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Abstract

Multimedia applications place high demands for
QoS, performance, and reliability on storage servers
and communication networks. These, often stringent,
requirements make design of cost-e�ective and scalable
continuous media (CM) servers di�cult. In particular,
the choice of data placement techniques can have a sig-
ni�cant e�ect on the scalability of the CM server and
its ability to utilize resources e�ciently. In the recent
past, a great deal of work has focused on \wide" data
striping. Another approach to dealing with load imbal-
ance problems is replication. The appropriate compro-
mise between the degree of striping and the degree of
replication is key to the design of scalable CM servers.
Thus, the main focus of this paper is a study of scal-
ability characteristics of CM servers as a function of
tradeo�s between striping and replication.

1. Introduction

With the rapid growth of multimedia applications,
there is a growing need for large-scale continuous media
(CM) servers that can meet user demand. Multimedia
applications place high demands for quality-of-service
(QoS), performance, and reliability on storage servers
and communication networks. These, often stringent,
requirements make end-to-end design of cost-e�ective
and scalable CM servers di�cult. The scalability of a
CM server's architecture depends on its ability to:

� expand as user demand and data sizes grow;

� maintain performance characteristics under degra-
dation of system resources, which can be caused by
losses in network and storage capacities;

� maintain performance characteristics under
growth or re-con�guration.

�This research was supported in part by the NSF CAREER
grant CCR-98-96232 and the CUHK Mainline Research Grant
and RGC Grant.

In particular, the choice of data placement techniques
can have a signi�cant e�ect on the scalability of a CM
server and its ability to utilize resources e�ciently. Ex-
isting data placement techniques in conjunction with
scheduling algorithms address two major ine�ciencies
in such systems: (1) various overheads in reading data
from storage devices and (2) load imbalance, e.g., due
to skews in data access patterns. In this work, we fo-
cus on the latter issue and speci�cally on its bearing
on the scalability characteristics of a distributed (read-
only) CM server.

Due to the enormous storage and I/O bandwidth
requirements of multimedia data, a CM server is ex-
pected to have a large disk farm. Thus, we must nec-
essarily consider designs which contain multiple disk
clusters and processing nodes, i.e., we must consider
distributed designs. An important consideration then
is the placement of objects on the nodes of the CM
server which directly a�ects its load balancing charac-
teristics.

In the recent past, a great deal of CM server designs,
e.g., as in [2, 3, 9], have focused on \wide" data strip-
ing, where each object is striped across all the disks
of the system. The potential load imbalance is largely
due to the skews in data access patterns which, with-
out data striping, could result in high loads on some
disks containing the more popular objects, while the
disks containing less popular objects may be idling.
Moreover, the problem is exacerbated by the fact that
access patterns change over time. Thus, an advantage
of wide data striping is that it \implicitly" achieves
load balance by decoupling an object's storage from its
bandwidth requirements. However, wide data striping
also su�ers from several shortcomings:

1. It is not practical to assume that a system can
be constructed from homogeneous disks, i.e., as
the system grows or experiences faults (and thus
disk replacement) we are forced to use disks with
di�erent transfer and storage capacity characteris-
tics; having to stripe objects across heterogeneous



disks would lead to further complications [1].

2. An appropriate choice of a striping unit, the ob-
ject size, and the communications network infras-
tructure dictate an upper bound on the number
of disks over which that object can be striped, be-
yond which replication of objects is needed to in-
crease the number of simultaneous users [3], e.g.,
to the best of our knowledge, in implementations
described in [3, 9] striping is performed over (at
most) a few tens of homogeneous disks only1. Note
that, delivery of relatively short CM objects is
of use to many applications, including digital li-
braries and news-on-demand systems.

3. Due to the continuity constraints, some form of
synchronization in delivery of a single object from
multiple nodes must be considered. The need for
some form of \synchronization" arises from the
fact that di�erent fractions of an object are being
delivered from di�erent nodes at di�erent times
during the object's display, and hence some form
of coordination between these nodes (and perhaps
the client) is required in order to present a \coher-
ent" display of the object.

4. As user demand and data sizes grow and hence
the system requires more storage and disk band-
width capacity, the needed expansion results in
re-striping of all the objects.

