for the
expectation and variance of I(k) respectively. We state this in the following theorem.

Theorem 5. Suppose |bPr[I(k) = i] � Pr[I(k) = i]|  ✏ Pr[I(k) = i], holds for all i = 0, 1, . . . , k, then |bE[I(k)] � E[I(k)]| 
✏E[I(k)] and |bVar[I(k)]� Var[I(k)]|  ✏(1 + ✏)Var[I(k)] hold.
Proof. Please refer to the Appendix in this paper for derivation. ⇤

Remark. The value of ✏ is small, e.g., ✏ = 0.1 or 0.01. We then have ✏(1 + ✏) ⇡ ✏. Thus, roughly speaking,bVar[I(k)] is
an ✏-approximation of Var[I(k)]. Combining Theorems 4 and 5, we see that Algorithm 1 guarantees ✏-approximations for
the pmf, expectation and variance of I(k) with high probability, provided that the condition on the simulation rounds, i.e.,
Inequality (15), holds.

We showsomenumerical examples on the desired number of simulation rounds in Table 4,wherewe examine the impact
of approximation error ratio ✏, success probability 1� �, and pmf of I(k). From Table 4 one can see that as we decrease the
value of ✏ from 0.1 to 0.01, we increase the desired simulation rounds from 13816 to 1.38⇥108. In other words, we need to
simulate remarkably more rounds so to increase the approximation accuracy. While we only need slightly more rounds to
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Table 4
Impact of approximation error ratio ✏, success probability 1 � �, and pmf of I(k) on the
desired simulation rounds (k = 4,N = 50).

{Pr[I(k) = i], i = 0, . . . , 4} ✏ K(� = 0.1) � K(✏ = 0.01)

{0.1, 0.15, 0.3, 0.25, 0.2} 0.1 13816 0.1 1381552
{0.1, 0.15, 0.3, 0.25, 0.2} 0.01 1381552 0.01 2072327
{0.1, 0.15, 0.3, 0.25, 0.2} 0.001 1.38⇥ 108 0.001 2763103

{2�10, 0.15, 0.4� 2�10, 0.25, 0.2} 2.12⇥ 108 (✏ = 0.01, � = 0.01)
{2�30, 0.15, 0.4� 2�30, 0.25, 0.2} 2.23⇥ 1014 (✏ = 0.01, � = 0.01)
{2�50, 0.15, 0.4� 2�50, 0.25, 0.2} 2.33⇥ 1020 (✏ = 0.01, � = 0.01)

Table 5
Numerical examples on the simulation rounds and the error bound for the pmf of I(k) (k =
4,N = 50, � = 0.01).

{Pr[I(k) = i]} ✏ K max
�

✏
p
Pr[I(k) = i], ✏2

 

{0.1, 0.15, 0.3, 0.25, 0.2} 0.1 2073 {0.032, 0.039, 0.055, 0.050, 0.045}
{0.1, 0.15, 0.3, 0.25, 0.2} 0.01 207233 {0.003, 0.004, 0.005, 0.005, 0.004}
{0.1, 0.15, 0.3, 0.25, 0.2} 0.001 2.1 ·107 {3, 4, 5, 5, 4}⇥ 10�4

increase the confidence probability 1� �. In fact, as we increase it from 0.9 to 0.999, we only increase the simulation rounds
from 1381552 to 2763103. When the value of min{Pr[I(k) = i]}, varies from 0.1 to 2�50, the desired number of simulation
rounds increased from 1381552 to 2.33 ⇥ 1020. Namely, the desired number of simulation rounds is sensitive to the pmf
of I(k).

Discussion. Following the conventional randomized algorithm analysis paradigm, i.e., guarantee ✏-approximation, we may
need a very large number of simulation rounds, especially when the value of min{Pr[I(k) = i]} is small. More concretely,
examining the Inequality (15), one can see that the bound of K makes sense when Pr[I(k) = i] is not small for all
i = 0, 1, . . . , k. Consider the case where Pr[I(k) = i]  2N for some i 2 {0, 1, . . . , k}, then we have K � 2N . For such
cases, K is too large. In the following we eliminate this negative result by showing a practical bound on K , which shows a
better tradeoff between simulation rounds and the approximation accuracy.

Theorem 6. When K � 3 ln(2(k + 1)/�)/✏2, Algorithm 1 guarantees the following Pr[|bPr[I(k) = i] � Pr[I(k) = i]| 
max

�

✏
p
Pr[I(k) = i], ✏2

 

,8i] � 1� �.

Proof. The proof is similar to that of Theorem 4. ⇤

This theorem relaxes the approximation accuracy from ✏-approximation to max
�

✏
p
Pr[I(k) = i], ✏2

 

, with the gain of
reducing the desired number of simulation rounds by a factor of 1

min{Pr[I(k)=i]>0} , compared with Inequality (15).
We show some numerical examples on the accuracy and the desired simulation rounds in Table 5. One can observe that

with 2.1⇥ 107 simulation rounds, the error bound is around 0.0005, which is quite small from a practical perspective. This
shows the practicability of the new bound on the number of simulation rounds.

The remaining thing is to derive the approximation error bound for the expectation and variance of I(k), with the above
approximation on the pmf of I(k). We state them in the following theorem.

Theorem 7. Suppose |bPr[I(k) = i] � Pr[I(k) = i]|  max{✏pPr[I(k) = i], ✏2}, holds for all i = 0, 1, . . . , k, then
|bE[I(k)] � E[I(k)]|  ✏k

p
E[I(k)] + ✏2k2 and |bVar[I(k)] � Var[I(k)]|  ✏(k + 1)(

p

kVar[I(k)] + ✏2k4 + ✏Var[I(k)] + ✏3k3)
hold.

