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Abstract—In this paper, we explore the “clustering” phe-
nomenon in BT-like systems. A high clustering implies peers
have a high tendency to exchange information with peers of the
similar bandwidth type. We first show the clustering does exist
in BT-like systems. Although high clustering is desirable for file
sharing application, it may not be appropriate for multimedia
streaming applications. We provide analytical models to calculate
the clustering index and illustrate how one can control the
clustering index for different P2P applications.

I. Introduction

In recent years, there is a significant increase of P2P
traffic, in particular, due to the BitTorrent (BT) protocol.In
fact, we have seen a growing applications, for example, file
sharing, content distribution, multimedia streaming and video-
on-demand,..etc, all use the BT-derivative protocols to provide
high performance and scalable service.

The BT protocol adopts the well known tit-for-tat policy
within thechoking algorithmfor peer selection. Peers in such
a system will reward other peers who contribute more and
minimize the upload service to thefree-riding peers. Thus,
every peer has incentives to upload in order to enjoy a better
service. There are a number of papers [1], [6] which provide
the quantitative analysis on BT’s performance and fairness.
However, most of the work do not capture the detail of the
choking algorithm, which influence how peers select other
peers for information exchange. Since the tit-for-tat policy
affects the preference of peer selection, it can induce the
clustering phenomenonwithin a BT-like system, e.g., peers
which are of similar bandwidth type may prefer to exchange
information with each other. When a BT-like file distribution
system has a high clustering index, it implies that peers of type
k may prefer to exchange information with peers of typek,
and intuitively, this provides certain degree of fairness (since
similar bandwidth peers exchange information). However, for
some other BT-like systems, e.g., multimedia streaming or
video-on-demand service, one may not want the system to
have high clustering since we want a more resourceful peers
to stay in the system to help other less resourceful peers to
receive the information on time.

The goal of this paper is to investigate the clustering phe-
nomenon of BT-like system. We provide an analytical model
to evaluate theclustering indexof a BT-like system which
uses thegreedy selection algorithm(a derivative of the tit-
for-tat policy). In particular, we examine in detail the choking
algorithm and analyze the peer’s behavior in a heterogeneous
system. Unlike the work in [3], which investigate the clustering
via measurement, we provide a general analytical model to
understand this phenomenon and we also show how to use our

model tocontrol the degree of clustering so as to adapt to the
requirements of different P2P applications. The contributions
of this paper are:

• We develop two analytical models, one for BT-like sys-
tems with two types (or groups) of peers, while the other
for BT-like system with many types, in estimating the
clustering index among peers.

• We validate our models extensively via simulation.
• We propose simple knobs to control the clustering index

of a BT-like system.
In Section II, we introduce the peer selection algorithm, in
Section III, we present our analytical models. Performance
evaluation and validation are presented in Section IV and
Section V concludes.

II. Peer Selection Algorithm

In this paper, we consider a particular peer selection al-
gorithm, or theGreedy Selection(GS) algorithm, which is
based on the classification of peer’s uploading bandwidth. This
algorithm will help us to understand how peer selection may
impact the clustering phenomenon in BT-like systems. We
assume that there aren > 1 different groups of peers, with
groupk denoted asGk andG =

⋃n

k=1 Gk, with Gk

⋂

Gl = ∅
for k 6= l. Peers inGk has an upload capacity ofUk.
Without loss of generality, we assumeU1 > U2 > · · · > Un.
Each peer in the system can provideK maximum uploads
to other peers. i.e, in the BT protocol,K is set to five. We
assume throughout this paper that the capacity of an uploading
connection is limited touk = Uk/K for any peer in groupGk.
Our system follows the uplink sharing model [5] wherein the
bandwidth constraint is in the uplink connections rather than
the downlink connections. Note that this assumption is true
for most broadband access technologies.