5. Due to the potential need for communication of
CM data between the nodes over which the data
is striped, the capacity of the communication net-
work limits the performance of the distributed CM
server. This limitation directly a�ects the scalabil-
ity of the CM server and is one of the main issues
we investigate in this work.

Another approach to dealing with the load imbal-
ance problem arising from skews in data access pat-
terns is replication, i.e., creating a su�cient number of
copies of a (popular) object so as to meet the demand
for that object. Note that, disadvantages of replication
are: (1) a need for additional storage space, and (2) a
need for techniques that adjust the number of replicas
as the access patterns change; some of these issues are
addressed in [13], and in our previous work [11, 5]. In
addition, here we also improve on the dynamic replica-
tion schemes in [11, 5] (refer to Section 3).

In this paper, we consider a hybrid approach (refer
to Section 2), which addresses the above listed short-
comings. Speci�cally, the main focus here is on the
tradeo�s between striping and replication, which are
as follows. In a small-scale CM server, where all disks
are assumed to be connected to a single node, data

1In fact, we are not aware of, in the current literature, any
large-scale implementation that utilizes heterogeneous disks.

striping can provide better performance characteris-
tics than replication because of its ability to deal with
load imbalance problems without the need for addi-
tional storage space and without signi�cant networking
constraints. However, in a large-scale CM server, data
striping can result in a need for signi�cant communica-
tion network capacities which can lead to poor scalabil-
ity characteristics and high costs. Essentially, striping
is a good approach to load balancing while replication
is a good approach to \isolating" nodes from being de-
pendent on other (\non-local") system resources. That
is the wider we stripe in a distributed CM system, the
more we are dependent on the availability of network
capacity. Furthermore, replication has the bene�t of in-
creased reliability (see Section 4) in terms of: (a) longer
mean time to loss of data from the disk sub-system; and
(b) dealing with lack of network resources, including
network partitioning. The downside of replication is
that it increases storage space requirements and hence
cost. However, as storage costs decrease (fairly rapidly)
and the need for scalability grows, replication becomes
a more attractive technique.

In summary, the appropriate compromise between
the degree of striping and the degree of replication is
key to the design of a scalable distributed CM server.
This is the topic of our paper.

Related Work and Our Contributions
Much research has been done on design of CM stor-
age servers, e.g., as in [2, 3, 9], which mostly falls into
several broad categories: (1) small-scale servers, where
in most cases all disks are connected to a single node;
(2) medium-scale LAN-based servers, and (3) medium-
scale (either distributed or not) servers, which employ
high speed interconnects, such as ATM-based technol-
ogy. To the best of our knowledge, most of these de-
signs employ wide data striping techniques and the cor-
responding existing successful implementations employ
only tens of disks. In contrast, the use of replication for
the purpose of addressing workload demand problems
has been less explored. In [12] the authors consider
skews in data access patterns but in the context of a
static environment. In [13], the authors address vari-
ous questions arising in the context of load imbalance
problems due to skews in data access patterns, but in
a less dynamic environment (than we investigate here).
In [8, 7], the authors also consider dynamic replication
as an approach to load imbalance, and in our previous
work [11, 5], we study a taxonomy of dynamic repli-
cation schemes. However, all of these works, except
our work in [5], either (a) assume some knowledge of
frequencies of data access to various objects in the sys-
tem, and/or (b) do not provide users with full use of
VCR functionality, and/or (c) consider less dynamic
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environments than the one considered here. Our mo-
tivation in doing away with such assumptions in our
work is largely due to considerations of applicability of
dynamic replication techniques in more general settings
and to a wider range of applications of CM servers.

Lastly, to the best of our knowledge, previous works
do not consider alternative design characteristics that
a�ect the scalability of CM servers in an end-to-end
setting (i.e., taking into consideration both the net-
work and the storage resource constraints). The quan-
titative study of such issues and the cost/performance
and reliability characteristics that distributed designs
exhibit under growth, recon�guration, degradation of
resources, and changes in workloads are essential to as-
sessing the scalability of proposed architectures and to
the development of large-scale CM servers, in general.

Thus, the main contributions of this work are as
follows.
� Quantitative evaluation of performance and re-
source demand characteristics of data striping vs.
hybrid techniques in large-scale distributed CM
servers; such an evaluation is crucial to achieving
a scalable design of CM servers.