Proof. Please refer to the Appendix in this paper for derivation. ⇤

We show some numerical examples for the error bounds derived in the above theorem in Table 6, where we use the
notation "exp = ✏k

p
E[I(k)] + ✏2k2 and the notation "var = ✏(k + 1)

⇣

p

kVar[I(k)] + ✏2k4 + ✏Var[I(k)] + ✏3k3
⌘

to denote
the error bound on the expectation and variance of I(k) respectively. One can observe that as we vary the value of ✏ from
0.1 to 0.001, the desired number of simulation rounds increased from 2073 to 2.1⇥107. It is interesting to see that the error
bound on the expectation "exp dropped from 0.767 to 0.006, or the error ratio "exp

E[I(k)] dropped from 0.333 to 0.003. Similarly,
the error bound on the variance "var dropped from 1.510 to 0.012, or the error ratio "var

Var[I(k)] dropped from 1.042 to 0.008.
This show the practicability of the new bounds on the expectation and variance of I(k).
Discussion. The bounds derived in the above theorem are practical enough to deal with larger scale group recommendation
system. More concretely, observe that ✏k

p
E[I(k)] + ✏2k2 ⇡ ✏k

p
E[I(k)], and ✏(k + 1)(

p

kVar[I(k)] + ✏2k4 + ✏Var[I(k)] +
✏3k3) ⇡ ✏k1.5

p
Var[I(k)]. This shows the scalability of these bounds, as we increase the recommending product set size or

the candidate product set size.
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Table 6
Numerical examples on the simulation rounds and the error bound
for the expectation and variance of I(k) (k = 4,N = 50, � =
0.01, {Pr[I(k) = i]} = {0.1, 0.15, 0.3, 0.25, 0.2}).

✏ K "exp
"exp

E[I(k)] "var
"var

Var[I(k)]

0.1 2073 0.767 0.333 1.510 1.042
0.01 207233 0.062 0.027 0.124 0.082
0.001 2.1⇥ 107 0.006 0.003 0.012 0.008

Table 7
Expectation and variance of I1, I5, and I30 when vary ratingworkload
(medium collective matching degree).

n = 3 n = 4 n = 6 n = 8 n = 10

E[I1] 0.9832 0.9931 0.9986 0.9996 0.9999
E[I5] 4.6854 4.8284 4.9352 4.9723 4.9869
E[I30] 19.8270 20.960 22.400 23.328 23.980

Var[I1] 0.0165 0.0067 0.0014 0.0004 0.0001
Var[I5] 0.2942 0.1701 0.0654 0.0280 0.0132
Var[I30] 4.1210 3.7710 3.2934 2.9580 2.7121

5. Experiments on synthetic data

In this section we use synthetic data to examine the accuracy of group product recommendation systems under various
settings. We consider a group product recommendation system which recommends k = 30 products from N = 200
candidates. In consistent with realistic group recommendation systems, we setm = 5, or the ratingmetric is {1, . . . , 5}. We
apply Algorithm 1 to evaluate this system setting the simulation rounds K = 108. Let us start our evaluation from a simple
case, then we extend it step by step and evaluate the impact of various factors on the overall recommendation accuracy.

5.1. Probability distribution, expectation and variance

We consider a homogeneous group recommendation system, where the user group U only contains one type of users
and each product is rated by the same number of users, or ni = n, 8i. We set the collective matching degree to be medium.
Furthermore, we set the function � (h), within Eq. (2) to be � (h) = 1. The voting rule V is the average score rule and the tie
breaking rule is the least variance rulewhich breaks a tie by selecting one(s) with the least variance. For further ties, products
are randomly selected. For the ease of presentation, we state the following two definitions.

Definition 3. The rating workload of a group recommendation system is the number of all ratings, orW = PN
i=1 ni.

Definition 4. Let Ii be a random variable indicating Ii = |RI(i) \ R(k)|. In other words, if i = k, Ik reflects the event that
the top k products are recommended by the group recommendation system.

Thenumerical results for the pmf of |RI(30)\R(30)| are shown in Fig. 1. One can observe that the probability of less than
fifteen ormore than twenty seven top 30 products get recommended is around zero. This indicates that the recommendation
accuracy has small variation. Whenwe increase the number of ratings per product, or n, the probability mass function curve
shifts towards the right. In other words, the higher the rating workload, the higher the recommendation accuracy.

We show the numerical results for the expectation and variance of I1, I5, I10 and I30 in Table 7. One can observe that
when each product is rated by three users, approximately 19.8 products from the top 30 products will get recommended.
It is interesting to note that the chance of recommending the most preferred product is invariant of the rating workload,
since E[I1] = 0.98 when n = 3 and it improves to 0.9999 when n = 10. This statement also holds for the top five products.
As we increase n, we decrease the variance. In other words, the higher the rating workload, the lower the variation in the
recommendation. This indicates that the group recommendation system is more accurate and robust.
Lessons learned: If users and products arematchedwith amedium degree, we have a pretty accurate group recommendation
system. The higher the ratingwork load the higher the recommendation accuracy. There are number of interesting questions
to explore further, i.e., are these results dependent on the distribution of product quality, or the collective matching degree?
Are these results sensitive to any voting rule? Let us continue to explore.

5.2. Impact of product quality distribution

We explore the impact of product quality distribution (or collective matching degree between users and products) on
the recommendation accuracy. More concretely, we consider three representative types of collective matching degree: high,
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Fig. 1. The pmf of |RI (30) \R(30)| when vary the rating workload.

Fig. 2. The pmf of |RI (30) \R(30)| when vary the product quality distribution.

medium, and low specified by Eqs. (5)–(7) respectively. We evaluate their impact on the recommendation accuracy with
the system specified in Section 5.1, setting n = 3. We use the following notations to present our results: (a) H-C-M-D: high
collective matching degree specified in Eq. (5), (b) M-C-M-D: medium collective matching degree specified in Eq. (6), and (c)
L-C-M-D: low collective matching degree specified in Eq. (7).

We show the numerical results for the pmf of |RI(30) \R(30)| in Fig. 2. From Fig. 2 we could see that as the collective
matching degree varies in the order of high, low and medium, the corresponding mass probability distribution curves move
towards right. In other words, the recommendation accuracy corresponding to the low collective matching degree is the
highest followed by medium, and high collective matching degree. The numerical results for the expectation and variance of
I1, I5, I10 and I30 are shown in Table 8. We can observe that when the collective matching degree is medium, or low, around
20 top 30 products will get recommended. It is interesting to note that the chance of recommending the most preferred
product is invariant to these two collective matching degree types, since the corresponding values of E[I1] are all around
0.98. This statement also holds for recommending top five products. But when the collective matching degree is high, the
recommendation accuracy is remarkably lower than that the other two types. In fact, only around 13.2 top 30 products get
recommended. Even the most preferred product will get missed with a high probability, say around 0.46. This statement
also holds for top five products. The variance corresponding to the high collective matching degree is the highest among those
three, which reflects that the recommendation is the lowest and with a large variation.
Lessons learned: When users rate honestly, the above simple group recommendation system is quite accurate except when
the collective matching degree between users and products is high. In that case, onemay explore other means to improve the
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Table 8
Expectation and variance of I1, I5, and I30 when n = 3 and users and products
are matched with high, medium, and low collective matching degree.