The Greedy Selectionalgorithm, which is also known as
the tit-for-tat in the official BitTorrent protocol, is an effective
policy to discourage free riding. A peer using this algorithm
will unchoke (which means to provide upload service) the top
K−1 peers who contribute the most downloading service to
this peer. TheseK−1 connections are also called theregular
unchoking connectionsand this operation is carried out every
10 sec . The remaining upload connection willrandomlyselect
another peer in the system to unchoke. This occurs every 30
sec and it is called theoptimistic unchoking. The purpose of
the optimistic unchoking operation is to discover peers which
may be able to provide better downloading service to this
peer. The regular unchoke is greedy oriented since it only
reciprocates peers who contribute more service to this peer,
while the optimistic unchoke serves as a discovery mechanism



to find a more contributive peer [1], [3]. We model the GS
algorithm as follows. Each round there is a regular unchoke
event, while everyω ≥ 1 rounds there is an optimistic unchoke
event. At the end of each round, the following operations will
be carried out:

1) A peer sorts all its contributing peers in the current round
according to their group number (e.g., for bandwidth
differentiation). If there are several contributing peers
belonging to the same group, then the contributing peer
which provides upload service for a longer period will
have a higher priority.

2) The peer will unchoke at mostK−1 contributing peers
which have the highestK−1 priority.

3) Every ω rounds, this peer randomly picks one neigh-
boring peer, independent of its group number or service
contribution, to provide optimistic unchoking service.

For example, consider the system with two groups of peer,
G1 andG2. A peer belongs toG1 and it hasK = 5 upload
connections. If there are two contributing peers fromG1 and
one fromG2, then this peer will provide three regular unchoke
connections: two to the contributing peers inG1 and one to
the contributing peer inG2. This peer also uses one upload
connection for optimistic unchoke, and one of its upload
connections will remain idle for the current round.

It is important for us to point out that for the GS algorithm,
when a peer provides a regular unchoke to another contributing
peer, then abi-directionalconnection is established since both
peers provide upload service to each other. On the other
hand, for the optimistic unchoke service, we only have auni-
directional connection.

III. Analytical Models

In this section, we first provide the definition of clustering
index, then we will show how to formulate the mathematical
model to estimate the clustering index of BT-like systems. To
simplify our presentation, we first show how one can use a
Markov chain to model the Greedy Selection algorithm with
two groups of peers in aclose system, that is, all the peers
arrive at the same time and they will not leave. In this BT-
like system, we haveN peers withN1 and N2 being the
number of peers in groupG1 and G2 respectively. When
extending the model for more than two groups, the state space
and correspondingly, the one-step transition probabilitymatrix
becomes large. To resolve the curse of state space explosion,
we simplify the state space and propose another Markovian
model to represent the Greedy Selection algorithm so that
we can derive the clustering effect for BT-like systems with
more than two peer groups. Throughout this paper, we denote
B(N, p, k) as the binomial probability

(

N
k

)

pk(1 − p)(N−k).
Unless we state otherwise, we setω = 1 (i.e., at each round,
each peer will have an optimistic unchoke operation).

A. Clustering Index

Clustering index is a measure of the fraction (or steady
state probability) of bi-directional connections betweenpeers
of the samegroup. For example, given thatK is the number

of upload connections of a peer andK − 1 of these upload
connections are used for regular unchokes, and if all of these
K−1 upload connections are used to connect to other peers of
the same group, then the clustering index will be1. There are
two important points to note: (1) regular unchokes will create
a bi-direction connection between two peers from the same
group; (2) a higher clustering index implies a higher tendency
for peers of similar bandwidth type to exchange information.

Assume that a peerm of groupGk, we definecm to be the
clustering index for peerm as:

cm =
# of bi-directional connections to peers inGk

K − 1
. (1)

The clustering index for peers inGk, where1 ≤ k ≤ n is:

Ck =

∑

m∈Gk
cm

|Gk|
(2)

where|Gk| is the number of peers in groupGk.
It is easy to verify thatCk ∈ [0, 1]. WhenCk is larger than

the fraction ofGk peers in the system, then a tighter cluster
forms. This means that the unchokes from peers ofGk will
have a higher priority and peers inGk tend to unchoke their
compeers(e.g. other peers inGk). On the other hand, ifCk

is smaller than the fraction ofGk ’s peers in the system, then
the unchokes fromGk is less competitive and peers tend to
unchoke other groups which may provide a better service.