� Improved dynamic replication techniques for dis-
tributed hybrid CM servers, needed to achieve bet-
ter performance by adjusting the number of repli-
cas in the system based on changes in data access
patterns and user demand.

� Quantitative evaluation of reliability characteris-
tics of data striping vs. hybrid systems.

� Illustration of ease of designing heterogeneous hy-
brid CM systems without loss in performance char-
acteristics.

Based on this end-to-end cost/performance and relia-
bility study we argue that hybrid designs result in large
scalable CM systems.

2. Hybrid CM System Architecture

A hybrid system architecture is illustrated in Figure
1(a). It consists of a set of nodes connected by a high
speed global switch, which is a high bandwidth resource
that can, for instance, correspond to a high capacity
WAN or an ATM-type infrastructure. Each node i,
as depicted in Figure 1(b), contains one or more pro-
cessing units (PUs) and one local switch which is used
to connect all local PUs as well as local clients. Each
client connects to the nearest local switch. Requests
from this client which are serviced by a PU from node
i are termed \local". When a request from a client
cannot be serviced by its local node i, it is forwarded
to a remote node j, which contains a replica of the
requested object. We term this request \global", as

(a) hybrid architecture
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Figure 1. Hybrid System Architecture.

its service requires some capacity of the global switch,
i.e., to deliver data from the remote node, through the
global switch to the local node and subsequently to the
client.

Each PU has one or more CPUs, memory, and an
I/O sub-system (e.g., a cluster/array of disks), and it is
also connected to the global switch. Each node x 2 S,
where S is the set of nodes in the system, has a �nite
storage capacity, Dx (in units of CM objects), as well
as a �nite service capacity, Bx (in units of CM access
streams). Likewise, we measure the global and local
switch capacities in units of access streams. In gen-
eral, di�erent nodes in such a hybrid system may di�er
in their storage, I/O bandwidth, and local switch ser-
vice capacity. This exibility of the hybrid architecture
should result in a scalable system which can grow on a
node by node basis.

Each CM object resides on one or more nodes of the
system depending on its current popularity. An object
is striped only across local disks which belong to the
same node. Objects that require more than a single
node's service capacity (to support the corresponding
demand) are replicated on multiple nodes. The num-
ber of replicas needed to support requests for a CM
object is a function of demand, and therefore this num-
ber should change as the demand changes. Let Ri(t)
denote the set of nodes containing replicas of object i
at time t.

Upon a customer's arrival at time t, there is a proba-
bility pi(t) that the corresponding request is for object
i and a probability qij(t) that this request is generated
by a client local to node j. The admission of this cus-
tomer into the system proceeds as follows. If at time t
object i resides on node j and there is service capacity
available at node j, then the system admits and serves
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this new request at node j, i.e., locally. Let Lx(t) be
the load on node x at time t. If at time t object i
does not reside on node j or there is no service capac-
ity available at node j, then the system examines the
load information on each node in Ri(t), and if there is
su�cient capacity (on at least one of these node and in
the global switch), to service the newly arrived request,
the system assigns this request to the least-loaded node
in Ri(t). Otherwise, the customer is rejected.

Note that, in a hybrid system we need to maintain
load information on remote nodes and other bookkeep-
ing information, which will require (a relatively small
amount) of communication capacity; the exact amount
depends on a particular implementation, and we leave
these considerations to future work. Note also that, in
the case of wide data striping, the bookkeeping infor-
mation must be exchanged between nodes to schedule
each newly arrived request, whereas in hybrid archi-
tectures, we can tradeo� relying more on local (rather
than remote) information for some loss in performance.

To assess the scalability characteristics of the po-
tential designs in an environment where data access
patterns change over time, we consider the following
cost/performance and reliability metrics:

1. the system's acceptance rate, which is de�ned as
the percentage of all arriving customer requests
that are accepted by the system (with zero waiting
time2);

2. the capacity of the global switch required to sup-
port a particular architecture and corresponding
acceptance rate;

3. the capacities as well as the number of local
switches required to support a particular architec-
ture and corresponding acceptance rate;

4. the amount of disk storage required to support a
particular architecture and corresponding accep-
tance rate;

5. the mean time to failure (MTTF) of a particular
architecture.