H-C-M-D M-C-M-D L-C-M-D

E[I1] 0.5401 0.9832 0.9788
E[I5] 2.6250 4.6950 4.6082
E[I30] 13.2258 19.8270 18.9798

Var[I1] 0.2437 0.0165 0.0208
Var[I5] 1.2236 0.2942 0.3698
Var[I30] 5.4420 4.1210 4.2888

(a) #of top 1 product get in. (b) #of top 5 products get in. (c) #of top 30 products get in.

Fig. 3. Impact of rating workload on the recommendation accuracy.

accuracy. Again, there are number of interesting questions to explore, i.e., what is the desired rating workload to guarantee
a high recommendation accuracy?

5.3. Impact of rating workload

We explore the impact of rating workload on the recommendation accuracy. Here we consider a homogeneous group
recommendation system specified in Section 5.1. We consider three representation types of product quality distribution as
specified in Eqs. (5)–(7). For each type, we vary the average rating workload, i.e.W/N , from 2 to 12.

We select one probability measure, expectation of recommendation, to study. The numerical results of E[I1], E[I5] and
E[I30] are shown in Fig. 3. One can observe that when we increase the average rating workload, the expectation increased.
This reflects the improvement on the recommendation accuracy. As the collective matching degree varies in the order of high,
low, and medium, the expectation curves move towards up. In other words, the recommendation accuracy corresponding
to the medium collective matching degree is the highest followed by low, and high collective matching degree. It is interesting
to observe that the chance of recommending the most preferred product is invariant of the rating workload, except the
collective matching degree is high. This statement also holds for the top five products. When the collective matching degree
is high, the accuracy of the group recommendation system is remarkably lower than the other two types. Especially when
the rating workload is low, say n = 3, with less than fifteen top 30 products get recommended. The most preferred product
only has a probability of less than 0.6 to be recommendedwhen n = 3. Same can be said for the top five products. In closing,
for high collective matching degree, we may have to increase the rating workload to at least n � 7 such that we have a strong
guarantee that the most preferred product will be recommended.
Lessons learned: If users rate honestly, using the above simple group recommendation system achieves relatively high
accuracy except when the collective matching degree is high. In that case, we have to increase the average rating workload to
n � 7 to improve the system. Again, there are number of interesting questions to explore, i.e., is increasing the workload the
only way to improve the group recommendation system? Can we improve it by using different voting rule or tie breaking
rule?

5.4. Impact of homophyly degree h

We examine the impact of homophyly degree on the recommendation accuracy. To achieve we specify the function � (h)
within Eq. (2) as � (h) = 0.5 + 5(1 � h). Then we can vary the value of h to reflect different level of homophyly degree.
We consider the homogeneous group recommendation system specified in Section 5.1 setting the average rating workload
n = 5.

We vary the homophyly degree from 0 to 1. We choose expectation E[I30] as our performance measure. The numerical
results of E[I30] are shown in Fig. 4. We can observe that when we increase the homophyly degree, the expectation E[I30]
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(a) #of top 1 product get in. (b) #of top 5 products get in. (c) #of top 30 products get in.

Fig. 4. Impact of homophyly degree on recommendation accuracy.

(a) Highmatching degree. (b) Mediummatching degree. (c) Lowmatching degree.

Fig. 5. Impact of voting rule on the recommendation accuracy.

increased. In otherwords, the higher the homophyly degree, the higher the recommendation accuracy.When thehomophyly
degree is low, say less than 0.5, increasing the homophyly degree only increases the expectation E[I30] slightly. When the
homophyly degree is above 0.5, a small increasing in the homophyly degree h increase the expectation E[I30] remarkably. It
is interesting to note that the recommendation of the most preferred product is invariant of the homophyly degree, unless
the matching degree between users and products is high. Under that matching degree, the recommendation accuracy is
remarkably lower than the other two types of matching degree. Specifically, less than fifteen top 30 will be recommended,
and the chance of recommending the most preferred product is less than 0.6, when the homophyly degree is less than 0.5.
Lessons learned: Increasing homophyly degree can increase the recommendation accuracy. Especially when the matching
degree between users and products is high, where the improvement on the recommendation accuracy is remarkable.

5.5. Impact of voting rules

We explore the impact of voting rules on the recommendation accuracy of group recommendation systems. Specifically,
we evaluate the following typical voting rules:
Average score rule: specified by �i = P

j ri,j/ni.
Reward high rating rule: reward high ratings. Specifically, a high rating, say 5, brings an extra reward of increasing its
aggregate rating by ⌘, or �i = P

j ri,j/ni + ⌘|{r | r = 5, r 2 ri}|.
Punish low rating rule: punish low ratings. Specifically, a low score, or 1, brings an extra punishment of decreasing its
aggregate rating by ⌘, or �i = P

j ri,j/ni � ⌘|{r | r = 5, r 2 ri}|.
We set ⌘ = 0.3 throughout this paper.

We choose the expectation E[I30] as our performance measure. We evaluate the recommendation accuracy under these
three voting rules on the group recommendation system specified in Section 5.1. The numerical results of E[I30] are shown
in Fig. 5. Fig. 5(a) shows that when users and products are highly matched, the expectation curves overlapped together. In
otherwords, these three voting rules have nearly the same accuracy.While Fig. 5(b) shows thatwhen the collectivematching
degree is medium, the average score rule and punish low rating rule have the same degree of accuracy, and the reward high
rating rule has slightly higher accuracy than them. Finally Fig. 5(c), shows that when the collective matching degree is low,
all three voting rules have nearly the same accuracy.
Lessons learned: These three voting rules have comparable accuracy, no rule can outperform others remarkably. The punish
low rating rule has slightly lower recommendation accuracy than the other two rules. Thus we should avoid choosing the
punish low rating rule to aggregate users’ ratings.