B. Analysis of the Greedy Selection Algorithm

Given the description of the GS algorithm from Section II,
we can construct a discrete time Markov chainMG with the
following state spaceSG:

SG = {(i, j)|i ≥ 0, j ≥ 0, i + j ≤ K − 1},

wherei is the number of bi-directional connections (or regular
unchokes) to groupG1 and j is the number of bi-directional
connection to groupG2. We also define the following proba-
bility vectors:

π(1) = {π
(1)
i,j |(i, j) ∈ SG}, π(2) = {π

(2)
i,j |(i, j) ∈ SG},

whereπ
(k)
i,j represents the fraction of groupGk peers in state

(i, j), for k = {1, 2}. Follow the definition of clustering above,
the following expressions are the clustering index forG1 and
G2:

C1 =

∑

(i,j)∈SG
i π

(1)
i,j

K − 1
, C2 =

∑

(i,j)∈SG
j π

(2)
i,j

K − 1
. (3)

In the GS algorithm, a bi-directional connection between
two peers inG1 will hold once it is established since they
have the highest selection priority under the GS algorithm.A
bi-directional connection between a peer inG1 and a peer in
G2 can be terminated when the peer inG1 receives a new
optimistic unchoke request from a compeer (e.g., another peer
in G1). While the bi-directional connection between two peers
in G2 can be terminated if a peer fromG1 has an optimistic
unchoke request to either of these two peers. Lastly, there are
other factors that will terminate a bi-directional connection,



e.g., when the file is not available or when network errors
occur. Hence, we denoteγk,l ∈ [0, 1], for k, l ∈ {1, 2}, be the
probability that a bi-directional connection betweenGk and
Gl be terminated by the peer from theGl side. We useγ1,1

andγ1,2 as inputs to derive the possible events that cause the
termination of a bi-directional connection inG1.

There are three possible processes that can cause a state
transition in our Markov chainMG. These processes are:cut
process, search processand thematch process. Let us describe
these processes in detail.
Cut Process: for this process, bi-directional connections are
terminated based onγk,l. Let us focus on the derivation of
γ2,1 and γ2,2, with γ1,1 and γ1,2 being input values. Define
the δ(2) = {δ

(2)
i,j |(i, j) ∈ SG} as the probability vector where

δ
(2)
i,j is the probability that one ofG2 peer’s bi-directional

connection is terminated by a peer in state(i, j), which can
be expressed as:

δ
(2)
i,j =

N1
∑

k=u(i,j)

min

{

k − u(i, j)

j
, 1

}

B(N1,
1

N
, k),

whereu(i, j) = K−(i+j)−1 is the number of idle uploading
connections for a peer in state(i, j). Assuming that the number
of bi-directional connections are uniformly distributed among
peers in the same group, we have,

γ2,1 =

∑

(i,j)∈SG
jπ

(1)
i,j δ

(2)
i,j

∑

(i,j)∈SG
jπ

(1)
i,j

; γ2,2 =

∑

(i,j)∈SG
jπ

(2)
i,j δ

(2)
i,j

∑

(i,j)∈SG
jπ

(2)
i,j

.

(4)
Let Q

(k)
C be the one-step transition probability matrix of the

cut process for aGk peer, wherek ∈ {1, 2}, then the transition
probability Prob{(i, j)|(i′, j′)} for Q

(k)
C is:

B(i′, γk,1, i′ − i)B(j′, γk,2, j′ − j)1{(i≤i′)∧(j≤j′)},

with (i′, j′) ∈ SG, (i, j) ∈ SG, and 1{x} is an indicator
function that1{x} = 1 if condition x is true and 0 otherwise.
Search process:for this process, the peer performs optimistic
unchoke and randomly selects another peer at the end of each
round. We defineα(k) = {α

(k)
i,j |(i, j) ∈ SG} as the probability

vector for groupGk, k = {1, 2}, whereα
(k)
i,j is the probability

that a peer of typeGk randomly unchokes and the receiving
peer, which is in state(i, j), decides to provide a reciprocative
upload. Note that an optimistic unchoke from a peer in group
G1 have a higher priority than any unchoke operations (both
for regular and optimistic) for peers fromG2. We have:

α
(1)
i,j =

N1
∑

k=0

min

{

K − i − 1

k + 1
, 1

}

B(N1,
1

N
, k).