3. Dynamic Replication

Since the number of copies of object i partly de-
termines the amount of resources available for serving
requests for i, we adjust the number of replicas main-
tained by the system dynamically , as access patterns
change. The system's performance depends on its abil-
ity to make such adjustments rapidly (which can re-
quire a non-negligible amount of resources) and accu-
rately. Thus, we essentially have conicting goals of

2We do not consider queueing of customers that can not
be admitted immediately, as it would entail consideration of
scheduling policies for queued requests; these are a function of
customers'willingness to wait and the correspondingapplication.

(a) using as few resources as possible for replication
while (b) trying to complete the replication process as
soon as possible. In an attempt to reach a compromise
between these conicting goals, we use \early accep-
tance" of customers, as proposed in our previous work
[5], where admitted customers are allowed to use in-
complete replicas (as the replication process continues),
as long as the replication of the �rst T iea time units of a
new copy of i is complete. To allow customers to have
full use of VCR functionality we need to determine a
\safe" value for T iea which results in a reasonable QoS;
we do this in [5] by employing a stochastic model of
user behavior. Due to lack of space we do not present
the details; however based on the results in [5], we use
the following policies in this paper.
Replication policy: We use the SREA (sequential
replication + early acceptance) policy, where a single
stream is injected into both, the source node (from
which the replication is performed), and the target
node (to which the replication is performed); newly
arrived users are admitted to the new (incomplete)
replica as soon as T iea time units of that object have
been replicated on the target node.
De-replication policy: We use the DM (delay migra-
tion) policy, which removes a replica of object i only
when there is no customer currently viewing object i,
which is motivated by the (possible) implementation
complexity of migrating customers \in mid-stream".
Replication/dereplication triggering: We use a
threshold-based approach to triggering replication and
dereplication. When a customer request for object i
arrives at time t, replication of object i (using SREA)
is initiated i�: (1) Ai(t) < ReThi, where ReThi is
the replication threshold and Ai(t) =

P
x2Ri(t)

(Bx �

Lx(t)); (2) object i in not currently under replica-
tion; (3) there is su�cient available service capacity
on the source node; (4) there is su�cient available
storage space capacity and service capacity on the
target node; (5) there is su�cient available service
capacity in the global switch. Once the replication
is triggered, we select the source node, by choosing
the least-loaded node in the set Ri(t), and the tar-
get node, by choosing node x, where (1) x 62 Ri(t), (2)

Lx(t) = miny2(S�Ri(t))

n
By�Ly(t)
1+y (t)

o
; where y(t) corre-

sponds to the number of replication processes already
in progress on node y at time t, and (3) the remaining
storage capacity on x is su�cient for the new replica.

Dereplication is invoked at the customer departure
instances, where a replica of object i at node x is re-
moved at time t i�: (1) Ai(t) = maxj2SfAj(t) >

ReThig; (2) i has \crossed" the dereplication thresh-
old, DeThi, i.e., Ai(t)�(Bx�Lx(t))�Cix(t) > DeThi
where Cix(t) denotes the number of customers viewing
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object i at node x at time t| the above equation is for
a general dereplication policy, but in the case of DM,
Cix(t) = 0; (3)

P
x2S Dx(t) < DS , where DS is the

storage space threshold for activating dereplication.

Dynamic Threshold Adjustment: Intuitively, we
would like the available service capacity for object i to
be proportional to pi(t). However, in practice, pi(t) is
unknown and varies over time. Although we could try
to collect statistics on object access demands, many
questions would remain open (refer to [6]). Thus, we
use dynamic replication techniques which do not as-
sume knowledge of access probabilities. We use the
last interarrival time for object i to (coarsely) \approx-
imate" pi(t) and compute threshold values as follows:

1. For each object i, keep its last request access time
ati. At arrival time, t, of a request for i, compute
its latest interarrival time, (t�ati), and use it as a
coarse \approximation" of pi(t). Whenever a new
request for i arrives, update the thresholds for all
objects accordingly and record ati.

2. ReThi = d
�D
�Dw �

T iea
t�ati

e, where �D and �Dw are the
average node storage capacities in the hybrid and
wide data striping systems, respectively.

3. DeThi = ReThi+Hi, where Hi = d
�D
�Dw �

T ilength
t�ati

e,
i.e., we introduce a hysteresis.