86 H. Xie, J.C.S. Lui / Performance Evaluation 77 (2014) 72–95

(a) Highmatching degree. (b) Mediummatching degree. (c) Low matching degree.

Fig. 6. Impact of tie breaking rule on recommendation accuracy.

5.6. Impact of tie breaking rules

We explore the impact of tie breaking rules on the recommendation accuracy. In particular, we examine the following
four typical tie breaking rules:
Least variance (Tvar): select one with least variance.
Largest max score (Tmaxs): select one with the largest max rating.
Largest min score (Tmins): select one with the largest min rating.
Largest medium score (Tmeds): select one with the largest medium rating.
For further ties, we perform random selection. We set the voting rule as the average score rule and we choose expectation
E[I30] as our performance measure. We consider the group recommendation system specified in Section 5.1. The numerical
results of E[I30] are shown in Fig. 6. We could see that the expectation curves corresponding to these four tie breaking
rules overlapped together. In other words, these four rules have nearly the same accuracy. Therefore, the recommendation
accuracy is invariant of tie breaking rules.
Lessons learned: These four tie breaking rules have nearly the same accuracy. This implies that, the improvement on the
recommendation accuracy by tie breaking rules is limited.

5.7. Impact of misbehavior

We explore the impact of misbehavior on the recommendation accuracy, and we examine the robustness of voting rules
against misbehavior as well. Formally, we consider the following typical cases of misbehavior:
Random misbehavior: A random misbehavior indicates that a user assigns a random rating to a product. This is one typical
misbehavior, because sometimes a user may not want to disclose his true preference.
Bias misbehavior: A biased misbehavior indicates that a user is intentionally biased towards one particular rating. We
consider the following two typical cases of biased misbehavior: (1) Bias towards 1 which reflects a user assign the lowest
rating to products. (2) Bias towards mwhich reflects a user assign the highest rating to products.
Crazy misbehavior. A crazy misbehavior indicates that a user shows the reverse preference to a product aiming to disrupt
the recommendation. Specifically, a user gives the highest rating 5 to a product if he does not like it, or his true preference
rating is lower or equal to three, otherwise assigns the lowest rating 1.

Let us explore the impact of misbehavior on the recommendation accuracy first. We vary the fraction of misbehaving
users from 0 to 0.2 and we use expectation E[I30] as our performance measure. We consider the group recommendation
system specified in Section 5.1 setting n = 5. The numerical results of E[I30] are shown in Fig. 7. One can observe that
increasing the fraction of misbehaving users, decreases the expectation E[I30]. In other words, the higher the fraction of
misbehaving users, the lower the recommendation accuracy. It is interesting to note that the recommendation accuracy
decreases in a nearly linear rate, where the crazy misbehavior has the largest decreasing rate. Namely, crazy misbehavior is
the most harmful misbehavior. Even a small fraction crazy misbehaving users can decrease the recommendation accuracy
remarkably. In fact when the fraction of crazy misbehaving users is around 0.1, only around fourteen top 30 products get
recommended (high matching degree), and around eighteen get recommended (medium and low matching degree). This
show that the system is sensitive to crazy misbehavior. The system is insensitive to randommisbehavior, since it decreases
the recommendation accuracy slightly.

We explore the robustness of voting rules against misbehavior. In particular, we consider three typical voting rules: the
average score rule, the reward high rating rule and the punish low rating rule specified in Section 5.5.Weperformour evaluation
on the above experimental settings. We choose one type of matching degree, say medium matching degree, to study here.
The numerical results of E[I30] are shown in Fig. 8. One can observe that whenwe increase the fraction ofmisbehaving users,
the expectation decreased. The punish low rating rule is the least robust rule, since the expectation curve corresponding it lies
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(a) High matching degree. (b) Medium matching degree. (c) Low matching degree.

Fig. 7. Impact of misbehavior on recommendation accuracy.

(a) Randommisbehavior. (b) Bias towards 1. (c) Bias towards m.

(d) Crazy misbehavior.

Fig. 8. Robustness of voting rules against misbehavior (medium collective matching degree).

in the bottom. Among these three voting rules, the reward high rating rule is the most robust rule, unless misbehaving users
bias towardsm. Whenmisbehaving users bias towardsm, the average score rule and reward high rating rule have comparable
recommendation accuracy, since the expectation curves corresponding to them overlapped together.
Lessons learned: Crazy misbehavior can significantly decrease the recommendation accuracy. A small fraction of this kind of
misbehaving users can decrease the accuracy of a group recommendation system dramatically. The group recommendation
system suffers severely from this kind of misbehavior, say 10% of misbehaving users will disrupt the accuracy of a group
recommendation system. Among these three voting rules, the punish low rating rule is the least robust rule, the reward high
rating rule is the most robust rule, except unless misbehaving users bias towards m, where it has comparable robustness
with the average score rule.

5.8. Improving the recommendation accuracy

We propose a rating scheme to improve the recommendation accuracy. In real world group product recommendation
systems applications, ratings are sparse, say each user only rates a small subset of products. Here we fix the rating workload
budget to be W = N ⇤ n, say on average, each product is rated by n users. Under this setting, we examine the accuracy of
group product recommendation systems under different rating strategies. Homogeneous rating scheme is a widely adopted
in many group recommendation systems applications, e.g., peer review systems, where each product is rated by the same
number of users, or n. One obvious advantage of this scheme is in fairness. Here we propose a heterogeneous rating scheme
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(a) Improvement. (b) Improvement ratio.

Fig. 9. Improvement of the heterogeneous rating scheme over the homogeneous rating scheme.

which can increase the efficiency of the homogeneous rating scheme. In other words, with the same rating workload W , it
has a much higher recommendation accuracy. Our heterogeneous rating scheme works in two rounds:
Round 1: Eliminate half of the products using only half of the rating workload. Specifically, each product will receive bn/2c
ratings in the first round. With these ratings, apply a voting rule and a tie breaking rule to eliminate N/2 products. Survived
products will enter round 2.
Round 2: Select k products to recommend from the survived N/2 products. Each survived product will receive 2dn/2emore
ratings. After the rating process finished, combine the ratings in round 1 and round 2. Then, apply a voting rule and a tie
breaking rule to select the k products to recommend.