On the other hand, optimistic unchokes from a peer inG2

are reciprocated only when the peer inG1 has an idle upload
connection. Therefore,α(2)

i,j can be expressed as:

α
(2)
i,j =

u(i,j)
∑

k=0

N2
∑

l=0

[

min

{

u(i, j) − k

l + 1
, 1

}

B(N1,
1

N
, k)B(N2,

1

N
, l)

]

,

with u(i, j) = K − (i + j) − 1 as mentioned above. Finally,
the probability that an optimistic unchoke from a peer inGk

receives a reciprocation from a peer inGl, which we denote
asβk,l, is:

βk,l = π(k) × (α(l))T with k, l = {1, 2}.

Table I summarizes the one-step transition probability matrix
Q

(k)
S of the search process for peers from groupGk, k =

{1, 2}.

State Probability Condition

(i, j) 1 i = K − 1, j = 0

(i, j) 1 − N2

N
βk,2 i + j = K − 1, j > 0

(i, j) 1 − N2

N
βk,2 − N1

N
βk,1 i + j < K − 1

(i + 1, j − 1) N1

N
βk,1 i + j = K − 1, j > 0

(i + 1, j) N1

N
βk,1 i + j < K − 1

(i, j + 1) N2

N
βk,2 i + j < K − 1

TABLE I
TRANSITION PROBABILITIES OF SEARCH PROCESS WITH INITIAL STATE

(i, j)

Match process: a peer uses the Greedy Selection algorithm
to select contributing peers to unchoke. Let us consider aG1

peer, sayv. Peerv′s reciprocation to the optimistic unchoke
can establish a bi-directional connection when the peer which
initiates the optimistic unchoke is in state(i, j), wherei <
K − 1. While aG2 peer’s reciprocation can be accepted only
when the peer which initiates the optimistic unchoke is in
state(i, j), wherei + j < K − 1. We defineEk,l be the set
of candidate peersin group Gk which can still establish a
bi-directional connection from the point of view of peers in
Gl, then we have:

Ek,1 = {v|v ∈ Gk, with state(i, j), i < K − 1},

Ek,2 = {v|v ∈ Gk, with state(i, j), i + j < K − 1}.

Also, defineEk,l = Gk −Ek,l as the complement set ofEk,l.
Given an initial state, the state transition is determined

by the number of received optimistic unchokes from the set
Ek,1, Ek,1, Ek,2, Ek,2 respectively. We definex, y, z, w, where
x ∈ {0, .., |Ek,1|}, y ∈ {0, .., |Ek,1|}, z ∈ {0, .., |Ek,2|} and
w ∈ {0, .., |Ek,2|}, as the number of optimistic unchokes from
the corresponding sets. Table II illustrates transition probabil-
ity matrix Q

(k)
M , for k ∈ {1, 2}. Note that the existing bi-

directional connection betweenG1 peers can never be termi-
nated in this process, thus we have the Prob{(i, j)|(i′, j′), i <
i′} = 0, as shown in the second row of Table II, and the
function Select(a, b, c, d) is:

Select(a, b, c, d) =

(

c
a

)(

d
b

)

(

c+d

a+b

) .

To compute the steady state probability vectors forπ(1) and
π(2), we use the following balanced equations:

π(k) = π(k)×Q
(k)
C ×Q

(k)
S ×Q

(k)
M ; π(k)e = 1, for k = {1, 2}.

(5)



State Conditions Next State

(i′, j′) 0 (i, j), i < i′

(i′, j′), (x = i − i′) ∧ (y = u(i, j)) (i, j),
j′ > 0 i ≥ i′, 0 < j < j′

(i′, j′), (x ≥ (i − i′)) ∧ (y ≥ K−i−1) ∧ Select(i − i′, K−i −1, x, y) (i, 0),
j′ > 0 i ≥ i′

(i′, j′) {(x = i − i′) ∧ (y ≤ u(i, j))} ∧ {((w < u(i, j) − y) ∧ (z = j − j′)) (i, j),
∨ ((w ≥ u(i, j) − y) ∧ (z ≥ j − j′) ∧ Select(j − j′, u(i, j) − y, z, w))} i ≥ i′, (j > j′) ∨ (j = j′ > 0)