4. Scalability Study

In this section we present results of our simulation
and analytical study using the cost/performance and
reliability metrics given in Section 2. The arrival pro-
cess (of requests for objects) is Poisson with a mean

arrival rate of � = a �BN
T i
length

, where 0 � a � 1 is the \rel-

ative arrival rate". For ease of presentation, we discuss
the results in terms of a, i.e., relative to the total ser-
vice capacity of the system.

Parameter Default Value
Arrival rate a = 1:0

T ilength 90 mins

K 400
System capacity 1600 streams
Replication policy SREA

De-replication policy DM
Access Probability change (1)\gradual" and (2)\abrupt"
Skewness distribution Zipf, � = 0:0

qij (t) uniformly distributed between
1 and N , for each obj. i, 8t � 0

DS 5

Table 1. Parameters for the simulation study.

We consider the design of a CM server with the fol-
lowing capacity requirements (see Table 1): (1) a total
service capacity of N � �B = 1600 streams; (2) a total

storage capacity of K = 400 distinct objects; and (3)
each object is of length T ilength = 90 minutes.

Since the main motivation for using dynamic repli-
cation is the need to react to changes in access patterns,
we consider the performance of the system as a func-
tion of such changes. That is, the workload will have
the characteristic that every \rotation time period" of
X mins pi(t)'s change as follows:

pi(t
0) =

8>><
>>:

pi+2(t) if i is odd & 1 � i < K � 1
pK(t) if i is odd & i = K � 1
pi�2(t) if i is even & 2 < i � K

p1(t) if i is even & i = 2

(1)

which is intended to emulate a relatively \gradual" in-
crease/decrease in popularities and where t and t0 refer
to two consecutive rotation time periods; for ease of
presentation we assume that K is even. To test our
policies further, we also emulate an \abrupt" increase
in popularity of currently unpopular objects as well
as a \gradual" decrease in popularity of the currently
more popular objects as follows:

pi(t
0) =

�
p1(t) if i = K
pi+1(t) if 1 � i � K � 1

(2)

Furthermore (at any �xed value of t), we use the
Zipf distribution [10] to describe the skewness of the
access probabilities, where Prob[request for object i]

= c
i(1��)

, 1 � i � K, where c = 1

M
(1��)
K

and M
(1��)
K =PK

j=1
1

j(1��)
, with � = 0:0, which corresponds to the

measurements in [4]. Lastly, we use the following in-
teractivity settings: NP:FF:RW:PAUSE =19 : 1 : 1 : 1
| this is the ratio between the mean amount of time
spent in various user playback modes3. Based on these
setting and the results in [5] we use T iea = 12 mins,
given that T ilength = 90 mins.

The architectural settings considered in this study
are summarized in Table 24. Here arch1 corresponds to
wide data striping, where a single copy of each object is
striped across all nodes of the system, and arch groups
2{5 correspond to various con�gurations of a hybrid
CM server (as described in Section 2). For the hybrid
architectures we experiment with di�erent amounts of
per node storage space capacity, in order to illustrate
the tradeo� between storage space capacity local to a
node and the corresponding required capacity of the
global switch.

3NP refers to normal playback.
4For a hybrid system that requires more storage space than

the correspondingwide data striping systemwe only increase the
storage space per disk, not the number of disks, as that would
also increase the service capacity and hence would not make for
a fair comparison.
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Arch type No. of Srv cap/node Stor space/node
nodes Lcl switch cap

(in streams) (in objects)
arch1 20 80 20

arch2 group 20 80 22; 24; 26; 28; 30
arch3 group 10 160 44; 48; 52; 56; 60
arch4 group 5 320 88; 92; 96; 100; 104
arch5 group 2 800 205;210;215;220;225

Table 2. Parameters for architecture groups.

Moreover, we consider the a�ect on the overall sys-
tem performance of limitations of communication net-
work resources. Let nc represent the ratio of the global
switch and the storage system service capacities, i.e.,
nc = 1:0 represents equal service capacities in the stor-
age and communication sub-systems. Then we vary the
service capacity of the global switch, 0:1 � nc � 1, and
compute the subsequent degradation in performance
experienced by the various architectures. The motiva-
tion for these experiments is to: (1) observe the per-
formance degradation characteristics of possible CM
server designs (as this is an indication of their scala-
bility) and (2) assess whether reduction in overall re-
quired global switch capacity (which should lead to
lower costs) is possible without signi�cant loss in the
overall system performance.