Remark. The rating workload of the heterogeneous rating scheme is bn/2c ·N +2dn/2e ·N/2 = N · (bn/2c+dn/2e) = Nn.

Definition 5. Let E[Ii | hom] and E[Ii | hetero] represent the expectation of Ii when the homogeneous or the heterogeneous
rating scheme is applied respectively, where Ii is defined in Definition 4.

Definition 6. We define the improvement of the heterogeneous rating scheme over the homogeneous rating scheme in
recommendation accuracy as 1E[Ii] = E[Ii | hetero]� E[Ii | hom], and the improvement ratio as 1E[Ii]/E[Ii | hom].

We evaluate these two rating schemes on the group recommendation system specified in Section 5.1. We show the
numerical results for the improvement 1E[I30] and the improvement ratio 1E[I30]/E[I30 | hom] in Fig. 9. From Fig. 9, we
see an improvement of the heterogeneous rating scheme over the homogeneous rating scheme. Specifically, when the rating
workload is small (rating is very sparse), say n = 3, with heterogeneous rating scheme at least one more top 30 products
get recommended. The improvement is much higher when the collective matching degree is high, where four more top
30 products get recommended. When the average rating workload increased to six or more, the improvement becomes
stabilized. The improvement is the highest when the rating workload is three, where at most four more top 30 products get
recommended, and the improvement ratio for this case is around 30%.
Lessons learned: Our heterogeneous rating scheme uses equal or less resource (e.g., rating workload) than the homogeneous
rating scheme and at the same time, achieve higher accuracy.

6. Experiments on real-world data

We present the experimental results on a real-world rating dataset from TripAdvisor. Specifically, we validate our model
via showing that the recommendation accuracy evaluated from synthetic ratings (generated by our model) is nearly the
same with that evaluated from TripAdvisor rating dataset. And we examine the desired number of ratings for TripAdvisor
to guarantee an accurate recommendation as well.

Dataset. TripAdvisor is one of the largest travelling website which recommends hotels, restaurants, etc., to travellers (or
website users). Users express their preferences to hotels, restaurants, etc., in the form of ratings. TripAdvisor adopts a 5-level
cardinal rating metric, i.e., {1, . . . , 5}. Higher rating implies higher preference. We use the version of TripAdvisor dataset
released by authors in [15]. This dataset consists of ratings and reviews for 1850 hotels, where themaximumnumber ratings
for a hotel is 2686 and the minimum number of ratings for a hotel is 13. Ratings are with time stamps.

We select a subset of the TripAdvisor rating dataset as our testing dataset. The selection criteria is that a hotel gets in if
it has a sufficient number of ratings to guarantee an accurate estimation on its quality. Specifically, we treat the whole user
population in TripAdvisor as a group and we aim to extract the quality of hotels in the view of this user group. We estimate
the quality of a hotel via its average rating, say bQi = P

j ri,j/ni, where bQi denotes the estimating value of Qi. The larger the
number of the observed ratings, the higher the estimation accuracy. To guarantee a high estimation accuracy, we select
those hotels with at least 300 ratings. In total, 147 hotels in the dataset satisfy this selection criteria. Wemap the ID of them
to 1, . . . , 147 and use P1, . . . , P147 to denote them and their inferred quality is denoted bybQ1, . . . ,bQ147. In the following we
treatbQi as the ground truth value of Qi.
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We present an algorithm to validate our model with the above testing dataset. We seek to compare the recommendation
accuracy under our model and under the real-world rating setting. We input the above selected 147 hotels P1, . . . , P147 into
ourmodel, sayN = 147.We set k = 30, say the system recommends 30hotels to thewhole user group.We treatbQi as ground
truth value of Qi and we synthetic ratings for each hotel using our model setting homophyly degree � (h) = 1. Let Ik denote
the number of top-k hotels that get recommended. We choose expectation of Ik to measure the recommendation accuracy.
To compare the recommendation accuracy, we vary the number of ratings per hotel n (each hotel receive the same number
of ratings) from5 to 300. For each n, we synthetic n ratings for each hotel, so to evaluate the recommendation accuracy under
our model. And, we pick n latest ratings from the dataset for each hotel, so to evaluate the recommendation accuracy under
the real-world rating setting. Based on the above idea, we outline the model validation algorithm in Algorithm 2, where
⌧i = {⌧i,1, . . . , ⌧i,ni} denote a set of sorted ratings (based ratings’ times tamps) for hotel Pi, ni is the number of ratings of Pi,
and ⌧i,1 is the oldest rating. Note that, similar with Algorithm 1, Algorithm 2 is also a randomized algorithm, since evaluate
the exact value of E[Ik] is computationally expensive. We can derive similar performance guarantees for Algorithm 2 as that
derived for Algorithm 1.

Algorithm 2 : Model validation
Input: Product quality:bQ1, . . . ,bQ147, sorted rating dataset: ⌧1, . . . , ⌧147,

number of ratings per hotel: n, voting rule: V , tie breaking rule: T
data indicator: data_ind \\ 0 - synthetic ratings, 1 - real-world ratings

Output: E[Ik]
1: produce the group truth top-k products set RI(k) via selecting k products with the highest value ofbQi.
2: for all i = 0, . . . , k, `i  0
3: for j = 1 to K do
4: for i = 1 to N do
5: if data_ind == 0 then
6: Generate n ratings, ri,1, . . . , ri,n, for product Pi using our model,
7: ri  {ri,1, . . . , ri,n}
8: else
9: Pick n last ratings for the product Pi fromTripAdvisor dataset as the observed ratings, say ri  {⌧i,ni�n+1, . . . , ⌧i,ni}

10: end if
11: end for
12: simulate the decision making process, i.e., applying the voting rule V and the tie breaking rule T to produce the set

R(k) based on the score sets {r1, . . . , rN}
13: i |RI(k) \RI(k)|, `i  `i + 1.
14: end for
15: E[Ik] 

Pk
i=0 i`i/K

We run Algorithm 2 to validate our model and we examine the desired number of ratings for TripAdvisor as well. In
Algorithm 2, we set the voting rule to be the average score rule and the tie breaking rule to be the least variance rule. Running
Algorithm 2 we obtain the numerical results for the recommendation accuracy, say E[I30], under our model and under the
real-world setting. We show them in Fig. 10. One can observe that the expectation curves corresponding the our model and
the real-world setting overlapped together. In other the recommendation accuracy under ourmodel is nearly the samewith
that under the real-world setting. This implies that our model is very accurate in capturing various important factors of a
group recommendation system. An interesting observation is that, for TripAdvisor, around one hundred ratings per product
can ensure a high accuracy recommendation.