{(x ≥ (i − i′)) ∧ (y ≥ K−i−1) ∧ Select(i − i′, K−i −1, x, y)}
(i′, 0) ∨ (i, 0),

{(x = i − i′) ∧ (y ≤ u(i, j))} ∧ {((w < u(i, j) − y) ∧ (z = j − j′)) i ≥ i′

∨ ((w ≥ u(i, j) − y) ∧ (z ≥ j − j′) ∧ Select(j − j′, u(i, j) − y, z, w))]}

TABLE II
TRANSITION PROBABILITIES FOR AMATCH PROCESS

Note that the above steady state probability vector can be
easily found by using standard numerical methods, e.g., power
method.

C. Extending to Multi-Groups

Extending the above Markov chain to handle a BT-like
system with more than two groups of peers can be prohibitive
since the state space of the Markov chain will be large. To re-
solve this problem, we consider the following simplifications.
Consider a BT-like system withn > 2 group of peers, we
assume the GS algorithm operates as:

1) For a peerv in group G1, besides the bi-directional
connections to peers inG1, v’s regular unchokes are
randomly distribute inGk with 1 < k ≤ n, if there are
enough receivers in such groups.

2) For a peerv in group Gk, with 1 < k ≤ n, besides
v’s bi-directional connections reciprocated to peers in
groupsGl, where1 ≤ l ≤ k, v’s regular unchokes are
randomly distribute inGm with k < m ≤ n if there are
enough receivers in such groups.

With the above assumptions, we construct a discrete time
Markov processM with the state spaceSR for groupGk:

SR = {i|0 ≤ i ≤ K − 1},

where i is the number ofmatched connections, i.e., the bi-
directional connections between peers of the same group. We
also define the probability vectorπ(k) = {π

(k)
0 , . . . , π

(k)
K−1},

where π
(k)
i represents the fraction ofGk peers holdingi

matched connections withi ∈ SR. We can now express the
clustering index for peers inGk as:

Ck =
1

K − 1

K−1
∑

l=1

lπ
(k)
l . (6)

Consider aGk peer, the optimistic and regular unchokes
from a peer in groupGl, where1 ≤ l < k, have a higher
priority than the unchokes from aGk peer. We defineOk

(Rk) as the set of such optimistic (regular) unchokes of group
Gk. Obviously, we have|Ok| =

∑k−1
l=1 Nl. We can determine

the cardinality ofRk as:

|Rk|=min

{

Nk

k−1
∑

l=1

[

Nl(K−1)(1−Cl) − |Rl|
∑n

m=l Nm

]

, (K−1)Nk

}

,

where |R1| = 0 as groupG1 has the highest bandwidth.
Consider aGk peer, because regular unchokes inRk are
uniformly distributed, so each of the connection has the
probability of p = |Rk|/(Nk · (K − 1)) to respond to regular
unchokes from a peer of high index group.

Let us consider groupGk for 1 ≤ k ≤ n. Similar to the
Markov model with two groups, there are three processes that
cause the state transition. We describe them as follows.
Cut process: in this process bi-directional connections are
terminated. Similar to the derivation of the previous Markov
chain, the probability that a a statei peer terminates a bi-
direction connection ofGk is:

δ
(k)
i =

K−i−1
∑

x=0

|Ok|
∑

y=u(x,i)

min

{

y − u(x, i)

i
, 1

}

×

B(K−i −1, p, x)B(|Ok|,
1

N
, y), (7)

whereu(x, i)=K−x−i−1. Assuming that the bi-directional
connections are uniformly distributed amongGk peers, we
have,

γ(1) = input value, γ(k) =

∑K−1
i=0 iπ

(k)
i δ

(k)
i

∑K−1
i=0 iπ

(k)
i

, for k > 1. (8)

Finally, the transition probability matrixQ(k)
C has the follow-

ing transition probability withi, i′ ∈ SR

Prob{i|i′} = B(i′, γ(k), i′ − i)1{i≤i′}. (9)