Lastly, below \upper bound" on the acceptance rate
refers to the acceptance rate that a wide data striping
system can achieve without considering network capac-
ity constraints; thus this is the only curve in the fol-
lowing �gures that is not a function of nc.

4.1. Wide Data Striping System vs. Hybrid System

Figures 2 and 3(b) illustrate that under lower net-
work capacities, a hybrid system has better overall per-
formance as well as performance degradation charac-
teristics than the wide data striping system. More
importantly, the hybrid architecture allows us to trade-
o� capacities of the various system resources in or-
der to achieve a more cost-e�ective system overall.
Speci�cally, we can tradeo� local storage space and
local switch capacities with global switch capacity and
achieve nearly the same performance characteristics.
For instance, for a particular architectural setting, the
larger the local storage space capacity is, the smaller
the global switch capacity need be, in order to achieve
the same overall system performance, e.g., consider the
\arch 2 group" in Figure 2(a) | in the case of the 24
objects/node architecture, the corresponding required
service capacity of the global switch5 is 1280 streams,

5The needed global switch capacity is determined from Fig-
ure 2(a) by �rst �xing the acceptance rate that we would like to
achieve. Here, we �x the required acceptance rate to be at least

0:95�acceptance rate of the \upper bound result", and then de-
termine, using Figure 2(a), the smallest network constraint, c,
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Figure 2. Different network constraints.
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Figure 3. Abrupt increase/gradual decrease.

whereas in the case of the 30 objects/node architecture,
it is only 960 streams.

Conversely, the larger the local switch is, the more
we can reduce the storage space and global switch ca-
pacities, e.g., consider the \arch 2 group" in Figure
2(a) | in this case with a local switch capacity of
80 streams6, the corresponding required total storage
space capacity is 600 objects (i.e., 30 objects/node)
and the corresponding required service capacity of the
global switch is 960 streams. Consider now the \arch
4 group" in Figure 2(c) | although in this case the lo-
cal switch capacity increases to 320 streams, the corre-
sponding required service capacity of the global switch
drops down to 640 streams and the corresponding re-
quired total storage space capacity drops down to 460
objects (i.e., 92 objects/node). These results are due
to the fact that with larger local switch capacities, we
can service more customer requests locally (hence the
corresponding smaller required global switch capacity).

that satis�es that acceptance rate for the appropriate architec-
ture curve; then, the required global switch capacity is c � 1600
streams where 1600 streams corresponds to the maximum re-
quired system capacity.

6These values can be determined from Tables 2 and 3.
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Arch No of Srv cap/node Stor space Glbl
type nodes Lcl switch cap per node switch cap

(in streams) (in obj's) (in streams)
arch1 20 80 20 1600
arch2 20 80 26 1120
arch2.1 20 80 30 960
arch3 10 160 52 800
arch4 5 320 92 640
arch5 2 800 215 320
arch5.1 2 800 225 160

Table 3. Parameters for testing architectures.

Furthermore, larger local switches and corresponding
larger node service capacities also provide more oppor-
tunities to take advantage of the load balancing char-
acteristics of striping within a node (hence the smaller
required storage space capacity per node).

4.2. System Sizing Issues

Quantitatively evaluating the tradeo�s between lo-
cal switch capacity, node storage space capacity, and
global switch capacity is no easy task, as it is not imme-
diately clear how to tradeo� one resource for another.
Ideally, one would like to evaluate these tradeo�s based
on cost. However, cost considerations are a complex is-
sue, given that costs depend on many factors. Thus,
next we instead evaluate the di�erent hybrid designs
based on the amount of each resource they require rel-
ative to the wide data striping system. Such an evalu-
ation quantitatively illustrates to the designer the rel-
ative merits of the di�erent architectures, without the
need for choosing a speci�c technology7. The purpose
of these experiments is to illustrate how a CM server
designer can deal with these (fairly complex) system
sizing issues.

We further re�ne our test cases in Table 3,
and choose the per node storage space and cor-
responding global switch capacity of each archi-
tecture based on the results of the previous sec-
tion, i.e., we choose those architectures that can
achieve an acceptance rate of at least 0:95 �
acceptance rate of the \upper bound result" with rea-
sonably small per node storage space and global switch
capacities8. Figure 4 depicts the results of this com-
parison for each resource as

resource requirement of arch i

resource requirement of arch 1
8i 6= 1:

Hence, the straight line at the value of 1:0 in each of

7Characterizing a resource using only its capacity may result
in a simpli�cation for certain types of resources; however, this
is still a good abstraction for evaluating cost-e�ectiveness of de-
signs, without having to choose a speci�c technology for each
system component.