Lessons learned.Ourmodel is accurate in capturing various important factors of a group recommendation system. Around
one hundred ratings per hotel can guarantee a high accuracy recommendation for TripAdvisor.

7. Related work

The research on recommender systems [1] has received a lot of attention, since the seminal work on collaborative
filtering [16–18]. In general, recommender systems suggest products to a user by taking into account the preference of that
user. Researchers investigated various algorithmic and complexity issues [1,4–7]. From the industry side, we see a number
of successful applications of recommender systems, e.g., www.Amazon.com [2], MovieLens [3], etc. A comprehensive survey
can be found in [19].

Group recommendation systems [9] were introduced to deal with the contexts where users operate in groups. Previous
works mainly focus on algorithmic and complexity issues of group product recommendation systems [20–24]. We can also
see a number of commercial products of group product recommendation systems [8,10–13]. But little attention has been
paid to examine the accuracy and effectiveness of a group product recommendation. The partial preference informationmakes
it challenge to examine the accuracy and effectiveness, and the goal of this paper is to fill in this void. To the best of our
knowledge, this is the first work which provides a formal model and analysis of such kind of systems.

http://www.Amazon.com
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Fig. 10. Comparison of E[I30] under synthetic ratings and ratings from TripAdvisor.

One closely related work is one of our archival technical reports [25]. We summarize the difference between [25] and
this paper as follows. First, the domain of [25] and this paper are very different. The study of [25] falls into the domain
of online quality evaluation systems, where users act as reviewers, and they evaluate the quality of products in the form of
ratings. For example, users evaluate the reputation index of sellers on eBay, or evaluate the quality of a page on Wikipedia.
The objective is to identify the intrinsic quality of an item (or the true reputation index of a seller) relying on ‘‘wisdom of the
crowd’’. However, this paper falls into the domain of recommendation systems, where the personalized quality of a product is
of essential importance. Users express their ratings in order to show their preferences, such as IMDB. The objective is tomake
personalized recommendations taking into account the preference of a user. Second, the technical details are quite different.
In [25], we derived theoretical bounds on the desired number of ratings to guarantee that the aggregate rating reveals the
intrinsic quality of a product. We also derived for certain conditions under which the systemwill be disrupted. In this paper,
however, we develop a general framework and an efficient methodology to evaluate the efficiency and effectiveness of a
group recommendation system.More precisely,wepropose several probabilitymeasures to characterize the recommendation
accuracy, and we derive their analytical expressions. Through this analysis, we gain some important insights on how design
an efficient randomized algorithm to evaluate the recommendation accuracy. Furthermore, we formally derive theoretical
performance guarantees for this algorithm. Third, the experimental studies are very different. In [25], the authors mainly
evaluated the accuracy and robustness of the majority rule and the average score rule under the honest rating and the
misbehavior settings. The key observation is that the majority rule is more accurate and robust than the average score rule.
However, in this paper we evaluate the impact of various factors on the recommendation accuracy, such as homophyly
degree, voting rule, tie breaking rule, etc. One interesting observation is that the recommendation accuracy under different
voting rules has a very small variation. Finally, in this paper we also propose an efficient rating scheme to improve the
recommendation accuracy, while [25] did not cover this technical aspect.

8. Conclusions

This paper develops a mathematical framework and efficient methodology to analyze the accuracy and effectiveness of
group product recommendations. We present a mathematical model to capture various factors which may influence the
accuracy of a group product recommendation system.We formally analyze themodel and through this analysis, we gain the
insight to develop a randomized algorithm to evaluate the recommendation accuracy. Our methodology is computationally
efficient and can provide theoretical performance guarantees on various performance measures. We propose a novel and
efficient heterogeneous rating scheme which requires equal or less rating workload, but can improve over a homogeneous
rating scheme by as much as 30%. We carry out experiments on both synthetic data and real-world data (from TripAdvisor).
We not only validate ourmodel, but also find a number of important observations, for example, a small ofmisbehaving users
can decrease the recommendation accuracy remarkably. For TripAdvisor, one hundred ratings per product is sufficient to
guarantee a high accuracy recommendation. We believe that our model and methodology are important building blocks for
researchers to study group recommendation systems.

Appendix

Proof of Lemma 3. LetH = {Pi1 , . . . , Pik}. LetH = {P1, . . . , PN}\H be the complement ofH . Let�min(H) = min{�i, i 2 I}
denote theminimum average rating of product setH . Let �max(H) = max{�i, i 2 I} denote themaximum average rating of
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product set H . The probability that the recommended product set equals to {Pi1 , . . . , Pik} can be divided into the following
three parts:

Pr[R(k) = {Pi1 , . . . , Pik}] = Pr[R(k) = H, �min(H) < �max(H)] + Pr[R(k) = H, �min(H) > �max(H)]
+ Pr[R(k) = H, �min(H) = �max(H)]. (A.1)

Let us derive these three terms individually.
According to our voting rule, the recommended product set R(k) equals to H is 0 conditioned on that �min(H) is less

than �max(H). Thus,

Pr[R(k) = H, �min(H) < �max(H)] = 0. (A.2)

According to our voting rule, the recommended product set R(k) equals to H is 1 conditioned on �min(H) > �max(H).
Thus,

Pr[R(k) = H, �min(H) > �max(H)] = Pr[�min(H) > �max(H)]. (A.3)

Note that �i = Pn
i=1 r

o
i,j/n, 8i. Since the ratings roi,j, 8i, j, are independent random variables, thus the average ratings