Search process:In this process, a peer randomly performs
optimistic unchoke to search for available peers within the
same group. Letβ(k), for 1 ≤ k ≤ n, be the probability that
the optimistic unchoke finds an available peer and gets the
reciprocated upload connection. We have:

β(k) =
Nk

N

K−1
∑

i=0

π
(k)
i α

(k)
i . (10)

where,

α
(k)
i =

K−i−1
∑

x=0

u(x,i)
∑

y=0

Nk
∑

z=0

min

{

u(x, i) − y

z + 1
, 1

}

B(K−i−1, p, x)

×B(|Ok|,
1

Nk

, y)B(Nk,
1

N
, z).



Therefore, the transition probability matrixQ(k)
S has the

following probability with i ∈ SR:

Prob{i|i} = 1−β(k)1{i≤K−1}, Prob{i+1|i} = β(k)1{i<K−1}.

Match process: in this process, a peer responds to the new
optimistic unchokes from peers of the same group. Let us
consider a groupGk with 1 ≤ k ≤ n. Define (x, y, z) for
a statei peer, wherex ∈ {0, .., K − i − 1} is the number
of bi-directional connection betweenGk and Gl with 1 ≤
l < k; while y ∈ {0, .., |Ok|} and z ∈ {0, .., Nk} are the
number of optimistic unchokes fromGl (1 ≤ l < k) and Gk

respectively. Given the initial state of a peer, the state transition
is determined by these three variables. Table III depicts the
transition probability matrixQ(k)

M .

Transition Condition

{(x ≤ K − 1) ∧ (y ≥ u(0, x))}
p{0|0} ∨

{(x + y < K − 1) ∧ (z = 0)}
p{0|i′, i′ > 0} (x ≤ u(0, i′)) ∧ (y ≥ u(0, x))

p{i|i′, i′ > i > 0} (x ≤ u(0, i′)) ∧ (y = u(x, i))
p{i|i′}, {(x + y < u(0, i)) ∧ (z = i − i′)}

i > i′ ∨ i = i′ > 0 ∨ {(x + y = u(0, i)) ∧ (z ≥ i − i′)}

TABLE III
TRANSITION PROBABILITIES OF MATCH PROCESS WITH INITIAL STATE i′

Similar to the first Markov chain, we obtain the steady state
vectorπ(k) using Equation 5.

IV. Performance Evaluation and Validation

To validate our mathematical models of determing the clus-
tering index of BT-like systems, we develop a discrete event
simulator to perform peer selection and the related choking
algorithm. Since we are interested in the clustering index of
the GS algorithm, we implement this peer selection only and
each peers will have some chunks that are of interested by
other peers. All peers will arrive to the system at timet = 0
and they stay in the system forever to exchange chunk.

For our discrete event simulator, we setN = 1000. The
other input parameters to our simulator are:

1) n, the number of groups,
2) the number of peers in each groupGk, 1 ≤ k ≤ n,
3) K = R + P , R and P is the number of regular and

optimistic unchokes for any peer,
4) ω, the number of time slots for each peer to perform the

optimistic unchoke operation, whereω ∈ {1, 2, . . .},
5) γ1,k for 1 ≤ k ≤ n, the probability of terminating a

bi-direction connection ofG1 by a peer in groupGk.

In our experiments, we first validate the accuracy of our
mathematical models in estimating the clustering index, both
for a BT-like system with two groups of peers and for systems
with more than two groups of peers. We also carry out
experiments to illustrate how one can change the clustering
index of a system by varying the controllable system param-
eters, namely,R, P andω. This is important since for some
applications, e.g., P2P multimedia streaming, we may want

to have a lower clustering index so that more resourceful
peers may help other less resourceful peers in obtaining a
satisfiable viewing service. It is important to point out that we
set R = 4, P = 1 in the following experiments, unless we
state otherwise.
Experiment 1 (Validating the Two-Groups model): In this
experiment, we consider a BT-like system with two different
types of peers (or two groups). we set the input parameter
n = 2 and ω = 1. Therefore, each peer will perform the
optimistic unchoke at that end of every round. In Table IV,
we present our mathematical prediction of clustering index, the
simulation results of clustering index and the corresponding
errors whenγ1,1 = 0.01. As we can observe, our model is
very accurate in predicting the clustering indexes for bothpeer
groups. Also Figure 1 illustrates the clustering index for both
groups when we setγ1,1 is equal to0.01 or 0.2. One can
conclude that our mathematical model can accurately predict
the clustering index of each group in this scenario.