8The upper bound is computed without considering network
capacity constraints; since it is not always achievableby an archi-
tecture, we choose a performance goal that is reasonably close.

the graphs of Figure 4 corresponds to the (\scaled")
resource requirement of \arch 1".

As already stated, these results illustrate to the de-
signer the relative merits of the di�erent architectures
by quantifying the tradeo�s between the various re-
sources of the CM server. Based on these results and
current costs and technology trends, the designer can
make system sizing decisions.
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Figure 4. System sizing.

4.3. Heterogeneous Systems

Next, we illustrate the ease of dealing with hetero-
geneous systems when using hybrid CM server designs
without loss of performance as compared to an equiva-
lent homogeneous case. For this purpose, we consider a
hybrid CM architecture with 5 nodes and a total service
capacity of 1600 streams. We use two test cases in the
following experiments, both based on the homogeneous
version of \arch 4" with the storage space capacity of
104 objects per node (refer to Table 2). We introduce
5% and 10% di�erences in storage space and service
capacities between the nodes of the system (as well
as corresponding di�erences in local switch capacities),
e.g., to emulate a system that gradually grows (as well
as experiences replacements due to failures) and thus is
forced to use heterogeneous resources9 . The results, de-
picted in Figure 5(a), show that, using a hybrid design,
we can achieve heterogeneous system performance that
is comparable to homogeneous system performance.

9Hence, we have one test case of a 5 node system, with 84, 94,
104, 114, and 124 objects/node, respectively and service capacity
of 256, 288, 320, 352, and 384 streams, respectively. And, we
have another test case of a 5 node system, with 94, 99, 104, 109,
and 114 objects/node, respectively and service capacity of 288,
304, 320, 336, and 352 streams, respectively.
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(a) heterogeneous systems (b) MTTF comparison
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Figure 5. Heterogeneous systems and MTTF.

4.4. Reliability

We use the mean time to failure (MTTF) as our
reliability metric, which is de�ned as the mean time
until some combination of disk failures results in loss
of some data (i.e., losses that can no longer be recov-
ered through the use of redundant information). We
compare the architectures in Table 3, using a conser-
vative estimate for the hybrid system based on an as-
sumption of only a single copy per object (refer to [6]
for details). These results are depicted in Figure 5(b),
as MTTF of arch i

MTTF of arch 1 8i 6= 1, where, the straight line at
1:0 corresponds to the (\scaled") MTTF of wide data
striping. The derivations of the MTTF equations used
to compute the results in Figure 5(b) are given in [6].

These results clearly show that higher reliability can
be achieved by hybrid systems, even for objects that
only have a single copy, as compared to wide data strip-
ing; the increase in reliability is due to the \isolation"
of fault a�ects, i.e., the wider we stripe an object, the
more disk failures can a�ect it.

Of course, the reliability is even higher for objects
with multiple copies, as is natural in a system which
employs data replication. Thus, in a hybrid system, we
can provide signi�cantly higher reliability for the popu-
lar objects, as there will always be multiple replicas of
such objects in a hybrid system. Lastly, under network
failures or high workload conditions at remote nodes,
local nodes can at least deliver some objects10, which
is not the case for wide data striping, as all nodes and
network capacity must be available in order to serve a
request for any object.

5. Conclusions

In this work we studied the scalability of large
CM end-to-end server designs as a function of their
cost/performance and reliability characteristics under
various workloads and system constraints. We focused
on data placement issues and compared the scalability

10For example, in a movies-on-demand application, even if a
requestedmovie is not available, the user has the option to choose
another movie that may be available.

characteristics of hybrid vs. wide data striping architec-
tures. We showed that hybrid designs, in conjunction
with dynamic replication techniques, are less depen-
dent on interconnection network constraints, provide
higher reliability, and can be properly sized so as to
result in cost-e�ective end-to-end systems. Thus, we
believe that hybrid designs result in scalable large dis-
tributed CM servers.
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