�1, . . . , �N are also independent random variables. Based on this fact, we derive the analytical expression of Pr[�min(H) >
�max(H)] as

Pr[�min(H) > �max(H)] =
nm
X

`=n

Pr [�min(H) = `/n] Pr
⇥

�max(H) < `/n
⇤
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The remaining task is to derive the last term of Eq. (A.1). When �min(H) = �max(H) occurs, tie breaking will be
performed on the set of products with the average rating equal to �min(H). Let us provide some notations first. Let
F = {i | �i = �min(H), i 2 I} be the index set of the products that belong to set H and with average ratings equal to
minimum average score of H . Let G = {i | �i = �min(H), i 2 I} be the index set of the products that belong to set H and
with average ratings equal to the minimum average score of H . Thus, tie breaking will perform on the products with index
set F [ G, from which only |F | products will be selected for recommendation. By enumerating all possible tie breaking
product sets, we can divide the last term of Eq. (A.1) into the following form:

Pr[R(k) = H, �min(H) = �max(H)] =
X

F✓I,G✓I,F ,G6=;
Pr[F [ G] Pr[F | F [ G], (A.5)

where Pr[F [ G] is the probability that tie breaking is performed on products with index set F [ G, and Pr[F |F [ G] is
the conditional probability that products with index set F are selected for recommendation under the condition that tie
breaking is performed on the products with index set F [ G. Since the tie-breaking rule is the random rule, under which
we just randomly pick |F | products, thus

Pr[F |F [ G] =
✓ |F [ G|

|F |

◆�1
. (A.6)

Because the average ratings �1, . . . , �N are independent random variables, we can derive Pr[F [ G] as:
Pr[F [ G] = Pr[�i > �min(H),8i 2 I \ F ] Pr[�i = �min(H),8i 2 F [ G]⇥ Pr[�i < �min(H),8i 2 I \ G]
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Combining Eqs. (A.5)–(A.7) we obtain

Pr[R(k) = H, �min(H) = �max(H)] =
X

F✓I,G✓I,F ,G6=;

nm
X

`=n

✓ |F [ G|
|F |

◆�1
Y

i2I\F

⇥ (1� Pr [�i  `/n])
Y

j2F [G

Pr
⇥

�j = `/n
⇤

Y

2I\G

Pr [�  (`� 1)/n] . (A.8)

Combining Eqs. (A.1)–(A.4), and (A.8), we complete the proof. ⇤

Proof of Theorem 4. Let us state a theorem on bounding the tail probability.
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Theorem 8 (Chernoff Bound [14]). Let X1, . . . , Xn be n independent random variables with Xi = 1 with probability p
and 0 otherwise. Let X = Pn

i=1 Xi and let µ = E[X] = np. Then for each ✏ > 0, it holds that Pr[|X�µ| � ✏µ]  2e�µmin{✏2,✏}/3.

We apply Theorem 8 to show that for each given i, the following Inequality

|bPr[I(k) = i]� Pr[I(k) = i]|  ✏ Pr[I(k) = i] (A.9)

holds with probability at least 1� �/(k + 1). Given i, let Iij be an indicator random variable, where j = 1, . . . , K , such that

Iij =
⇢

1 if in jth round, |RI(k) \R(k)| = i
0 otherwise.

Recall that I(k) = |RI(k) \R(k)|. Consider a special case of Pr[I(k) = i] = 0. The physical meaning implies that the event
I(k) = i never happen, or Iij = 0, 8j. In other words, bPr[I(k) = i] = PK

j=1 Iij/K = 0. Thus
�

�

bPr[I(k) = i]� Pr[I(k) = i]
�

� 
✏ Pr[I(k) = i]. Consider Pr[I(k) = i] > 0. Since each round runs independently, thus Ii1, . . . , IiK are K independent random
variables with Iij = 1 with probability Pr[I(k) = i] and 0 otherwise. Let Ii = PK

j=1 Iij. Then E[Ii] = K Pr[I(k) = i]. Observe
that bPr[I(k) = i] = Ii/K . Then by applying Theorem 8 we have,

Pr
⇥

|bPr[I(k) = i]� Pr[I(k) = i]| � ✏ Pr[I(k) = i]
⇤

= Pr [|Ii � K Pr[I(k) = i]| � ✏K Pr[I(k) = i]]  2e�K Pr[I(k)=i]✏2/3,

by substituting K with Inequality (15), we have 2e�K Pr[I(k)=i]✏2/3  1 � �/(k + 1). Then it follows that for each given i
Inequality (A.9) holds with probability at least 1� �/(k + 1).

We show that Inequality (A.9) holds for all i = 0, 1, . . . , kwith probability at least 1� �. We apply union bound to show
this, specifically

Pr[Inequality (A.9) holds for all i = 0, 1, . . . , k] = 1� Pr[9i such that Inequality (A.9) not holds]

� 1�
k

X

i=0

Pr[Inequality (A.9) not holds for i] � 1� �,

which completes the proof. ⇤

Proof of Theorem 5. Let us derive the theoretical performance guarantee for the expectation of I(k), or E[I(k)]. It is quite
straightforward,

�

�

bE[I(k)]� E[I(k)]
�

� =
�

�

�

�

�

k
X

i=0

i
�

bPr[I(k) = i]� Pr[I(k) = i]
�

�

�

�

�

�


k

X

i=0

i
�

�

bPr[I(k) = i]� Pr[I(k) = i]
�

� 
k

X

i=0

✏i Pr[I(k) = i] = ✏E[I(k)].

Let 1E[I(k)] = bE[I(k)] � E[I(k)] denote the approximation error of expectation. We show (1E[I(k)])2  ✏2Var[I(k)].
Let 1pi = bPr[I(k) = i]� Pr[I(k) = i] denote the approximation error of probability. Observe that the summation of all 1pi
equals to zero, or

k
X

i=0

1pi =
k

X

i=0

bPr[I(k) = i]�
k

X

i=0

Pr[I(k) = i] = 1� 1 = 0.