Fraction of Model Simulation Error
G1 G1 G2 G1 G2 G1 G2

0.9 0.954 0.276 0.938 0.246 1.7% 12.1%
0.7 0.949 0.516 0.935 0.490 1.5% 5.2%
0.5 0.940 0.664 0.928 0.613 1.3% 8.3%
0.3 0.923 0.781 0.910 0.744 1.5% 4.9%
0.1 0.856 0.896 0.853 0.850 0.3% 5.3%

TABLE IV
COMPARING THE NUMERICAL & SIMULATION RESULTS OF CLUSTERING

INDEX , FORn = 2, γ1,k = 0.01, k = {1,2}.
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Fig. 1. Numerical solution vs. simulation result whenn = 2

Experiment 2 (Validating the Multi-Groups model): In this
experiment, we verify our mathematical models for multi-
groups BT-like system. We consider the system hasn = 4
different types of peers (orG1 to G4). Figure 2 illustrates the
estimation from our mathematical model and the simulation
results by varying the fraction ofG4 peers in the system. In
this experiment, once we set the fraction ofG4 peers, peers
of the other groups are uniformly distributed. In other words,
Nk = N−N4

3 for k = 1, 2, 3. We also setω = 1. From Figure
2, one can observe that the estimation ofG1 is accurate. While
there is a small difference between the mathematical prediction
of Gk, for k = 2, 3, 4, with that of the simulation result. This
is due to our simplification assumption that the bi-directional
connections fromGk to Gl are uniformly distributed for



k < l. Nevertheless, our mathematical is still quite accurate
in estimating the clustering index of other groups.
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Fig. 2. Numerical solutions vs. simulation results whenn = 4

Experiment 3 (Varying the clustering index via ω): In this
experiment, we consider how one can varying the clustering
index by changing the value ofω. In Fig. 3, we vary the
parameterω to 1, 2, 4, 8. One can observe that the clustering
index of G1 decrease when theω is larger. Sinceω is
increased, it will takeG1 peers longer time to find a more
resourceful peer via optimistic unchoke. On the other hand,
the clustering index ofG2 persists as the average number
of optimistic unchoke fromG1 remains relatively unchanged,
independent on the values ofω.
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Fig. 3. varying theω, n = 2, γ1,1 = γ1,2 = 0.05.

Experiment 4 (Varying the clustering index viaR andP ):
In this experiment, we consider the effect of parameterR and
P , i.e. the number of regular and optimistic unchokes. We set
ω = 1. In Fig. 4, we fixP = 1 and vary the number of regular
unchokesR. We show that the clustering index ofG2 increases
whenR becomes larger. We know that a high clustering index
of G1 only gives optimistic unchokes toG2 which is regardless
of reciprocation. So the fraction of optimistic unchokes from
G1, which have a higher priority, becomes smaller compares
to the regular unchokes whenR is larger. Therefore, moreG2

regular unchokes are responding to their compeers, insteadof
responding to the optimistic unchoke fromG1. In Fig. 5, we
fix R = 4 and vary the number of optimistic unchokesP to
1, 2, 4. The clustering index ofG2 decrease as more optimistic
unchokes from the peers inG1 will select the peers inG2.
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Fig. 4. Varying theR, n = 2, ω = 1, γ1,1 = γ1,2 = 0.05.
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Fig. 5. varying theP , n = 2, ω = 1, γ1,1 = γ1,2 = 0.05.

V. Conclusion

In this paper, we illustrate that BT protocol will generate a
high clustering index system, i.e., peers will connect withother
peers which are of similar bandwidth type. We provide two
analytical models to accurate evaluate the clustering index of
a BT-like system. The models are validated by extensive sim-
ulation. We also introduce design knobs to control clustering
index so that BT-like streaming systems will have much better
performance.
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