Based on this result, we derive a general upper bound of (1E[I(k)])2 as follows

(1E[I(k)])2 =
 

k
X

i=0

i1pi

!2

=
 

k
X

i=0

i1pi � E[I(k)]
k

X

i=0

1pi

!2


 

k
X

i=0

|i� E[I(k)]||1pi|
!2

. (A.10)

Note that |1pi|  ✏ Pr[I(k) = i]. Substituting |1pi| with this inequality we have

(1E[I(k)])2 
 

k
X

i=0

|i� E[I(k)]|✏ Pr[I(k) = i]
!2

,
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by applying Cauchy’s Inequality we have,

(1E[I(k)])2 
"

k
X

i=0

✏2 Pr[I(k) = i]
#"

k
X

i=0

(i� E[I(k)])2 Pr[I(k) = i]
#

= ✏2Var[I(k)].

We now apply the above result to derive the theoretical performance guarantee for the variance. With some basic
probability arguments, we derivebVar[I(k)]� Var[I(k)] as follows:

bVar[I(k)]� Var[I(k)] =
k

X

i=0

i2bPr[I(k) = i]�
�

bE[I(k)]
�2 �

k
X

i=0

i2 Pr[I(k) = i] + (E[I(k)])2

=
k

X

i=0

i21pi � 2E[I(k)]1E[I(k)]� (1E[I(k)])2

=
k

X

i=0

(i� E[I(k)])21pi � (E[I(k)])2
k

X

i=0

1pi � (1E[I(k)])2.

Observe that the summation of all1pi equals to zero, say
Pk

i=0 1pi = 0. Substituting
Pk

i=0 1pi with 0 in the above equation,
we derive an upper bound forbVar[I(k)]� Var[I(k)], namely

�

�

bVar[I(k)]� Var[I(k)]
�

� =
�

�

�

�

�

k
X

i=0

(i� E[I(k)])21pi � (1E[I(k)])2
�

�

�

�

�


k

X

i=0

(i� E[I(k)])2|1pi| + (1E[I(k)])2. (A.11)

Note that |1pi|  ✏ Pr[I(k) = i] and (1E[I(k)])2  ✏2Var[I(k)]. By substituting 1pi and (1E[I(k)])2 with these two
inequalities we have

�

�

bVar[I(k)]� Var[I(k)]
�

� 
k

X

i=0

(i� E[I(k)])2✏ Pr[I(k) = i] + (1E[I(k)])2

 ✏Var[I(k)] + ✏2Var[I(k)] = ✏(1 + ✏)Var[I(k)],
which completes the proof. ⇤
Proof of Theorem 7. Let us derive the theoretical performance guarantee for the expectation of I(k), or E[I(k)]. Recall that
1pi = bPr[I(k) = i]� Pr[I(k) = i]. We then have

|1pi|  max
n

✏
p

Pr[I(k) = i], ✏2
o

 ✏
p

Pr[I(k) = i] + ✏2, 8i = 0, 1, . . . , k.

Then it follow that
�

�

bE[I(k)]� E[I(k)]
�

� 
k

X

i=0

i|1pi| 
k

X

i=0

i
⇣

✏
p

Pr[I(k) = i] + ✏2
⌘


k

X

i=0

✏i
p

Pr[I(k) = i] + ✏2k2

by applying Cauchy’s Inequality we have,

�

�

bE[I(k)]� E[I(k)]
�

�  ✏

v

u

u

t

 

k
X

i=0

i

! 

k
X

i=0

i Pr[I(k) = i]
!

+ ✏2k2

= ✏
p

(k + 1)kE[I(k)]/2 + ✏2k2

 ✏k
p

E[I(k)] + ✏2k2.

We now derive the theoretical performance guarantee for the variance of I(k), or Var[I(k)]. For the ease of presentation,
we let 1pi = bPr[I(k) = i]� Pr[I(k) = i] and let 1E[I(k)] =bE[I(k)]� E[I(k)]. Inequality (A.11) gives a general upper bound
for

�

�

bVar[I(k)]� Var[I(k)]
�

�, namely

�

�

bVar[I(k)]� Var[I(k)]
�

� 
k

X

i=0

(i� E[I(k)])2|1pi| + (1E[I(k)])2. (A.12)
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Let us now proceed to individually derive these two terms of the above inequality. Observe that

(1pi)2  max
⇢

⇣

✏
p

Pr[I(k) = i]
⌘2

, ✏4
�

 ✏2 Pr[I(k) = i] + ✏4.

With this inequality we can bound
Pk

i=0(i� E[I(k)])2|1pi| as follows,

k
X

i=0

(i� E[I(k)])2|1pi| 
"

k
X

i=0

(i� E[I(k)])2(1pi)2
#1/2 " k

X

i=0

(i� E[I(k)])2
#1/2


"

k
X

i=0

(i� E[I(k)])2(✏2 Pr[I(k) = i] + ✏4)

#1/2 " k
X

i=0

i2
#1/2


"

✏2Var[I(k)] + ✏4
k

X

i=0

i2
#1/2 " k

X

i=0

i2
#1/2

=


✏2Var[I(k)] + ✏4 k(k + 1)(2k + 1)
6

�1/2 k(k + 1)(2k + 1)
6

�1/2

 ✏k
p

kVar[I(k)] + ✏2k4, (A.13)

where the first step is obtained by applying the Cauchy’s Inequality and the last step follows that k(k+1)(2k+1)
6  k3. The

remaining task is to bound the term (1E[I(k)])2. Inequality (A.10) gives a general upper bound of it, namely (1E[I(k)])2 
⇣

Pk
i=0 |i� E[I(k)]||1pi|

⌘2
. With this inequality, we can derive (1E[I(k)])2 as follows

(1E[I(k)])2 
 

k
X

i=0

✏|i� E[I(k)]||1pi/✏|
!2


k

X

j=0

✏2
k

X

i=0

(i� E[I(k)])2(1pi/✏)2

 ✏2(k + 1)
k

X

i=0

(i� E[I(k)])2(Pr[I(k) = i] + ✏2)

 ✏2(k + 1)(Var[I(k)] + ✏2k3), (A.14)

where the second step is obtained by applying Cauchy’s Inequality and the last step follows the inequality
Pk

i=0(i �
E[I(k)])2  Pk

i=0 i
2 = k(k+1)(2k+1)

6  k3. Applying Inequality (A.13) and (A.14) to Inequality (A.12) we complete the
proof. ⇤
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